comparison src/share/vm/opto/block.cpp @ 418:72c5366e5d86

6743900: frequency based block layout Summary: post-register allocation pass that drives block layout by edge frequencies Reviewed-by: never, kvn
author rasbold
date Thu, 06 Nov 2008 14:59:10 -0800
parents 9ee9cf798b59
children 91263420e1c6
comparison
equal deleted inserted replaced
417:f4fe12e429a4 418:72c5366e5d86
55 push(b); // grow list by one block 55 push(b); // grow list by one block
56 Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*))); 56 Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
57 _blocks[i] = b; 57 _blocks[i] = b;
58 } 58 }
59 59
60 #ifndef PRODUCT
61 void Block_List::print() {
62 for (uint i=0; i < size(); i++) {
63 tty->print("B%d ", _blocks[i]->_pre_order);
64 }
65 tty->print("size = %d\n", size());
66 }
67 #endif
60 68
61 //============================================================================= 69 //=============================================================================
62 70
63 uint Block::code_alignment() { 71 uint Block::code_alignment() {
64 // Check for Root block 72 // Check for Root block
65 if( _pre_order == 0 ) return CodeEntryAlignment; 73 if( _pre_order == 0 ) return CodeEntryAlignment;
66 // Check for Start block 74 // Check for Start block
67 if( _pre_order == 1 ) return InteriorEntryAlignment; 75 if( _pre_order == 1 ) return InteriorEntryAlignment;
68 // Check for loop alignment 76 // Check for loop alignment
77 if (has_loop_alignment()) return loop_alignment();
78
79 return 1; // no particular alignment
80 }
81
82 uint Block::compute_loop_alignment() {
69 Node *h = head(); 83 Node *h = head();
70 if( h->is_Loop() && h->as_Loop()->is_inner_loop() ) { 84 if( h->is_Loop() && h->as_Loop()->is_inner_loop() ) {
71 // Pre- and post-loops have low trip count so do not bother with 85 // Pre- and post-loops have low trip count so do not bother with
72 // NOPs for align loop head. The constants are hidden from tuning 86 // NOPs for align loop head. The constants are hidden from tuning
73 // but only because my "divide by 4" heuristic surely gets nearly 87 // but only because my "divide by 4" heuristic surely gets nearly
81 if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) { 95 if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
82 return 1; // Loop does not loop, more often than not! 96 return 1; // Loop does not loop, more often than not!
83 } 97 }
84 return OptoLoopAlignment; // Otherwise align loop head 98 return OptoLoopAlignment; // Otherwise align loop head
85 } 99 }
100
86 return 1; // no particular alignment 101 return 1; // no particular alignment
87 } 102 }
88 103
89 //----------------------------------------------------------------------------- 104 //-----------------------------------------------------------------------------
90 // Compute the size of first 'inst_cnt' instructions in this block. 105 // Compute the size of first 'inst_cnt' instructions in this block.
91 // Return the number of instructions left to compute if the block has 106 // Return the number of instructions left to compute if the block has
92 // less then 'inst_cnt' instructions. 107 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
108 // exceeds OptoLoopAlignment.
93 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt, 109 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
94 PhaseRegAlloc* ra) { 110 PhaseRegAlloc* ra) {
95 uint last_inst = _nodes.size(); 111 uint last_inst = _nodes.size();
96 for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) { 112 for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
97 uint inst_size = _nodes[j]->size(ra); 113 uint inst_size = _nodes[j]->size(ra);
305 bx = (*bbs)[bx->pred(1)->_idx]; 321 bx = (*bbs)[bx->pred(1)->_idx];
306 } 322 }
307 tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order); 323 tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
308 // Dump any loop-specific bits, especially for CountedLoops. 324 // Dump any loop-specific bits, especially for CountedLoops.
309 loop->dump_spec(tty); 325 loop->dump_spec(tty);
326 } else if (has_loop_alignment()) {
327 tty->print(" top-of-loop");
310 } 328 }
311 tty->print(" Freq: %g",_freq); 329 tty->print(" Freq: %g",_freq);
312 if( Verbose || WizardMode ) { 330 if( Verbose || WizardMode ) {
313 tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth); 331 tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
314 tty->print(" RegPressure: %d",_reg_pressure); 332 tty->print(" RegPressure: %d",_reg_pressure);
507 // flipped for another case? 525 // flipped for another case?
