comparison src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp @ 342:37f87013dfd8

6711316: Open source the Garbage-First garbage collector Summary: First mercurial integration of the code for the Garbage-First garbage collector. Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr
author ysr
date Thu, 05 Jun 2008 15:57:56 -0700
parents
children e0c09f7ec5c4
comparison
equal deleted inserted replaced
189:0b27f3512f9e 342:37f87013dfd8
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_g1CollectedHeap.cpp.incl"
27
28 // turn it on so that the contents of the young list (scan-only /
29 // to-be-collected) are printed at "strategic" points before / during
30 // / after the collection --- this is useful for debugging
31 #define SCAN_ONLY_VERBOSE 0
32 // CURRENT STATUS
33 // This file is under construction. Search for "FIXME".
34
35 // INVARIANTS/NOTES
36 //
37 // All allocation activity covered by the G1CollectedHeap interface is
38 // serialized by acquiring the HeapLock. This happens in
39 // mem_allocate_work, which all such allocation functions call.
40 // (Note that this does not apply to TLAB allocation, which is not part
41 // of this interface: it is done by clients of this interface.)
42
43 // Local to this file.
44
45 // Finds the first HeapRegion.
46 // No longer used, but might be handy someday.
47
48 class FindFirstRegionClosure: public HeapRegionClosure {
49 HeapRegion* _a_region;
50 public:
51 FindFirstRegionClosure() : _a_region(NULL) {}
52 bool doHeapRegion(HeapRegion* r) {
53 _a_region = r;
54 return true;
55 }
56 HeapRegion* result() { return _a_region; }
57 };
58
59
60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
61 SuspendibleThreadSet* _sts;
62 G1RemSet* _g1rs;
63 ConcurrentG1Refine* _cg1r;
64 bool _concurrent;
65 public:
66 RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
67 G1RemSet* g1rs,
68 ConcurrentG1Refine* cg1r) :
69 _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
70 {}
71 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
72 _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
73 if (_concurrent && _sts->should_yield()) {
74 // Caller will actually yield.
75 return false;
76 }
77 // Otherwise, we finished successfully; return true.
78 return true;
79 }
80 void set_concurrent(bool b) { _concurrent = b; }
81 };
82
83
84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
85 int _calls;
86 G1CollectedHeap* _g1h;
87 CardTableModRefBS* _ctbs;
88 int _histo[256];
89 public:
90 ClearLoggedCardTableEntryClosure() :
91 _calls(0)
92 {
93 _g1h = G1CollectedHeap::heap();
94 _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
95 for (int i = 0; i < 256; i++) _histo[i] = 0;
96 }
97 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
98 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
99 _calls++;
100 unsigned char* ujb = (unsigned char*)card_ptr;
101 int ind = (int)(*ujb);
102 _histo[ind]++;
103 *card_ptr = -1;
104 }
105 return true;
106 }
107 int calls() { return _calls; }
108 void print_histo() {
109 gclog_or_tty->print_cr("Card table value histogram:");
110 for (int i = 0; i < 256; i++) {
111 if (_histo[i] != 0) {
112 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]);
113 }
114 }
115 }
116 };
117
118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
119 int _calls;
120 G1CollectedHeap* _g1h;
121 CardTableModRefBS* _ctbs;
122 public:
123 RedirtyLoggedCardTableEntryClosure() :
124 _calls(0)
125 {
126 _g1h = G1CollectedHeap::heap();
127 _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
128 }
129 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
130 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
131 _calls++;
132 *card_ptr = 0;
133 }
134 return true;
135 }
136 int calls() { return _calls; }
137 };
138
139 YoungList::YoungList(G1CollectedHeap* g1h)
140 : _g1h(g1h), _head(NULL),
141 _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
142 _length(0), _scan_only_length(0),
143 _last_sampled_rs_lengths(0),
144 _survivor_head(NULL), _survivors_tail(NULL), _survivor_length(0)
145 {
146 guarantee( check_list_empty(false), "just making sure..." );
147 }
148
149 void YoungList::push_region(HeapRegion *hr) {
150 assert(!hr->is_young(), "should not already be young");
151 assert(hr->get_next_young_region() == NULL, "cause it should!");
152
153 hr->set_next_young_region(_head);
154 _head = hr;
155
156 hr->set_young();
157 double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
158 ++_length;
159 }
160
161 void YoungList::add_survivor_region(HeapRegion* hr) {
162 assert(!hr->is_survivor(), "should not already be for survived");
163 assert(hr->get_next_young_region() == NULL, "cause it should!");
164
165 hr->set_next_young_region(_survivor_head);
166 if (_survivor_head == NULL) {
167 _survivors_tail = hr;
168 }
169 _survivor_head = hr;
170
171 hr->set_survivor();
172 ++_survivor_length;
173 }
174
175 HeapRegion* YoungList::pop_region() {
176 while (_head != NULL) {
177 assert( length() > 0, "list should not be empty" );
178 HeapRegion* ret = _head;
179 _head = ret->get_next_young_region();
180 ret->set_next_young_region(NULL);
181 --_length;
182 assert(ret->is_young(), "region should be very young");
183
184 // Replace 'Survivor' region type with 'Young'. So the region will
185 // be treated as a young region and will not be 'confused' with
186 // newly created survivor regions.
187 if (ret->is_survivor()) {
188 ret->set_young();
189 }
190
191 if (!ret->is_scan_only()) {
192 return ret;
193 }
194
195 // scan-only, we'll add it to the scan-only list
196 if (_scan_only_tail == NULL) {
197 guarantee( _scan_only_head == NULL, "invariant" );
198
199 _scan_only_head = ret;
200 _curr_scan_only = ret;
201 } else {
202 guarantee( _scan_only_head != NULL, "invariant" );
203 _scan_only_tail->set_next_young_region(ret);
204 }
205 guarantee( ret->get_next_young_region() == NULL, "invariant" );
206 _scan_only_tail = ret;
207
208 // no need to be tagged as scan-only any more
209 ret->set_young();
210
211 ++_scan_only_length;
212 }
213 assert( length() == 0, "list should be empty" );
214 return NULL;
215 }
216
217 void YoungList::empty_list(HeapRegion* list) {
218 while (list != NULL) {
219 HeapRegion* next = list->get_next_young_region();
220 list->set_next_young_region(NULL);
221 list->uninstall_surv_rate_group();
222 list->set_not_young();
223 list = next;
224 }
225 }
226
227 void YoungList::empty_list() {
228 assert(check_list_well_formed(), "young list should be well formed");
229
230 empty_list(_head);
231 _head = NULL;
232 _length = 0;
233
234 empty_list(_scan_only_head);
235 _scan_only_head = NULL;
236 _scan_only_tail = NULL;
237 _scan_only_length = 0;
238 _curr_scan_only = NULL;
239
240 empty_list(_survivor_head);
241 _survivor_head = NULL;
242 _survivors_tail = NULL;
243 _survivor_length = 0;
244
245 _last_sampled_rs_lengths = 0;
246
247 assert(check_list_empty(false), "just making sure...");
248 }
249
250 bool YoungList::check_list_well_formed() {
251 bool ret = true;
252
253 size_t length = 0;
254 HeapRegion* curr = _head;
255 HeapRegion* last = NULL;
256 while (curr != NULL) {
257 if (!curr->is_young() || curr->is_scan_only()) {
258 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
259 "incorrectly tagged (%d, %d)",
260 curr->bottom(), curr->end(),
261 curr->is_young(), curr->is_scan_only());
262 ret = false;
263 }
264 ++length;
265 last = curr;
266 curr = curr->get_next_young_region();
267 }
268 ret = ret && (length == _length);
269
270 if (!ret) {
271 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
272 gclog_or_tty->print_cr("### list has %d entries, _length is %d",
273 length, _length);
274 }
275
276 bool scan_only_ret = true;
277 length = 0;
278 curr = _scan_only_head;
279 last = NULL;
280 while (curr != NULL) {
281 if (!curr->is_young() || curr->is_scan_only()) {
282 gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
283 "incorrectly tagged (%d, %d)",
284 curr->bottom(), curr->end(),
285 curr->is_young(), curr->is_scan_only());
286 scan_only_ret = false;
287 }
288 ++length;
289 last = curr;
290 curr = curr->get_next_young_region();
291 }
292 scan_only_ret = scan_only_ret && (length == _scan_only_length);
293
294 if ( (last != _scan_only_tail) ||
295 (_scan_only_head == NULL && _scan_only_tail != NULL) ||
296 (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
297 gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
298 scan_only_ret = false;
299 }
300
301 if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
302 gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
303 scan_only_ret = false;
304 }
305
306 if (!scan_only_ret) {
307 gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
308 gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d",
309 length, _scan_only_length);
310 }
311
312 return ret && scan_only_ret;
313 }
314
315 bool YoungList::check_list_empty(bool ignore_scan_only_list,
316 bool check_sample) {
317 bool ret = true;
318
319 if (_length != 0) {
320 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
321 _length);
322 ret = false;
323 }
324 if (check_sample && _last_sampled_rs_lengths != 0) {
325 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
326 ret = false;
327 }
328 if (_head != NULL) {
329 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
330 ret = false;
331 }
332 if (!ret) {
333 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
334 }
335
336 if (ignore_scan_only_list)
337 return ret;
338
339 bool scan_only_ret = true;
340 if (_scan_only_length != 0) {
341 gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
342 _scan_only_length);
343 scan_only_ret = false;
344 }
345 if (_scan_only_head != NULL) {
346 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
347 scan_only_ret = false;
348 }
349 if (_scan_only_tail != NULL) {
350 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
351 scan_only_ret = false;
352 }
353 if (!scan_only_ret) {
354 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
355 }
356
357 return ret && scan_only_ret;
358 }
359
360 void
361 YoungList::rs_length_sampling_init() {
362 _sampled_rs_lengths = 0;
363 _curr = _head;
364 }
365
366 bool
367 YoungList::rs_length_sampling_more() {
368 return _curr != NULL;
369 }
370
371 void
372 YoungList::rs_length_sampling_next() {
373 assert( _curr != NULL, "invariant" );
374 _sampled_rs_lengths += _curr->rem_set()->occupied();
375 _curr = _curr->get_next_young_region();
376 if (_curr == NULL) {
377 _last_sampled_rs_lengths = _sampled_rs_lengths;
378 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
379 }
380 }
381
382 void
383 YoungList::reset_auxilary_lists() {
384 // We could have just "moved" the scan-only list to the young list.
385 // However, the scan-only list is ordered according to the region
386 // age in descending order, so, by moving one entry at a time, we
387 // ensure that it is recreated in ascending order.
388
389 guarantee( is_empty(), "young list should be empty" );
390 assert(check_list_well_formed(), "young list should be well formed");
391
392 // Add survivor regions to SurvRateGroup.
393 _g1h->g1_policy()->note_start_adding_survivor_regions();
394 for (HeapRegion* curr = _survivor_head;
395 curr != NULL;
396 curr = curr->get_next_young_region()) {
397 _g1h->g1_policy()->set_region_survivors(curr);
398 }
399 _g1h->g1_policy()->note_stop_adding_survivor_regions();
400
401 if (_survivor_head != NULL) {
402 _head = _survivor_head;
403 _length = _survivor_length + _scan_only_length;
404 _survivors_tail->set_next_young_region(_scan_only_head);
405 } else {
406 _head = _scan_only_head;
407 _length = _scan_only_length;
408 }
409
410 for (HeapRegion* curr = _scan_only_head;
411 curr != NULL;
412 curr = curr->get_next_young_region()) {
413 curr->recalculate_age_in_surv_rate_group();
414 }
415 _scan_only_head = NULL;
416 _scan_only_tail = NULL;
417 _scan_only_length = 0;
418 _curr_scan_only = NULL;
419
420 _survivor_head = NULL;
421 _survivors_tail = NULL;
422 _survivor_length = 0;
423 _g1h->g1_policy()->finished_recalculating_age_indexes();
424
425 assert(check_list_well_formed(), "young list should be well formed");
426 }
427
428 void YoungList::print() {
429 HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head};
430 const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"};
431
432 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
433 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
434 HeapRegion *curr = lists[list];
435 if (curr == NULL)
436 gclog_or_tty->print_cr(" empty");
437 while (curr != NULL) {
438 gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
439 "age: %4d, y: %d, s-o: %d, surv: %d",
440 curr->bottom(), curr->end(),
441 curr->top(),
442 curr->prev_top_at_mark_start(),
443 curr->next_top_at_mark_start(),
444 curr->top_at_conc_mark_count(),
445 curr->age_in_surv_rate_group_cond(),
446 curr->is_young(),
447 curr->is_scan_only(),
448 curr->is_survivor());
449 curr = curr->get_next_young_region();
450 }
451 }
452
453 gclog_or_tty->print_cr("");
454 }
455
456 void G1CollectedHeap::stop_conc_gc_threads() {
457 _cg1r->cg1rThread()->stop();
458 _czft->stop();
459 _cmThread->stop();
460 }
461
462
463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
464 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
465 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
466
467 // Count the dirty cards at the start.
468 CountNonCleanMemRegionClosure count1(this);
469 ct_bs->mod_card_iterate(&count1);
470 int orig_count = count1.n();
471
472 // First clear the logged cards.
473 ClearLoggedCardTableEntryClosure clear;
474 dcqs.set_closure(&clear);
475 dcqs.apply_closure_to_all_completed_buffers();
476 dcqs.iterate_closure_all_threads(false);
477 clear.print_histo();
478
479 // Now ensure that there's no dirty cards.
480 CountNonCleanMemRegionClosure count2(this);
481 ct_bs->mod_card_iterate(&count2);
482 if (count2.n() != 0) {
483 gclog_or_tty->print_cr("Card table has %d entries; %d originally",
484 count2.n(), orig_count);
485 }
486 guarantee(count2.n() == 0, "Card table should be clean.");
487
488 RedirtyLoggedCardTableEntryClosure redirty;
489 JavaThread::dirty_card_queue_set().set_closure(&redirty);
490 dcqs.apply_closure_to_all_completed_buffers();
491 dcqs.iterate_closure_all_threads(false);
492 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
493 clear.calls(), orig_count);
494 guarantee(redirty.calls() == clear.calls(),
495 "Or else mechanism is broken.");
496
497 CountNonCleanMemRegionClosure count3(this);
498 ct_bs->mod_card_iterate(&count3);
499 if (count3.n() != orig_count) {
500 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
501 orig_count, count3.n());
502 guarantee(count3.n() >= orig_count, "Should have restored them all.");
503 }
504
505 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
506 }
507
508 // Private class members.
509
510 G1CollectedHeap* G1CollectedHeap::_g1h;
511
512 // Private methods.
513
514 // Finds a HeapRegion that can be used to allocate a given size of block.
515
516
517 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
518 bool do_expand,
519 bool zero_filled) {
520 ConcurrentZFThread::note_region_alloc();
521 HeapRegion* res = alloc_free_region_from_lists(zero_filled);
522 if (res == NULL && do_expand) {
523 expand(word_size * HeapWordSize);
524 res = alloc_free_region_from_lists(zero_filled);
525 assert(res == NULL ||
526 (!res->isHumongous() &&
527 (!zero_filled ||
528 res->zero_fill_state() == HeapRegion::Allocated)),
529 "Alloc Regions must be zero filled (and non-H)");
530 }
531 if (res != NULL && res->is_empty()) _free_regions--;
532 assert(res == NULL ||
533 (!res->isHumongous() &&
534 (!zero_filled ||
535 res->zero_fill_state() == HeapRegion::Allocated)),
536 "Non-young alloc Regions must be zero filled (and non-H)");
537
538 if (G1TraceRegions) {
539 if (res != NULL) {
540 gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
541 "top "PTR_FORMAT,
542 res->hrs_index(), res->bottom(), res->end(), res->top());
543 }
544 }
545
546 return res;
547 }
548
549 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
550 size_t word_size,
551 bool zero_filled) {
552 HeapRegion* alloc_region = NULL;
553 if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
554 alloc_region = newAllocRegion_work(word_size, true, zero_filled);
555 if (purpose == GCAllocForSurvived && alloc_region != NULL) {
556 _young_list->add_survivor_region(alloc_region);
557 }
558 ++_gc_alloc_region_counts[purpose];
559 } else {
560 g1_policy()->note_alloc_region_limit_reached(purpose);
561 }
562 return alloc_region;
563 }
564
565 // If could fit into free regions w/o expansion, try.
566 // Otherwise, if can expand, do so.
567 // Otherwise, if using ex regions might help, try with ex given back.
568 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
569 assert(regions_accounted_for(), "Region leakage!");
570
571 // We can't allocate H regions while cleanupComplete is running, since
572 // some of the regions we find to be empty might not yet be added to the
573 // unclean list. (If we're already at a safepoint, this call is
574 // unnecessary, not to mention wrong.)
575 if (!SafepointSynchronize::is_at_safepoint())
576 wait_for_cleanup_complete();
577
578 size_t num_regions =
579 round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
580
581 // Special case if < one region???
582
583 // Remember the ft size.
584 size_t x_size = expansion_regions();
585
586 HeapWord* res = NULL;
587 bool eliminated_allocated_from_lists = false;
588
589 // Can the allocation potentially fit in the free regions?
590 if (free_regions() >= num_regions) {
591 res = _hrs->obj_allocate(word_size);
592 }
593 if (res == NULL) {
594 // Try expansion.
595 size_t fs = _hrs->free_suffix();
596 if (fs + x_size >= num_regions) {
597 expand((num_regions - fs) * HeapRegion::GrainBytes);
598 res = _hrs->obj_allocate(word_size);
599 assert(res != NULL, "This should have worked.");
600 } else {
601 // Expansion won't help. Are there enough free regions if we get rid
602 // of reservations?
603 size_t avail = free_regions();
604 if (avail >= num_regions) {
605 res = _hrs->obj_allocate(word_size);
606 if (res != NULL) {
607 remove_allocated_regions_from_lists();
608 eliminated_allocated_from_lists = true;
609 }
610 }
611 }
612 }
613 if (res != NULL) {
614 // Increment by the number of regions allocated.
615 // FIXME: Assumes regions all of size GrainBytes.
616 #ifndef PRODUCT
617 mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
618 HeapRegion::GrainWords));
619 #endif
620 if (!eliminated_allocated_from_lists)
621 remove_allocated_regions_from_lists();
622 _summary_bytes_used += word_size * HeapWordSize;
623 _free_regions -= num_regions;
624 _num_humongous_regions += (int) num_regions;
625 }
626 assert(regions_accounted_for(), "Region Leakage");
627 return res;
628 }
629
630 HeapWord*
631 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
632 bool permit_collection_pause) {
633 HeapWord* res = NULL;
634 HeapRegion* allocated_young_region = NULL;
635
636 assert( SafepointSynchronize::is_at_safepoint() ||
637 Heap_lock->owned_by_self(), "pre condition of the call" );
638
639 if (isHumongous(word_size)) {
640 // Allocation of a humongous object can, in a sense, complete a
641 // partial region, if the previous alloc was also humongous, and
642 // caused the test below to succeed.
643 if (permit_collection_pause)
644 do_collection_pause_if_appropriate(word_size);
645 res = humongousObjAllocate(word_size);
646 assert(_cur_alloc_region == NULL
647 || !_cur_alloc_region->isHumongous(),
648 "Prevent a regression of this bug.");
649
650 } else {
651 // If we do a collection pause, this will be reset to a non-NULL
652 // value. If we don't, nulling here ensures that we allocate a new
653 // region below.
654 if (_cur_alloc_region != NULL) {
655 // We're finished with the _cur_alloc_region.
656 _summary_bytes_used += _cur_alloc_region->used();
657 _cur_alloc_region = NULL;
658 }
659 assert(_cur_alloc_region == NULL, "Invariant.");
660 // Completion of a heap region is perhaps a good point at which to do
661 // a collection pause.
662 if (permit_collection_pause)
663 do_collection_pause_if_appropriate(word_size);
664 // Make sure we have an allocation region available.
665 if (_cur_alloc_region == NULL) {
666 if (!SafepointSynchronize::is_at_safepoint())
667 wait_for_cleanup_complete();
668 bool next_is_young = should_set_young_locked();
669 // If the next region is not young, make sure it's zero-filled.
670 _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
671 if (_cur_alloc_region != NULL) {
672 _summary_bytes_used -= _cur_alloc_region->used();
673 if (next_is_young) {
674 set_region_short_lived_locked(_cur_alloc_region);
675 allocated_young_region = _cur_alloc_region;
676 }
677 }
678 }
679 assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
680 "Prevent a regression of this bug.");
681
682 // Now retry the allocation.
683 if (_cur_alloc_region != NULL) {
684 res = _cur_alloc_region->allocate(word_size);
685 }
686 }
687
688 // NOTE: fails frequently in PRT
689 assert(regions_accounted_for(), "Region leakage!");
690
691 if (res != NULL) {
692 if (!SafepointSynchronize::is_at_safepoint()) {
693 assert( permit_collection_pause, "invariant" );
694 assert( Heap_lock->owned_by_self(), "invariant" );
695 Heap_lock->unlock();
696 }
697
698 if (allocated_young_region != NULL) {
699 HeapRegion* hr = allocated_young_region;
700 HeapWord* bottom = hr->bottom();
701 HeapWord* end = hr->end();
702 MemRegion mr(bottom, end);
703 ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
704 }
705 }
706
707 assert( SafepointSynchronize::is_at_safepoint() ||
708 (res == NULL && Heap_lock->owned_by_self()) ||
709 (res != NULL && !Heap_lock->owned_by_self()),
710 "post condition of the call" );
711
712 return res;
713 }
714
715 HeapWord*
716 G1CollectedHeap::mem_allocate(size_t word_size,
717 bool is_noref,
718 bool is_tlab,
719 bool* gc_overhead_limit_was_exceeded) {
720 debug_only(check_for_valid_allocation_state());
721 assert(no_gc_in_progress(), "Allocation during gc not allowed");
722 HeapWord* result = NULL;
723
724 // Loop until the allocation is satisified,
725 // or unsatisfied after GC.
