comparison src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp @ 342:37f87013dfd8

6711316: Open source the Garbage-First garbage collector Summary: First mercurial integration of the code for the Garbage-First garbage collector. Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr
author ysr
date Thu, 05 Jun 2008 15:57:56 -0700
parents
children 58054a18d735
comparison
equal deleted inserted replaced
189:0b27f3512f9e 342:37f87013dfd8
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // A G1CollectorPolicy makes policy decisions that determine the
26 // characteristics of the collector. Examples include:
27 // * choice of collection set.
28 // * when to collect.
29
30 class HeapRegion;
31 class CollectionSetChooser;
32
33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
34 // over and over again and introducing subtle problems through small typos and
35 // cutting and pasting mistakes. The macros below introduces a number
36 // sequnce into the following two classes and the methods that access it.
37
38 #define define_num_seq(name) \
39 private: \
40 NumberSeq _all_##name##_times_ms; \
41 public: \
42 void record_##name##_time_ms(double ms) { \
43 _all_##name##_times_ms.add(ms); \
44 } \
45 NumberSeq* get_##name##_seq() { \
46 return &_all_##name##_times_ms; \
47 }
48
49 class MainBodySummary;
50 class PopPreambleSummary;
51
52 class PauseSummary {
53 define_num_seq(total)
54 define_num_seq(other)
55
56 public:
57 virtual MainBodySummary* main_body_summary() { return NULL; }
58 virtual PopPreambleSummary* pop_preamble_summary() { return NULL; }
59 };
60
61 class MainBodySummary {
62 define_num_seq(satb_drain) // optional
63 define_num_seq(parallel) // parallel only
64 define_num_seq(ext_root_scan)
65 define_num_seq(mark_stack_scan)
66 define_num_seq(scan_only)
67 define_num_seq(update_rs)
68 define_num_seq(scan_rs)
69 define_num_seq(scan_new_refs) // Only for temp use; added to
70 // in parallel case.
71 define_num_seq(obj_copy)
72 define_num_seq(termination) // parallel only
73 define_num_seq(parallel_other) // parallel only
74 define_num_seq(mark_closure)
75 define_num_seq(clear_ct) // parallel only
76 };
77
78 class PopPreambleSummary {
79 define_num_seq(pop_preamble)
80 define_num_seq(pop_update_rs)
81 define_num_seq(pop_scan_rs)
82 define_num_seq(pop_closure_app)
83 define_num_seq(pop_evacuation)
84 define_num_seq(pop_other)
85 };
86
87 class NonPopSummary: public PauseSummary,
88 public MainBodySummary {
89 public:
90 virtual MainBodySummary* main_body_summary() { return this; }
91 };
92
93 class PopSummary: public PauseSummary,
94 public MainBodySummary,
95 public PopPreambleSummary {
96 public:
97 virtual MainBodySummary* main_body_summary() { return this; }
98 virtual PopPreambleSummary* pop_preamble_summary() { return this; }
99 };
100
101 class NonPopAbandonedSummary: public PauseSummary {
102 };
103
104 class PopAbandonedSummary: public PauseSummary,
105 public PopPreambleSummary {
106 public:
107 virtual PopPreambleSummary* pop_preamble_summary() { return this; }
108 };
109
110 class G1CollectorPolicy: public CollectorPolicy {
111 protected:
112 // The number of pauses during the execution.
113 long _n_pauses;
114
115 // either equal to the number of parallel threads, if ParallelGCThreads
116 // has been set, or 1 otherwise
117 int _parallel_gc_threads;
118
119 enum SomePrivateConstants {
120 NumPrevPausesForHeuristics = 10,
121 NumPrevGCsForHeuristics = 10,
122 NumAPIs = HeapRegion::MaxAge
123 };
124
125 G1MMUTracker* _mmu_tracker;
126
127 void initialize_flags();
128
129 void initialize_all() {
130 initialize_flags();
131 initialize_size_info();
132 initialize_perm_generation(PermGen::MarkSweepCompact);
133 }
134
135 virtual size_t default_init_heap_size() {
136 // Pick some reasonable default.
137 return 8*M;
138 }
139
140
141 double _cur_collection_start_sec;
142 size_t _cur_collection_pause_used_at_start_bytes;
143 size_t _cur_collection_pause_used_regions_at_start;
144 size_t _prev_collection_pause_used_at_end_bytes;
145 double _cur_collection_par_time_ms;
146 double _cur_satb_drain_time_ms;
147 double _cur_clear_ct_time_ms;
148 bool _satb_drain_time_set;
149 double _cur_popular_preamble_start_ms;
150 double _cur_popular_preamble_time_ms;
151 double _cur_popular_compute_rc_time_ms;
152 double _cur_popular_evac_time_ms;
153
154 double _cur_CH_strong_roots_end_sec;
155 double _cur_CH_strong_roots_dur_ms;
156 double _cur_G1_strong_roots_end_sec;
157 double _cur_G1_strong_roots_dur_ms;
158
159 // Statistics for recent GC pauses. See below for how indexed.