508 static bool no_flip_branch( Block *b ) { 526 static bool no_flip_branch( Block *b ) {
509 int branch_idx = b->_nodes.size() - b->_num_succs-1; 527 int branch_idx = b->_nodes.size() - b->_num_succs-1;
510 if( branch_idx < 1 ) return false; 528 if( branch_idx < 1 ) return false;
511 Node *bra = b->_nodes[branch_idx]; 529 Node *bra = b->_nodes[branch_idx];
512 if( bra->is_Catch() ) return true; 530 if( bra->is_Catch() )
531 return true;
513 if( bra->is_Mach() ) { 532 if( bra->is_Mach() ) {
514 if( bra->is_MachNullCheck() ) return true; 533 if( bra->is_MachNullCheck() )
534 return true;
515 int iop = bra->as_Mach()->ideal_Opcode(); 535 int iop = bra->as_Mach()->ideal_Opcode();
516 if( iop == Op_FastLock || iop == Op_FastUnlock ) 536 if( iop == Op_FastLock || iop == Op_FastUnlock )
517 return true; 537 return true;
518 } 538 }
519 return false; 539 return false;
555 dead->head()->del_req(j); 575 dead->head()->del_req(j);
556 for( int k = 1; dead->_nodes[k]->is_Phi(); k++ ) 576 for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
557 dead->_nodes[k]->del_req(j); 577 dead->_nodes[k]->del_req(j);
558 } 578 }
559 579
560 //------------------------------MoveToNext------------------------------------- 580 //------------------------------move_to_next-----------------------------------
561 // Helper function to move block bx to the slot following b_index. Return 581 // Helper function to move block bx to the slot following b_index. Return
562 // true if the move is successful, otherwise false 582 // true if the move is successful, otherwise false
563 bool PhaseCFG::MoveToNext(Block* bx, uint b_index) { 583 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
564 if (bx == NULL) return false; 584 if (bx == NULL) return false;
565 585
566 // Return false if bx is already scheduled. 586 // Return false if bx is already scheduled.
567 uint bx_index = bx->_pre_order; 587 uint bx_index = bx->_pre_order;
568 if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) { 588 if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
589 _blocks.remove(bx_index); 609 _blocks.remove(bx_index);
590 _blocks.insert(b_index + 1, bx); 610 _blocks.insert(b_index + 1, bx);
591 return true; 611 return true;
592 } 612 }
593 613
594 //------------------------------MoveToEnd-------------------------------------- 614 //------------------------------move_to_end------------------------------------
595 // Move empty and uncommon blocks to the end. 615 // Move empty and uncommon blocks to the end.
596 void PhaseCFG::MoveToEnd(Block *b, uint i) { 616 void PhaseCFG::move_to_end(Block *b, uint i) {
597 int e = b->is_Empty(); 617 int e = b->is_Empty();
598 if (e != Block::not_empty) { 618 if (e != Block::not_empty) {
599 if (e == Block::empty_with_goto) { 619 if (e == Block::empty_with_goto) {
600 // Remove the goto, but leave the block. 620 // Remove the goto, but leave the block.
601 b->_nodes.pop(); 621 b->_nodes.pop();
607 // Move the empty block to the end, and don't recheck. 627 // Move the empty block to the end, and don't recheck.
608 _blocks.remove(i); 628 _blocks.remove(i);
609 _blocks.push(b); 629 _blocks.push(b);
610 } 630 }
611 631
612 //------------------------------RemoveEmpty------------------------------------ 632 //---------------------------set_loop_alignment--------------------------------
613 // Remove empty basic blocks and useless branches. 633 // Set loop alignment for every block
614 void PhaseCFG::RemoveEmpty() { 634 void PhaseCFG::set_loop_alignment() {
635 uint last = _num_blocks;
636 assert( _blocks[0] == _broot, "" );
637
638 for (uint i = 1; i < last; i++ ) {
639 Block *b = _blocks[i];
640 if (b->head()->is_Loop()) {
641 b->set_loop_alignment(b);
642 }
643 }
644 }
645
646 //-----------------------------remove_empty------------------------------------
647 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
648 // to the end.