726 for (int try_count = 1; /* return or throw */; try_count += 1) {
727 int gc_count_before;
728 {
729 Heap_lock->lock();
730 result = attempt_allocation(word_size);
731 if (result != NULL) {
732 // attempt_allocation should have unlocked the heap lock
733 assert(is_in(result), "result not in heap");
734 return result;
735 }
736 // Read the gc count while the heap lock is held.
737 gc_count_before = SharedHeap::heap()->total_collections();
738 Heap_lock->unlock();
739 }
740
741 // Create the garbage collection operation...
742 VM_G1CollectForAllocation op(word_size,
743 gc_count_before);
744
745 // ...and get the VM thread to execute it.
746 VMThread::execute(&op);
747 if (op.prologue_succeeded()) {
748 result = op.result();
749 assert(result == NULL || is_in(result), "result not in heap");
750 return result;
751 }
752
753 // Give a warning if we seem to be looping forever.
754 if ((QueuedAllocationWarningCount > 0) &&
755 (try_count % QueuedAllocationWarningCount == 0)) {
756 warning("G1CollectedHeap::mem_allocate_work retries %d times",
757 try_count);
758 }
759 }
760 }
761
762 void G1CollectedHeap::abandon_cur_alloc_region() {
763 if (_cur_alloc_region != NULL) {
764 // We're finished with the _cur_alloc_region.
765 if (_cur_alloc_region->is_empty()) {
766 _free_regions++;
767 free_region(_cur_alloc_region);
768 } else {
769 _summary_bytes_used += _cur_alloc_region->used();
770 }
771 _cur_alloc_region = NULL;
772 }
773 }
774
775 class PostMCRemSetClearClosure: public HeapRegionClosure {
776 ModRefBarrierSet* _mr_bs;
777 public:
778 PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
779 bool doHeapRegion(HeapRegion* r) {
780 r->reset_gc_time_stamp();
781 if (r->continuesHumongous())
782 return false;
783 HeapRegionRemSet* hrrs = r->rem_set();
784 if (hrrs != NULL) hrrs->clear();
785 // You might think here that we could clear just the cards
786 // corresponding to the used region. But no: if we leave a dirty card
787 // in a region we might allocate into, then it would prevent that card
788 // from being enqueued, and cause it to be missed.
789 // Re: the performance cost: we shouldn't be doing full GC anyway!
790 _mr_bs->clear(MemRegion(r->bottom(), r->end()));
791 return false;
792 }
793 };
794
795
796 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
797 ModRefBarrierSet* _mr_bs;
798 public:
799 PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
800 bool doHeapRegion(HeapRegion* r) {
801 if (r->continuesHumongous()) return false;
802 if (r->used_region().word_size() != 0) {
803 _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
804 }
805 return false;
806 }
807 };
808
809 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
810 size_t word_size) {
811 ResourceMark rm;
812
813 if (full && DisableExplicitGC) {
814 gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
815 return;
816 }
817
818 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
819 assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
820
821 if (GC_locker::is_active()) {
822 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
823 }
824
825 {
826 IsGCActiveMark x;
827
828 // Timing
829 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
830 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
831 TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
832
833 double start = os::elapsedTime();
834 GCOverheadReporter::recordSTWStart(start);
835 g1_policy()->record_full_collection_start();
836
837 gc_prologue(true);
838 increment_total_collections();
839
840 size_t g1h_prev_used = used();
841 assert(used() == recalculate_used(), "Should be equal");
842
843 if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
844 HandleMark hm; // Discard invalid handles created during verification
845 prepare_for_verify();
846 gclog_or_tty->print(" VerifyBeforeGC:");
847 Universe::verify(true);
848 }
849 assert(regions_accounted_for(), "Region leakage!");
850
851 COMPILER2_PRESENT(DerivedPointerTable::clear());
852
853 // We want to discover references, but not process them yet.
854 // This mode is disabled in
855 // instanceRefKlass::process_discovered_references if the
856 // generation does some collection work, or
857 // instanceRefKlass::enqueue_discovered_references if the
858 // generation returns without doing any work.
859 ref_processor()->disable_discovery();
860 ref_processor()->abandon_partial_discovery();
861 ref_processor()->verify_no_references_recorded();
862
863 // Abandon current iterations of concurrent marking and concurrent
864 // refinement, if any are in progress.
865 concurrent_mark()->abort();
866
867 // Make sure we'll choose a new allocation region afterwards.
868 abandon_cur_alloc_region();
869 assert(_cur_alloc_region == NULL, "Invariant.");
870 g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
871 tear_down_region_lists();
872 set_used_regions_to_need_zero_fill();
873 if (g1_policy()->in_young_gc_mode()) {
874 empty_young_list();
875 g1_policy()->set_full_young_gcs(true);
876 }
877
878 // Temporarily make reference _discovery_ single threaded (non-MT).
879 ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
880
881 // Temporarily make refs discovery atomic
882 ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
883
884 // Temporarily clear _is_alive_non_header
885 ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
886
887 ref_processor()->enable_discovery();
888
889 // Do collection work
890 {
891 HandleMark hm; // Discard invalid handles created during gc
892 G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
893 }
894 // Because freeing humongous regions may have added some unclean
895 // regions, it is necessary to tear down again before rebuilding.
896 tear_down_region_lists();
897 rebuild_region_lists();
898
899 _summary_bytes_used = recalculate_used();
900
901 ref_processor()->enqueue_discovered_references();
902
903 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
904
905 if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
906 HandleMark hm; // Discard invalid handles created during verification
907 gclog_or_tty->print(" VerifyAfterGC:");
908 Universe::verify(false);
909 }
910 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
911
912 reset_gc_time_stamp();
913 // Since everything potentially moved, we will clear all remembered
914 // sets, and clear all cards. Later we will also cards in the used
915 // portion of the heap after the resizing (which could be a shrinking.)
916 // We will also reset the GC time stamps of the regions.
917 PostMCRemSetClearClosure rs_clear(mr_bs());
918 heap_region_iterate(&rs_clear);
919
920 // Resize the heap if necessary.
921 resize_if_necessary_after_full_collection(full ? 0 : word_size);
922
923 // Since everything potentially moved, we will clear all remembered
924 // sets, but also dirty all cards corresponding to used regions.
925 PostMCRemSetInvalidateClosure rs_invalidate(mr_bs());
926 heap_region_iterate(&rs_invalidate);
927 if (_cg1r->use_cache()) {
928 _cg1r->clear_and_record_card_counts();
929 _cg1r->clear_hot_cache();
930 }
931
932 if (PrintGC) {
933 print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
934 }
935
936 if (true) { // FIXME
937 // Ask the permanent generation to adjust size for full collections
938 perm()->compute_new_size();
939 }
940
941 double end = os::elapsedTime();
942 GCOverheadReporter::recordSTWEnd(end);
943 g1_policy()->record_full_collection_end();
944
945 gc_epilogue(true);
946
947 // Abandon concurrent refinement. This must happen last: in the
948 // dirty-card logging system, some cards may be dirty by weak-ref
949 // processing, and may be enqueued. But the whole card table is
950 // dirtied, so this should abandon those logs, and set "do_traversal"
951 // to true.
952 concurrent_g1_refine()->set_pya_restart();
953
954 assert(regions_accounted_for(), "Region leakage!");
955 }
956
957 if (g1_policy()->in_young_gc_mode()) {
958 _young_list->reset_sampled_info();
959 assert( check_young_list_empty(false, false),
960 "young list should be empty at this point");
961 }
962 }
963
964 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
965 do_collection(true, clear_all_soft_refs, 0);
966 }
967
968 // This code is mostly copied from TenuredGeneration.
969 void
970 G1CollectedHeap::
971 resize_if_necessary_after_full_collection(size_t word_size) {
972 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
973
974 // Include the current allocation, if any, and bytes that will be
975 // pre-allocated to support collections, as "used".
976 const size_t used_after_gc = used();
977 const size_t capacity_after_gc = capacity();
978 const size_t free_after_gc = capacity_after_gc - used_after_gc;
979
980 // We don't have floating point command-line arguments
981 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
982 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
983 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
984 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
985
986 size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
987 size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
988
989 // Don't shrink less than the initial size.
990 minimum_desired_capacity =
991 MAX2(minimum_desired_capacity,
992 collector_policy()->initial_heap_byte_size());
993 maximum_desired_capacity =
994 MAX2(maximum_desired_capacity,
995 collector_policy()->initial_heap_byte_size());
996
997 // We are failing here because minimum_desired_capacity is
998 assert(used_after_gc <= minimum_desired_capacity, "sanity check");
999 assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
1000
1001 if (PrintGC && Verbose) {
1002 const double free_percentage = ((double)free_after_gc) / capacity();
1003 gclog_or_tty->print_cr("Computing new size after full GC ");
1004 gclog_or_tty->print_cr(" "
1005 " minimum_free_percentage: %6.2f",
1006 minimum_free_percentage);
1007 gclog_or_tty->print_cr(" "
1008 " maximum_free_percentage: %6.2f",
1009 maximum_free_percentage);
1010 gclog_or_tty->print_cr(" "
1011 " capacity: %6.1fK"
1012 " minimum_desired_capacity: %6.1fK"
1013 " maximum_desired_capacity: %6.1fK",
1014 capacity() / (double) K,
1015 minimum_desired_capacity / (double) K,
1016 maximum_desired_capacity / (double) K);
1017 gclog_or_tty->print_cr(" "
1018 " free_after_gc : %6.1fK"
1019 " used_after_gc : %6.1fK",
1020 free_after_gc / (double) K,
1021 used_after_gc / (double) K);
1022 gclog_or_tty->print_cr(" "
1023 " free_percentage: %6.2f",
1024 free_percentage);
1025 }
1026 if (capacity() < minimum_desired_capacity) {
1027 // Don't expand unless it's significant
1028 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1029 expand(expand_bytes);
1030 if (PrintGC && Verbose) {
1031 gclog_or_tty->print_cr(" expanding:"
1032 " minimum_desired_capacity: %6.1fK"
1033 " expand_bytes: %6.1fK",
1034 minimum_desired_capacity / (double) K,
1035 expand_bytes / (double) K);
1036 }
1037
1038 // No expansion, now see if we want to shrink
1039 } else if (capacity() > maximum_desired_capacity) {
1040 // Capacity too large, compute shrinking size
1041 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1042 shrink(shrink_bytes);
1043 if (PrintGC && Verbose) {
1044 gclog_or_tty->print_cr(" "
1045 " shrinking:"
1046 " initSize: %.1fK"
1047 " maximum_desired_capacity: %.1fK",
1048 collector_policy()->initial_heap_byte_size() / (double) K,
1049 maximum_desired_capacity / (double) K);
1050 gclog_or_tty->print_cr(" "
1051 " shrink_bytes: %.1fK",
1052 shrink_bytes / (double) K);
1053 }
1054 }
1055 }
1056
1057
1058 HeapWord*
1059 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
1060 HeapWord* result = NULL;
1061
1062 // In a G1 heap, we're supposed to keep allocation from failing by
1063 // incremental pauses. Therefore, at least for now, we'll favor
1064 // expansion over collection. (This might change in the future if we can
1065 // do something smarter than full collection to satisfy a failed alloc.)
1066
1067 result = expand_and_allocate(word_size);
1068 if (result != NULL) {
1069 assert(is_in(result), "result not in heap");
1070 return result;
1071 }
1072
1073 // OK, I guess we have to try collection.
1074
1075 do_collection(false, false, word_size);
1076
1077 result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1078
1079 if (result != NULL) {
1080 assert(is_in(result), "result not in heap");
1081 return result;
1082 }
1083
1084 // Try collecting soft references.
1085 do_collection(false, true, word_size);
1086 result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1087 if (result != NULL) {
1088 assert(is_in(result), "result not in heap");
1089 return result;
1090 }
1091
1092 // What else? We might try synchronous finalization later. If the total
1093 // space available is large enough for the allocation, then a more
1094 // complete compaction phase than we've tried so far might be
1095 // appropriate.
1096 return NULL;
1097 }
1098
1099 // Attempting to expand the heap sufficiently
1100 // to support an allocation of the given "word_size". If
1101 // successful, perform the allocation and return the address of the
1102 // allocated block, or else "NULL".
1103
1104 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1105 size_t expand_bytes = word_size * HeapWordSize;
1106 if (expand_bytes < MinHeapDeltaBytes) {
1107 expand_bytes = MinHeapDeltaBytes;
1108 }
1109 expand(expand_bytes);
1110 assert(regions_accounted_for(), "Region leakage!");
1111 HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
1112 return result;
1113 }
1114
1115 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
1116 size_t pre_used = 0;
1117 size_t cleared_h_regions = 0;
1118 size_t freed_regions = 0;
1119 UncleanRegionList local_list;
1120 free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
1121 freed_regions, &local_list);
1122
1123 finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
1124 &local_list);
1125 return pre_used;
1126 }
1127
1128 void
1129 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
1130 size_t& pre_used,
1131 size_t& cleared_h,
1132 size_t& freed_regions,
1133 UncleanRegionList* list,
1134 bool par) {
1135 assert(!hr->continuesHumongous(), "should have filtered these out");
1136 size_t res = 0;
1137 if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
1138 if (!hr->is_young()) {
1139 if (G1PolicyVerbose > 0)
1140 gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
1141 " during cleanup", hr, hr->used());
1142 free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1143 }
1144 }
1145 }
1146
1147 // FIXME: both this and shrink could probably be more efficient by
1148 // doing one "VirtualSpace::expand_by" call rather than several.
1149 void G1CollectedHeap::expand(size_t expand_bytes) {
1150 size_t old_mem_size = _g1_storage.committed_size();
1151 // We expand by a minimum of 1K.
1152 expand_bytes = MAX2(expand_bytes, (size_t)K);
1153 size_t aligned_expand_bytes =
1154 ReservedSpace::page_align_size_up(expand_bytes);
1155 aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1156 HeapRegion::GrainBytes);
1157 expand_bytes = aligned_expand_bytes;
1158 while (expand_bytes > 0) {
1159 HeapWord* base = (HeapWord*)_g1_storage.high();
1160 // Commit more storage.
1161 bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
1162 if (!successful) {
1163 expand_bytes = 0;
1164 } else {
1165 expand_bytes -= HeapRegion::GrainBytes;
1166 // Expand the committed region.
1167 HeapWord* high = (HeapWord*) _g1_storage.high();
1168 _g1_committed.set_end(high);
1169 // Create a new HeapRegion.
1170 MemRegion mr(base, high);
1171 bool is_zeroed = !_g1_max_committed.contains(base);
1172 HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
1173
1174 // Now update max_committed if necessary.
1175 _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
1176
1177 // Add it to the HeapRegionSeq.
1178 _hrs->insert(hr);
1179 // Set the zero-fill state, according to whether it's already
1180 // zeroed.
1181 {
1182 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
1183 if (is_zeroed) {
1184 hr->set_zero_fill_complete();
1185 put_free_region_on_list_locked(hr);
1186 } else {
1187 hr->set_zero_fill_needed();
1188 put_region_on_unclean_list_locked(hr);
1189 }
1190 }
1191 _free_regions++;
1192 // And we used up an expansion region to create it.
1193 _expansion_regions--;
1194 // Tell the cardtable about it.
1195 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1196 // And the offset table as well.
1197 _bot_shared->resize(_g1_committed.word_size());
1198 }
1199 }
1200 if (Verbose && PrintGC) {
1201 size_t new_mem_size = _g1_storage.committed_size();
1202 gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
1203 old_mem_size/K, aligned_expand_bytes/K,
1204 new_mem_size/K);
1205 }
1206 }
1207
1208 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
1209 {
1210 size_t old_mem_size = _g1_storage.committed_size();
1211 size_t aligned_shrink_bytes =
1212 ReservedSpace::page_align_size_down(shrink_bytes);
1213 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1214 HeapRegion::GrainBytes);
1215 size_t num_regions_deleted = 0;
1216 MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
1217
1218 assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1219 if (mr.byte_size() > 0)
1220 _g1_storage.shrink_by(mr.byte_size());
1221 assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1222
1223 _g1_committed.set_end(mr.start());
1224 _free_regions -= num_regions_deleted;
1225 _expansion_regions += num_regions_deleted;
1226
1227 // Tell the cardtable about it.
1228 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1229
1230 // And the offset table as well.
1231 _bot_shared->resize(_g1_committed.word_size());
1232
1233 HeapRegionRemSet::shrink_heap(n_regions());
1234
1235 if (Verbose && PrintGC) {
1236 size_t new_mem_size = _g1_storage.committed_size();
1237 gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1238 old_mem_size/K, aligned_shrink_bytes/K,
1239 new_mem_size/K);
1240 }
1241 }
1242
1243 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1244 release_gc_alloc_regions();
1245 tear_down_region_lists(); // We will rebuild them in a moment.
1246 shrink_helper(shrink_bytes);
1247 rebuild_region_lists();
1248 }
1249
1250 // Public methods.
1251
1252 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1253 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1254 #endif // _MSC_VER
1255
1256
1257 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1258 SharedHeap(policy_),
1259 _g1_policy(policy_),
1260 _ref_processor(NULL),
1261 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1262 _bot_shared(NULL),
1263 _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
1264 _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1265 _evac_failure_scan_stack(NULL) ,
1266 _mark_in_progress(false),
1267 _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
1268 _cur_alloc_region(NULL),
1269 _refine_cte_cl(NULL),
1270 _free_region_list(NULL), _free_region_list_size(0),
1271 _free_regions(0),
1272 _popular_object_boundary(NULL),
1273 _cur_pop_hr_index(0),
1274 _popular_regions_to_be_evacuated(NULL),
1275 _pop_obj_rc_at_copy(),
1276 _full_collection(false),
1277 _unclean_region_list(),
1278 _unclean_regions_coming(false),
1279 _young_list(new YoungList(this)),
1280 _gc_time_stamp(0),
1281 _surviving_young_words(NULL)
1282 {
1283 _g1h = this; // To catch bugs.
1284 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1285 vm_exit_during_initialization("Failed necessary allocation.");
1286 }
1287 int n_queues = MAX2((int)ParallelGCThreads, 1);
1288 _task_queues = new RefToScanQueueSet(n_queues);
1289
1290 int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1291 assert(n_rem_sets > 0, "Invariant.");
1292
1293 HeapRegionRemSetIterator** iter_arr =
1294 NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1295 for (int i = 0; i < n_queues; i++) {
1296 iter_arr[i] = new HeapRegionRemSetIterator();
1297 }
1298 _rem_set_iterator = iter_arr;
1299
1300 for (int i = 0; i < n_queues; i++) {
1301 RefToScanQueue* q = new RefToScanQueue();
1302 q->initialize();
1303 _task_queues->register_queue(i, q);
1304 }
1305
1306 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1307 _gc_alloc_regions[ap] = NULL;
1308 _gc_alloc_region_counts[ap] = 0;
1309 }
1310 guarantee(_task_queues != NULL, "task_queues allocation failure.");
1311 }
1312
1313 jint G1CollectedHeap::initialize() {
1314 os::enable_vtime();
1315
1316 // Necessary to satisfy locking discipline assertions.
1317
1318 MutexLocker x(Heap_lock);
1319
1320 // While there are no constraints in the GC code that HeapWordSize
1321 // be any particular value, there are multiple other areas in the
1322 // system which believe this to be true (e.g. oop->object_size in some
1323 // cases incorrectly returns the size in wordSize units rather than
1324 // HeapWordSize).
1325 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1326
1327 size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1328 size_t max_byte_size = collector_policy()->max_heap_byte_size();
1329
1330 // Ensure that the sizes are properly aligned.
1331 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1332 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1333
1334 // We allocate this in any case, but only do no work if the command line
1335 // param is off.
1336 _cg1r = new ConcurrentG1Refine();
1337
1338 // Reserve the maximum.
1339 PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1340 // Includes the perm-gen.
1341 ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
1342 HeapRegion::GrainBytes,
1343 false /*ism*/);
1344
1345 if (!heap_rs.is_reserved()) {
1346 vm_exit_during_initialization("Could not reserve enough space for object heap");
1347 return JNI_ENOMEM;
1348 }
1349
1350 // It is important to do this in a way such that concurrent readers can't
1351 // temporarily think somethings in the heap. (I've actually seen this
1352 // happen in asserts: DLD.)
1353 _reserved.set_word_size(0);
1354 _reserved.set_start((HeapWord*)heap_rs.base());
1355 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1356
1357 _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1358
1359 _num_humongous_regions = 0;
1360
1361 // Create the gen rem set (and barrier set) for the entire reserved region.
1362 _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1363 set_barrier_set(rem_set()->bs());
1364 if (barrier_set()->is_a(BarrierSet::ModRef)) {
1365 _mr_bs = (ModRefBarrierSet*)_barrier_set;
1366 } else {
1367 vm_exit_during_initialization("G1 requires a mod ref bs.");
1368 return JNI_ENOMEM;
1369 }
1370
1371 // Also create a G1 rem set.
1372 if (G1UseHRIntoRS) {
1373 if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1374 _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
1375 } else {
1376 vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1377 return JNI_ENOMEM;
1378 }
1379 } else {
1380 _g1_rem_set = new StupidG1RemSet(this);
1381 }
1382
1383 // Carve out the G1 part of the heap.
1384
1385 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1386 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1387 g1_rs.size()/HeapWordSize);
1388 ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1389
1390 _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1391
1392 _g1_storage.initialize(g1_rs, 0);
1393 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1394 _g1_max_committed = _g1_committed;
1395 _hrs = new HeapRegionSeq();
1396 guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
1397 guarantee(_cur_alloc_region == NULL, "from constructor");
1398
1399 _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1400 heap_word_size(init_byte_size));
1401
1402 _g1h = this;
1403
1404 // Create the ConcurrentMark data structure and thread.
1405 // (Must do this late, so that "max_regions" is defined.)
1406 _cm = new ConcurrentMark(heap_rs, (int) max_regions());
1407 _cmThread = _cm->cmThread();
1408
1409 // ...and the concurrent zero-fill thread, if necessary.
1410 if (G1ConcZeroFill) {
1411 _czft = new ConcurrentZFThread();
1412 }
1413
1414
1415
1416 // Allocate the popular regions; take them off free lists.