160 TruncatedSeq* _recent_CH_strong_roots_times_ms;
161 TruncatedSeq* _recent_G1_strong_roots_times_ms;
162 TruncatedSeq* _recent_evac_times_ms;
163 // These exclude marking times.
164 TruncatedSeq* _recent_pause_times_ms;
165 TruncatedSeq* _recent_gc_times_ms;
166
167 TruncatedSeq* _recent_CS_bytes_used_before;
168 TruncatedSeq* _recent_CS_bytes_surviving;
169
170 TruncatedSeq* _recent_rs_sizes;
171
172 TruncatedSeq* _concurrent_mark_init_times_ms;
173 TruncatedSeq* _concurrent_mark_remark_times_ms;
174 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
175
176 NonPopSummary* _non_pop_summary;
177 PopSummary* _pop_summary;
178 NonPopAbandonedSummary* _non_pop_abandoned_summary;
179 PopAbandonedSummary* _pop_abandoned_summary;
180
181 NumberSeq* _all_pause_times_ms;
182 NumberSeq* _all_full_gc_times_ms;
183 double _stop_world_start;
184 NumberSeq* _all_stop_world_times_ms;
185 NumberSeq* _all_yield_times_ms;
186
187 size_t _region_num_young;
188 size_t _region_num_tenured;
189 size_t _prev_region_num_young;
190 size_t _prev_region_num_tenured;
191
192 NumberSeq* _all_mod_union_times_ms;
193
194 int _aux_num;
195 NumberSeq* _all_aux_times_ms;
196 double* _cur_aux_start_times_ms;
197 double* _cur_aux_times_ms;
198 bool* _cur_aux_times_set;
199
200 double* _par_last_ext_root_scan_times_ms;
201 double* _par_last_mark_stack_scan_times_ms;
202 double* _par_last_scan_only_times_ms;
203 double* _par_last_scan_only_regions_scanned;
204 double* _par_last_update_rs_start_times_ms;
205 double* _par_last_update_rs_times_ms;
206 double* _par_last_update_rs_processed_buffers;
207 double* _par_last_scan_rs_start_times_ms;
208 double* _par_last_scan_rs_times_ms;
209 double* _par_last_scan_new_refs_times_ms;
210 double* _par_last_obj_copy_times_ms;
211 double* _par_last_termination_times_ms;
212
213 // there are two pases during popular pauses, so we need to store
214 // somewhere the results of the first pass
215 double* _pop_par_last_update_rs_start_times_ms;
216 double* _pop_par_last_update_rs_times_ms;
217 double* _pop_par_last_update_rs_processed_buffers;
218 double* _pop_par_last_scan_rs_start_times_ms;
219 double* _pop_par_last_scan_rs_times_ms;
220 double* _pop_par_last_closure_app_times_ms;
221
222 double _pop_compute_rc_start;
223 double _pop_evac_start;
224
225 // indicates that we are in young GC mode
226 bool _in_young_gc_mode;
227
228 // indicates whether we are in full young or partially young GC mode
229 bool _full_young_gcs;
230
231 // if true, then it tries to dynamically adjust the length of the
232 // young list
233 bool _adaptive_young_list_length;
234 size_t _young_list_min_length;
235 size_t _young_list_target_length;
236 size_t _young_list_so_prefix_length;
237 size_t _young_list_fixed_length;
238
239 size_t _young_cset_length;
240 bool _last_young_gc_full;
241
242 double _target_pause_time_ms;
243
244 unsigned _full_young_pause_num;
245 unsigned _partial_young_pause_num;
246
247 bool _during_marking;
248 bool _in_marking_window;
249 bool _in_marking_window_im;
250
251 SurvRateGroup* _short_lived_surv_rate_group;
252 SurvRateGroup* _survivor_surv_rate_group;
253 // add here any more surv rate groups
254
255 bool during_marking() {
256 return _during_marking;
257 }
258
259 // <NEW PREDICTION>
260
261 private:
262 enum PredictionConstants {
263 TruncatedSeqLength = 10
264 };
265
266 TruncatedSeq* _alloc_rate_ms_seq;
267 double _prev_collection_pause_end_ms;
268
269 TruncatedSeq* _pending_card_diff_seq;
270 TruncatedSeq* _rs_length_diff_seq;
271 TruncatedSeq* _cost_per_card_ms_seq;
272 TruncatedSeq* _cost_per_scan_only_region_ms_seq;
273 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
274 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
275 TruncatedSeq* _cost_per_entry_ms_seq;
276 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
277 TruncatedSeq* _cost_per_byte_ms_seq;
278 TruncatedSeq* _constant_other_time_ms_seq;
279 TruncatedSeq* _young_other_cost_per_region_ms_seq;
280 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
281
282 TruncatedSeq* _pending_cards_seq;
283 TruncatedSeq* _scanned_cards_seq;
284 TruncatedSeq* _rs_lengths_seq;
285
286 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
287 TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
288
289 TruncatedSeq* _young_gc_eff_seq;
290
291 TruncatedSeq* _max_conc_overhead_seq;
292
293 size_t _recorded_young_regions;
294 size_t _recorded_scan_only_regions;
295 size_t _recorded_non_young_regions;
296 size_t _recorded_region_num;
297
298 size_t _free_regions_at_end_of_collection;
299 size_t _scan_only_regions_at_end_of_collection;
300
301 size_t _recorded_rs_lengths;