649 void PhaseCFG::remove_empty() {
615 // Move uncommon blocks to the end 650 // Move uncommon blocks to the end
616 uint last = _num_blocks; 651 uint last = _num_blocks;
617 uint i;
618 assert( _blocks[0] == _broot, "" ); 652 assert( _blocks[0] == _broot, "" );
619 for( i = 1; i < last; i++ ) { 653
654 for (uint i = 1; i < last; i++) {
620 Block *b = _blocks[i]; 655 Block *b = _blocks[i];
656 if (b->is_connector()) break;
621 657
622 // Check for NeverBranch at block end. This needs to become a GOTO to the 658 // Check for NeverBranch at block end. This needs to become a GOTO to the
623 // true target. NeverBranch are treated as a conditional branch that 659 // true target. NeverBranch are treated as a conditional branch that
624 // always goes the same direction for most of the optimizer and are used 660 // always goes the same direction for most of the optimizer and are used
625 // to give a fake exit path to infinite loops. At this late stage they 661 // to give a fake exit path to infinite loops. At this late stage they
627 // indeed hang. 663 // indeed hang.
628 if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch ) 664 if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
629 convert_NeverBranch_to_Goto(b); 665 convert_NeverBranch_to_Goto(b);
630 666
631 // Look for uncommon blocks and move to end. 667 // Look for uncommon blocks and move to end.
632 if( b->is_uncommon(_bbs) ) { 668 if (!C->do_freq_based_layout()) {
633 MoveToEnd(b, i); 669 if( b->is_uncommon(_bbs) ) {
634 last--; // No longer check for being uncommon! 670 move_to_end(b, i);
635 if( no_flip_branch(b) ) { // Fall-thru case must follow? 671 last--; // No longer check for being uncommon!
636 b = _blocks[i]; // Find the fall-thru block 672 if( no_flip_branch(b) ) { // Fall-thru case must follow?
637 MoveToEnd(b, i); 673 b = _blocks[i]; // Find the fall-thru block
638 last--; 674 move_to_end(b, i);
639 } 675 last--;
640 i--; // backup block counter post-increment 676 }
641 } 677 i--; // backup block counter post-increment
642 } 678 }
643 679 }
644 // Remove empty blocks 680 }
645 uint j1; 681
682 // Move empty blocks to the end
646 last = _num_blocks; 683 last = _num_blocks;
647 for( i=0; i < last; i++ ) { 684 for (uint i = 1; i < last; i++) {
648 Block *b = _blocks[i]; 685 Block *b = _blocks[i];
649 if (i > 0) { 686 if (b->is_Empty() != Block::not_empty) {
650 if (b->is_Empty() != Block::not_empty) { 687 move_to_end(b, i);
651 MoveToEnd(b, i); 688 last--;
652 last--; 689 i--;
653 i--;
654 }
655 } 690 }
656 } // End of for all blocks 691 } // End of for all blocks
657 692 }
693
694 //-----------------------------fixup_flow--------------------------------------
695 // Fix up the final control flow for basic blocks.
696 void PhaseCFG::fixup_flow() {
658 // Fixup final control flow for the blocks. Remove jump-to-next 697 // Fixup final control flow for the blocks. Remove jump-to-next
659 // block. If neither arm of a IF follows the conditional branch, we 698 // block. If neither arm of a IF follows the conditional branch, we
660 // have to add a second jump after the conditional. We place the 699 // have to add a second jump after the conditional. We place the
661 // TRUE branch target in succs[0] for both GOTOs and IFs. 700 // TRUE branch target in succs[0] for both GOTOs and IFs.
662 for( i=0; i < _num_blocks; i++ ) { 701 for (uint i=0; i < _num_blocks; i++) {
663 Block *b = _blocks[i]; 702 Block *b = _blocks[i];
664 b->_pre_order = i; // turn pre-order into block-index 703 b->_pre_order = i; // turn pre-order into block-index
665 704
666 // Connector blocks need no further processing. 705 // Connector blocks need no further processing.
667 if (b->is_connector()) { 706 if (b->is_connector()) {
698 } 737 }
699 break; 738 break;
700 } 739 }
701 } 740 }
702 // Remove all CatchProjs 741 // Remove all CatchProjs
703 for (j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop(); 742 for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
704 743
705 } else if (b->_num_succs == 1) { 744 } else if (b->_num_succs == 1) {
706 // Block ends in a Goto? 745 // Block ends in a Goto?
707 if (bnext == bs0) { 746 if (bnext == bs0) {
708 // We fall into next block; remove the Goto 747 // We fall into next block; remove the Goto
728 // Check for neither successor block following the current 767 // Check for neither successor block following the current
729 // block ending in a conditional. If so, move one of the 768 // block ending in a conditional. If so, move one of the
730 // successors after the current one, provided that the 769 // successors after the current one, provided that the
731 // successor was previously unscheduled, but moveable 770 // successor was previously unscheduled, but moveable
732 // (i.e., all paths to it involve a branch). 771 // (i.e., all paths to it involve a branch).