1417 size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
1418 expand(pop_byte_size);
1419 _popular_object_boundary =
1420 _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
1421 for (int i = 0; i < G1NumPopularRegions; i++) {
1422 HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
1423 // assert(hr != NULL && hr->bottom() < _popular_object_boundary,
1424 // "Should be enough, and all should be below boundary.");
1425 hr->set_popular(true);
1426 }
1427 assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
1428
1429 // Initialize the from_card cache structure of HeapRegionRemSet.
1430 HeapRegionRemSet::init_heap(max_regions());
1431
1432 // Now expand into the rest of the initial heap size.
1433 expand(init_byte_size - pop_byte_size);
1434
1435 // Perform any initialization actions delegated to the policy.
1436 g1_policy()->init();
1437
1438 g1_policy()->note_start_of_mark_thread();
1439
1440 _refine_cte_cl =
1441 new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
1442 g1_rem_set(),
1443 concurrent_g1_refine());
1444 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
1445
1446 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1447 SATB_Q_FL_lock,
1448 0,
1449 Shared_SATB_Q_lock);
1450 if (G1RSBarrierUseQueue) {
1451 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1452 DirtyCardQ_FL_lock,
1453 G1DirtyCardQueueMax,
1454 Shared_DirtyCardQ_lock);
1455 }
1456 // In case we're keeping closure specialization stats, initialize those
1457 // counts and that mechanism.
1458 SpecializationStats::clear();
1459
1460 _gc_alloc_region_list = NULL;
1461
1462 // Do later initialization work for concurrent refinement.
1463 _cg1r->init();
1464
1465 const char* group_names[] = { "CR", "ZF", "CM", "CL" };
1466 GCOverheadReporter::initGCOverheadReporter(4, group_names);
1467
1468 return JNI_OK;
1469 }
1470
1471 void G1CollectedHeap::ref_processing_init() {
1472 SharedHeap::ref_processing_init();
1473 MemRegion mr = reserved_region();
1474 _ref_processor = ReferenceProcessor::create_ref_processor(
1475 mr, // span
1476 false, // Reference discovery is not atomic
1477 // (though it shouldn't matter here.)
1478 true, // mt_discovery
1479 NULL, // is alive closure: need to fill this in for efficiency
1480 ParallelGCThreads,
1481 ParallelRefProcEnabled,
1482 true); // Setting next fields of discovered
1483 // lists requires a barrier.
1484 }
1485
1486 size_t G1CollectedHeap::capacity() const {
1487 return _g1_committed.byte_size();
1488 }
1489
1490 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
1491 int worker_i) {
1492 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1493 int n_completed_buffers = 0;
1494 while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
1495 n_completed_buffers++;
1496 }
1497 g1_policy()->record_update_rs_processed_buffers(worker_i,
1498 (double) n_completed_buffers);
1499 dcqs.clear_n_completed_buffers();
1500 // Finish up the queue...
1501 if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
1502 g1_rem_set());
1503 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1504 }
1505
1506
1507 // Computes the sum of the storage used by the various regions.
1508
1509 size_t G1CollectedHeap::used() const {
1510 assert(Heap_lock->owner() != NULL,
1511 "Should be owned on this thread's behalf.");
1512 size_t result = _summary_bytes_used;
1513 if (_cur_alloc_region != NULL)
1514 result += _cur_alloc_region->used();
1515 return result;
1516 }
1517
1518 class SumUsedClosure: public HeapRegionClosure {
1519 size_t _used;
1520 public:
1521 SumUsedClosure() : _used(0) {}
1522 bool doHeapRegion(HeapRegion* r) {
1523 if (!r->continuesHumongous()) {
1524 _used += r->used();
1525 }
1526 return false;
1527 }
1528 size_t result() { return _used; }
1529 };
1530
1531 size_t G1CollectedHeap::recalculate_used() const {
1532 SumUsedClosure blk;
1533 _hrs->iterate(&blk);
1534 return blk.result();
1535 }
1536
1537 #ifndef PRODUCT
1538 class SumUsedRegionsClosure: public HeapRegionClosure {
1539 size_t _num;
1540 public:
1541 // _num is set to 1 to account for the popular region
1542 SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
1543 bool doHeapRegion(HeapRegion* r) {
1544 if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
1545 _num += 1;
1546 }
1547 return false;
1548 }
1549 size_t result() { return _num; }
1550 };
1551
1552 size_t G1CollectedHeap::recalculate_used_regions() const {
1553 SumUsedRegionsClosure blk;
1554 _hrs->iterate(&blk);
1555 return blk.result();
1556 }
1557 #endif // PRODUCT
1558
1559 size_t G1CollectedHeap::unsafe_max_alloc() {
1560 if (_free_regions > 0) return HeapRegion::GrainBytes;
1561 // otherwise, is there space in the current allocation region?
1562
1563 // We need to store the current allocation region in a local variable
1564 // here. The problem is that this method doesn't take any locks and
1565 // there may be other threads which overwrite the current allocation
1566 // region field. attempt_allocation(), for example, sets it to NULL
1567 // and this can happen *after* the NULL check here but before the call
1568 // to free(), resulting in a SIGSEGV. Note that this doesn't appear
1569 // to be a problem in the optimized build, since the two loads of the
1570 // current allocation region field are optimized away.
1571 HeapRegion* car = _cur_alloc_region;
1572
1573 // FIXME: should iterate over all regions?
1574 if (car == NULL) {
1575 return 0;
1576 }
1577 return car->free();
1578 }
1579
1580 void G1CollectedHeap::collect(GCCause::Cause cause) {
1581 // The caller doesn't have the Heap_lock
1582 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
1583 MutexLocker ml(Heap_lock);
1584 collect_locked(cause);
1585 }
1586
1587 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
1588 assert(Thread::current()->is_VM_thread(), "Precondition#1");
1589 assert(Heap_lock->is_locked(), "Precondition#2");
1590 GCCauseSetter gcs(this, cause);
1591 switch (cause) {
1592 case GCCause::_heap_inspection:
1593 case GCCause::_heap_dump: {
1594 HandleMark hm;
1595 do_full_collection(false); // don't clear all soft refs
1596 break;
1597 }
1598 default: // XXX FIX ME
1599 ShouldNotReachHere(); // Unexpected use of this function
1600 }
1601 }
1602
1603
1604 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
1605 // Don't want to do a GC until cleanup is completed.
1606 wait_for_cleanup_complete();
1607
1608 // Read the GC count while holding the Heap_lock
1609 int gc_count_before = SharedHeap::heap()->total_collections();
1610 {
1611 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
1612 VM_G1CollectFull op(gc_count_before, cause);
1613 VMThread::execute(&op);
1614 }
1615 }
1616
1617 bool G1CollectedHeap::is_in(const void* p) const {
1618 if (_g1_committed.contains(p)) {
1619 HeapRegion* hr = _hrs->addr_to_region(p);
1620 return hr->is_in(p);
1621 } else {
1622 return _perm_gen->as_gen()->is_in(p);
1623 }
1624 }
1625
1626 // Iteration functions.
1627
1628 // Iterates an OopClosure over all ref-containing fields of objects
1629 // within a HeapRegion.
1630
1631 class IterateOopClosureRegionClosure: public HeapRegionClosure {
1632 MemRegion _mr;
1633 OopClosure* _cl;
1634 public:
1635 IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
1636 : _mr(mr), _cl(cl) {}
1637 bool doHeapRegion(HeapRegion* r) {
1638 if (! r->continuesHumongous()) {
1639 r->oop_iterate(_cl);
1640 }
1641 return false;
1642 }
1643 };
1644
1645 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
1646 IterateOopClosureRegionClosure blk(_g1_committed, cl);
1647 _hrs->iterate(&blk);
1648 }
1649
1650 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
1651 IterateOopClosureRegionClosure blk(mr, cl);
1652 _hrs->iterate(&blk);
1653 }
1654
1655 // Iterates an ObjectClosure over all objects within a HeapRegion.
1656
1657 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1658 ObjectClosure* _cl;
1659 public:
1660 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1661 bool doHeapRegion(HeapRegion* r) {
1662 if (! r->continuesHumongous()) {
1663 r->object_iterate(_cl);
1664 }
1665 return false;
1666 }
1667 };
1668
1669 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
1670 IterateObjectClosureRegionClosure blk(cl);
1671 _hrs->iterate(&blk);
1672 }
1673
1674 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
1675 // FIXME: is this right?
1676 guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
1677 }
1678
1679 // Calls a SpaceClosure on a HeapRegion.
1680
1681 class SpaceClosureRegionClosure: public HeapRegionClosure {
1682 SpaceClosure* _cl;
1683 public:
1684 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
1685 bool doHeapRegion(HeapRegion* r) {
1686 _cl->do_space(r);
1687 return false;
1688 }
1689 };
1690
1691 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
1692 SpaceClosureRegionClosure blk(cl);
1693 _hrs->iterate(&blk);
1694 }
1695
1696 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
1697 _hrs->iterate(cl);
1698 }
1699
1700 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
1701 HeapRegionClosure* cl) {
1702 _hrs->iterate_from(r, cl);
1703 }
1704
1705 void
1706 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
1707 _hrs->iterate_from(idx, cl);
1708 }
1709
1710 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
1711
1712 const int OverpartitionFactor = 4;
1713 void
1714 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1715 int worker,
1716 jint claim_value) {
1717 // We break up the heap regions into blocks of size ParallelGCThreads (to
1718 // decrease iteration costs).
1719 const size_t nregions = n_regions();
1720 const size_t n_thrds = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
1721 const size_t partitions = n_thrds * OverpartitionFactor;
1722 const size_t BlkSize = MAX2(nregions/partitions, (size_t)1);
1723 const size_t n_blocks = (nregions + BlkSize - 1)/BlkSize;
1724 assert(ParallelGCThreads > 0 || worker == 0, "Precondition");
1725 const int init_idx = (int) (n_blocks/n_thrds * worker);
1726 for (size_t blk = 0; blk < n_blocks; blk++) {
1727 size_t idx = init_idx + blk;
1728 if (idx >= n_blocks) idx = idx - n_blocks;
1729 size_t reg_idx = idx * BlkSize;
1730 assert(reg_idx < nregions, "Because we rounded blk up.");
1731 HeapRegion* r = region_at(reg_idx);
1732 if (r->claimHeapRegion(claim_value)) {
1733 for (size_t j = 0; j < BlkSize; j++) {
1734 size_t reg_idx2 = reg_idx + j;
1735 if (reg_idx2 == nregions) break;
1736 HeapRegion* r2 = region_at(reg_idx2);
1737 if (j > 0) r2->set_claim_value(claim_value);
1738 bool res = cl->doHeapRegion(r2);
1739 guarantee(!res, "Should not abort.");
1740 }
1741 }
1742 }
1743 }
1744
1745 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
1746 HeapRegion* r = g1_policy()->collection_set();
1747 while (r != NULL) {
1748 HeapRegion* next = r->next_in_collection_set();
1749 if (cl->doHeapRegion(r)) {
1750 cl->incomplete();
1751 return;
1752 }
1753 r = next;
1754 }
1755 }
1756
1757 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
1758 HeapRegionClosure *cl) {
1759 assert(r->in_collection_set(),
1760 "Start region must be a member of the collection set.");
1761 HeapRegion* cur = r;
1762 while (cur != NULL) {
1763 HeapRegion* next = cur->next_in_collection_set();
1764 if (cl->doHeapRegion(cur) && false) {
1765 cl->incomplete();
1766 return;
1767 }
1768 cur = next;
1769 }
1770 cur = g1_policy()->collection_set();
1771 while (cur != r) {
1772 HeapRegion* next = cur->next_in_collection_set();
1773 if (cl->doHeapRegion(cur) && false) {
1774 cl->incomplete();
1775 return;
1776 }
1777 cur = next;
1778 }
1779 }
1780
1781 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
1782 return _hrs->length() > 0 ? _hrs->at(0) : NULL;
1783 }
1784
1785
1786 Space* G1CollectedHeap::space_containing(const void* addr) const {
1787 Space* res = heap_region_containing(addr);
1788 if (res == NULL)
1789 res = perm_gen()->space_containing(addr);
1790 return res;
1791 }
1792
1793 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
1794 Space* sp = space_containing(addr);
1795 if (sp != NULL) {
1796 return sp->block_start(addr);
1797 }
1798 return NULL;
1799 }
1800
1801 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
1802 Space* sp = space_containing(addr);
1803 assert(sp != NULL, "block_size of address outside of heap");
1804 return sp->block_size(addr);
1805 }
1806
1807 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
1808 Space* sp = space_containing(addr);
1809 return sp->block_is_obj(addr);
1810 }
1811
1812 bool G1CollectedHeap::supports_tlab_allocation() const {
1813 return true;
1814 }
1815
1816 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
1817 return HeapRegion::GrainBytes;
1818 }
1819
1820 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
1821 // Return the remaining space in the cur alloc region, but not less than
1822 // the min TLAB size.
1823 // Also, no more than half the region size, since we can't allow tlabs to
1824 // grow big enough to accomodate humongous objects.
1825
1826 // We need to story it locally, since it might change between when we
1827 // test for NULL and when we use it later.
1828 ContiguousSpace* cur_alloc_space = _cur_alloc_region;
1829 if (cur_alloc_space == NULL) {
1830 return HeapRegion::GrainBytes/2;
1831 } else {
1832 return MAX2(MIN2(cur_alloc_space->free(),
1833 (size_t)(HeapRegion::GrainBytes/2)),
1834 (size_t)MinTLABSize);
1835 }
1836 }
1837
1838 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
1839 bool dummy;
1840 return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
1841 }
1842
1843 bool G1CollectedHeap::allocs_are_zero_filled() {
1844 return false;
1845 }
1846
1847 size_t G1CollectedHeap::large_typearray_limit() {
1848 // FIXME
1849 return HeapRegion::GrainBytes/HeapWordSize;
1850 }
1851
1852 size_t G1CollectedHeap::max_capacity() const {
1853 return _g1_committed.byte_size();
1854 }
1855
1856 jlong G1CollectedHeap::millis_since_last_gc() {
1857 // assert(false, "NYI");
1858 return 0;
1859 }
1860
1861
1862 void G1CollectedHeap::prepare_for_verify() {
1863 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
1864 ensure_parsability(false);
1865 }
1866 g1_rem_set()->prepare_for_verify();
1867 }
1868
1869 class VerifyLivenessOopClosure: public OopClosure {
1870 G1CollectedHeap* g1h;
1871 public:
1872 VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
1873 g1h = _g1h;
1874 }
1875 void do_oop(narrowOop *p) {
1876 guarantee(false, "NYI");
1877 }
1878 void do_oop(oop *p) {
1879 oop obj = *p;
1880 assert(obj == NULL || !g1h->is_obj_dead(obj),
1881 "Dead object referenced by a not dead object");
1882 }
1883 };
1884
1885 class VerifyObjsInRegionClosure: public ObjectClosure {
1886 G1CollectedHeap* _g1h;
1887 size_t _live_bytes;
1888 HeapRegion *_hr;
1889 public:
1890 VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
1891 _g1h = G1CollectedHeap::heap();
1892 }
1893 void do_object(oop o) {
1894 VerifyLivenessOopClosure isLive(_g1h);
1895 assert(o != NULL, "Huh?");
1896 if (!_g1h->is_obj_dead(o)) {
1897 o->oop_iterate(&isLive);
1898 if (!_hr->obj_allocated_since_prev_marking(o))
1899 _live_bytes += (o->size() * HeapWordSize);
1900 }
1901 }
1902 size_t live_bytes() { return _live_bytes; }
1903 };
1904
1905 class PrintObjsInRegionClosure : public ObjectClosure {
1906 HeapRegion *_hr;
1907 G1CollectedHeap *_g1;
1908 public:
1909 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
1910 _g1 = G1CollectedHeap::heap();
1911 };
1912
1913 void do_object(oop o) {
1914 if (o != NULL) {
1915 HeapWord *start = (HeapWord *) o;
1916 size_t word_sz = o->size();
1917 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
1918 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
1919 (void*) o, word_sz,
1920 _g1->isMarkedPrev(o),
1921 _g1->isMarkedNext(o),
1922 _hr->obj_allocated_since_prev_marking(o));
1923 HeapWord *end = start + word_sz;
1924 HeapWord *cur;
1925 int *val;
1926 for (cur = start; cur < end; cur++) {
1927 val = (int *) cur;
1928 gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
1929 }
1930 }
1931 }
1932 };
1933
1934 class VerifyRegionClosure: public HeapRegionClosure {
1935 public:
1936 bool _allow_dirty;
1937 VerifyRegionClosure(bool allow_dirty)
1938 : _allow_dirty(allow_dirty) {}
1939 bool doHeapRegion(HeapRegion* r) {
1940 guarantee(r->claim_value() == 0, "Should be unclaimed at verify points.");
1941 if (r->isHumongous()) {
1942 if (r->startsHumongous()) {
1943 // Verify the single H object.
1944 oop(r->bottom())->verify();
1945 size_t word_sz = oop(r->bottom())->size();
1946 guarantee(r->top() == r->bottom() + word_sz,
1947 "Only one object in a humongous region");
1948 }
1949 } else {
1950 VerifyObjsInRegionClosure not_dead_yet_cl(r);
1951 r->verify(_allow_dirty);
1952 r->object_iterate(&not_dead_yet_cl);
1953 guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
1954 "More live objects than counted in last complete marking.");
1955 }
1956 return false;
1957 }
1958 };
1959
1960 class VerifyRootsClosure: public OopsInGenClosure {
1961 private:
1962 G1CollectedHeap* _g1h;
1963 bool _failures;
1964
1965 public:
1966 VerifyRootsClosure() :
1967 _g1h(G1CollectedHeap::heap()), _failures(false) { }
1968
1969 bool failures() { return _failures; }
1970
1971 void do_oop(narrowOop* p) {
1972 guarantee(false, "NYI");
1973 }
1974
1975 void do_oop(oop* p) {
1976 oop obj = *p;
1977 if (obj != NULL) {
1978 if (_g1h->is_obj_dead(obj)) {
1979 gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
1980 "points to dead obj "PTR_FORMAT, p, (void*) obj);
1981 obj->print_on(gclog_or_tty);
1982 _failures = true;
1983 }
1984 }
1985 }
1986 };
1987
1988 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
1989 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
1990 if (!silent) { gclog_or_tty->print("roots "); }
1991 VerifyRootsClosure rootsCl;
1992 process_strong_roots(false,
1993 SharedHeap::SO_AllClasses,
1994 &rootsCl,
1995 &rootsCl);
1996 rem_set()->invalidate(perm_gen()->used_region(), false);
1997 if (!silent) { gclog_or_tty->print("heapRegions "); }
1998 VerifyRegionClosure blk(allow_dirty);
1999 _hrs->iterate(&blk);
2000 if (!silent) gclog_or_tty->print("remset ");
2001 rem_set()->verify();
2002 guarantee(!rootsCl.failures(), "should not have had failures");
2003 } else {
2004 if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2005 }
2006 }
2007
2008 class PrintRegionClosure: public HeapRegionClosure {
2009 outputStream* _st;
2010 public:
2011 PrintRegionClosure(outputStream* st) : _st(st) {}
2012 bool doHeapRegion(HeapRegion* r) {
2013 r->print_on(_st);
2014 return false;
2015 }
2016 };
2017
2018 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
2019
2020 void G1CollectedHeap::print_on(outputStream* st) const {
2021 PrintRegionClosure blk(st);
2022 _hrs->iterate(&blk);
2023 }
2024
2025 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2026 if (ParallelGCThreads > 0) {
2027 workers()->print_worker_threads();
2028 }
2029 st->print("\"G1 concurrent mark GC Thread\" ");
2030 _cmThread->print();
2031 st->cr();
2032 st->print("\"G1 concurrent refinement GC Thread\" ");
2033 _cg1r->cg1rThread()->print_on(st);
2034 st->cr();
2035 st->print("\"G1 zero-fill GC Thread\" ");
2036 _czft->print_on(st);
2037 st->cr();
2038 }
2039
2040 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2041 if (ParallelGCThreads > 0) {
2042 workers()->threads_do(tc);
2043 }
2044 tc->do_thread(_cmThread);
2045 tc->do_thread(_cg1r->cg1rThread());
2046 tc->do_thread(_czft);
2047 }
2048
2049 void G1CollectedHeap::print_tracing_info() const {
2050 concurrent_g1_refine()->print_final_card_counts();
2051
2052 // We'll overload this to mean "trace GC pause statistics."
2053 if (TraceGen0Time || TraceGen1Time) {
2054 // The "G1CollectorPolicy" is keeping track of these stats, so delegate
2055 // to that.
2056 g1_policy()->print_tracing_info();
2057 }
2058 if (SummarizeG1RSStats) {
2059 g1_rem_set()->print_summary_info();
2060 }
2061 if (SummarizeG1ConcMark) {
2062 concurrent_mark()->print_summary_info();
2063 }
2064 if (SummarizeG1ZFStats) {
2065 ConcurrentZFThread::print_summary_info();
2066 }
2067 if (G1SummarizePopularity) {
2068 print_popularity_summary_info();
2069 }
2070 g1_policy()->print_yg_surv_rate_info();
2071
2072 GCOverheadReporter::printGCOverhead();
2073
2074 SpecializationStats::print();
2075 }
2076
2077
2078 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
2079 HeapRegion* hr = heap_region_containing(addr);
2080 if (hr == NULL) {
2081 return 0;
2082 } else {
2083 return 1;
2084 }
2085 }
2086
2087 G1CollectedHeap* G1CollectedHeap::heap() {
2088 assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
2089 "not a garbage-first heap");
2090 return _g1h;
2091 }
2092
2093 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2094 if (PrintHeapAtGC){
2095 gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
2096 Universe::print();
2097 }
2098 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2099 // Call allocation profiler
2100 AllocationProfiler::iterate_since_last_gc();
2101 // Fill TLAB's and such
2102 ensure_parsability(true);
2103 }
2104
2105 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
2106 // FIXME: what is this about?
2107 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2108 // is set.