302 size_t _max_rs_lengths;
303
304 size_t _recorded_marked_bytes;
305 size_t _recorded_young_bytes;
306
307 size_t _predicted_pending_cards;
308 size_t _predicted_cards_scanned;
309 size_t _predicted_rs_lengths;
310 size_t _predicted_bytes_to_copy;
311
312 double _predicted_survival_ratio;
313 double _predicted_rs_update_time_ms;
314 double _predicted_rs_scan_time_ms;
315 double _predicted_scan_only_scan_time_ms;
316 double _predicted_object_copy_time_ms;
317 double _predicted_constant_other_time_ms;
318 double _predicted_young_other_time_ms;
319 double _predicted_non_young_other_time_ms;
320 double _predicted_pause_time_ms;
321
322 double _vtime_diff_ms;
323
324 double _recorded_young_free_cset_time_ms;
325 double _recorded_non_young_free_cset_time_ms;
326
327 double _sigma;
328 double _expensive_region_limit_ms;
329
330 size_t _rs_lengths_prediction;
331
332 size_t _known_garbage_bytes;
333 double _known_garbage_ratio;
334
335 double sigma() {
336 return _sigma;
337 }
338
339 // A function that prevents us putting too much stock in small sample
340 // sets. Returns a number between 2.0 and 1.0, depending on the number
341 // of samples. 5 or more samples yields one; fewer scales linearly from
342 // 2.0 at 1 sample to 1.0 at 5.
343 double confidence_factor(int samples) {
344 if (samples > 4) return 1.0;
345 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
346 }
347
348 double get_new_neg_prediction(TruncatedSeq* seq) {
349 return seq->davg() - sigma() * seq->dsd();
350 }
351
352 #ifndef PRODUCT
353 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
354 #endif // PRODUCT
355
356 protected:
357 double _pause_time_target_ms;
358 double _recorded_young_cset_choice_time_ms;
359 double _recorded_non_young_cset_choice_time_ms;
360 bool _within_target;
361 size_t _pending_cards;
362 size_t _max_pending_cards;
363
364 public:
365
366 void set_region_short_lived(HeapRegion* hr) {
367 hr->install_surv_rate_group(_short_lived_surv_rate_group);
368 }
369
370 void set_region_survivors(HeapRegion* hr) {
371 hr->install_surv_rate_group(_survivor_surv_rate_group);
372 }
373
374 #ifndef PRODUCT
375 bool verify_young_ages();
376 #endif // PRODUCT
377
378 void tag_scan_only(size_t short_lived_scan_only_length);
379
380 double get_new_prediction(TruncatedSeq* seq) {
381 return MAX2(seq->davg() + sigma() * seq->dsd(),
382 seq->davg() * confidence_factor(seq->num()));
383 }
384
385 size_t young_cset_length() {
386 return _young_cset_length;
387 }
388
389 void record_max_rs_lengths(size_t rs_lengths) {
390 _max_rs_lengths = rs_lengths;
391 }
392
393 size_t predict_pending_card_diff() {
394 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
395 if (prediction < 0.00001)
396 return 0;
397 else
398 return (size_t) prediction;
399 }
400
401 size_t predict_pending_cards() {
402 size_t max_pending_card_num = _g1->max_pending_card_num();
403 size_t diff = predict_pending_card_diff();
404 size_t prediction;
405 if (diff > max_pending_card_num)
406 prediction = max_pending_card_num;
407 else
408 prediction = max_pending_card_num - diff;
409
410 return prediction;
411 }
412
413 size_t predict_rs_length_diff() {
414 return (size_t) get_new_prediction(_rs_length_diff_seq);
415 }
416
417 double predict_alloc_rate_ms() {
418 return get_new_prediction(_alloc_rate_ms_seq);
419 }
420
421 double predict_cost_per_card_ms() {
422 return get_new_prediction(_cost_per_card_ms_seq);
423 }
424
425 double predict_rs_update_time_ms(size_t pending_cards) {
426 return (double) pending_cards * predict_cost_per_card_ms();
427 }
428
429 double predict_fully_young_cards_per_entry_ratio() {
430 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
431 }
432
433 double predict_partially_young_cards_per_entry_ratio() {
434 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
435 return predict_fully_young_cards_per_entry_ratio();
436 else
437 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
438 }
439
440 size_t predict_young_card_num(size_t rs_length) {
441 return (size_t) ((double) rs_length *
442 predict_fully_young_cards_per_entry_ratio());
443 }
444
445 size_t predict_non_young_card_num(size_t rs_length) {
446 return (size_t) ((double) rs_length *
447 predict_partially_young_cards_per_entry_ratio());
448 }
449
450 double predict_rs_scan_time_ms(size_t card_num) {
451 if (full_young_gcs())
452 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
453 else
454 return predict_partially_young_rs_scan_time_ms(card_num);
455 }
456
457 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
458 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
459 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
