comparison src/cpu/sparc/vm/frame_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 93b6525e3b82
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_frame_sparc.cpp.incl"
27
28 void RegisterMap::pd_clear() {
29 if (_thread->has_last_Java_frame()) {
30 frame fr = _thread->last_frame();
31 _window = fr.sp();
32 } else {
33 _window = NULL;
34 }
35 _younger_window = NULL;
36 }
37
38
39 // Unified register numbering scheme: each 32-bits counts as a register
40 // number, so all the V9 registers take 2 slots.
41 const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
42 const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
43 const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
44 const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
45 static RegisterMap::LocationValidType bad_mask = 0;
46 static RegisterMap::LocationValidType R_LIO_mask = 0;
47 static bool register_map_inited = false;
48
49 static void register_map_init() {
50 if (!register_map_inited) {
51 register_map_inited = true;
52 int i;
53 for (i = 0; i < 8; i++) {
54 assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
55 assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
56 assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
57 assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
58 }
59
60 bad_mask |= (1LL << R_O_nums[6]); // SP
61 bad_mask |= (1LL << R_O_nums[7]); // cPC
62 bad_mask |= (1LL << R_I_nums[6]); // FP
63 bad_mask |= (1LL << R_I_nums[7]); // rPC
64 bad_mask |= (1LL << R_G_nums[2]); // TLS
65 bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread
66
67 for (i = 0; i < 8; i++) {
68 R_LIO_mask |= (1LL << R_L_nums[i]);
69 R_LIO_mask |= (1LL << R_I_nums[i]);
70 R_LIO_mask |= (1LL << R_O_nums[i]);
71 }
72 }
73 }
74
75
76 address RegisterMap::pd_location(VMReg regname) const {
77 register_map_init();
78
79 assert(regname->is_reg(), "sanity check");
80 // Only the GPRs get handled this way
81 if( !regname->is_Register())
82 return NULL;
83
84 // don't talk about bad registers
85 if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
86 return NULL;
87 }
88
89 // Convert to a GPR
90 Register reg;
91 int second_word = 0;
92 // 32-bit registers for in, out and local
93 if (!regname->is_concrete()) {
94 // HMM ought to return NULL for any non-concrete (odd) vmreg
95 // this all tied up in the fact we put out double oopMaps for
96 // register locations. When that is fixed we'd will return NULL
97 // (or assert here).
98 reg = regname->prev()->as_Register();
99 #ifdef _LP64
100 second_word = sizeof(jint);
101 #else
102 return NULL;
103 #endif // _LP64
104 } else {
105 reg = regname->as_Register();
106 }
107 if (reg->is_out()) {
108 assert(_younger_window != NULL, "Younger window should be available");
109 return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
110 }
111 if (reg->is_local() || reg->is_in()) {
112 assert(_window != NULL, "Window should be available");
113 return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
114 }
115 // Only the window'd GPRs get handled this way; not the globals.
116 return NULL;
117 }
118
119
120 #ifdef ASSERT
121 void RegisterMap::check_location_valid() {
122 register_map_init();
123 assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
124 }
125 #endif
126
127 // We are shifting windows. That means we are moving all %i to %o,
128 // getting rid of all current %l, and keeping all %g. This is only
129 // complicated if any of the location pointers for these are valid.
130 // The normal case is that everything is in its standard register window
131 // home, and _location_valid[0] is zero. In that case, this routine
132 // does exactly nothing.
133 void RegisterMap::shift_individual_registers() {
134 if (!update_map()) return; // this only applies to maps with locations
135 register_map_init();
136 check_location_valid();
137
138 LocationValidType lv = _location_valid[0];
139 LocationValidType lv0 = lv;
140
141 lv &= ~R_LIO_mask; // clear %l, %o, %i regs
142
143 // if we cleared some non-%g locations, we may have to do some shifting
144 if (lv != lv0) {
145 // copy %i0-%i5 to %o0-%o5, if they have special locations
146 // This can happen in within stubs which spill argument registers
147 // around a dynamic link operation, such as resolve_opt_virtual_call.
148 for (int i = 0; i < 8; i++) {
149 if (lv0 & (1LL << R_I_nums[i])) {
150 _location[R_O_nums[i]] = _location[R_I_nums[i]];
151 lv |= (1LL << R_O_nums[i]);
152 }
153 }
154 }
155
156 _location_valid[0] = lv;
157 check_location_valid();
158 }
159
160
161 bool frame::safe_for_sender(JavaThread *thread) {
162 address sp = (address)_sp;
163 if (sp != NULL &&
164 (sp <= thread->stack_base() && sp >= thread->stack_base() - thread->stack_size())) {
165 // Unfortunately we can only check frame complete for runtime stubs and nmethod
166 // other generic buffer blobs are more problematic so we just assume they are
167 // ok. adapter blobs never have a frame complete and are never ok.