2109 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
2110 "derived pointer present"));
2111
2112 if (PrintHeapAtGC){
2113 gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
2114 Universe::print();
2115 gclog_or_tty->print("} ");
2116 }
2117 }
2118
2119 void G1CollectedHeap::do_collection_pause() {
2120 // Read the GC count while holding the Heap_lock
2121 // we need to do this _before_ wait_for_cleanup_complete(), to
2122 // ensure that we do not give up the heap lock and potentially
2123 // pick up the wrong count
2124 int gc_count_before = SharedHeap::heap()->total_collections();
2125
2126 // Don't want to do a GC pause while cleanup is being completed!
2127 wait_for_cleanup_complete();
2128
2129 g1_policy()->record_stop_world_start();
2130 {
2131 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
2132 VM_G1IncCollectionPause op(gc_count_before);
2133 VMThread::execute(&op);
2134 }
2135 }
2136
2137 void
2138 G1CollectedHeap::doConcurrentMark() {
2139 if (G1ConcMark) {
2140 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2141 if (!_cmThread->in_progress()) {
2142 _cmThread->set_started();
2143 CGC_lock->notify();
2144 }
2145 }
2146 }
2147
2148 class VerifyMarkedObjsClosure: public ObjectClosure {
2149 G1CollectedHeap* _g1h;
2150 public:
2151 VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
2152 void do_object(oop obj) {
2153 assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
2154 "markandsweep mark should agree with concurrent deadness");
2155 }
2156 };
2157
2158 void
2159 G1CollectedHeap::checkConcurrentMark() {
2160 VerifyMarkedObjsClosure verifycl(this);
2161 doConcurrentMark();
2162 // MutexLockerEx x(getMarkBitMapLock(),
2163 // Mutex::_no_safepoint_check_flag);
2164 object_iterate(&verifycl);
2165 }
2166
2167 void G1CollectedHeap::do_sync_mark() {
2168 _cm->checkpointRootsInitial();
2169 _cm->markFromRoots();
2170 _cm->checkpointRootsFinal(false);
2171 }
2172
2173 // <NEW PREDICTION>
2174
2175 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
2176 bool young) {
2177 return _g1_policy->predict_region_elapsed_time_ms(hr, young);
2178 }
2179
2180 void G1CollectedHeap::check_if_region_is_too_expensive(double
2181 predicted_time_ms) {
2182 _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
2183 }
2184
2185 size_t G1CollectedHeap::pending_card_num() {
2186 size_t extra_cards = 0;
2187 JavaThread *curr = Threads::first();
2188 while (curr != NULL) {
2189 DirtyCardQueue& dcq = curr->dirty_card_queue();
2190 extra_cards += dcq.size();
2191 curr = curr->next();
2192 }
2193 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2194 size_t buffer_size = dcqs.buffer_size();
2195 size_t buffer_num = dcqs.completed_buffers_num();
2196 return buffer_size * buffer_num + extra_cards;
2197 }
2198
2199 size_t G1CollectedHeap::max_pending_card_num() {
2200 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2201 size_t buffer_size = dcqs.buffer_size();
2202 size_t buffer_num = dcqs.completed_buffers_num();
2203 int thread_num = Threads::number_of_threads();
2204 return (buffer_num + thread_num) * buffer_size;
2205 }
2206
2207 size_t G1CollectedHeap::cards_scanned() {
2208 HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
2209 return g1_rset->cardsScanned();
2210 }
2211
2212 void
2213 G1CollectedHeap::setup_surviving_young_words() {
2214 guarantee( _surviving_young_words == NULL, "pre-condition" );
2215 size_t array_length = g1_policy()->young_cset_length();
2216 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
2217 if (_surviving_young_words == NULL) {
2218 vm_exit_out_of_memory(sizeof(size_t) * array_length,
2219 "Not enough space for young surv words summary.");
2220 }
2221 memset(_surviving_young_words, 0, array_length * sizeof(size_t));
2222 for (size_t i = 0; i < array_length; ++i) {
2223 guarantee( _surviving_young_words[i] == 0, "invariant" );
2224 }
2225 }
2226
2227 void
2228 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
2229 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2230 size_t array_length = g1_policy()->young_cset_length();
2231 for (size_t i = 0; i < array_length; ++i)
2232 _surviving_young_words[i] += surv_young_words[i];
2233 }
2234
2235 void
2236 G1CollectedHeap::cleanup_surviving_young_words() {
2237 guarantee( _surviving_young_words != NULL, "pre-condition" );
2238 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
2239 _surviving_young_words = NULL;
2240 }
2241
2242 // </NEW PREDICTION>
2243
2244 void
2245 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
2246 char verbose_str[128];
2247 sprintf(verbose_str, "GC pause ");
2248 if (popular_region != NULL)
2249 strcat(verbose_str, "(popular)");
2250 else if (g1_policy()->in_young_gc_mode()) {
2251 if (g1_policy()->full_young_gcs())
2252 strcat(verbose_str, "(young)");
2253 else
2254 strcat(verbose_str, "(partial)");
2255 }
2256 bool reset_should_initiate_conc_mark = false;
2257 if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
2258 // we currently do not allow an initial mark phase to be piggy-backed
2259 // on a popular pause
2260 reset_should_initiate_conc_mark = true;
2261 g1_policy()->unset_should_initiate_conc_mark();
2262 }
2263 if (g1_policy()->should_initiate_conc_mark())
2264 strcat(verbose_str, " (initial-mark)");
2265
2266 GCCauseSetter x(this, (popular_region == NULL ?
2267 GCCause::_g1_inc_collection_pause :
2268 GCCause::_g1_pop_region_collection_pause));
2269
2270 // if PrintGCDetails is on, we'll print long statistics information
2271 // in the collector policy code, so let's not print this as the output
2272 // is messy if we do.
2273 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2274 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2275 TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
2276
2277 ResourceMark rm;
2278 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
2279 assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
2280 guarantee(!is_gc_active(), "collection is not reentrant");
2281 assert(regions_accounted_for(), "Region leakage!");
2282 ++_gc_time_stamp;
2283
2284 if (g1_policy()->in_young_gc_mode()) {
2285 assert(check_young_list_well_formed(),
2286 "young list should be well formed");
2287 }
2288
2289 if (GC_locker::is_active()) {
2290 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
2291 }
2292
2293 bool abandoned = false;
2294 { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2295 IsGCActiveMark x;
2296
2297 gc_prologue(false);
2298 increment_total_collections();
2299
2300 #if G1_REM_SET_LOGGING
2301 gclog_or_tty->print_cr("\nJust chose CS, heap:");
2302 print();
2303 #endif
2304
2305 if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
2306 HandleMark hm; // Discard invalid handles created during verification
2307 prepare_for_verify();
2308 gclog_or_tty->print(" VerifyBeforeGC:");
2309 Universe::verify(false);
2310 }
2311
2312 COMPILER2_PRESENT(DerivedPointerTable::clear());
2313
2314 // We want to turn off ref discovere, if necessary, and turn it back on
2315 // on again later if we do.
2316 bool was_enabled = ref_processor()->discovery_enabled();
2317 if (was_enabled) ref_processor()->disable_discovery();
2318
2319 // Forget the current alloc region (we might even choose it to be part
2320 // of the collection set!).
2321 abandon_cur_alloc_region();
2322
2323 // The elapsed time induced by the start time below deliberately elides
2324 // the possible verification above.
2325 double start_time_sec = os::elapsedTime();
2326 GCOverheadReporter::recordSTWStart(start_time_sec);
2327 size_t start_used_bytes = used();
2328 if (!G1ConcMark) {
2329 do_sync_mark();
2330 }
2331
2332 g1_policy()->record_collection_pause_start(start_time_sec,
2333 start_used_bytes);
2334
2335 #if SCAN_ONLY_VERBOSE
2336 _young_list->print();
2337 #endif // SCAN_ONLY_VERBOSE
2338
2339 if (g1_policy()->should_initiate_conc_mark()) {
2340 concurrent_mark()->checkpointRootsInitialPre();
2341 }
2342 save_marks();
2343
2344 // We must do this before any possible evacuation that should propogate
2345 // marks, including evacuation of popular objects in a popular pause.
2346 if (mark_in_progress()) {
2347 double start_time_sec = os::elapsedTime();
2348
2349 _cm->drainAllSATBBuffers();
2350 double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
2351 g1_policy()->record_satb_drain_time(finish_mark_ms);
2352
2353 }
2354 // Record the number of elements currently on the mark stack, so we
2355 // only iterate over these. (Since evacuation may add to the mark
2356 // stack, doing more exposes race conditions.) If no mark is in
2357 // progress, this will be zero.
2358 _cm->set_oops_do_bound();
2359
2360 assert(regions_accounted_for(), "Region leakage.");
2361
2362 bool abandoned = false;
2363
2364 if (mark_in_progress())
2365 concurrent_mark()->newCSet();
2366
2367 // Now choose the CS.
2368 if (popular_region == NULL) {
2369 g1_policy()->choose_collection_set();
2370 } else {
2371 // We may be evacuating a single region (for popularity).
2372 g1_policy()->record_popular_pause_preamble_start();
2373 popularity_pause_preamble(popular_region);
2374 g1_policy()->record_popular_pause_preamble_end();
2375 abandoned = (g1_policy()->collection_set() == NULL);
2376 // Now we allow more regions to be added (we have to collect
2377 // all popular regions).
2378 if (!abandoned) {
2379 g1_policy()->choose_collection_set(popular_region);
2380 }
2381 }
2382 // We may abandon a pause if we find no region that will fit in the MMU
2383 // pause.
2384 abandoned = (g1_policy()->collection_set() == NULL);
2385
2386 // Nothing to do if we were unable to choose a collection set.
2387 if (!abandoned) {
2388 #if G1_REM_SET_LOGGING
2389 gclog_or_tty->print_cr("\nAfter pause, heap:");
2390 print();
2391 #endif
2392
2393 setup_surviving_young_words();
2394
2395 // Set up the gc allocation regions.
2396 get_gc_alloc_regions();
2397
2398 // Actually do the work...
2399 evacuate_collection_set();
2400 free_collection_set(g1_policy()->collection_set());
2401 g1_policy()->clear_collection_set();
2402
2403 if (popular_region != NULL) {
2404 // We have to wait until now, because we don't want the region to
2405 // be rescheduled for pop-evac during RS update.
2406 popular_region->set_popular_pending(false);
2407 }
2408
2409 release_gc_alloc_regions();
2410
2411 cleanup_surviving_young_words();
2412
2413 if (g1_policy()->in_young_gc_mode()) {
2414 _young_list->reset_sampled_info();
2415 assert(check_young_list_empty(true),
2416 "young list should be empty");
2417
2418 #if SCAN_ONLY_VERBOSE
2419 _young_list->print();
2420 #endif // SCAN_ONLY_VERBOSE
2421
2422 _young_list->reset_auxilary_lists();
2423 }
2424 } else {
2425 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
2426 }
2427
2428 if (evacuation_failed()) {
2429 _summary_bytes_used = recalculate_used();
2430 } else {
2431 // The "used" of the the collection set have already been subtracted
2432 // when they were freed. Add in the bytes evacuated.
2433 _summary_bytes_used += g1_policy()->bytes_in_to_space();
2434 }
2435
2436 if (g1_policy()->in_young_gc_mode() &&
2437 g1_policy()->should_initiate_conc_mark()) {
2438 concurrent_mark()->checkpointRootsInitialPost();
2439 set_marking_started();
2440 doConcurrentMark();
2441 }
2442
2443 #if SCAN_ONLY_VERBOSE
2444 _young_list->print();
2445 #endif // SCAN_ONLY_VERBOSE
2446
2447 double end_time_sec = os::elapsedTime();
2448 g1_policy()->record_pause_time((end_time_sec - start_time_sec)*1000.0);
2449 GCOverheadReporter::recordSTWEnd(end_time_sec);
2450 g1_policy()->record_collection_pause_end(popular_region != NULL,
2451 abandoned);
2452
2453 assert(regions_accounted_for(), "Region leakage.");
2454
2455 if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
2456 HandleMark hm; // Discard invalid handles created during verification
2457 gclog_or_tty->print(" VerifyAfterGC:");
2458 Universe::verify(false);
2459 }
2460
2461 if (was_enabled) ref_processor()->enable_discovery();
2462
2463 {
2464 size_t expand_bytes = g1_policy()->expansion_amount();
2465 if (expand_bytes > 0) {
2466 size_t bytes_before = capacity();
2467 expand(expand_bytes);
2468 }
2469 }
2470
2471 if (mark_in_progress())
2472 concurrent_mark()->update_g1_committed();
2473
2474 gc_epilogue(false);
2475 }
2476
2477 assert(verify_region_lists(), "Bad region lists.");
2478
2479 if (reset_should_initiate_conc_mark)
2480 g1_policy()->set_should_initiate_conc_mark();
2481
2482 if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
2483 gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
2484 print_tracing_info();
2485 vm_exit(-1);
2486 }
2487 }
2488
2489 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
2490 assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
2491 HeapWord* original_top = NULL;
2492 if (r != NULL)
2493 original_top = r->top();
2494
2495 // We will want to record the used space in r as being there before gc.
2496 // One we install it as a GC alloc region it's eligible for allocation.
2497 // So record it now and use it later.
2498 size_t r_used = 0;
2499 if (r != NULL) {
2500 r_used = r->used();
2501
2502 if (ParallelGCThreads > 0) {
2503 // need to take the lock to guard against two threads calling
2504 // get_gc_alloc_region concurrently (very unlikely but...)
2505 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2506 r->save_marks();
2507 }
2508 }
2509 HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
2510 _gc_alloc_regions[purpose] = r;
2511 if (old_alloc_region != NULL) {
2512 // Replace aliases too.
2513 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2514 if (_gc_alloc_regions[ap] == old_alloc_region) {
2515 _gc_alloc_regions[ap] = r;
2516 }
2517 }
2518 }
2519 if (r != NULL) {
2520 push_gc_alloc_region(r);
2521 if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
2522 // We are using a region as a GC alloc region after it has been used
2523 // as a mutator allocation region during the current marking cycle.
2524 // The mutator-allocated objects are currently implicitly marked, but
2525 // when we move hr->next_top_at_mark_start() forward at the the end
2526 // of the GC pause, they won't be. We therefore mark all objects in
2527 // the "gap". We do this object-by-object, since marking densely
2528 // does not currently work right with marking bitmap iteration. This
2529 // means we rely on TLAB filling at the start of pauses, and no
2530 // "resuscitation" of filled TLAB's. If we want to do this, we need
2531 // to fix the marking bitmap iteration.
2532 HeapWord* curhw = r->next_top_at_mark_start();
2533 HeapWord* t = original_top;
2534
2535 while (curhw < t) {
2536 oop cur = (oop)curhw;
2537 // We'll assume parallel for generality. This is rare code.
2538 concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
2539 curhw = curhw + cur->size();
2540 }
2541 assert(curhw == t, "Should have parsed correctly.");
2542 }
2543 if (G1PolicyVerbose > 1) {
2544 gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
2545 "for survivors:", r->bottom(), original_top, r->end());
2546 r->print();
2547 }
2548 g1_policy()->record_before_bytes(r_used);
2549 }
2550 }
2551
2552 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
2553 assert(Thread::current()->is_VM_thread() ||
2554 par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
2555 assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
2556 "Precondition.");
2557 hr->set_is_gc_alloc_region(true);
2558 hr->set_next_gc_alloc_region(_gc_alloc_region_list);
2559 _gc_alloc_region_list = hr;
2560 }
2561
2562 #ifdef G1_DEBUG
2563 class FindGCAllocRegion: public HeapRegionClosure {
2564 public:
2565 bool doHeapRegion(HeapRegion* r) {
2566 if (r->is_gc_alloc_region()) {
2567 gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
2568 r->hrs_index(), r->bottom());
2569 }
2570 return false;
2571 }
2572 };
2573 #endif // G1_DEBUG
2574
2575 void G1CollectedHeap::forget_alloc_region_list() {
2576 assert(Thread::current()->is_VM_thread(), "Precondition");
2577 while (_gc_alloc_region_list != NULL) {
2578 HeapRegion* r = _gc_alloc_region_list;
2579 assert(r->is_gc_alloc_region(), "Invariant.");
2580 _gc_alloc_region_list = r->next_gc_alloc_region();
2581 r->set_next_gc_alloc_region(NULL);
2582 r->set_is_gc_alloc_region(false);
2583 if (r->is_empty()) {
2584 ++_free_regions;
2585 }
2586 }
2587 #ifdef G1_DEBUG
2588 FindGCAllocRegion fa;
2589 heap_region_iterate(&fa);
2590 #endif // G1_DEBUG
2591 }
2592
2593
2594 bool G1CollectedHeap::check_gc_alloc_regions() {
2595 // TODO: allocation regions check
2596 return true;
2597 }
2598
2599 void G1CollectedHeap::get_gc_alloc_regions() {
2600 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2601 // Create new GC alloc regions.
2602 HeapRegion* alloc_region = _gc_alloc_regions[ap];
2603 // Clear this alloc region, so that in case it turns out to be
2604 // unacceptable, we end up with no allocation region, rather than a bad
2605 // one.
2606 _gc_alloc_regions[ap] = NULL;
2607 if (alloc_region == NULL || alloc_region->in_collection_set()) {
2608 // Can't re-use old one. Allocate a new one.
2609 alloc_region = newAllocRegionWithExpansion(ap, 0);
2610 }
2611 if (alloc_region != NULL) {
2612 set_gc_alloc_region(ap, alloc_region);
2613 }
2614 }
2615 // Set alternative regions for allocation purposes that have reached
2616 // thier limit.
2617 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2618 GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
2619 if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
2620 _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
2621 }
2622 }
2623 assert(check_gc_alloc_regions(), "alloc regions messed up");
2624 }
2625
2626 void G1CollectedHeap::release_gc_alloc_regions() {
2627 // We keep a separate list of all regions that have been alloc regions in
2628 // the current collection pause. Forget that now.
2629 forget_alloc_region_list();
2630
2631 // The current alloc regions contain objs that have survived
2632 // collection. Make them no longer GC alloc regions.
2633 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2634 HeapRegion* r = _gc_alloc_regions[ap];
2635 if (r != NULL && r->is_empty()) {
2636 {
2637 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
2638 r->set_zero_fill_complete();
2639 put_free_region_on_list_locked(r);
2640 }
2641 }
2642 // set_gc_alloc_region will also NULLify all aliases to the region
2643 set_gc_alloc_region(ap, NULL);
2644 _gc_alloc_region_counts[ap] = 0;
2645 }
2646 }
2647
2648 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
2649 _drain_in_progress = false;
2650 set_evac_failure_closure(cl);
2651 _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
2652 }
2653
2654 void G1CollectedHeap::finalize_for_evac_failure() {
2655 assert(_evac_failure_scan_stack != NULL &&
2656 _evac_failure_scan_stack->length() == 0,
2657 "Postcondition");
2658 assert(!_drain_in_progress, "Postcondition");
2659 // Don't have to delete, since the scan stack is a resource object.
2660 _evac_failure_scan_stack = NULL;
2661 }
2662
2663
2664
2665 // *** Sequential G1 Evacuation
2666
2667 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
2668 HeapRegion* alloc_region = _gc_alloc_regions[purpose];
2669 // let the caller handle alloc failure
2670 if (alloc_region == NULL) return NULL;
2671 assert(isHumongous(word_size) || !alloc_region->isHumongous(),
2672 "Either the object is humongous or the region isn't");
2673 HeapWord* block = alloc_region->allocate(word_size);
2674 if (block == NULL) {
2675 block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
2676 }
2677 return block;
2678 }
2679
2680 class G1IsAliveClosure: public BoolObjectClosure {
2681 G1CollectedHeap* _g1;
2682 public:
2683 G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
2684 void do_object(oop p) { assert(false, "Do not call."); }
2685 bool do_object_b(oop p) {
2686 // It is reachable if it is outside the collection set, or is inside
2687 // and forwarded.