460 else
461 return (double) card_num *
462 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
463 }
464
465 double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
466 if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
467 return 1.5 * (double) scan_only_region_num *
468 get_new_prediction(_cost_per_scan_only_region_ms_seq);
469 else
470 return (double) scan_only_region_num *
471 get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
472 }
473
474 double predict_scan_only_time_ms(size_t scan_only_region_num) {
475 if (_in_marking_window_im)
476 return predict_scan_only_time_ms_during_cm(scan_only_region_num);
477 else
478 return (double) scan_only_region_num *
479 get_new_prediction(_cost_per_scan_only_region_ms_seq);
480 }
481
482 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
483 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
484 return 1.1 * (double) bytes_to_copy *
485 get_new_prediction(_cost_per_byte_ms_seq);
486 else
487 return (double) bytes_to_copy *
488 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
489 }
490
491 double predict_object_copy_time_ms(size_t bytes_to_copy) {
492 if (_in_marking_window && !_in_marking_window_im)
493 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
494 else
495 return (double) bytes_to_copy *
496 get_new_prediction(_cost_per_byte_ms_seq);
497 }
498
499 double predict_constant_other_time_ms() {
500 return get_new_prediction(_constant_other_time_ms_seq);
501 }
502
503 double predict_young_other_time_ms(size_t young_num) {
504 return
505 (double) young_num *
506 get_new_prediction(_young_other_cost_per_region_ms_seq);
507 }
508
509 double predict_non_young_other_time_ms(size_t non_young_num) {
510 return
511 (double) non_young_num *
512 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
513 }
514
515 void check_if_region_is_too_expensive(double predicted_time_ms);
516
517 double predict_young_collection_elapsed_time_ms(size_t adjustment);
518 double predict_base_elapsed_time_ms(size_t pending_cards);
519 double predict_base_elapsed_time_ms(size_t pending_cards,
520 size_t scanned_cards);
521 size_t predict_bytes_to_copy(HeapRegion* hr);
522 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
523
524 // for use by: calculate_optimal_so_length(length)
525 void predict_gc_eff(size_t young_region_num,
526 size_t so_length,
527 double base_time_ms,
528 double *gc_eff,
529 double *pause_time_ms);
530
531 // for use by: calculate_young_list_target_config(rs_length)
532 bool predict_gc_eff(size_t young_region_num,
533 size_t so_length,
534 double base_time_with_so_ms,
535 size_t init_free_regions,
536 double target_pause_time_ms,
537 double* gc_eff);
538
539 void start_recording_regions();
540 void record_cset_region(HeapRegion* hr, bool young);
541 void record_scan_only_regions(size_t scan_only_length);
542 void end_recording_regions();
543
544 void record_vtime_diff_ms(double vtime_diff_ms) {
545 _vtime_diff_ms = vtime_diff_ms;
546 }
547
548 void record_young_free_cset_time_ms(double time_ms) {
549 _recorded_young_free_cset_time_ms = time_ms;
550 }
551
552 void record_non_young_free_cset_time_ms(double time_ms) {
553 _recorded_non_young_free_cset_time_ms = time_ms;
554 }
555
556 double predict_young_gc_eff() {
557 return get_new_neg_prediction(_young_gc_eff_seq);
558 }
559
560 // </NEW PREDICTION>
561
562 public:
563 void cset_regions_freed() {
564 bool propagate = _last_young_gc_full && !_in_marking_window;
565 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
566 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
567 // also call it on any more surv rate groups
568 }
569
570 void set_known_garbage_bytes(size_t known_garbage_bytes) {
571 _known_garbage_bytes = known_garbage_bytes;
572 size_t heap_bytes = _g1->capacity();
573 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
574 }
575
576 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
577 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
578
579 _known_garbage_bytes -= known_garbage_bytes;
580 size_t heap_bytes = _g1->capacity();
581 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
582 }
583
584 G1MMUTracker* mmu_tracker() {
585 return _mmu_tracker;
586 }
587
588 double predict_init_time_ms() {
589 return get_new_prediction(_concurrent_mark_init_times_ms);
590 }
591
592 double predict_remark_time_ms() {
593 return get_new_prediction(_concurrent_mark_remark_times_ms);
594 }
595
596 double predict_cleanup_time_ms() {
597 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
598 }
599
600 // Returns an estimate of the survival rate of the region at yg-age
601 // "yg_age".