733 if( bnext != bs0 && bnext != bs1 ) { 772 if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
734
735 // Choose the more common successor based on the probability 773 // Choose the more common successor based on the probability
736 // of the conditional branch. 774 // of the conditional branch.
737 Block *bx = bs0; 775 Block *bx = bs0;
738 Block *by = bs1; 776 Block *by = bs1;
739 777
749 bx = bs1; 787 bx = bs1;
750 by = bs0; 788 by = bs0;
751 } 789 }
752 790
753 // Attempt the more common successor first 791 // Attempt the more common successor first
754 if (MoveToNext(bx, i)) { 792 if (move_to_next(bx, i)) {
755 bnext = bx; 793 bnext = bx;
756 } else if (MoveToNext(by, i)) { 794 } else if (move_to_next(by, i)) {
757 bnext = by; 795 bnext = by;
758 } 796 }
759 } 797 }
760 798
761 // Check for conditional branching the wrong way. Negate 799 // Check for conditional branching the wrong way. Negate
772 b->_succs.map( 0, tbs1 ); 810 b->_succs.map( 0, tbs1 );
773 b->_succs.map( 1, tbs0 ); 811 b->_succs.map( 1, tbs0 );
774 // Flip projection for each target 812 // Flip projection for each target
775 { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; } 813 { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
776 814
777 } else if( bnext == bs1 ) { // Fall-thru is already in succs[1] 815 } else if( bnext != bs1 ) {
778 816 // Need a double-branch
779 } else { // Else need a double-branch
780
781 // The existing conditional branch need not change. 817 // The existing conditional branch need not change.
782 // Add a unconditional branch to the false target. 818 // Add a unconditional branch to the false target.
783 // Alas, it must appear in its own block and adding a 819 // Alas, it must appear in its own block and adding a
784 // block this late in the game is complicated. Sigh. 820 // block this late in the game is complicated. Sigh.
785 insert_goto_at(i, 1); 821 insert_goto_at(i, 1);
786 } 822 }
787 823
788 // Make sure we TRUE branch to the target 824 // Make sure we TRUE branch to the target
789 if( proj0->Opcode() == Op_IfFalse ) 825 if( proj0->Opcode() == Op_IfFalse ) {
790 iff->negate(); 826 iff->negate();
827 }
791 828
792 b->_nodes.pop(); // Remove IfFalse & IfTrue projections 829 b->_nodes.pop(); // Remove IfFalse & IfTrue projections
793 b->_nodes.pop(); 830 b->_nodes.pop();
794 831
795 } else { 832 } else {
796 // Multi-exit block, e.g. a switch statement 833 // Multi-exit block, e.g. a switch statement
797 // But we don't need to do anything here 834 // But we don't need to do anything here
798 } 835 }
799
800 } // End of for all blocks 836 } // End of for all blocks
801
802 } 837 }
803 838
804 839
805 //------------------------------dump------------------------------------------- 840 //------------------------------dump-------------------------------------------
806 #ifndef PRODUCT 841 #ifndef PRODUCT
903 void UnionFind::reset( uint max ) { 938 void UnionFind::reset( uint max ) {
904 assert( max <= max_uint, "Must fit within uint" ); 939 assert( max <= max_uint, "Must fit within uint" );
905 // Force the Union-Find mapping to be at least this large 940 // Force the Union-Find mapping to be at least this large
906 extend(max,0); 941 extend(max,0);
907 // Initialize to be the ID mapping. 942 // Initialize to be the ID mapping.
908 for( uint i=0; i<_max; i++ ) map(i,i); 943 for( uint i=0; i<max; i++ ) map(i,i);
909 } 944 }
910 945
911 //------------------------------Find_compress---------------------------------- 946 //------------------------------Find_compress----------------------------------
912 // Straight out of Tarjan's union-find algorithm 947 // Straight out of Tarjan's union-find algorithm
913 uint UnionFind::Find_compress( uint idx ) { 948 uint UnionFind::Find_compress( uint idx ) {
935 // Off the end? This can happen during debugging dumps 970 // Off the end? This can happen during debugging dumps
936 // when data structures have not finished being updated. 971 // when data structures have not finished being updated.