2688
2689 #ifdef G1_DEBUG
2690 gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
2691 (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
2692 !_g1->obj_in_cs(p) || p->is_forwarded());
2693 #endif // G1_DEBUG
2694
2695 return !_g1->obj_in_cs(p) || p->is_forwarded();
2696 }
2697 };
2698
2699 class G1KeepAliveClosure: public OopClosure {
2700 G1CollectedHeap* _g1;
2701 public:
2702 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
2703 void do_oop(narrowOop* p) {
2704 guarantee(false, "NYI");
2705 }
2706 void do_oop(oop* p) {
2707 oop obj = *p;
2708 #ifdef G1_DEBUG
2709 if (PrintGC && Verbose) {
2710 gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
2711 p, (void*) obj, (void*) *p);
2712 }
2713 #endif // G1_DEBUG
2714
2715 if (_g1->obj_in_cs(obj)) {
2716 assert( obj->is_forwarded(), "invariant" );
2717 *p = obj->forwardee();
2718
2719 #ifdef G1_DEBUG
2720 gclog_or_tty->print_cr(" in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
2721 (void*) obj, (void*) *p);
2722 #endif // G1_DEBUG
2723 }
2724 }
2725 };
2726
2727 class RecreateRSetEntriesClosure: public OopClosure {
2728 private:
2729 G1CollectedHeap* _g1;
2730 G1RemSet* _g1_rem_set;
2731 HeapRegion* _from;
2732 public:
2733 RecreateRSetEntriesClosure(G1CollectedHeap* g1, HeapRegion* from) :
2734 _g1(g1), _g1_rem_set(g1->g1_rem_set()), _from(from)
2735 {}
2736
2737 void do_oop(narrowOop* p) {
2738 guarantee(false, "NYI");
2739 }
2740 void do_oop(oop* p) {
2741 assert(_from->is_in_reserved(p), "paranoia");
2742 if (*p != NULL) {
2743 _g1_rem_set->write_ref(_from, p);
2744 }
2745 }
2746 };
2747
2748 class RemoveSelfPointerClosure: public ObjectClosure {
2749 private:
2750 G1CollectedHeap* _g1;
2751 ConcurrentMark* _cm;
2752 HeapRegion* _hr;
2753 HeapWord* _last_self_forwarded_end;
2754 size_t _prev_marked_bytes;
2755 size_t _next_marked_bytes;
2756 public:
2757 RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr) :
2758 _g1(g1), _cm(_g1->concurrent_mark()), _hr(hr),
2759 _last_self_forwarded_end(_hr->bottom()),
2760 _prev_marked_bytes(0), _next_marked_bytes(0)
2761 {}
2762
2763 size_t prev_marked_bytes() { return _prev_marked_bytes; }
2764 size_t next_marked_bytes() { return _next_marked_bytes; }
2765
2766 void fill_remainder() {
2767 HeapWord* limit = _hr->top();
2768 MemRegion mr(_last_self_forwarded_end, limit);
2769 if (!mr.is_empty()) {
2770 SharedHeap::fill_region_with_object(mr);
2771 _cm->clearRangeBothMaps(mr);
2772 _hr->declare_filled_region_to_BOT(mr);
2773 }
2774 }
2775
2776 void do_object(oop obj) {
2777 if (obj->is_forwarded()) {
2778 if (obj->forwardee() == obj) {
2779 assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
2780 _cm->markPrev(obj);
2781 assert(_cm->isPrevMarked(obj), "Should be marked!");
2782 _prev_marked_bytes += (obj->size() * HeapWordSize);
2783 if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
2784 _cm->markAndGrayObjectIfNecessary(obj);
2785 }
2786 HeapWord* obj_start = (HeapWord*)obj;
2787 if (obj_start > _last_self_forwarded_end) {
2788 MemRegion mr(_last_self_forwarded_end, obj_start);
2789 SharedHeap::fill_region_with_object(mr);
2790 assert(_cm->isPrevMarked(obj), "Should be marked!");
2791 _cm->clearRangeBothMaps(mr);
2792 assert(_cm->isPrevMarked(obj), "Should be marked!");
2793 _hr->declare_filled_region_to_BOT(mr);
2794 }
2795 _last_self_forwarded_end = obj_start + obj->size();
2796 obj->set_mark(markOopDesc::prototype());
2797
2798 // While we were processing RSet buffers during the
2799 // collection, we actually didn't scan any cards on the
2800 // collection set, since we didn't want to update remebered
2801 // sets with entries that point into the collection set, given
2802 // that live objects fromthe collection set are about to move
2803 // and such entries will be stale very soon. This change also
2804 // dealt with a reliability issue which involved scanning a
2805 // card in the collection set and coming across an array that
2806 // was being chunked and looking malformed. The problem is
2807 // that, if evacuation fails, we might have remembered set
2808 // entries missing given that we skipped cards on the
2809 // collection set. So, we'll recreate such entries now.
2810 RecreateRSetEntriesClosure cl(_g1, _hr);
2811 obj->oop_iterate(&cl);
2812
2813 assert(_cm->isPrevMarked(obj), "Should be marked!");
2814 }
2815 }
2816 }
2817 };
2818
2819 void G1CollectedHeap::remove_self_forwarding_pointers() {
2820 HeapRegion* cur = g1_policy()->collection_set();
2821
2822 while (cur != NULL) {
2823 assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
2824
2825 if (cur->evacuation_failed()) {
2826 RemoveSelfPointerClosure rspc(_g1h, cur);
2827 assert(cur->in_collection_set(), "bad CS");
2828 cur->object_iterate(&rspc);
2829 rspc.fill_remainder();
2830
2831 // A number of manipulations to make the TAMS be the current top,
2832 // and the marked bytes be the ones observed in the iteration.
2833 if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
2834 // The comments below are the postconditions achieved by the
2835 // calls. Note especially the last such condition, which says that
2836 // the count of marked bytes has been properly restored.
2837 cur->note_start_of_marking(false);
2838 // _next_top_at_mark_start == top, _next_marked_bytes == 0
2839 cur->add_to_marked_bytes(rspc.prev_marked_bytes());
2840 // _next_marked_bytes == prev_marked_bytes.
2841 cur->note_end_of_marking();
2842 // _prev_top_at_mark_start == top(),
2843 // _prev_marked_bytes == prev_marked_bytes
2844 }
2845 // If there is no mark in progress, we modified the _next variables
2846 // above needlessly, but harmlessly.
2847 if (_g1h->mark_in_progress()) {
2848 cur->note_start_of_marking(false);
2849 // _next_top_at_mark_start == top, _next_marked_bytes == 0
2850 // _next_marked_bytes == next_marked_bytes.
2851 }
2852
2853 // Now make sure the region has the right index in the sorted array.
2854 g1_policy()->note_change_in_marked_bytes(cur);
2855 }
2856 cur = cur->next_in_collection_set();
2857 }
2858 assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
2859
2860 // Now restore saved marks, if any.
2861 if (_objs_with_preserved_marks != NULL) {
2862 assert(_preserved_marks_of_objs != NULL, "Both or none.");
2863 assert(_objs_with_preserved_marks->length() ==
2864 _preserved_marks_of_objs->length(), "Both or none.");
2865 guarantee(_objs_with_preserved_marks->length() ==
2866 _preserved_marks_of_objs->length(), "Both or none.");
2867 for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
2868 oop obj = _objs_with_preserved_marks->at(i);
2869 markOop m = _preserved_marks_of_objs->at(i);
2870 obj->set_mark(m);
2871 }
2872 // Delete the preserved marks growable arrays (allocated on the C heap).
2873 delete _objs_with_preserved_marks;
2874 delete _preserved_marks_of_objs;
2875 _objs_with_preserved_marks = NULL;
2876 _preserved_marks_of_objs = NULL;
2877 }
2878 }
2879
2880 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
2881 _evac_failure_scan_stack->push(obj);
2882 }
2883
2884 void G1CollectedHeap::drain_evac_failure_scan_stack() {
2885 assert(_evac_failure_scan_stack != NULL, "precondition");
2886
2887 while (_evac_failure_scan_stack->length() > 0) {
2888 oop obj = _evac_failure_scan_stack->pop();
2889 _evac_failure_closure->set_region(heap_region_containing(obj));
2890 obj->oop_iterate_backwards(_evac_failure_closure);
2891 }
2892 }
2893
2894 void G1CollectedHeap::handle_evacuation_failure(oop old) {
2895 markOop m = old->mark();
2896 // forward to self
2897 assert(!old->is_forwarded(), "precondition");
2898
2899 old->forward_to(old);
2900 handle_evacuation_failure_common(old, m);
2901 }
2902
2903 oop
2904 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
2905 oop old) {
2906 markOop m = old->mark();
2907 oop forward_ptr = old->forward_to_atomic(old);
2908 if (forward_ptr == NULL) {
2909 // Forward-to-self succeeded.
2910 if (_evac_failure_closure != cl) {
2911 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
2912 assert(!_drain_in_progress,
2913 "Should only be true while someone holds the lock.");
2914 // Set the global evac-failure closure to the current thread's.
2915 assert(_evac_failure_closure == NULL, "Or locking has failed.");
2916 set_evac_failure_closure(cl);
2917 // Now do the common part.
2918 handle_evacuation_failure_common(old, m);
2919 // Reset to NULL.
2920 set_evac_failure_closure(NULL);
2921 } else {
2922 // The lock is already held, and this is recursive.
2923 assert(_drain_in_progress, "This should only be the recursive case.");
2924 handle_evacuation_failure_common(old, m);
2925 }
2926 return old;
2927 } else {
2928 // Someone else had a place to copy it.
2929 return forward_ptr;
2930 }
2931 }
2932
2933 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
2934 set_evacuation_failed(true);
2935
2936 preserve_mark_if_necessary(old, m);
2937
2938 HeapRegion* r = heap_region_containing(old);
2939 if (!r->evacuation_failed()) {
2940 r->set_evacuation_failed(true);
2941 if (G1TraceRegions) {
2942 gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
2943 "["PTR_FORMAT","PTR_FORMAT")\n",
2944 r, r->bottom(), r->end());
2945 }
2946 }
2947
2948 push_on_evac_failure_scan_stack(old);
2949
2950 if (!_drain_in_progress) {
2951 // prevent recursion in copy_to_survivor_space()
2952 _drain_in_progress = true;
2953 drain_evac_failure_scan_stack();
2954 _drain_in_progress = false;
2955 }
2956 }
2957
2958 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
2959 if (m != markOopDesc::prototype()) {
2960 if (_objs_with_preserved_marks == NULL) {
2961 assert(_preserved_marks_of_objs == NULL, "Both or none.");
2962 _objs_with_preserved_marks =
2963 new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
2964 _preserved_marks_of_objs =
2965 new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
2966 }
2967 _objs_with_preserved_marks->push(obj);
2968 _preserved_marks_of_objs->push(m);
2969 }
2970 }
2971
2972 // *** Parallel G1 Evacuation
2973
2974 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
2975 size_t word_size) {
2976 HeapRegion* alloc_region = _gc_alloc_regions[purpose];
2977 // let the caller handle alloc failure
2978 if (alloc_region == NULL) return NULL;
2979
2980 HeapWord* block = alloc_region->par_allocate(word_size);
2981 if (block == NULL) {
2982 MutexLockerEx x(par_alloc_during_gc_lock(),
2983 Mutex::_no_safepoint_check_flag);
2984 block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
2985 }
2986 return block;
2987 }
2988
2989 HeapWord*
2990 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
2991 HeapRegion* alloc_region,
2992 bool par,
2993 size_t word_size) {
2994 HeapWord* block = NULL;
2995 // In the parallel case, a previous thread to obtain the lock may have
2996 // already assigned a new gc_alloc_region.
2997 if (alloc_region != _gc_alloc_regions[purpose]) {
2998 assert(par, "But should only happen in parallel case.");
2999 alloc_region = _gc_alloc_regions[purpose];
3000 if (alloc_region == NULL) return NULL;
3001 block = alloc_region->par_allocate(word_size);
3002 if (block != NULL) return block;
3003 // Otherwise, continue; this new region is empty, too.
3004 }
3005 assert(alloc_region != NULL, "We better have an allocation region");
3006 // Another thread might have obtained alloc_region for the given
3007 // purpose, and might be attempting to allocate in it, and might
3008 // succeed. Therefore, we can't do the "finalization" stuff on the
3009 // region below until we're sure the last allocation has happened.
3010 // We ensure this by allocating the remaining space with a garbage
3011 // object.
3012 if (par) par_allocate_remaining_space(alloc_region);
3013 // Now we can do the post-GC stuff on the region.
3014 alloc_region->note_end_of_copying();
3015 g1_policy()->record_after_bytes(alloc_region->used());
3016
3017 if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
3018 // Cannot allocate more regions for the given purpose.
3019 GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
3020 // Is there an alternative?
3021 if (purpose != alt_purpose) {
3022 HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
3023 // Has not the alternative region been aliased?
3024 if (alloc_region != alt_region) {
3025 // Try to allocate in the alternative region.
3026 if (par) {
3027 block = alt_region->par_allocate(word_size);
3028 } else {
3029 block = alt_region->allocate(word_size);
3030 }
3031 // Make an alias.
3032 _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
3033 }
3034 if (block != NULL) {
3035 return block;
3036 }
3037 // Both the allocation region and the alternative one are full
3038 // and aliased, replace them with a new allocation region.
3039 purpose = alt_purpose;
3040 } else {
3041 set_gc_alloc_region(purpose, NULL);
3042 return NULL;
3043 }
3044 }
3045
3046 // Now allocate a new region for allocation.
3047 alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
3048
3049 // let the caller handle alloc failure
3050 if (alloc_region != NULL) {
3051
3052 assert(check_gc_alloc_regions(), "alloc regions messed up");
3053 assert(alloc_region->saved_mark_at_top(),
3054 "Mark should have been saved already.");
3055 // We used to assert that the region was zero-filled here, but no
3056 // longer.
3057
3058 // This must be done last: once it's installed, other regions may
3059 // allocate in it (without holding the lock.)
3060 set_gc_alloc_region(purpose, alloc_region);
3061
3062 if (par) {
3063 block = alloc_region->par_allocate(word_size);
3064 } else {
3065 block = alloc_region->allocate(word_size);
3066 }
3067 // Caller handles alloc failure.
3068 } else {
3069 // This sets other apis using the same old alloc region to NULL, also.
3070 set_gc_alloc_region(purpose, NULL);
3071 }
3072 return block; // May be NULL.
3073 }
3074
3075 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
3076 HeapWord* block = NULL;
3077 size_t free_words;
3078 do {
3079 free_words = r->free()/HeapWordSize;
3080 // If there's too little space, no one can allocate, so we're done.
3081 if (free_words < (size_t)oopDesc::header_size()) return;
3082 // Otherwise, try to claim it.
3083 block = r->par_allocate(free_words);
3084 } while (block == NULL);
3085 SharedHeap::fill_region_with_object(MemRegion(block, free_words));
3086 }
3087
3088 #define use_local_bitmaps 1
3089 #define verify_local_bitmaps 0
3090
3091 #ifndef PRODUCT
3092
3093 class GCLabBitMap;
3094 class GCLabBitMapClosure: public BitMapClosure {
3095 private:
3096 ConcurrentMark* _cm;
3097 GCLabBitMap* _bitmap;
3098
3099 public:
3100 GCLabBitMapClosure(ConcurrentMark* cm,
3101 GCLabBitMap* bitmap) {
3102 _cm = cm;
3103 _bitmap = bitmap;
3104 }
3105
3106 virtual bool do_bit(size_t offset);
3107 };
3108
3109 #endif // PRODUCT
3110
3111 #define oop_buffer_length 256
3112
3113 class GCLabBitMap: public BitMap {
3114 private:
3115 ConcurrentMark* _cm;
3116
3117 int _shifter;
3118 size_t _bitmap_word_covers_words;
3119
3120 // beginning of the heap
3121 HeapWord* _heap_start;
3122
3123 // this is the actual start of the GCLab
3124 HeapWord* _real_start_word;
3125
3126 // this is the actual end of the GCLab
3127 HeapWord* _real_end_word;
3128
3129 // this is the first word, possibly located before the actual start
3130 // of the GCLab, that corresponds to the first bit of the bitmap
3131 HeapWord* _start_word;
3132
3133 // size of a GCLab in words
3134 size_t _gclab_word_size;
3135
3136 static int shifter() {
3137 return MinObjAlignment - 1;
3138 }
3139
3140 // how many heap words does a single bitmap word corresponds to?
3141 static size_t bitmap_word_covers_words() {
3142 return BitsPerWord << shifter();
3143 }
3144
3145 static size_t gclab_word_size() {
3146 return ParallelGCG1AllocBufferSize / HeapWordSize;
3147 }
3148
3149 static size_t bitmap_size_in_bits() {
3150 size_t bits_in_bitmap = gclab_word_size() >> shifter();
3151 // We are going to ensure that the beginning of a word in this
3152 // bitmap also corresponds to the beginning of a word in the
3153 // global marking bitmap. To handle the case where a GCLab
3154 // starts from the middle of the bitmap, we need to add enough
3155 // space (i.e. up to a bitmap word) to ensure that we have
3156 // enough bits in the bitmap.
3157 return bits_in_bitmap + BitsPerWord - 1;
3158 }
3159 public:
3160 GCLabBitMap(HeapWord* heap_start)
3161 : BitMap(bitmap_size_in_bits()),
3162 _cm(G1CollectedHeap::heap()->concurrent_mark()),
3163 _shifter(shifter()),
3164 _bitmap_word_covers_words(bitmap_word_covers_words()),
3165 _heap_start(heap_start),
3166 _gclab_word_size(gclab_word_size()),
3167 _real_start_word(NULL),
3168 _real_end_word(NULL),
3169 _start_word(NULL)
3170 {
3171 guarantee( size_in_words() >= bitmap_size_in_words(),
3172 "just making sure");
3173 }
3174
3175 inline unsigned heapWordToOffset(HeapWord* addr) {
3176 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
3177 assert(offset < size(), "offset should be within bounds");
3178 return offset;
3179 }
3180
3181 inline HeapWord* offsetToHeapWord(size_t offset) {
3182 HeapWord* addr = _start_word + (offset << _shifter);
3183 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
3184 return addr;
3185 }
3186
3187 bool fields_well_formed() {
3188 bool ret1 = (_real_start_word == NULL) &&
3189 (_real_end_word == NULL) &&
3190 (_start_word == NULL);
3191 if (ret1)
3192 return true;
3193
3194 bool ret2 = _real_start_word >= _start_word &&
3195 _start_word < _real_end_word &&
3196 (_real_start_word + _gclab_word_size) == _real_end_word &&
3197 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
3198 > _real_end_word;
3199 return ret2;
3200 }
3201
3202 inline bool mark(HeapWord* addr) {
3203 guarantee(use_local_bitmaps, "invariant");
3204 assert(fields_well_formed(), "invariant");
3205
3206 if (addr >= _real_start_word && addr < _real_end_word) {
3207 assert(!isMarked(addr), "should not have already been marked");
3208
3209 // first mark it on the bitmap
3210 at_put(heapWordToOffset(addr), true);
3211
3212 return true;
3213 } else {
3214 return false;
3215 }
3216 }
3217
3218 inline bool isMarked(HeapWord* addr) {
3219 guarantee(use_local_bitmaps, "invariant");
3220 assert(fields_well_formed(), "invariant");
3221
3222 return at(heapWordToOffset(addr));
3223 }
3224
3225 void set_buffer(HeapWord* start) {
3226 guarantee(use_local_bitmaps, "invariant");
3227 clear();
3228
3229 assert(start != NULL, "invariant");
3230 _real_start_word = start;
3231 _real_end_word = start + _gclab_word_size;
3232
3233 size_t diff =
3234 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
3235 _start_word = start - diff;
3236
3237 assert(fields_well_formed(), "invariant");
3238 }
3239
3240 #ifndef PRODUCT
3241 void verify() {
3242 // verify that the marks have been propagated
3243 GCLabBitMapClosure cl(_cm, this);
3244 iterate(&cl);
3245 }
3246 #endif // PRODUCT
3247
3248 void retire() {
3249 guarantee(use_local_bitmaps, "invariant");
3250 assert(fields_well_formed(), "invariant");
3251
3252 if (_start_word != NULL) {
3253 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
3254
3255 // this means that the bitmap was set up for the GCLab
3256 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
3257
3258 mark_bitmap->mostly_disjoint_range_union(this,
3259 0, // always start from the start of the bitmap
3260 _start_word,
3261 size_in_words());
3262 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
3263
3264 #ifndef PRODUCT
3265 if (use_local_bitmaps && verify_local_bitmaps)
3266 verify();
3267 #endif // PRODUCT
3268 } else {
3269 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
3270 }
3271 }
3272
3273 static size_t bitmap_size_in_words() {
3274 return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
3275 }
3276 };
3277
3278 #ifndef PRODUCT
3279
3280 bool GCLabBitMapClosure::do_bit(size_t offset) {
3281 HeapWord* addr = _bitmap->offsetToHeapWord(offset);
3282 guarantee(_cm->isMarked(oop(addr)), "it should be!");
3283 return true;
3284 }
3285
3286 #endif // PRODUCT
3287
3288 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
3289 private:
3290 bool _retired;
3291 bool _during_marking;
3292 GCLabBitMap _bitmap;
3293
3294 public:
3295 G1ParGCAllocBuffer() :
3296 ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
3297 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
3298 _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
3299 _retired(false)
3300 { }
3301
3302 inline bool mark(HeapWord* addr) {
3303 guarantee(use_local_bitmaps, "invariant");
3304 assert(_during_marking, "invariant");
3305 return _bitmap.mark(addr);
3306 }
3307
3308 inline void set_buf(HeapWord* buf) {
3309 if (use_local_bitmaps && _during_marking)
3310 _bitmap.set_buffer(buf);
3311 ParGCAllocBuffer::set_buf(buf);
3312 _retired = false;
3313 }
3314
3315 inline void retire(bool end_of_gc, bool retain) {
3316 if (_retired)
3317 return;
3318 if (use_local_bitmaps && _during_marking) {
3319 _bitmap.retire();
3320 }
3321 ParGCAllocBuffer::retire(end_of_gc, retain);
3322 _retired = true;
3323 }
3324 };
3325
3326
3327 class G1ParScanThreadState : public StackObj {
3328 protected:
3329 G1CollectedHeap* _g1h;
3330 RefToScanQueue* _refs;
3331
3332 typedef GrowableArray<oop*> OverflowQueue;
3333 OverflowQueue* _overflowed_refs;
3334
3335 G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
3336
3337 size_t _alloc_buffer_waste;
3338 size_t _undo_waste;
3339
3340 OopsInHeapRegionClosure* _evac_failure_cl;
3341 G1ParScanHeapEvacClosure* _evac_cl;
3342 G1ParScanPartialArrayClosure* _partial_scan_cl;
3343
3344 int _hash_seed;
3345 int _queue_num;
3346
3347 int _term_attempts;
3348 #if G1_DETAILED_STATS
3349 int _pushes, _pops, _steals, _steal_attempts;
3350 int _overflow_pushes;
3351 #endif
3352
3353 double _start;
3354 double _start_strong_roots;
3355 double _strong_roots_time;
3356 double _start_term;
3357 double _term_time;
3358
3359 // Map from young-age-index (0 == not young, 1 is youngest) to
3360 // surviving words. base is what we get back from the malloc call
3361 size_t* _surviving_young_words_base;
3362 // this points into the array, as we use the first few entries for padding
3363 size_t* _surviving_young_words;
3364
3365 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
3366
3367 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
3368
3369 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
3370
3371 public:
3372 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
3373 : _g1h(g1h),
3374 _refs(g1h->task_queue(queue_num)),
3375 _hash_seed(17), _queue_num(queue_num),
3376 _term_attempts(0),
3377 #if G1_DETAILED_STATS
3378 _pushes(0), _pops(0), _steals(0),
3379 _steal_attempts(0), _overflow_pushes(0),
3380 #endif
3381 _strong_roots_time(0), _term_time(0),
3382 _alloc_buffer_waste(0), _undo_waste(0)
3383 {
3384 // we allocate G1YoungSurvRateNumRegions plus one entries, since
3385 // we "sacrifice" entry 0 to keep track of surviving bytes for
3386 // non-young regions (where the age is -1)
3387 // We also add a few elements at the beginning and at the end in
3388 // an attempt to eliminate cache contention
3389 size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
3390 size_t array_length = PADDING_ELEM_NUM +
3391 real_length +
3392 PADDING_ELEM_NUM;
3393 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
3394 if (_surviving_young_words_base == NULL)
3395 vm_exit_out_of_memory(array_length * sizeof(size_t),
3396 "Not enough space for young surv histo.");
3397 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
3398 memset(_surviving_young_words, 0, real_length * sizeof(size_t));
3399
3400 _overflowed_refs = new OverflowQueue(10);
3401
3402 _start = os::elapsedTime();
3403 }
3404
3405 ~G1ParScanThreadState() {
3406 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
3407 }
3408
3409 RefToScanQueue* refs() { return _refs; }
3410 OverflowQueue* overflowed_refs() { return _overflowed_refs; }
3411
3412 inline G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
3413 return &_alloc_buffers[purpose];
3414 }
3415
3416 size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
3417 size_t undo_waste() { return _undo_waste; }
3418
3419 void push_on_queue(oop* ref) {
3420 if (!refs()->push(ref)) {
3421 overflowed_refs()->push(ref);
3422 IF_G1_DETAILED_STATS(note_overflow_push());
3423 } else {
3424 IF_G1_DETAILED_STATS(note_push());
3425 }
3426 }
3427
3428 void pop_from_queue(oop*& ref) {
3429 if (!refs()->pop_local(ref)) {
3430 ref = NULL;
3431 } else {
3432 IF_G1_DETAILED_STATS(note_pop());
3433 }
3434 }
3435
3436 void pop_from_overflow_queue(oop*& ref) {
3437 ref = overflowed_refs()->pop();
3438 }
3439
3440 int refs_to_scan() { return refs()->size(); }
3441 int overflowed_refs_to_scan() { return overflowed_refs()->length(); }
3442
3443 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
3444
3445 HeapWord* obj = NULL;
3446 if (word_sz * 100 <
3447 (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
3448 ParallelGCBufferWastePct) {
3449 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
3450 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
3451 alloc_buf->retire(false, false);
3452
3453 HeapWord* buf =
3454 _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
3455 if (buf == NULL) return NULL; // Let caller handle allocation failure.