602 double predict_yg_surv_rate(int age) {
603 TruncatedSeq* seq = _short_lived_surv_rate_group->get_seq(age);
604 if (seq->num() == 0)
605 gclog_or_tty->print("BARF! age is %d", age);
606 guarantee( seq->num() > 0, "invariant" );
607 double pred = get_new_prediction(seq);
608 if (pred > 1.0)
609 pred = 1.0;
610 return pred;
611 }
612
613 double accum_yg_surv_rate_pred(int age) {
614 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
615 }
616
617 protected:
618 void print_stats (int level, const char* str, double value);
619 void print_stats (int level, const char* str, int value);
620 void print_par_stats (int level, const char* str, double* data) {
621 print_par_stats(level, str, data, true);
622 }
623 void print_par_stats (int level, const char* str, double* data, bool summary);
624 void print_par_buffers (int level, const char* str, double* data, bool summary);
625
626 void check_other_times(int level,
627 NumberSeq* other_times_ms,
628 NumberSeq* calc_other_times_ms) const;
629
630 void print_summary (PauseSummary* stats) const;
631 void print_abandoned_summary(PauseSummary* non_pop_summary,
632 PauseSummary* pop_summary) const;
633
634 void print_summary (int level, const char* str, NumberSeq* seq) const;
635 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
636
637 double avg_value (double* data);
638 double max_value (double* data);
639 double sum_of_values (double* data);
640 double max_sum (double* data1, double* data2);
641
642 int _last_satb_drain_processed_buffers;
643 int _last_update_rs_processed_buffers;
644 double _last_pause_time_ms;
645
646 size_t _bytes_in_to_space_before_gc;
647 size_t _bytes_in_to_space_after_gc;
648 size_t bytes_in_to_space_during_gc() {
649 return
650 _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
651 }
652 size_t _bytes_in_collection_set_before_gc;
653 // Used to count used bytes in CS.
654 friend class CountCSClosure;
655
656 // Statistics kept per GC stoppage, pause or full.
657 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
658
659 // We track markings.
660 int _num_markings;
661 double _mark_thread_startup_sec; // Time at startup of marking thread
662
663 // Add a new GC of the given duration and end time to the record.
664 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
665
666 // The head of the list (via "next_in_collection_set()") representing the
667 // current collection set.
668 HeapRegion* _collection_set;
669 size_t _collection_set_size;
670 size_t _collection_set_bytes_used_before;
671
672 // Info about marking.
673 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
674
675 // The number of collection pauses at the end of the last mark.
676 size_t _n_pauses_at_mark_end;
677
678 // ==== This section is for stats related to starting Conc Refinement on time.
679 size_t _conc_refine_enabled;
680 size_t _conc_refine_zero_traversals;
681 size_t _conc_refine_max_traversals;
682 // In # of heap regions.
683 size_t _conc_refine_current_delta;
684
685 // At the beginning of a collection pause, update the variables above,
686 // especially the "delta".
687 void update_conc_refine_data();
688 // ====
689
690 // Stash a pointer to the g1 heap.
691 G1CollectedHeap* _g1;
692
693 // The average time in ms per collection pause, averaged over recent pauses.
694 double recent_avg_time_for_pauses_ms();
695
696 // The average time in ms for processing CollectedHeap strong roots, per
697 // collection pause, averaged over recent pauses.
698 double recent_avg_time_for_CH_strong_ms();
699
700 // The average time in ms for processing the G1 remembered set, per
701 // pause, averaged over recent pauses.
702 double recent_avg_time_for_G1_strong_ms();
703
704 // The average time in ms for "evacuating followers", per pause, averaged
705 // over recent pauses.
706 double recent_avg_time_for_evac_ms();
707
708 // The number of "recent" GCs recorded in the number sequences
709 int number_of_recent_gcs();
710
711 // The average survival ratio, computed by the total number of bytes
712 // suriviving / total number of bytes before collection over the last
713 // several recent pauses.
714 double recent_avg_survival_fraction();
715 // The survival fraction of the most recent pause; if there have been no
716 // pauses, returns 1.0.
717 double last_survival_fraction();
718
719 // Returns a "conservative" estimate of the recent survival rate, i.e.,
720 // one that may be higher than "recent_avg_survival_fraction".
721 // This is conservative in several ways:
722 // If there have been few pauses, it will assume a potential high
723 // variance, and err on the side of caution.
724 // It puts a lower bound (currently 0.1) on the value it will return.
725 // To try to detect phase changes, if the most recent pause ("latest") has a
726 // higher-than average ("avg") survival rate, it returns that rate.
727 // "work" version is a utility function; young is restricted to young regions.
728 double conservative_avg_survival_fraction_work(double avg,
729 double latest);
730
731 // The arguments are the two sequences that keep track of the number of bytes
732 // surviving and the total number of bytes before collection, resp.,
733 // over the last evereal recent pauses
734 // Returns the survival rate for the category in the most recent pause.
735 // If there have been no pauses, returns 1.0.
736 double last_survival_fraction_work(TruncatedSeq* surviving,
737 TruncatedSeq* before);
738
739 // The arguments are the two sequences that keep track of the number of bytes
740 // surviving and the total number of bytes before collection, resp.,
741 // over the last several recent pauses
742 // Returns the average survival ration over the last several recent pauses
743 // If there have been no pauses, return 1.0
744 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
745 TruncatedSeq* before);
746
747 double conservative_avg_survival_fraction() {
748 double avg = recent_avg_survival_fraction();
749 double latest = last_survival_fraction();
750 return conservative_avg_survival_fraction_work(avg, latest);
751 }
752
753 // The ratio of gc time to elapsed time, computed over recent pauses.