937 if( idx >= _max ) return idx; 972 if( idx >= _max ) return idx;
938 uint next = lookup(idx); 973 uint next = lookup(idx);
939 while( next != idx ) { // Scan chain of equivalences 974 while( next != idx ) { // Scan chain of equivalences
940 assert( next < idx, "always union smaller" );
941 idx = next; // until find a fixed-point 975 idx = next; // until find a fixed-point
942 next = lookup(idx); 976 next = lookup(idx);
943 } 977 }
944 return next; 978 return next;
945 } 979 }
954 assert( src < _max, "oob" ); 988 assert( src < _max, "oob" );
955 assert( dst < _max, "oob" ); 989 assert( dst < _max, "oob" );
956 assert( src < dst, "always union smaller" ); 990 assert( src < dst, "always union smaller" );
957 map(dst,src); 991 map(dst,src);
958 } 992 }
993
994 #ifndef PRODUCT
995 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
996 tty->print_cr("---- Edges ----");
997 for (int i = 0; i < edges->length(); i++) {
998 CFGEdge *e = edges->at(i);
999 if (e != NULL) {
1000 edges->at(i)->dump();
1001 }
1002 }
1003 }
1004
1005 static void trace_dump(Trace *traces[], int count) {
1006 tty->print_cr("---- Traces ----");
1007 for (int i = 0; i < count; i++) {
1008 Trace *tr = traces[i];
1009 if (tr != NULL) {
1010 tr->dump();
1011 }
1012 }
1013 }
1014
1015 void Trace::dump( ) const {
1016 tty->print_cr("Trace (freq %f)", first_block()->_freq);
1017 for (Block *b = first_block(); b != NULL; b = next(b)) {
1018 tty->print(" B%d", b->_pre_order);
1019 if (b->head()->is_Loop()) {
1020 tty->print(" (L%d)", b->compute_loop_alignment());
1021 }
1022 if (b->has_loop_alignment()) {
1023 tty->print(" (T%d)", b->code_alignment());
1024 }
1025 }
1026 tty->cr();
1027 }
1028
1029 void CFGEdge::dump( ) const {
1030 tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
1031 from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1032 switch(state()) {
1033 case connected:
1034 tty->print("connected");
1035 break;
1036 case open:
1037 tty->print("open");
1038 break;
1039 case interior:
1040 tty->print("interior");
1041 break;
1042 }
1043 if (infrequent()) {
1044 tty->print(" infrequent");
1045 }
1046 tty->cr();
1047 }
1048 #endif
1049
1050 //=============================================================================
1051
1052 //------------------------------edge_order-------------------------------------
1053 // Comparison function for edges
1054 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1055 float freq0 = (*e0)->freq();
1056 float freq1 = (*e1)->freq();
1057 if (freq0 != freq1) {
1058 return freq0 > freq1 ? -1 : 1;
1059 }
1060
1061 int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1062 int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1063
1064 return dist1 - dist0;
1065 }
1066
1067 //------------------------------trace_frequency_order--------------------------
1068 // Comparison function for edges
1069 static int trace_frequency_order(const void *p0, const void *p1) {
1070 Trace *tr0 = *(Trace **) p0;
1071 Trace *tr1 = *(Trace **) p1;
1072 Block *b0 = tr0->first_block();
1073 Block *b1 = tr1->first_block();
1074
1075 // The trace of connector blocks goes at the end;
1076 // we only expect one such trace
1077 if (b0->is_connector() != b1->is_connector()) {
1078 return b1->is_connector() ? -1 : 1;
1079 }
1080
1081 // Pull more frequently executed blocks to the beginning
1082 float freq0 = b0->_freq;
1083 float freq1 = b1->_freq;
1084 if (freq0 != freq1) {
1085 return freq0 > freq1 ? -1 : 1;
1086 }
1087
1088 int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1089
1090 return diff;
1091 }
1092
1093 //------------------------------find_edges-------------------------------------
1094 // Find edges of interest, i.e, those which can fall through. Presumes that
1095 // edges which don't fall through are of low frequency and can be generally
1096 // ignored. Initialize the list of traces.