3456 // Otherwise.
3457 alloc_buf->set_buf(buf);
3458
3459 obj = alloc_buf->allocate(word_sz);
3460 assert(obj != NULL, "buffer was definitely big enough...");
3461 }
3462 else {
3463 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
3464 }
3465 return obj;
3466 }
3467
3468 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
3469 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
3470 if (obj != NULL) return obj;
3471 return allocate_slow(purpose, word_sz);
3472 }
3473
3474 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
3475 if (alloc_buffer(purpose)->contains(obj)) {
3476 guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
3477 "should contain whole object");
3478 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
3479 }
3480 else {
3481 SharedHeap::fill_region_with_object(MemRegion(obj, word_sz));
3482 add_to_undo_waste(word_sz);
3483 }
3484 }
3485
3486 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
3487 _evac_failure_cl = evac_failure_cl;
3488 }
3489 OopsInHeapRegionClosure* evac_failure_closure() {
3490 return _evac_failure_cl;
3491 }
3492
3493 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
3494 _evac_cl = evac_cl;
3495 }
3496
3497 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
3498 _partial_scan_cl = partial_scan_cl;
3499 }
3500
3501 int* hash_seed() { return &_hash_seed; }
3502 int queue_num() { return _queue_num; }
3503
3504 int term_attempts() { return _term_attempts; }
3505 void note_term_attempt() { _term_attempts++; }
3506
3507 #if G1_DETAILED_STATS
3508 int pushes() { return _pushes; }
3509 int pops() { return _pops; }
3510 int steals() { return _steals; }
3511 int steal_attempts() { return _steal_attempts; }
3512 int overflow_pushes() { return _overflow_pushes; }
3513
3514 void note_push() { _pushes++; }
3515 void note_pop() { _pops++; }
3516 void note_steal() { _steals++; }
3517 void note_steal_attempt() { _steal_attempts++; }
3518 void note_overflow_push() { _overflow_pushes++; }
3519 #endif
3520
3521 void start_strong_roots() {
3522 _start_strong_roots = os::elapsedTime();
3523 }
3524 void end_strong_roots() {
3525 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
3526 }
3527 double strong_roots_time() { return _strong_roots_time; }
3528
3529 void start_term_time() {
3530 note_term_attempt();
3531 _start_term = os::elapsedTime();
3532 }
3533 void end_term_time() {
3534 _term_time += (os::elapsedTime() - _start_term);
3535 }
3536 double term_time() { return _term_time; }
3537
3538 double elapsed() {
3539 return os::elapsedTime() - _start;
3540 }
3541
3542 size_t* surviving_young_words() {
3543 // We add on to hide entry 0 which accumulates surviving words for
3544 // age -1 regions (i.e. non-young ones)
3545 return _surviving_young_words;
3546 }
3547
3548 void retire_alloc_buffers() {
3549 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3550 size_t waste = _alloc_buffers[ap].words_remaining();
3551 add_to_alloc_buffer_waste(waste);
3552 _alloc_buffers[ap].retire(true, false);
3553 }
3554 }
3555
3556 void trim_queue() {
3557 while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
3558 oop *ref_to_scan = NULL;
3559 if (overflowed_refs_to_scan() == 0) {
3560 pop_from_queue(ref_to_scan);
3561 } else {
3562 pop_from_overflow_queue(ref_to_scan);
3563 }
3564 if (ref_to_scan != NULL) {
3565 if ((intptr_t)ref_to_scan & G1_PARTIAL_ARRAY_MASK) {
3566 _partial_scan_cl->do_oop_nv(ref_to_scan);
3567 } else {
3568 // Note: we can use "raw" versions of "region_containing" because
3569 // "obj_to_scan" is definitely in the heap, and is not in a
3570 // humongous region.
3571 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
3572 _evac_cl->set_region(r);
3573 _evac_cl->do_oop_nv(ref_to_scan);
3574 }
3575 }
3576 }
3577 }
3578 };
3579
3580
3581 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
3582 _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
3583 _par_scan_state(par_scan_state) { }
3584
3585 // This closure is applied to the fields of the objects that have just been copied.
3586 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
3587 void G1ParScanClosure::do_oop_nv(oop* p) {
3588 oop obj = *p;
3589 if (obj != NULL) {
3590 if (_g1->obj_in_cs(obj)) {
3591 if (obj->is_forwarded()) {
3592 *p = obj->forwardee();
3593 } else {
3594 _par_scan_state->push_on_queue(p);
3595 return;
3596 }
3597 }
3598 _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num());
3599 }
3600 }
3601
3602 void G1ParCopyHelper::mark_forwardee(oop* p) {
3603 // This is called _after_ do_oop_work has been called, hence after
3604 // the object has been relocated to its new location and *p points
3605 // to its new location.
3606
3607 oop thisOop = *p;
3608 if (thisOop != NULL) {
3609 assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
3610 "shouldn't still be in the CSet if evacuation didn't fail.");
3611 HeapWord* addr = (HeapWord*)thisOop;
3612 if (_g1->is_in_g1_reserved(addr))
3613 _cm->grayRoot(oop(addr));
3614 }
3615 }
3616
3617 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
3618 size_t word_sz = old->size();
3619 HeapRegion* from_region = _g1->heap_region_containing_raw(old);
3620 // +1 to make the -1 indexes valid...
3621 int young_index = from_region->young_index_in_cset()+1;
3622 assert( (from_region->is_young() && young_index > 0) ||
3623 (!from_region->is_young() && young_index == 0), "invariant" );
3624 G1CollectorPolicy* g1p = _g1->g1_policy();
3625 markOop m = old->mark();
3626 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, m->age(),
3627 word_sz);
3628 HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
3629 oop obj = oop(obj_ptr);
3630
3631 if (obj_ptr == NULL) {
3632 // This will either forward-to-self, or detect that someone else has
3633 // installed a forwarding pointer.
3634 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
3635 return _g1->handle_evacuation_failure_par(cl, old);
3636 }
3637
3638 oop forward_ptr = old->forward_to_atomic(obj);
3639 if (forward_ptr == NULL) {
3640 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
3641 obj->set_mark(m);
3642 if (g1p->track_object_age(alloc_purpose)) {
3643 obj->incr_age();
3644 }
3645 // preserve "next" mark bit
3646 if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
3647 if (!use_local_bitmaps ||
3648 !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
3649 // if we couldn't mark it on the local bitmap (this happens when
3650 // the object was not allocated in the GCLab), we have to bite
3651 // the bullet and do the standard parallel mark
3652 _cm->markAndGrayObjectIfNecessary(obj);
3653 }
3654 #if 1
3655 if (_g1->isMarkedNext(old)) {
3656 _cm->nextMarkBitMap()->parClear((HeapWord*)old);
3657 }
3658 #endif
3659 }
3660
3661 size_t* surv_young_words = _par_scan_state->surviving_young_words();
3662 surv_young_words[young_index] += word_sz;
3663
3664 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
3665 arrayOop(old)->set_length(0);
3666 _par_scan_state->push_on_queue((oop*) ((intptr_t)old | G1_PARTIAL_ARRAY_MASK));
3667 } else {
3668 _scanner->set_region(_g1->heap_region_containing(obj));
3669 obj->oop_iterate_backwards(_scanner);
3670 }
3671 } else {
3672 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
3673 obj = forward_ptr;
3674 }
3675 return obj;
3676 }
3677
3678 template<bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
3679 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_forwardee>::do_oop_work(oop* p) {
3680 oop obj = *p;
3681 assert(barrier != G1BarrierRS || obj != NULL,
3682 "Precondition: G1BarrierRS implies obj is nonNull");
3683
3684 if (obj != NULL) {
3685 if (_g1->obj_in_cs(obj)) {
3686 #if G1_REM_SET_LOGGING
3687 gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" into CS.",
3688 p, (void*) obj);
3689 #endif
3690 if (obj->is_forwarded()) {
3691 *p = obj->forwardee();
3692 } else {
3693 *p = copy_to_survivor_space(obj);
3694 }
3695 // When scanning the RS, we only care about objs in CS.
3696 if (barrier == G1BarrierRS) {
3697 _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num());
3698 }
3699 }
3700 // When scanning moved objs, must look at all oops.
3701 if (barrier == G1BarrierEvac) {
3702 _g1_rem->par_write_ref(_from, p, _par_scan_state->queue_num());
3703 }
3704
3705 if (do_gen_barrier) {
3706 par_do_barrier(p);
3707 }
3708 }
3709 }
3710
3711 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
3712
3713 template <class T> void G1ParScanPartialArrayClosure::process_array_chunk(
3714 oop obj, int start, int end) {
3715 // process our set of indices (include header in first chunk)
3716 assert(start < end, "invariant");
3717 T* const base = (T*)objArrayOop(obj)->base();
3718 T* const start_addr = base + start;
3719 T* const end_addr = base + end;
3720 MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
3721 _scanner.set_region(_g1->heap_region_containing(obj));
3722 obj->oop_iterate(&_scanner, mr);
3723 }
3724
3725 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
3726 assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
3727 oop old = oop((intptr_t)p & ~G1_PARTIAL_ARRAY_MASK);
3728 assert(old->is_objArray(), "must be obj array");
3729 assert(old->is_forwarded(), "must be forwarded");
3730 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
3731
3732 objArrayOop obj = objArrayOop(old->forwardee());
3733 assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
3734 // Process ParGCArrayScanChunk elements now
3735 // and push the remainder back onto queue
3736 int start = arrayOop(old)->length();
3737 int end = obj->length();
3738 int remainder = end - start;
3739 assert(start <= end, "just checking");
3740 if (remainder > 2 * ParGCArrayScanChunk) {
3741 // Test above combines last partial chunk with a full chunk
3742 end = start + ParGCArrayScanChunk;
3743 arrayOop(old)->set_length(end);
3744 // Push remainder.
3745 _par_scan_state->push_on_queue((oop*) ((intptr_t) old | G1_PARTIAL_ARRAY_MASK));
3746 } else {
3747 // Restore length so that the heap remains parsable in
3748 // case of evacuation failure.
3749 arrayOop(old)->set_length(end);
3750 }
3751
3752 // process our set of indices (include header in first chunk)
3753 process_array_chunk<oop>(obj, start, end);
3754 oop* start_addr = start == 0 ? (oop*)obj : obj->obj_at_addr<oop>(start);
3755 oop* end_addr = (oop*)(obj->base()) + end; // obj_at_addr(end) asserts end < length
3756 MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
3757 _scanner.set_region(_g1->heap_region_containing(obj));
3758 obj->oop_iterate(&_scanner, mr);
3759 }
3760
3761 int G1ScanAndBalanceClosure::_nq = 0;
3762
3763 class G1ParEvacuateFollowersClosure : public VoidClosure {
3764 protected:
3765 G1CollectedHeap* _g1h;
3766 G1ParScanThreadState* _par_scan_state;
3767 RefToScanQueueSet* _queues;
3768 ParallelTaskTerminator* _terminator;
3769
3770 G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
3771 RefToScanQueueSet* queues() { return _queues; }
3772 ParallelTaskTerminator* terminator() { return _terminator; }
3773
3774 public:
3775 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
3776 G1ParScanThreadState* par_scan_state,
3777 RefToScanQueueSet* queues,
3778 ParallelTaskTerminator* terminator)
3779 : _g1h(g1h), _par_scan_state(par_scan_state),
3780 _queues(queues), _terminator(terminator) {}
3781
3782 void do_void() {
3783 G1ParScanThreadState* pss = par_scan_state();
3784 while (true) {
3785 oop* ref_to_scan;
3786 pss->trim_queue();
3787 IF_G1_DETAILED_STATS(pss->note_steal_attempt());
3788 if (queues()->steal(pss->queue_num(),
3789 pss->hash_seed(),
3790 ref_to_scan)) {
3791 IF_G1_DETAILED_STATS(pss->note_steal());
3792 pss->push_on_queue(ref_to_scan);
3793 continue;
3794 }
3795 pss->start_term_time();
3796 if (terminator()->offer_termination()) break;
3797 pss->end_term_time();
3798 }
3799 pss->end_term_time();
3800 pss->retire_alloc_buffers();
3801 }
3802 };
3803
3804 class G1ParTask : public AbstractGangTask {
3805 protected:
3806 G1CollectedHeap* _g1h;
3807 RefToScanQueueSet *_queues;
3808 ParallelTaskTerminator _terminator;
3809
3810 Mutex _stats_lock;
3811 Mutex* stats_lock() { return &_stats_lock; }
3812
3813 size_t getNCards() {
3814 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
3815 / G1BlockOffsetSharedArray::N_bytes;
3816 }
3817
3818 public:
3819 G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
3820 : AbstractGangTask("G1 collection"),
3821 _g1h(g1h),
3822 _queues(task_queues),
3823 _terminator(workers, _queues),
3824 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
3825 {}
3826
3827 RefToScanQueueSet* queues() { return _queues; }
3828
3829 RefToScanQueue *work_queue(int i) {
3830 return queues()->queue(i);
3831 }
3832
3833 void work(int i) {
3834 ResourceMark rm;
3835 HandleMark hm;
3836
3837 G1ParScanThreadState pss(_g1h, i);
3838 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss);
3839 G1ParScanHeapEvacClosure evac_failure_cl(_g1h, &pss);
3840 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss);
3841
3842 pss.set_evac_closure(&scan_evac_cl);
3843 pss.set_evac_failure_closure(&evac_failure_cl);
3844 pss.set_partial_scan_closure(&partial_scan_cl);
3845
3846 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss);
3847 G1ParScanPermClosure only_scan_perm_cl(_g1h, &pss);
3848 G1ParScanHeapRSClosure only_scan_heap_rs_cl(_g1h, &pss);
3849 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss);
3850 G1ParScanAndMarkPermClosure scan_mark_perm_cl(_g1h, &pss);
3851 G1ParScanAndMarkHeapRSClosure scan_mark_heap_rs_cl(_g1h, &pss);
3852
3853 OopsInHeapRegionClosure *scan_root_cl;
3854 OopsInHeapRegionClosure *scan_perm_cl;
3855 OopsInHeapRegionClosure *scan_so_cl;
3856
3857 if (_g1h->g1_policy()->should_initiate_conc_mark()) {
3858 scan_root_cl = &scan_mark_root_cl;
3859 scan_perm_cl = &scan_mark_perm_cl;
3860 scan_so_cl = &scan_mark_heap_rs_cl;
3861 } else {
3862 scan_root_cl = &only_scan_root_cl;
3863 scan_perm_cl = &only_scan_perm_cl;
3864 scan_so_cl = &only_scan_heap_rs_cl;
3865 }
3866
3867 pss.start_strong_roots();
3868 _g1h->g1_process_strong_roots(/* not collecting perm */ false,
3869 SharedHeap::SO_AllClasses,
3870 scan_root_cl,
3871 &only_scan_heap_rs_cl,
3872 scan_so_cl,
3873 scan_perm_cl,
3874 i);
3875 pss.end_strong_roots();
3876 {
3877 double start = os::elapsedTime();
3878 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
3879 evac.do_void();
3880 double elapsed_ms = (os::elapsedTime()-start)*1000.0;
3881 double term_ms = pss.term_time()*1000.0;
3882 _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
3883 _g1h->g1_policy()->record_termination_time(i, term_ms);
3884 }
3885 _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
3886
3887 // Clean up any par-expanded rem sets.
3888 HeapRegionRemSet::par_cleanup();
3889
3890 MutexLocker x(stats_lock());
3891 if (ParallelGCVerbose) {
3892 gclog_or_tty->print("Thread %d complete:\n", i);
3893 #if G1_DETAILED_STATS
3894 gclog_or_tty->print(" Pushes: %7d Pops: %7d Overflows: %7d Steals %7d (in %d attempts)\n",
3895 pss.pushes(),
3896 pss.pops(),
3897 pss.overflow_pushes(),
3898 pss.steals(),
3899 pss.steal_attempts());
3900 #endif
3901 double elapsed = pss.elapsed();
3902 double strong_roots = pss.strong_roots_time();
3903 double term = pss.term_time();
3904 gclog_or_tty->print(" Elapsed: %7.2f ms.\n"
3905 " Strong roots: %7.2f ms (%6.2f%%)\n"
3906 " Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
3907 elapsed * 1000.0,
3908 strong_roots * 1000.0, (strong_roots*100.0/elapsed),
3909 term * 1000.0, (term*100.0/elapsed),
3910 pss.term_attempts());
3911 size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
3912 gclog_or_tty->print(" Waste: %8dK\n"
3913 " Alloc Buffer: %8dK\n"
3914 " Undo: %8dK\n",
3915 (total_waste * HeapWordSize) / K,
3916 (pss.alloc_buffer_waste() * HeapWordSize) / K,
3917 (pss.undo_waste() * HeapWordSize) / K);
3918 }
3919
3920 assert(pss.refs_to_scan() == 0, "Task queue should be empty");
3921 assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
3922 }
3923 };
3924
3925 // *** Common G1 Evacuation Stuff
3926
3927 class G1CountClosure: public OopsInHeapRegionClosure {
3928 public:
3929 int n;
3930 G1CountClosure() : n(0) {}
3931 void do_oop(narrowOop* p) {
3932 guarantee(false, "NYI");
3933 }
3934 void do_oop(oop* p) {
3935 oop obj = *p;
3936 assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
3937 "Rem set closure called on non-rem-set pointer.");
3938 n++;
3939 }
3940 };
3941
3942 static G1CountClosure count_closure;
3943
3944 void
3945 G1CollectedHeap::
3946 g1_process_strong_roots(bool collecting_perm_gen,
3947 SharedHeap::ScanningOption so,
3948 OopClosure* scan_non_heap_roots,
3949 OopsInHeapRegionClosure* scan_rs,
3950 OopsInHeapRegionClosure* scan_so,
3951 OopsInGenClosure* scan_perm,
3952 int worker_i) {
3953 // First scan the strong roots, including the perm gen.
3954 double ext_roots_start = os::elapsedTime();
3955 double closure_app_time_sec = 0.0;
3956
3957 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
3958 BufferingOopsInGenClosure buf_scan_perm(scan_perm);
3959 buf_scan_perm.set_generation(perm_gen());
3960
3961 process_strong_roots(collecting_perm_gen, so,
3962 &buf_scan_non_heap_roots,
3963 &buf_scan_perm);
3964 // Finish up any enqueued closure apps.
3965 buf_scan_non_heap_roots.done();
3966 buf_scan_perm.done();
3967 double ext_roots_end = os::elapsedTime();
3968 g1_policy()->reset_obj_copy_time(worker_i);
3969 double obj_copy_time_sec =
3970 buf_scan_non_heap_roots.closure_app_seconds() +
3971 buf_scan_perm.closure_app_seconds();
3972 g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
3973 double ext_root_time_ms =
3974 ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
3975 g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
3976
3977 // Scan strong roots in mark stack.
3978 if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
3979 concurrent_mark()->oops_do(scan_non_heap_roots);
3980 }
3981 double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
3982 g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
3983
3984 // XXX What should this be doing in the parallel case?
3985 g1_policy()->record_collection_pause_end_CH_strong_roots();
3986 if (G1VerifyRemSet) {
3987 // :::: FIXME ::::
3988 // The stupid remembered set doesn't know how to filter out dead
3989 // objects, which the smart one does, and so when it is created
3990 // and then compared the number of entries in each differs and
3991 // the verification code fails.
3992 guarantee(false, "verification code is broken, see note");
3993
3994 // Let's make sure that the current rem set agrees with the stupidest
3995 // one possible!
3996 bool refs_enabled = ref_processor()->discovery_enabled();
3997 if (refs_enabled) ref_processor()->disable_discovery();
3998 StupidG1RemSet stupid(this);
3999 count_closure.n = 0;
4000 stupid.oops_into_collection_set_do(&count_closure, worker_i);
4001 int stupid_n = count_closure.n;
4002 count_closure.n = 0;
4003 g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
4004 guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
4005 gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
4006 if (refs_enabled) ref_processor()->enable_discovery();
4007 }
4008 if (scan_so != NULL) {
4009 scan_scan_only_set(scan_so, worker_i);
4010 }
4011 // Now scan the complement of the collection set.