754 double _recent_avg_pause_time_ratio;
755
756 double recent_avg_pause_time_ratio() {
757 return _recent_avg_pause_time_ratio;
758 }
759
760 // Number of pauses between concurrent marking.
761 size_t _pauses_btwn_concurrent_mark;
762
763 size_t _n_marks_since_last_pause;
764
765 // True iff CM has been initiated.
766 bool _conc_mark_initiated;
767
768 // True iff CM should be initiated
769 bool _should_initiate_conc_mark;
770 bool _should_revert_to_full_young_gcs;
771 bool _last_full_young_gc;
772
773 // This set of variables tracks the collector efficiency, in order to
774 // determine whether we should initiate a new marking.
775 double _cur_mark_stop_world_time_ms;
776 double _mark_init_start_sec;
777 double _mark_remark_start_sec;
778 double _mark_cleanup_start_sec;
779 double _mark_closure_time_ms;
780
781 void calculate_young_list_min_length();
782 void calculate_young_list_target_config();
783 void calculate_young_list_target_config(size_t rs_lengths);
784 size_t calculate_optimal_so_length(size_t young_list_length);
785
786 public:
787
788 G1CollectorPolicy();
789
790 virtual G1CollectorPolicy* as_g1_policy() { return this; }
791
792 virtual CollectorPolicy::Name kind() {
793 return CollectorPolicy::G1CollectorPolicyKind;
794 }
795
796 void check_prediction_validity();
797
798 size_t bytes_in_collection_set() {
799 return _bytes_in_collection_set_before_gc;
800 }
801
802 size_t bytes_in_to_space() {
803 return bytes_in_to_space_during_gc();
804 }
805
806 unsigned calc_gc_alloc_time_stamp() {
807 return _all_pause_times_ms->num() + 1;
808 }
809
810 protected:
811
812 // Count the number of bytes used in the CS.
813 void count_CS_bytes_used();
814
815 // Together these do the base cleanup-recording work. Subclasses might
816 // want to put something between them.
817 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
818 size_t max_live_bytes);
819 void record_concurrent_mark_cleanup_end_work2();
820
821 public:
822
823 virtual void init();
824
825 virtual HeapWord* mem_allocate_work(size_t size,
826 bool is_tlab,
827 bool* gc_overhead_limit_was_exceeded);
828
829 // This method controls how a collector handles one or more
830 // of its generations being fully allocated.
831 virtual HeapWord* satisfy_failed_allocation(size_t size,
832 bool is_tlab);
833
834 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
835
836 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
837
838 // The number of collection pauses so far.
839 long n_pauses() const { return _n_pauses; }
840
841 // Update the heuristic info to record a collection pause of the given
842 // start time, where the given number of bytes were used at the start.
843 // This may involve changing the desired size of a collection set.
844
845 virtual void record_stop_world_start();
846
847 virtual void record_collection_pause_start(double start_time_sec,
848 size_t start_used);
849
850 virtual void record_popular_pause_preamble_start();
851 virtual void record_popular_pause_preamble_end();
852
853 // Must currently be called while the world is stopped.
854 virtual void record_concurrent_mark_init_start();
855 virtual void record_concurrent_mark_init_end();
856 void record_concurrent_mark_init_end_pre(double
857 mark_init_elapsed_time_ms);
858
859 void record_mark_closure_time(double mark_closure_time_ms);
860
861 virtual void record_concurrent_mark_remark_start();
862 virtual void record_concurrent_mark_remark_end();
863
864 virtual void record_concurrent_mark_cleanup_start();
865 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
866 size_t max_live_bytes);
867 virtual void record_concurrent_mark_cleanup_completed();
868
869 virtual void record_concurrent_pause();
870 virtual void record_concurrent_pause_end();
871
872 virtual void record_collection_pause_end_CH_strong_roots();
873 virtual void record_collection_pause_end_G1_strong_roots();
874
875 virtual void record_collection_pause_end(bool popular, bool abandoned);
876
877 // Record the fact that a full collection occurred.