1097 void PhaseBlockLayout::find_edges()
1098 {
1099 // Walk the blocks, creating edges and Traces
1100 uint i;
1101 Trace *tr = NULL;
1102 for (i = 0; i < _cfg._num_blocks; i++) {
1103 Block *b = _cfg._blocks[i];
1104 tr = new Trace(b, next, prev);
1105 traces[tr->id()] = tr;
1106
1107 // All connector blocks should be at the end of the list
1108 if (b->is_connector()) break;
1109
1110 // If this block and the next one have a one-to-one successor
1111 // predecessor relationship, simply append the next block
1112 int nfallthru = b->num_fall_throughs();
1113 while (nfallthru == 1 &&
1114 b->succ_fall_through(0)) {
1115 Block *n = b->_succs[0];
1116
1117 // Skip over single-entry connector blocks, we don't want to
1118 // add them to the trace.
1119 while (n->is_connector() && n->num_preds() == 1) {
1120 n = n->_succs[0];
1121 }
1122
1123 // We see a merge point, so stop search for the next block
1124 if (n->num_preds() != 1) break;
1125
1126 i++;
1127 assert(n = _cfg._blocks[i], "expecting next block");
1128 tr->append(n);
1129 uf->map(n->_pre_order, tr->id());
1130 traces[n->_pre_order] = NULL;
1131 nfallthru = b->num_fall_throughs();
1132 b = n;
1133 }
1134
1135 if (nfallthru > 0) {
1136 // Create a CFGEdge for each outgoing
1137 // edge that could be a fall-through.
1138 for (uint j = 0; j < b->_num_succs; j++ ) {
1139 if (b->succ_fall_through(j)) {
1140 Block *target = b->non_connector_successor(j);
1141 float freq = b->_freq * b->succ_prob(j);
1142 int from_pct = (int) ((100 * freq) / b->_freq);
1143 int to_pct = (int) ((100 * freq) / target->_freq);
1144 edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1145 }
1146 }
1147 }
1148 }
1149
1150 // Group connector blocks into one trace
1151 for (i++; i < _cfg._num_blocks; i++) {
1152 Block *b = _cfg._blocks[i];
1153 assert(b->is_connector(), "connector blocks at the end");
1154 tr->append(b);
1155 uf->map(b->_pre_order, tr->id());
1156 traces[b->_pre_order] = NULL;
1157 }
1158 }
1159
1160 //------------------------------union_traces----------------------------------
1161 // Union two traces together in uf, and null out the trace in the list
1162 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1163 {
1164 uint old_id = old_trace->id();
1165 uint updated_id = updated_trace->id();
1166
1167 uint lo_id = updated_id;
1168 uint hi_id = old_id;
1169
1170 // If from is greater than to, swap values to meet
1171 // UnionFind guarantee.
1172 if (updated_id > old_id) {
1173 lo_id = old_id;
1174 hi_id = updated_id;
1175
1176 // Fix up the trace ids
1177 traces[lo_id] = traces[updated_id];
1178 updated_trace->set_id(lo_id);
1179 }
1180
1181 // Union the lower with the higher and remove the pointer
1182 // to the higher.
1183 uf->Union(lo_id, hi_id);
1184 traces[hi_id] = NULL;
1185 }
1186
1187 //------------------------------grow_traces-------------------------------------
1188 // Append traces together via the most frequently executed edges
1189 void PhaseBlockLayout::grow_traces()
1190 {
1191 // Order the edges, and drive the growth of Traces via the most
1192 // frequently executed edges.
1193 edges->sort(edge_order);
1194 for (int i = 0; i < edges->length(); i++) {
1195 CFGEdge *e = edges->at(i);
1196
1197 if (e->state() != CFGEdge::open) continue;
1198
1199 Block *src_block = e->from();
1200 Block *targ_block = e->to();
1201
1202 // Don't grow traces along backedges?
1203 if (!BlockLayoutRotateLoops) {
1204 if (targ_block->_rpo <= src_block->_rpo) {
1205 targ_block->set_loop_alignment(targ_block);
1206 continue;
1207 }
1208 }
1209
1210 Trace *src_trace = trace(src_block);
1211 Trace *targ_trace = trace(targ_block);
1212
1213 // If the edge in question can join two traces at their ends,
1214 // append one trace to the other.
1215 if (src_trace->last_block() == src_block) {
1216 if (src_trace == targ_trace) {
1217 e->set_state(CFGEdge::interior);
1218 if (targ_trace->backedge(e)) {
1219 // Reset i to catch any newly eligible edge
1220 // (Or we could remember the first "open" edge, and reset there)
1221 i = 0;
1222 }
1223 } else if (targ_trace->first_block() == targ_block) {
1224 e->set_state(CFGEdge::connected);
1225 src_trace->append(targ_trace);
1226 union_traces(src_trace, targ_trace);
1227 }
1228 }
1229 }
1230 }
1231
1232 //------------------------------merge_traces-----------------------------------
1233 // Embed one trace into another, if the fork or join points are sufficiently
1234 // balanced.