4012 if (scan_rs != NULL) {
4013 g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4014 }
4015 // Finish with the ref_processor roots.
4016 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4017 ref_processor()->oops_do(scan_non_heap_roots);
4018 }
4019 g1_policy()->record_collection_pause_end_G1_strong_roots();
4020 _process_strong_tasks->all_tasks_completed();
4021 }
4022
4023 void
4024 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
4025 OopsInHeapRegionClosure* oc,
4026 int worker_i) {
4027 HeapWord* startAddr = r->bottom();
4028 HeapWord* endAddr = r->used_region().end();
4029
4030 oc->set_region(r);
4031
4032 HeapWord* p = r->bottom();
4033 HeapWord* t = r->top();
4034 guarantee( p == r->next_top_at_mark_start(), "invariant" );
4035 while (p < t) {
4036 oop obj = oop(p);
4037 p += obj->oop_iterate(oc);
4038 }
4039 }
4040
4041 void
4042 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
4043 int worker_i) {
4044 double start = os::elapsedTime();
4045
4046 BufferingOopsInHeapRegionClosure boc(oc);
4047
4048 FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
4049 FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
4050
4051 OopsInHeapRegionClosure *foc;
4052 if (g1_policy()->should_initiate_conc_mark())
4053 foc = &scan_and_mark;
4054 else
4055 foc = &scan_only;
4056
4057 HeapRegion* hr;
4058 int n = 0;
4059 while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
4060 scan_scan_only_region(hr, foc, worker_i);
4061 ++n;
4062 }
4063 boc.done();
4064
4065 double closure_app_s = boc.closure_app_seconds();
4066 g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
4067 double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
4068 g1_policy()->record_scan_only_time(worker_i, ms, n);
4069 }
4070
4071 void
4072 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4073 OopClosure* non_root_closure) {
4074 SharedHeap::process_weak_roots(root_closure, non_root_closure);
4075 }
4076
4077
4078 class SaveMarksClosure: public HeapRegionClosure {
4079 public:
4080 bool doHeapRegion(HeapRegion* r) {
4081 r->save_marks();
4082 return false;
4083 }
4084 };
4085
4086 void G1CollectedHeap::save_marks() {
4087 if (ParallelGCThreads == 0) {
4088 SaveMarksClosure sm;
4089 heap_region_iterate(&sm);
4090 }
4091 // We do this even in the parallel case
4092 perm_gen()->save_marks();
4093 }
4094
4095 void G1CollectedHeap::evacuate_collection_set() {
4096 set_evacuation_failed(false);
4097
4098 g1_rem_set()->prepare_for_oops_into_collection_set_do();
4099 concurrent_g1_refine()->set_use_cache(false);
4100 int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4101
4102 set_par_threads(n_workers);
4103 G1ParTask g1_par_task(this, n_workers, _task_queues);
4104
4105 init_for_evac_failure(NULL);
4106
4107 change_strong_roots_parity(); // In preparation for parallel strong roots.
4108 rem_set()->prepare_for_younger_refs_iterate(true);
4109 double start_par = os::elapsedTime();
4110
4111 if (ParallelGCThreads > 0) {
4112 // The individual threads will set their evac-failure closures.
4113 workers()->run_task(&g1_par_task);
4114 } else {
4115 g1_par_task.work(0);
4116 }
4117
4118 double par_time = (os::elapsedTime() - start_par) * 1000.0;
4119 g1_policy()->record_par_time(par_time);
4120 set_par_threads(0);
4121 // Is this the right thing to do here? We don't save marks
4122 // on individual heap regions when we allocate from
4123 // them in parallel, so this seems like the correct place for this.
4124 all_alloc_regions_note_end_of_copying();
4125 {
4126 G1IsAliveClosure is_alive(this);
4127 G1KeepAliveClosure keep_alive(this);
4128 JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4129 }
4130
4131 g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4132 concurrent_g1_refine()->set_use_cache(true);
4133
4134 finalize_for_evac_failure();
4135
4136 // Must do this before removing self-forwarding pointers, which clears
4137 // the per-region evac-failure flags.
4138 concurrent_mark()->complete_marking_in_collection_set();
4139
4140 if (evacuation_failed()) {
4141 remove_self_forwarding_pointers();
4142
4143 if (PrintGCDetails) {
4144 gclog_or_tty->print(" (evacuation failed)");
4145 } else if (PrintGC) {
4146 gclog_or_tty->print("--");
4147 }
4148 }
4149
4150 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4151 }
4152
4153 void G1CollectedHeap::free_region(HeapRegion* hr) {
4154 size_t pre_used = 0;
4155 size_t cleared_h_regions = 0;
4156 size_t freed_regions = 0;
4157 UncleanRegionList local_list;
4158
4159 HeapWord* start = hr->bottom();
4160 HeapWord* end = hr->prev_top_at_mark_start();
4161 size_t used_bytes = hr->used();
4162 size_t live_bytes = hr->max_live_bytes();
4163 if (used_bytes > 0) {
4164 guarantee( live_bytes <= used_bytes, "invariant" );
4165 } else {
4166 guarantee( live_bytes == 0, "invariant" );
4167 }
4168
4169 size_t garbage_bytes = used_bytes - live_bytes;
4170 if (garbage_bytes > 0)
4171 g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
4172
4173 free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
4174 &local_list);
4175 finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
4176 &local_list);
4177 }
4178
4179 void
4180 G1CollectedHeap::free_region_work(HeapRegion* hr,
4181 size_t& pre_used,
4182 size_t& cleared_h_regions,
4183 size_t& freed_regions,
4184 UncleanRegionList* list,
4185 bool par) {
4186 assert(!hr->popular(), "should not free popular regions");
4187 pre_used += hr->used();
4188 if (hr->isHumongous()) {
4189 assert(hr->startsHumongous(),
4190 "Only the start of a humongous region should be freed.");
4191 int ind = _hrs->find(hr);
4192 assert(ind != -1, "Should have an index.");
4193 // Clear the start region.
4194 hr->hr_clear(par, true /*clear_space*/);
4195 list->insert_before_head(hr);
4196 cleared_h_regions++;
4197 freed_regions++;
4198 // Clear any continued regions.
4199 ind++;
4200 while ((size_t)ind < n_regions()) {
4201 HeapRegion* hrc = _hrs->at(ind);
4202 if (!hrc->continuesHumongous()) break;
4203 // Otherwise, does continue the H region.
4204 assert(hrc->humongous_start_region() == hr, "Huh?");
4205 hrc->hr_clear(par, true /*clear_space*/);
4206 cleared_h_regions++;
4207 freed_regions++;
4208 list->insert_before_head(hrc);
4209 ind++;
4210 }
4211 } else {
4212 hr->hr_clear(par, true /*clear_space*/);
4213 list->insert_before_head(hr);
4214 freed_regions++;
4215 // If we're using clear2, this should not be enabled.
4216 // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
4217 }
4218 }
4219
4220 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
4221 size_t cleared_h_regions,
4222 size_t freed_regions,
4223 UncleanRegionList* list) {
4224 if (list != NULL && list->sz() > 0) {
4225 prepend_region_list_on_unclean_list(list);
4226 }
4227 // Acquire a lock, if we're parallel, to update possibly-shared
4228 // variables.
4229 Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
4230 {
4231 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4232 _summary_bytes_used -= pre_used;
4233 _num_humongous_regions -= (int) cleared_h_regions;
4234 _free_regions += freed_regions;
4235 }
4236 }
4237
4238
4239 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
4240 while (list != NULL) {
4241 guarantee( list->is_young(), "invariant" );
4242
4243 HeapWord* bottom = list->bottom();
4244 HeapWord* end = list->end();
4245 MemRegion mr(bottom, end);
4246 ct_bs->dirty(mr);
4247
4248 list = list->get_next_young_region();
4249 }
4250 }
4251
4252 void G1CollectedHeap::cleanUpCardTable() {
4253 CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4254 double start = os::elapsedTime();
4255
4256 ct_bs->clear(_g1_committed);
4257
4258 // now, redirty the cards of the scan-only and survivor regions
4259 // (it seemed faster to do it this way, instead of iterating over
4260 // all regions and then clearing / dirtying as approprite)
4261 dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
4262 dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
4263
4264 double elapsed = os::elapsedTime() - start;
4265 g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4266 }
4267
4268
4269 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
4270 // First do any popular regions.
4271 HeapRegion* hr;
4272 while ((hr = popular_region_to_evac()) != NULL) {
4273 evac_popular_region(hr);
4274 }
4275 // Now do heuristic pauses.
4276 if (g1_policy()->should_do_collection_pause(word_size)) {
4277 do_collection_pause();
4278 }
4279 }
4280
4281 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4282 double young_time_ms = 0.0;
4283 double non_young_time_ms = 0.0;
4284
4285 G1CollectorPolicy* policy = g1_policy();
4286
4287 double start_sec = os::elapsedTime();
4288 bool non_young = true;
4289
4290 HeapRegion* cur = cs_head;
4291 int age_bound = -1;
4292 size_t rs_lengths = 0;
4293
4294 while (cur != NULL) {
4295 if (non_young) {
4296 if (cur->is_young()) {
4297 double end_sec = os::elapsedTime();
4298 double elapsed_ms = (end_sec - start_sec) * 1000.0;
4299 non_young_time_ms += elapsed_ms;
4300
4301 start_sec = os::elapsedTime();
4302 non_young = false;
4303 }
4304 } else {
4305 if (!cur->is_on_free_list()) {
4306 double end_sec = os::elapsedTime();
4307 double elapsed_ms = (end_sec - start_sec) * 1000.0;
4308 young_time_ms += elapsed_ms;
4309
4310 start_sec = os::elapsedTime();
4311 non_young = true;
4312 }
4313 }
4314
4315 rs_lengths += cur->rem_set()->occupied();
4316
4317 HeapRegion* next = cur->next_in_collection_set();
4318 assert(cur->in_collection_set(), "bad CS");
4319 cur->set_next_in_collection_set(NULL);
4320 cur->set_in_collection_set(false);
4321
4322 if (cur->is_young()) {
4323 int index = cur->young_index_in_cset();
4324 guarantee( index != -1, "invariant" );
4325 guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4326 size_t words_survived = _surviving_young_words[index];
4327 cur->record_surv_words_in_group(words_survived);
4328 } else {
4329 int index = cur->young_index_in_cset();
4330 guarantee( index == -1, "invariant" );
4331 }
4332
4333 assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4334 (!cur->is_young() && cur->young_index_in_cset() == -1),
4335 "invariant" );
4336
4337 if (!cur->evacuation_failed()) {
4338 // And the region is empty.
4339 assert(!cur->is_empty(),
4340 "Should not have empty regions in a CS.");
4341 free_region(cur);
4342 } else {
4343 guarantee( !cur->is_scan_only(), "should not be scan only" );
4344 cur->uninstall_surv_rate_group();
4345 if (cur->is_young())
4346 cur->set_young_index_in_cset(-1);
4347 cur->set_not_young();
4348 cur->set_evacuation_failed(false);
4349 }
4350 cur = next;
4351 }
4352
4353 policy->record_max_rs_lengths(rs_lengths);
4354 policy->cset_regions_freed();
4355
4356 double end_sec = os::elapsedTime();
4357 double elapsed_ms = (end_sec - start_sec) * 1000.0;
4358 if (non_young)
4359 non_young_time_ms += elapsed_ms;
4360 else
4361 young_time_ms += elapsed_ms;
4362
4363 policy->record_young_free_cset_time_ms(young_time_ms);
4364 policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4365 }
4366
4367 HeapRegion*
4368 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
4369 assert(ZF_mon->owned_by_self(), "Precondition");
4370 HeapRegion* res = pop_unclean_region_list_locked();
4371 if (res != NULL) {
4372 assert(!res->continuesHumongous() &&
4373 res->zero_fill_state() != HeapRegion::Allocated,
4374 "Only free regions on unclean list.");
4375 if (zero_filled) {
4376 res->ensure_zero_filled_locked();
4377 res->set_zero_fill_allocated();
4378 }
4379 }
4380 return res;
4381 }
4382
4383 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
4384 MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
4385 return alloc_region_from_unclean_list_locked(zero_filled);
4386 }
4387
4388 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
4389 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4390 put_region_on_unclean_list_locked(r);
4391 if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4392 }
4393
4394 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
4395 MutexLockerEx x(Cleanup_mon);
4396 set_unclean_regions_coming_locked(b);
4397 }
4398
4399 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
4400 assert(Cleanup_mon->owned_by_self(), "Precondition");
4401 _unclean_regions_coming = b;
4402 // Wake up mutator threads that might be waiting for completeCleanup to
4403 // finish.
4404 if (!b) Cleanup_mon->notify_all();
4405 }
4406
4407 void G1CollectedHeap::wait_for_cleanup_complete() {
4408 MutexLockerEx x(Cleanup_mon);
4409 wait_for_cleanup_complete_locked();
4410 }
4411
4412 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
4413 assert(Cleanup_mon->owned_by_self(), "precondition");
4414 while (_unclean_regions_coming) {
4415 Cleanup_mon->wait();
4416 }
4417 }
4418
4419 void
4420 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
4421 assert(ZF_mon->owned_by_self(), "precondition.");
4422 _unclean_region_list.insert_before_head(r);
4423 }
4424
4425 void
4426 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
4427 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4428 prepend_region_list_on_unclean_list_locked(list);
4429 if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4430 }
4431
4432 void
4433 G1CollectedHeap::
4434 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
4435 assert(ZF_mon->owned_by_self(), "precondition.");
4436 _unclean_region_list.prepend_list(list);
4437 }
4438
4439 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
4440 assert(ZF_mon->owned_by_self(), "precondition.");
4441 HeapRegion* res = _unclean_region_list.pop();
4442 if (res != NULL) {
4443 // Inform ZF thread that there's a new unclean head.
4444 if (_unclean_region_list.hd() != NULL && should_zf())
4445 ZF_mon->notify_all();
4446 }
4447 return res;
4448 }
4449
4450 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
4451 assert(ZF_mon->owned_by_self(), "precondition.");
4452 return _unclean_region_list.hd();
4453 }
4454
4455
4456 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
4457 assert(ZF_mon->owned_by_self(), "Precondition");
4458 HeapRegion* r = peek_unclean_region_list_locked();
4459 if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
4460 // Result of below must be equal to "r", since we hold the lock.
4461 (void)pop_unclean_region_list_locked();
4462 put_free_region_on_list_locked(r);
4463 return true;
4464 } else {
4465 return false;
4466 }
4467 }
4468
4469 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
4470 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4471 return move_cleaned_region_to_free_list_locked();
4472 }
4473
4474
4475 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
4476 assert(ZF_mon->owned_by_self(), "precondition.");
4477 assert(_free_region_list_size == free_region_list_length(), "Inv");
4478 assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
4479 "Regions on free list must be zero filled");
4480 assert(!r->isHumongous(), "Must not be humongous.");
4481 assert(r->is_empty(), "Better be empty");
4482 assert(!r->is_on_free_list(),
4483 "Better not already be on free list");
4484 assert(!r->is_on_unclean_list(),
4485 "Better not already be on unclean list");
4486 r->set_on_free_list(true);
4487 r->set_next_on_free_list(_free_region_list);
4488 _free_region_list = r;
4489 _free_region_list_size++;
4490 assert(_free_region_list_size == free_region_list_length(), "Inv");
4491 }
4492
4493 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
4494 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4495 put_free_region_on_list_locked(r);
4496 }
4497
4498 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
4499 assert(ZF_mon->owned_by_self(), "precondition.");
4500 assert(_free_region_list_size == free_region_list_length(), "Inv");
4501 HeapRegion* res = _free_region_list;
4502 if (res != NULL) {
4503 _free_region_list = res->next_from_free_list();
4504 _free_region_list_size--;
4505 res->set_on_free_list(false);
4506 res->set_next_on_free_list(NULL);
4507 assert(_free_region_list_size == free_region_list_length(), "Inv");
4508 }
4509 return res;
4510 }
4511
4512
4513 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
4514 // By self, or on behalf of self.
4515 assert(Heap_lock->is_locked(), "Precondition");
4516 HeapRegion* res = NULL;
4517 bool first = true;
4518 while (res == NULL) {
4519 if (zero_filled || !first) {
4520 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4521 res = pop_free_region_list_locked();
4522 if (res != NULL) {
4523 assert(!res->zero_fill_is_allocated(),
4524 "No allocated regions on free list.");
4525 res->set_zero_fill_allocated();
4526 } else if (!first) {
4527 break; // We tried both, time to return NULL.
4528 }
4529 }
4530
4531 if (res == NULL) {
4532 res = alloc_region_from_unclean_list(zero_filled);
4533 }
4534 assert(res == NULL ||
4535 !zero_filled ||
4536 res->zero_fill_is_allocated(),
4537 "We must have allocated the region we're returning");
4538 first = false;
4539 }
4540 return res;
4541 }
4542
4543 void G1CollectedHeap::remove_allocated_regions_from_lists() {
4544 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4545 {
4546 HeapRegion* prev = NULL;
4547 HeapRegion* cur = _unclean_region_list.hd();
4548 while (cur != NULL) {
4549 HeapRegion* next = cur->next_from_unclean_list();
4550 if (cur->zero_fill_is_allocated()) {
4551 // Remove from the list.
4552 if (prev == NULL) {
4553 (void)_unclean_region_list.pop();
4554 } else {
4555 _unclean_region_list.delete_after(prev);
4556 }
4557 cur->set_on_unclean_list(false);
4558 cur->set_next_on_unclean_list(NULL);
4559 } else {
4560 prev = cur;
4561 }
4562 cur = next;
4563 }
4564 assert(_unclean_region_list.sz() == unclean_region_list_length(),
4565 "Inv");
4566 }
4567
4568 {
4569 HeapRegion* prev = NULL;
4570 HeapRegion* cur = _free_region_list;
4571 while (cur != NULL) {
4572 HeapRegion* next = cur->next_from_free_list();
4573 if (cur->zero_fill_is_allocated()) {
4574 // Remove from the list.
4575 if (prev == NULL) {
4576 _free_region_list = cur->next_from_free_list();
4577 } else {
4578 prev->set_next_on_free_list(cur->next_from_free_list());
4579 }
4580 cur->set_on_free_list(false);
4581 cur->set_next_on_free_list(NULL);
4582 _free_region_list_size--;
4583 } else {
4584 prev = cur;
4585 }
4586 cur = next;
4587 }
4588 assert(_free_region_list_size == free_region_list_length(), "Inv");
4589 }
4590 }
4591
4592 bool G1CollectedHeap::verify_region_lists() {
4593 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4594 return verify_region_lists_locked();
4595 }
4596
4597 bool G1CollectedHeap::verify_region_lists_locked() {
4598 HeapRegion* unclean = _unclean_region_list.hd();
4599 while (unclean != NULL) {
4600 guarantee(unclean->is_on_unclean_list(), "Well, it is!");
4601 guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
4602 guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
4603 "Everything else is possible.");
4604 unclean = unclean->next_from_unclean_list();
4605 }
4606 guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
4607
4608 HeapRegion* free_r = _free_region_list;
4609 while (free_r != NULL) {
4610 assert(free_r->is_on_free_list(), "Well, it is!");
4611 assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
4612 switch (free_r->zero_fill_state()) {
4613 case HeapRegion::NotZeroFilled:
4614 case HeapRegion::ZeroFilling:
4615 guarantee(false, "Should not be on free list.");
4616 break;
4617 default:
4618 // Everything else is possible.
4619 break;
4620 }
4621 free_r = free_r->next_from_free_list();
4622 }
4623 guarantee(_free_region_list_size == free_region_list_length(), "Inv");
4624 // If we didn't do an assertion...
4625 return true;
4626 }
4627
4628 size_t G1CollectedHeap::free_region_list_length() {
4629 assert(ZF_mon->owned_by_self(), "precondition.");
4630 size_t len = 0;
4631 HeapRegion* cur = _free_region_list;
4632 while (cur != NULL) {
4633 len++;
4634 cur = cur->next_from_free_list();
4635 }
4636 return len;
4637 }
4638
4639 size_t G1CollectedHeap::unclean_region_list_length() {
4640 assert(ZF_mon->owned_by_self(), "precondition.");
4641 return _unclean_region_list.length();
4642 }
4643
4644 size_t G1CollectedHeap::n_regions() {
4645 return _hrs->length();
4646 }
4647
4648 size_t G1CollectedHeap::max_regions() {
4649 return
4650 (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
4651 HeapRegion::GrainBytes;
4652 }
4653
4654 size_t G1CollectedHeap::free_regions() {
4655 /* Possibly-expensive assert.