878 virtual void record_full_collection_start();
879 virtual void record_full_collection_end();
880
881 void record_ext_root_scan_time(int worker_i, double ms) {
882 _par_last_ext_root_scan_times_ms[worker_i] = ms;
883 }
884
885 void record_mark_stack_scan_time(int worker_i, double ms) {
886 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
887 }
888
889 void record_scan_only_time(int worker_i, double ms, int n) {
890 _par_last_scan_only_times_ms[worker_i] = ms;
891 _par_last_scan_only_regions_scanned[worker_i] = (double) n;
892 }
893
894 void record_satb_drain_time(double ms) {
895 _cur_satb_drain_time_ms = ms;
896 _satb_drain_time_set = true;
897 }
898
899 void record_satb_drain_processed_buffers (int processed_buffers) {
900 _last_satb_drain_processed_buffers = processed_buffers;
901 }
902
903 void record_mod_union_time(double ms) {
904 _all_mod_union_times_ms->add(ms);
905 }
906
907 void record_update_rs_start_time(int thread, double ms) {
908 _par_last_update_rs_start_times_ms[thread] = ms;
909 }
910
911 void record_update_rs_time(int thread, double ms) {
912 _par_last_update_rs_times_ms[thread] = ms;
913 }
914
915 void record_update_rs_processed_buffers (int thread,
916 double processed_buffers) {
917 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
918 }
919
920 void record_scan_rs_start_time(int thread, double ms) {
921 _par_last_scan_rs_start_times_ms[thread] = ms;
922 }
923
924 void record_scan_rs_time(int thread, double ms) {
925 _par_last_scan_rs_times_ms[thread] = ms;
926 }
927
928 void record_scan_new_refs_time(int thread, double ms) {
929 _par_last_scan_new_refs_times_ms[thread] = ms;
930 }
931
932 double get_scan_new_refs_time(int thread) {
933 return _par_last_scan_new_refs_times_ms[thread];
934 }
935
936 void reset_obj_copy_time(int thread) {
937 _par_last_obj_copy_times_ms[thread] = 0.0;
938 }
939
940 void reset_obj_copy_time() {
941 reset_obj_copy_time(0);
942 }
943
944 void record_obj_copy_time(int thread, double ms) {
945 _par_last_obj_copy_times_ms[thread] += ms;
946 }
947
948 void record_obj_copy_time(double ms) {
949 record_obj_copy_time(0, ms);
950 }
951
952 void record_termination_time(int thread, double ms) {
953 _par_last_termination_times_ms[thread] = ms;
954 }
955
956 void record_termination_time(double ms) {
957 record_termination_time(0, ms);
958 }
959
960 void record_pause_time(double ms) {
961 _last_pause_time_ms = ms;
962 }
963
964 void record_clear_ct_time(double ms) {
965 _cur_clear_ct_time_ms = ms;
966 }
967
968 void record_par_time(double ms) {
969 _cur_collection_par_time_ms = ms;
970 }
971
972 void record_aux_start_time(int i) {
973 guarantee(i < _aux_num, "should be within range");
974 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
975 }
976
977 void record_aux_end_time(int i) {
978 guarantee(i < _aux_num, "should be within range");
979 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
980 _cur_aux_times_set[i] = true;
981 _cur_aux_times_ms[i] += ms;
982 }
983
984 void record_pop_compute_rc_start();
985 void record_pop_compute_rc_end();
986
987 void record_pop_evac_start();
988 void record_pop_evac_end();
989
990 // Record the fact that "bytes" bytes allocated in a region.
991 void record_before_bytes(size_t bytes);
992 void record_after_bytes(size_t bytes);
993
994 // Returns "true" if this is a good time to do a collection pause.
995 // The "word_size" argument, if non-zero, indicates the size of an
996 // allocation request that is prompting this query.
997 virtual bool should_do_collection_pause(size_t word_size) = 0;
998
999 // Choose a new collection set. Marks the chosen regions as being
1000 // "in_collection_set", and links them together. The head and number of
1001 // the collection set are available via access methods.
1002 // If "pop_region" is non-NULL, it is a popular region that has already
1003 // been added to the collection set.
1004 virtual void choose_collection_set(HeapRegion* pop_region = NULL) = 0;
1005
1006 void clear_collection_set() { _collection_set = NULL; }
1007
1008 // The head of the list (via "next_in_collection_set()") representing the
1009 // current collection set.
1010 HeapRegion* collection_set() { return _collection_set; }
1011
1012 // Sets the collection set to the given single region.
1013 virtual void set_single_region_collection_set(HeapRegion* hr);
1014
1015 // The number of elements in the current collection set.
1016 size_t collection_set_size() { return _collection_set_size; }
1017
1018 // Add "hr" to the CS.
1019 void add_to_collection_set(HeapRegion* hr);
1020
1021 bool should_initiate_conc_mark() { return _should_initiate_conc_mark; }
1022 void set_should_initiate_conc_mark() { _should_initiate_conc_mark = true; }
1023 void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
1024
1025 void checkpoint_conc_overhead();
1026
1027 // If an expansion would be appropriate, because recent GC overhead had
1028 // exceeded the desired limit, return an amount to expand by.
1029 virtual size_t expansion_amount();
1030
1031 // note start of mark thread
1032 void note_start_of_mark_thread();
1033
1034 // The marked bytes of the "r" has changed; reclassify it's desirability
1035 // for marking. Also asserts that "r" is eligible for a CS.
1036 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1037
1038 #ifndef PRODUCT
1039 // Check any appropriate marked bytes info, asserting false if
1040 // something's wrong, else returning "true".
1041 virtual bool assertMarkedBytesDataOK() = 0;
1042 #endif
1043
1044 // Print tracing information.