1235 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1236 {
1237 // Walk the edge list a another time, looking at unprocessed edges.
1238 // Fold in diamonds
1239 for (int i = 0; i < edges->length(); i++) {
1240 CFGEdge *e = edges->at(i);
1241
1242 if (e->state() != CFGEdge::open) continue;
1243 if (fall_thru_only) {
1244 if (e->infrequent()) continue;
1245 }
1246
1247 Block *src_block = e->from();
1248 Trace *src_trace = trace(src_block);
1249 bool src_at_tail = src_trace->last_block() == src_block;
1250
1251 Block *targ_block = e->to();
1252 Trace *targ_trace = trace(targ_block);
1253 bool targ_at_start = targ_trace->first_block() == targ_block;
1254
1255 if (src_trace == targ_trace) {
1256 // This may be a loop, but we can't do much about it.
1257 e->set_state(CFGEdge::interior);
1258 continue;
1259 }
1260
1261 if (fall_thru_only) {
1262 // If the edge links the middle of two traces, we can't do anything.
1263 // Mark the edge and continue.
1264 if (!src_at_tail & !targ_at_start) {
1265 continue;
1266 }
1267
1268 // Don't grow traces along backedges?
1269 if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1270 continue;
1271 }
1272
1273 // If both ends of the edge are available, why didn't we handle it earlier?
1274 assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1275
1276 if (targ_at_start) {
1277 // Insert the "targ" trace in the "src" trace if the insertion point
1278 // is a two way branch.
1279 // Better profitability check possible, but may not be worth it.
1280 // Someday, see if the this "fork" has an associated "join";
1281 // then make a policy on merging this trace at the fork or join.
1282 // For example, other things being equal, it may be better to place this
1283 // trace at the join point if the "src" trace ends in a two-way, but
1284 // the insertion point is one-way.
1285 assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1286 e->set_state(CFGEdge::connected);
1287 src_trace->insert_after(src_block, targ_trace);
1288 union_traces(src_trace, targ_trace);
1289 } else if (src_at_tail) {
1290 if (src_trace != trace(_cfg._broot)) {
1291 e->set_state(CFGEdge::connected);
1292 targ_trace->insert_before(targ_block, src_trace);
1293 union_traces(targ_trace, src_trace);
1294 }
1295 }
1296 } else if (e->state() == CFGEdge::open) {
1297 // Append traces, even without a fall-thru connection.
1298 // But leave root entry at the begining of the block list.
1299 if (targ_trace != trace(_cfg._broot)) {
1300 e->set_state(CFGEdge::connected);
1301 src_trace->append(targ_trace);
1302 union_traces(src_trace, targ_trace);
1303 }
1304 }
1305 }
1306 }
1307
1308 //----------------------------reorder_traces-----------------------------------
1309 // Order the sequence of the traces in some desirable way, and fixup the
1310 // jumps at the end of each block.
1311 void PhaseBlockLayout::reorder_traces(int count)
1312 {
1313 ResourceArea *area = Thread::current()->resource_area();
1314 Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1315 Block_List worklist;
1316 int new_count = 0;
1317
1318 // Compact the traces.
1319 for (int i = 0; i < count; i++) {
1320 Trace *tr = traces[i];
1321 if (tr != NULL) {
1322 new_traces[new_count++] = tr;
1323 }
1324 }
1325
1326 // The entry block should be first on the new trace list.
1327 Trace *tr = trace(_cfg._broot);
1328 assert(tr == new_traces[0], "entry trace misplaced");
1329
1330 // Sort the new trace list by frequency
1331 qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1332
1333 // Patch up the successor blocks
1334 _cfg._blocks.reset();
1335 _cfg._num_blocks = 0;
1336 for (int i = 0; i < new_count; i++) {
1337 Trace *tr = new_traces[i];
1338 if (tr != NULL) {
1339 tr->fixup_blocks(_cfg);
1340 }
1341 }
1342 }
1343
1344 //------------------------------PhaseBlockLayout-------------------------------
1345 // Order basic blocks based on frequency
1346 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1347 Phase(BlockLayout),
1348 _cfg(cfg)
1349 {
1350 ResourceMark rm;
1351 ResourceArea *area = Thread::current()->resource_area();
1352
1353 // List of traces
1354 int size = _cfg._num_blocks + 1;
1355 traces = NEW_ARENA_ARRAY(area, Trace *, size);
1356 memset(traces, 0, size*sizeof(Trace*));
1357 next = NEW_ARENA_ARRAY(area, Block *, size);
1358 memset(next, 0, size*sizeof(Block *));
1359 prev = NEW_ARENA_ARRAY(area, Block *, size);
1360 memset(prev , 0, size*sizeof(Block *));
1361
1362 // List of edges
1363 edges = new GrowableArray<CFGEdge*>;
1364
1365 // Mapping block index --> block_trace
1366 uf = new UnionFind(size);
1367 uf->reset(size);
1368
1369 // Find edges and create traces.