4656 assert(_free_regions == count_free_regions(),
4657 "_free_regions is off.");
4658 */
4659 return _free_regions;
4660 }
4661
4662 bool G1CollectedHeap::should_zf() {
4663 return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
4664 }
4665
4666 class RegionCounter: public HeapRegionClosure {
4667 size_t _n;
4668 public:
4669 RegionCounter() : _n(0) {}
4670 bool doHeapRegion(HeapRegion* r) {
4671 if (r->is_empty() && !r->popular()) {
4672 assert(!r->isHumongous(), "H regions should not be empty.");
4673 _n++;
4674 }
4675 return false;
4676 }
4677 int res() { return (int) _n; }
4678 };
4679
4680 size_t G1CollectedHeap::count_free_regions() {
4681 RegionCounter rc;
4682 heap_region_iterate(&rc);
4683 size_t n = rc.res();
4684 if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
4685 n--;
4686 return n;
4687 }
4688
4689 size_t G1CollectedHeap::count_free_regions_list() {
4690 size_t n = 0;
4691 size_t o = 0;
4692 ZF_mon->lock_without_safepoint_check();
4693 HeapRegion* cur = _free_region_list;
4694 while (cur != NULL) {
4695 cur = cur->next_from_free_list();
4696 n++;
4697 }
4698 size_t m = unclean_region_list_length();
4699 ZF_mon->unlock();
4700 return n + m;
4701 }
4702
4703 bool G1CollectedHeap::should_set_young_locked() {
4704 assert(heap_lock_held_for_gc(),
4705 "the heap lock should already be held by or for this thread");
4706 return (g1_policy()->in_young_gc_mode() &&
4707 g1_policy()->should_add_next_region_to_young_list());
4708 }
4709
4710 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4711 assert(heap_lock_held_for_gc(),
4712 "the heap lock should already be held by or for this thread");
4713 _young_list->push_region(hr);
4714 g1_policy()->set_region_short_lived(hr);
4715 }
4716
4717 class NoYoungRegionsClosure: public HeapRegionClosure {
4718 private:
4719 bool _success;
4720 public:
4721 NoYoungRegionsClosure() : _success(true) { }
4722 bool doHeapRegion(HeapRegion* r) {
4723 if (r->is_young()) {
4724 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
4725 r->bottom(), r->end());
4726 _success = false;
4727 }
4728 return false;
4729 }
4730 bool success() { return _success; }
4731 };
4732
4733 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
4734 bool check_sample) {
4735 bool ret = true;
4736
4737 ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
4738 if (!ignore_scan_only_list) {
4739 NoYoungRegionsClosure closure;
4740 heap_region_iterate(&closure);
4741 ret = ret && closure.success();
4742 }
4743
4744 return ret;
4745 }
4746
4747 void G1CollectedHeap::empty_young_list() {
4748 assert(heap_lock_held_for_gc(),
4749 "the heap lock should already be held by or for this thread");
4750 assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
4751
4752 _young_list->empty_list();
4753 }
4754
4755 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
4756 bool no_allocs = true;
4757 for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
4758 HeapRegion* r = _gc_alloc_regions[ap];
4759 no_allocs = r == NULL || r->saved_mark_at_top();
4760 }
4761 return no_allocs;
4762 }
4763
4764 void G1CollectedHeap::all_alloc_regions_note_end_of_copying() {
4765 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
4766 HeapRegion* r = _gc_alloc_regions[ap];
4767 if (r != NULL) {
4768 // Check for aliases.
4769 bool has_processed_alias = false;
4770 for (int i = 0; i < ap; ++i) {
4771 if (_gc_alloc_regions[i] == r) {
4772 has_processed_alias = true;
4773 break;
4774 }
4775 }
4776 if (!has_processed_alias) {
4777 r->note_end_of_copying();
4778 g1_policy()->record_after_bytes(r->used());
4779 }
4780 }
4781 }
4782 }
4783
4784
4785 // Done at the start of full GC.
4786 void G1CollectedHeap::tear_down_region_lists() {
4787 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4788 while (pop_unclean_region_list_locked() != NULL) ;
4789 assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
4790 "Postconditions of loop.")
4791 while (pop_free_region_list_locked() != NULL) ;
4792 assert(_free_region_list == NULL, "Postcondition of loop.");
4793 if (_free_region_list_size != 0) {
4794 gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
4795 print();
4796 }
4797 assert(_free_region_list_size == 0, "Postconditions of loop.");
4798 }
4799
4800
4801 class RegionResetter: public HeapRegionClosure {
4802 G1CollectedHeap* _g1;
4803 int _n;
4804 public:
4805 RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
4806 bool doHeapRegion(HeapRegion* r) {
4807 if (r->continuesHumongous()) return false;
4808 if (r->top() > r->bottom()) {
4809 if (r->top() < r->end()) {
4810 Copy::fill_to_words(r->top(),
4811 pointer_delta(r->end(), r->top()));
4812 }
4813 r->set_zero_fill_allocated();
4814 } else {
4815 assert(r->is_empty(), "tautology");
4816 if (r->popular()) {
4817 if (r->zero_fill_state() != HeapRegion::Allocated) {
4818 r->ensure_zero_filled_locked();
4819 r->set_zero_fill_allocated();
4820 }
4821 } else {
4822 _n++;
4823 switch (r->zero_fill_state()) {
4824 case HeapRegion::NotZeroFilled:
4825 case HeapRegion::ZeroFilling:
4826 _g1->put_region_on_unclean_list_locked(r);
4827 break;
4828 case HeapRegion::Allocated:
4829 r->set_zero_fill_complete();
4830 // no break; go on to put on free list.
4831 case HeapRegion::ZeroFilled:
4832 _g1->put_free_region_on_list_locked(r);
4833 break;
4834 }
4835 }
4836 }
4837 return false;
4838 }
4839
4840 int getFreeRegionCount() {return _n;}
4841 };
4842
4843 // Done at the end of full GC.
4844 void G1CollectedHeap::rebuild_region_lists() {
4845 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4846 // This needs to go at the end of the full GC.
4847 RegionResetter rs;
4848 heap_region_iterate(&rs);
4849 _free_regions = rs.getFreeRegionCount();
4850 // Tell the ZF thread it may have work to do.
4851 if (should_zf()) ZF_mon->notify_all();
4852 }
4853
4854 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
4855 G1CollectedHeap* _g1;
4856 int _n;
4857 public:
4858 UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
4859 bool doHeapRegion(HeapRegion* r) {
4860 if (r->continuesHumongous()) return false;
4861 if (r->top() > r->bottom()) {
4862 // There are assertions in "set_zero_fill_needed()" below that
4863 // require top() == bottom(), so this is technically illegal.
4864 // We'll skirt the law here, by making that true temporarily.
4865 DEBUG_ONLY(HeapWord* save_top = r->top();
4866 r->set_top(r->bottom()));
4867 r->set_zero_fill_needed();
4868 DEBUG_ONLY(r->set_top(save_top));
4869 }
4870 return false;
4871 }
4872 };
4873
4874 // Done at the start of full GC.
4875 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
4876 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4877 // This needs to go at the end of the full GC.
4878 UsedRegionsNeedZeroFillSetter rs;
4879 heap_region_iterate(&rs);
4880 }
4881
4882 class CountObjClosure: public ObjectClosure {
4883 size_t _n;
4884 public:
4885 CountObjClosure() : _n(0) {}
4886 void do_object(oop obj) { _n++; }
4887 size_t n() { return _n; }
4888 };
4889
4890 size_t G1CollectedHeap::pop_object_used_objs() {
4891 size_t sum_objs = 0;
4892 for (int i = 0; i < G1NumPopularRegions; i++) {
4893 CountObjClosure cl;
4894 _hrs->at(i)->object_iterate(&cl);
4895 sum_objs += cl.n();
4896 }
4897 return sum_objs;
4898 }
4899
4900 size_t G1CollectedHeap::pop_object_used_bytes() {
4901 size_t sum_bytes = 0;
4902 for (int i = 0; i < G1NumPopularRegions; i++) {
4903 sum_bytes += _hrs->at(i)->used();
4904 }
4905 return sum_bytes;
4906 }
4907
4908
4909 static int nq = 0;
4910
4911 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
4912 while (_cur_pop_hr_index < G1NumPopularRegions) {
4913 HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
4914 HeapWord* res = cur_pop_region->allocate(word_size);
4915 if (res != NULL) {
4916 // We account for popular objs directly in the used summary:
4917 _summary_bytes_used += (word_size * HeapWordSize);
4918 return res;
4919 }
4920 // Otherwise, try the next region (first making sure that we remember
4921 // the last "top" value as the "next_top_at_mark_start", so that
4922 // objects made popular during markings aren't automatically considered
4923 // live).
4924 cur_pop_region->note_end_of_copying();
4925 // Otherwise, try the next region.
4926 _cur_pop_hr_index++;
4927 }
4928 // XXX: For now !!!
4929 vm_exit_out_of_memory(word_size,
4930 "Not enough pop obj space (To Be Fixed)");
4931 return NULL;
4932 }
4933
4934 class HeapRegionList: public CHeapObj {
4935 public:
4936 HeapRegion* hr;
4937 HeapRegionList* next;
4938 };
4939
4940 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
4941 // This might happen during parallel GC, so protect by this lock.
4942 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4943 // We don't schedule regions whose evacuations are already pending, or
4944 // are already being evacuated.
4945 if (!r->popular_pending() && !r->in_collection_set()) {
4946 r->set_popular_pending(true);
4947 if (G1TracePopularity) {
4948 gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
4949 "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
4950 r, r->bottom(), r->end());
4951 }
4952 HeapRegionList* hrl = new HeapRegionList;
4953 hrl->hr = r;
4954 hrl->next = _popular_regions_to_be_evacuated;
4955 _popular_regions_to_be_evacuated = hrl;
4956 }
4957 }
4958
4959 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
4960 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4961 HeapRegion* res = NULL;
4962 while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
4963 HeapRegionList* hrl = _popular_regions_to_be_evacuated;
4964 _popular_regions_to_be_evacuated = hrl->next;
4965 res = hrl->hr;
4966 // The G1RSPopLimit may have increased, so recheck here...
4967 if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
4968 // Hah: don't need to schedule.
4969 if (G1TracePopularity) {
4970 gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
4971 "["PTR_FORMAT", "PTR_FORMAT") "
4972 "for pop-object evacuation (size %d < limit %d)",
4973 res, res->bottom(), res->end(),
4974 res->rem_set()->occupied(), G1RSPopLimit);
4975 }
4976 res->set_popular_pending(false);
4977 res = NULL;
4978 }
4979 // We do not reset res->popular() here; if we did so, it would allow
4980 // the region to be "rescheduled" for popularity evacuation. Instead,
4981 // this is done in the collection pause, with the world stopped.
4982 // So the invariant is that the regions in the list have the popularity
4983 // boolean set, but having the boolean set does not imply membership
4984 // on the list (though there can at most one such pop-pending region
4985 // not on the list at any time).
4986 delete hrl;
4987 }
4988 return res;
4989 }
4990
4991 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
4992 while (true) {
4993 // Don't want to do a GC pause while cleanup is being completed!
4994 wait_for_cleanup_complete();
4995
4996 // Read the GC count while holding the Heap_lock
4997 int gc_count_before = SharedHeap::heap()->total_collections();
4998 g1_policy()->record_stop_world_start();
4999
5000 {
5001 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
5002 VM_G1PopRegionCollectionPause op(gc_count_before, hr);
5003 VMThread::execute(&op);
5004
5005 // If the prolog succeeded, we didn't do a GC for this.
5006 if (op.prologue_succeeded()) break;
5007 }
5008 // Otherwise we didn't. We should recheck the size, though, since
5009 // the limit may have increased...
5010 if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
5011 hr->set_popular_pending(false);
5012 break;
5013 }
5014 }
5015 }
5016
5017 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
5018 Atomic::inc(obj_rc_addr(obj));
5019 }
5020
5021 class CountRCClosure: public OopsInHeapRegionClosure {
5022 G1CollectedHeap* _g1h;
5023 bool _parallel;
5024 public:
5025 CountRCClosure(G1CollectedHeap* g1h) :
5026 _g1h(g1h), _parallel(ParallelGCThreads > 0)
5027 {}
5028 void do_oop(narrowOop* p) {
5029 guarantee(false, "NYI");
5030 }
5031 void do_oop(oop* p) {
5032 oop obj = *p;
5033 assert(obj != NULL, "Precondition.");
5034 if (_parallel) {
5035 // We go sticky at the limit to avoid excess contention.
5036 // If we want to track the actual RC's further, we'll need to keep a
5037 // per-thread hash table or something for the popular objects.
5038 if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
5039 _g1h->atomic_inc_obj_rc(obj);
5040 }
5041 } else {
5042 _g1h->inc_obj_rc(obj);
5043 }
5044 }
5045 };
5046
5047 class EvacPopObjClosure: public ObjectClosure {
5048 G1CollectedHeap* _g1h;
5049 size_t _pop_objs;
5050 size_t _max_rc;
5051 public:
5052 EvacPopObjClosure(G1CollectedHeap* g1h) :
5053 _g1h(g1h), _pop_objs(0), _max_rc(0) {}
5054
5055 void do_object(oop obj) {
5056 size_t rc = _g1h->obj_rc(obj);
5057 _max_rc = MAX2(rc, _max_rc);
5058 if (rc >= (size_t) G1ObjPopLimit) {
5059 _g1h->_pop_obj_rc_at_copy.add((double)rc);
5060 size_t word_sz = obj->size();
5061 HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
5062 oop new_pop_obj = (oop)new_pop_loc;
5063 Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
5064 obj->forward_to(new_pop_obj);
5065 G1ScanAndBalanceClosure scan_and_balance(_g1h);
5066 new_pop_obj->oop_iterate_backwards(&scan_and_balance);
5067 // preserve "next" mark bit if marking is in progress.
5068 if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
5069 _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
5070 }
5071
5072 if (G1TracePopularity) {
5073 gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
5074 " pop (%d), move to " PTR_FORMAT,
5075 (void*) obj, word_sz,
5076 _g1h->obj_rc(obj), (void*) new_pop_obj);
5077 }
5078 _pop_objs++;
5079 }
5080 }
5081 size_t pop_objs() { return _pop_objs; }
5082 size_t max_rc() { return _max_rc; }
5083 };
5084
5085 class G1ParCountRCTask : public AbstractGangTask {
5086 G1CollectedHeap* _g1h;
5087 BitMap _bm;
5088
5089 size_t getNCards() {
5090 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
5091 / G1BlockOffsetSharedArray::N_bytes;
5092 }
5093 CountRCClosure _count_rc_closure;
5094 public:
5095 G1ParCountRCTask(G1CollectedHeap* g1h) :
5096 AbstractGangTask("G1 Par RC Count task"),
5097 _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
5098 {}
5099
5100 void work(int i) {
5101 ResourceMark rm;
5102 HandleMark hm;
5103 _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
5104 }
5105 };
5106
5107 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
5108 // We're evacuating a single region (for popularity).
5109 if (G1TracePopularity) {
5110 gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
5111 popular_region->bottom(), popular_region->end());
5112 }
5113 g1_policy()->set_single_region_collection_set(popular_region);
5114 size_t max_rc;
5115 if (!compute_reference_counts_and_evac_popular(popular_region,
5116 &max_rc)) {
5117 // We didn't evacuate any popular objects.
5118 // We increase the RS popularity limit, to prevent this from
5119 // happening in the future.
5120 if (G1RSPopLimit < (1 << 30)) {
5121 G1RSPopLimit *= 2;
5122 }
5123 // For now, interesting enough for a message:
5124 #if 1
5125 gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
5126 "failed to find a pop object (max = %d).",
5127 popular_region->bottom(), popular_region->end(),
5128 max_rc);
5129 gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
5130 #endif // 0
5131 // Also, we reset the collection set to NULL, to make the rest of
5132 // the collection do nothing.
5133 assert(popular_region->next_in_collection_set() == NULL,
5134 "should be single-region.");
5135 popular_region->set_in_collection_set(false);
5136 popular_region->set_popular_pending(false);
5137 g1_policy()->clear_collection_set();
5138 }
5139 }
5140
5141 bool G1CollectedHeap::
5142 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
5143 size_t* max_rc) {
5144 HeapWord* rc_region_bot;
5145 HeapWord* rc_region_end;
5146
5147 // Set up the reference count region.
5148 HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
5149 if (rc_region != NULL) {
5150 rc_region_bot = rc_region->bottom();
5151 rc_region_end = rc_region->end();
5152 } else {
5153 rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
5154 if (rc_region_bot == NULL) {
5155 vm_exit_out_of_memory(HeapRegion::GrainWords,
5156 "No space for RC region.");
5157 }
5158 rc_region_end = rc_region_bot + HeapRegion::GrainWords;
5159 }
5160
5161 if (G1TracePopularity)
5162 gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
5163 rc_region_bot, rc_region_end);
5164 if (rc_region_bot > popular_region->bottom()) {
5165 _rc_region_above = true;
5166 _rc_region_diff =
5167 pointer_delta(rc_region_bot, popular_region->bottom(), 1);
5168 } else {
5169 assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
5170 _rc_region_above = false;
5171 _rc_region_diff =
5172 pointer_delta(popular_region->bottom(), rc_region_bot, 1);
5173 }
5174 g1_policy()->record_pop_compute_rc_start();
5175 // Count external references.
5176 g1_rem_set()->prepare_for_oops_into_collection_set_do();
5177 if (ParallelGCThreads > 0) {
5178
5179 set_par_threads(workers()->total_workers());
5180 G1ParCountRCTask par_count_rc_task(this);
5181 workers()->run_task(&par_count_rc_task);
5182 set_par_threads(0);
5183
5184 } else {
5185 CountRCClosure count_rc_closure(this);
5186 g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
5187 }
5188 g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5189 g1_policy()->record_pop_compute_rc_end();
5190
5191 // Now evacuate popular objects.
5192 g1_policy()->record_pop_evac_start();
5193 EvacPopObjClosure evac_pop_obj_cl(this);
5194 popular_region->object_iterate(&evac_pop_obj_cl);
5195 *max_rc = evac_pop_obj_cl.max_rc();
5196
5197 // Make sure the last "top" value of the current popular region is copied
5198 // as the "next_top_at_mark_start", so that objects made popular during
5199 // markings aren't automatically considered live.
5200 HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
5201 cur_pop_region->note_end_of_copying();
5202
5203 if (rc_region != NULL) {
5204 free_region(rc_region);
5205 } else {
5206 FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
5207 }
5208 g1_policy()->record_pop_evac_end();
5209
5210 return evac_pop_obj_cl.pop_objs() > 0;
5211 }
5212
5213 class CountPopObjInfoClosure: public HeapRegionClosure {
5214 size_t _objs;
5215 size_t _bytes;
5216
5217 class CountObjClosure: public ObjectClosure {
5218 int _n;
5219 public:
5220 CountObjClosure() : _n(0) {}
5221 void do_object(oop obj) { _n++; }
5222 size_t n() { return _n; }
5223 };
5224
5225 public:
5226 CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
5227 bool doHeapRegion(HeapRegion* r) {
5228 _bytes += r->used();
5229 CountObjClosure blk;
5230 r->object_iterate(&blk);
5231 _objs += blk.n();
5232 return false;
5233 }
5234 size_t objs() { return _objs; }
5235 size_t bytes() { return _bytes; }
5236 };
5237
5238
5239 void G1CollectedHeap::print_popularity_summary_info() const {
5240 CountPopObjInfoClosure blk;
5241 for (int i = 0; i <= _cur_pop_hr_index; i++) {
5242 blk.doHeapRegion(_hrs->at(i));
5243 }
5244 gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
5245 blk.objs(), blk.bytes());
5246 gclog_or_tty->print_cr(" RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
5247 _pop_obj_rc_at_copy.avg(),
5248 _pop_obj_rc_at_copy.maximum(),
5249 _pop_obj_rc_at_copy.sd());
5250 }
5251
5252 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5253 _refine_cte_cl->set_concurrent(concurrent);
5254 }
5255
5256 #ifndef PRODUCT
5257
5258 class PrintHeapRegionClosure: public HeapRegionClosure {
5259 public:
5260 bool doHeapRegion(HeapRegion *r) {
5261 gclog_or_tty->print("Region: "PTR_FORMAT":", r);
5262 if (r != NULL) {
5263 if (r->is_on_free_list())
5264 gclog_or_tty->print("Free ");
5265 if (r->is_young())
5266 gclog_or_tty->print("Young ");
5267 if (r->isHumongous())
5268 gclog_or_tty->print("Is Humongous ");
5269 r->print();
5270 }
5271 return false;
5272 }
5273 };
5274
5275 class SortHeapRegionClosure : public HeapRegionClosure {
5276 size_t young_regions,free_regions, unclean_regions;
5277 size_t hum_regions, count;
5278 size_t unaccounted, cur_unclean, cur_alloc;
5279 size_t total_free;
5280 HeapRegion* cur;
5281 public:
5282 SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
5283 free_regions(0), unclean_regions(0),
5284 hum_regions(0),
5285 count(0), unaccounted(0),
5286 cur_alloc(0), total_free(0)
5287 {}
5288 bool doHeapRegion(HeapRegion *r) {
5289 count++;
5290 if (r->is_on_free_list()) free_regions++;
5291 else if (r->is_on_unclean_list()) unclean_regions++;
5292 else if (r->isHumongous()) hum_regions++;
5293 else if (r->is_young()) young_regions++;
5294 else if (r == cur) cur_alloc++;
5295 else unaccounted++;
5296 return false;
5297 }
5298 void print() {
5299 total_free = free_regions + unclean_regions;
5300 gclog_or_tty->print("%d regions\n", count);
5301 gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
5302 total_free, free_regions, unclean_regions);
5303 gclog_or_tty->print("%d humongous %d young\n",
5304 hum_regions, young_regions);
5305 gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
5306 gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
5307 }
5308 };
5309
5310 void G1CollectedHeap::print_region_counts() {
5311 SortHeapRegionClosure sc(_cur_alloc_region);
5312 PrintHeapRegionClosure cl;
5313 heap_region_iterate(&cl);
5314 heap_region_iterate(&sc);
5315 sc.print();
5316 print_region_accounting_info();
5317 };
5318
5319 bool G1CollectedHeap::regions_accounted_for() {
5320 // TODO: regions accounting for young/survivor/tenured
5321 return true;
5322 }
5323
5324 bool G1CollectedHeap::print_region_accounting_info() {
5325 gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
5326 gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
5327 free_regions(),
5328 count_free_regions(), count_free_regions_list(),
5329 _free_region_list_size, _unclean_region_list.sz());
5330 gclog_or_tty->print_cr("cur_alloc: %d.",
5331 (_cur_alloc_region == NULL ? 0 : 1));
5332 gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
5333
5334 // TODO: check regions accounting for young/survivor/tenured
5335 return true;
5336 }
5337
5338 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5339 HeapRegion* hr = heap_region_containing(p);
5340 if (hr == NULL) {
5341 return is_in_permanent(p);
5342 } else {
5343 return hr->is_in(p);
5344 }
5345 }
5346 #endif // PRODUCT
5347
5348 void G1CollectedHeap::g1_unimplemented() {
5349 // Unimplemented();
5350 }
5351
5352
5353 // Local Variables: ***
5354 // c-indentation-style: gnu ***
5355 // End: ***