1045 void print_tracing_info() const;
1046
1047 // Print stats on young survival ratio
1048 void print_yg_surv_rate_info() const;
1049
1050 void finished_recalculating_age_indexes() {
1051 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1052 // do that for any other surv rate groups
1053 }
1054
1055 bool should_add_next_region_to_young_list();
1056
1057 bool in_young_gc_mode() {
1058 return _in_young_gc_mode;
1059 }
1060 void set_in_young_gc_mode(bool in_young_gc_mode) {
1061 _in_young_gc_mode = in_young_gc_mode;
1062 }
1063
1064 bool full_young_gcs() {
1065 return _full_young_gcs;
1066 }
1067 void set_full_young_gcs(bool full_young_gcs) {
1068 _full_young_gcs = full_young_gcs;
1069 }
1070
1071 bool adaptive_young_list_length() {
1072 return _adaptive_young_list_length;
1073 }
1074 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1075 _adaptive_young_list_length = adaptive_young_list_length;
1076 }
1077
1078 inline double get_gc_eff_factor() {
1079 double ratio = _known_garbage_ratio;
1080
1081 double square = ratio * ratio;
1082 // square = square * square;
1083 double ret = square * 9.0 + 1.0;
1084 #if 0
1085 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1086 #endif // 0
1087 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1088 return ret;
1089 }
1090
1091 //
1092 // Survivor regions policy.
1093 //
1094 protected:
1095
1096 // Current tenuring threshold, set to 0 if the collector reaches the
1097 // maximum amount of suvivors regions.
1098 int _tenuring_threshold;
1099
1100 public:
1101
1102 inline GCAllocPurpose
1103 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1104 if (age < _tenuring_threshold && src_region->is_young()) {
1105 return GCAllocForSurvived;
1106 } else {
1107 return GCAllocForTenured;
1108 }
1109 }
1110
1111 inline bool track_object_age(GCAllocPurpose purpose) {
1112 return purpose == GCAllocForSurvived;
1113 }
1114
1115 inline GCAllocPurpose alternative_purpose(int purpose) {
1116 return GCAllocForTenured;
1117 }
1118
1119 uint max_regions(int purpose);
1120
1121 // The limit on regions for a particular purpose is reached.
1122 void note_alloc_region_limit_reached(int purpose) {
1123 if (purpose == GCAllocForSurvived) {
1124 _tenuring_threshold = 0;
1125 }
1126 }
1127
1128 void note_start_adding_survivor_regions() {
1129 _survivor_surv_rate_group->start_adding_regions();
1130 }
1131
1132 void note_stop_adding_survivor_regions() {
1133 _survivor_surv_rate_group->stop_adding_regions();
1134 }
1135 };
1136
1137 // This encapsulates a particular strategy for a g1 Collector.
1138 //
1139 // Start a concurrent mark when our heap size is n bytes
1140 // greater then our heap size was at the last concurrent
1141 // mark. Where n is a function of the CMSTriggerRatio
1142 // and the MinHeapFreeRatio.
1143 //
1144 // Start a g1 collection pause when we have allocated the
1145 // average number of bytes currently being freed in
1146 // a collection, but only if it is at least one region
1147 // full
1148 //
1149 // Resize Heap based on desired
1150 // allocation space, where desired allocation space is
1151 // a function of survival rate and desired future to size.
1152 //
1153 // Choose collection set by first picking all older regions
1154 // which have a survival rate which beats our projected young
1155 // survival rate. Then fill out the number of needed regions
1156 // with young regions.
1157
1158 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1159 CollectionSetChooser* _collectionSetChooser;
1160 // If the estimated is less then desirable, resize if possible.
1161 void expand_if_possible(size_t numRegions);
1162
1163 virtual void choose_collection_set(HeapRegion* pop_region = NULL);
1164 virtual void record_collection_pause_start(double start_time_sec,
1165 size_t start_used);
1166 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1167 size_t max_live_bytes);
1168 virtual void record_full_collection_end();
1169
1170 public:
1171 G1CollectorPolicy_BestRegionsFirst() {
1172 _collectionSetChooser = new CollectionSetChooser();
1173 }
1174 void record_collection_pause_end(bool popular, bool abandoned);
1175 bool should_do_collection_pause(size_t word_size);
1176 virtual void set_single_region_collection_set(HeapRegion* hr);
1177 // This is not needed any more, after the CSet choosing code was
1178 // changed to use the pause prediction work. But let's leave the
1179 // hook in just in case.
1180 void note_change_in_marked_bytes(HeapRegion* r) { }
1181 #ifndef PRODUCT
1182 bool assertMarkedBytesDataOK();
1183 #endif
1184 };
1185
1186 // This should move to some place more general...
1187
1188 // If we have "n" measurements, and we've kept track of their "sum" and the
1189 // "sum_of_squares" of the measurements, this returns the variance of the
1190 // sequence.
1191 inline double variance(int n, double sum_of_squares, double sum) {
1192 double n_d = (double)n;
1193 double avg = sum/n_d;
1194 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1195 }
1196
1197 // Local Variables: ***
1198 // c-indentation-style: gnu ***
1199 // End: ***