1370 find_edges();
1371
1372 // Grow traces at their ends via most frequent edges.
1373 grow_traces();
1374
1375 // Merge one trace into another, but only at fall-through points.
1376 // This may make diamonds and other related shapes in a trace.
1377 merge_traces(true);
1378
1379 // Run merge again, allowing two traces to be catenated, even if
1380 // one does not fall through into the other. This appends loosely
1381 // related traces to be near each other.
1382 merge_traces(false);
1383
1384 // Re-order all the remaining traces by frequency
1385 reorder_traces(size);
1386
1387 assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1388 }
1389
1390
1391 //------------------------------backedge---------------------------------------
1392 // Edge e completes a loop in a trace. If the target block is head of the
1393 // loop, rotate the loop block so that the loop ends in a conditional branch.
1394 bool Trace::backedge(CFGEdge *e) {
1395 bool loop_rotated = false;
1396 Block *src_block = e->from();
1397 Block *targ_block = e->to();
1398
1399 assert(last_block() == src_block, "loop discovery at back branch");
1400 if (first_block() == targ_block) {
1401 if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1402 // Find the last block in the trace that has a conditional
1403 // branch.
1404 Block *b;
1405 for (b = last_block(); b != NULL; b = prev(b)) {
1406 if (b->num_fall_throughs() == 2) {
1407 break;
1408 }
1409 }
1410
1411 if (b != last_block() && b != NULL) {
1412 loop_rotated = true;
1413
1414 // Rotate the loop by doing two-part linked-list surgery.
1415 append(first_block());
1416 break_loop_after(b);
1417 }
1418 }
1419
1420 // Backbranch to the top of a trace
1421 // Scroll foward through the trace from the targ_block. If we find
1422 // a loop head before another loop top, use the the loop head alignment.
1423 for (Block *b = targ_block; b != NULL; b = next(b)) {
1424 if (b->has_loop_alignment()) {
1425 break;
1426 }
1427 if (b->head()->is_Loop()) {
1428 targ_block = b;
1429 break;
1430 }
1431 }
1432
1433 first_block()->set_loop_alignment(targ_block);
1434
1435 } else {
1436 // Backbranch into the middle of a trace
1437 targ_block->set_loop_alignment(targ_block);
1438 }
1439
1440 return loop_rotated;
1441 }
1442
1443 //------------------------------fixup_blocks-----------------------------------
1444 // push blocks onto the CFG list
1445 // ensure that blocks have the correct two-way branch sense
1446 void Trace::fixup_blocks(PhaseCFG &cfg) {
1447 Block *last = last_block();
1448 for (Block *b = first_block(); b != NULL; b = next(b)) {
1449 cfg._blocks.push(b);
1450 cfg._num_blocks++;
1451 if (!b->is_connector()) {
1452 int nfallthru = b->num_fall_throughs();
1453 if (b != last) {
1454 if (nfallthru == 2) {
1455 // Ensure that the sense of the branch is correct
1456 Block *bnext = next(b);
1457 Block *bs0 = b->non_connector_successor(0);
1458
1459 MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1460 ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1461 ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1462
1463 if (bnext == bs0) {
1464 // Fall-thru case in succs[0], should be in succs[1]
1465
1466 // Flip targets in _succs map
1467 Block *tbs0 = b->_succs[0];
1468 Block *tbs1 = b->_succs[1];
1469 b->_succs.map( 0, tbs1 );
1470 b->_succs.map( 1, tbs0 );
1471
1472 // Flip projections to match targets
1473 b->_nodes.map(b->_nodes.size()-2, proj1);
1474 b->_nodes.map(b->_nodes.size()-1, proj0);
1475 }
1476 }
1477 }
1478 }
1479 }
1480 }