168 if (_cb != NULL && !_cb->is_frame_complete_at(_pc)) {
169 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
170 return false;
171 }
172 }
173 return true;
174 }
175 return false;
176 }
177
178 // constructors
179
180 // Construct an unpatchable, deficient frame
181 frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
182 #ifdef _LP64
183 assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
184 #endif
185 _sp = sp;
186 _younger_sp = NULL;
187 _pc = pc;
188 _cb = cb;
189 _sp_adjustment_by_callee = 0;
190 assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
191 if (_cb == NULL && _pc != NULL ) {
192 _cb = CodeCache::find_blob(_pc);
193 }
194 _deopt_state = unknown;
195 #ifdef ASSERT
196 if ( _cb != NULL && _cb->is_nmethod()) {
197 // Without a valid unextended_sp() we can't convert the pc to "original"
198 assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
199 }
200 #endif // ASSERT
201 }
202
203 frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) {
204 _sp = sp;
205 _younger_sp = younger_sp;
206 if (younger_sp == NULL) {
207 // make a deficient frame which doesn't know where its PC is
208 _pc = NULL;
209 _cb = NULL;
210 } else {
211 _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
212 assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
213 // Any frame we ever build should always "safe" therefore we should not have to call
214 // find_blob_unsafe
215 // In case of native stubs, the pc retrieved here might be
216 // wrong. (the _last_native_pc will have the right value)
217 // So do not put add any asserts on the _pc here.
218 }
219 if (younger_frame_adjusted_stack) {
220 // compute adjustment to this frame's SP made by its interpreted callee
221 _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] +
222 STACK_BIAS) - sp;
223 } else {
224 _sp_adjustment_by_callee = 0;
225 }
226
227 _deopt_state = unknown;
228
229 // It is important that frame be fully construct when we do this lookup
230 // as get_original_pc() needs correct value for unextended_sp()
231 if (_pc != NULL) {
232 _cb = CodeCache::find_blob(_pc);
233 if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
234 _pc = ((nmethod*)_cb)->get_original_pc(this);
235 _deopt_state = is_deoptimized;
236 } else {
237 _deopt_state = not_deoptimized;
238 }
239 }
240 }
241
242 bool frame::is_interpreted_frame() const {
243 return Interpreter::contains(pc());
244 }
245
246 // sender_sp
247
248 intptr_t* frame::interpreter_frame_sender_sp() const {
249 assert(is_interpreted_frame(), "interpreted frame expected");
250 return fp();
251 }
252
253 #ifndef CC_INTERP
254 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
255 assert(is_interpreted_frame(), "interpreted frame expected");
256 Unimplemented();
257 }
258 #endif // CC_INTERP
259
260
261 #ifdef ASSERT
262 // Debugging aid
263 static frame nth_sender(int n) {
264 frame f = JavaThread::current()->last_frame();
265
266 for(int i = 0; i < n; ++i)
267 f = f.sender((RegisterMap*)NULL);
268
269 printf("first frame %d\n", f.is_first_frame() ? 1 : 0);
270 printf("interpreted frame %d\n", f.is_interpreted_frame() ? 1 : 0);
271 printf("java frame %d\n", f.is_java_frame() ? 1 : 0);
272 printf("entry frame %d\n", f.is_entry_frame() ? 1 : 0);
273 printf("native frame %d\n", f.is_native_frame() ? 1 : 0);
274 if (f.is_compiled_frame()) {
275 if (f.is_deoptimized_frame())
276 printf("deoptimized frame 1\n");
277 else
278 printf("compiled frame 1\n");
279 }
280
281 return f;
282 }
283 #endif
284
285
286 frame frame::sender_for_entry_frame(RegisterMap *map) const {
287 assert(map != NULL, "map must be set");
288 // Java frame called from C; skip all C frames and return top C
289 // frame of that chunk as the sender
290 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
291 assert(!entry_frame_is_first(), "next Java fp must be non zero");
292 assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
293 intptr_t* last_Java_sp = jfa->last_Java_sp();
294 // Since we are walking the stack now this nested anchor is obviously walkable
295 // even if it wasn't when it was stacked.
296 if (!jfa->walkable()) {
297 // Capture _last_Java_pc (if needed) and mark anchor walkable.
298 jfa->capture_last_Java_pc(_sp);
299 }
300 assert(jfa->last_Java_pc() != NULL, "No captured pc!");
301 map->clear();
302 map->make_integer_regs_unsaved();
303 map->shift_window(last_Java_sp, NULL);
304 assert(map->include_argument_oops(), "should be set by clear");
305 return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
306 }
307
308 frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
309 ShouldNotCallThis();
310 return sender(map);
311 }
312
313 frame frame::sender_for_compiled_frame(RegisterMap *map) const {
314 ShouldNotCallThis();
315 return sender(map);
316 }
317
318 frame frame::sender(RegisterMap* map) const {
319 assert(map != NULL, "map must be set");
320
321 assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");
322
323 // Default is not to follow arguments; update it accordingly below
324 map->set_include_argument_oops(false);
325
326 if (is_entry_frame()) return sender_for_entry_frame(map);
327
328 intptr_t* younger_sp = sp();
329 intptr_t* sp = sender_sp();
330 bool adjusted_stack = false;
331
332 // Note: The version of this operation on any platform with callee-save
333 // registers must update the register map (if not null).
334 // In order to do this correctly, the various subtypes of
335 // of frame (interpreted, compiled, glue, native),
336 // must be distinguished. There is no need on SPARC for
337 // such distinctions, because all callee-save registers are
338 // preserved for all frames via SPARC-specific mechanisms.
339 //
340 // *** HOWEVER, *** if and when we make any floating-point
341 // registers callee-saved, then we will have to copy over
342 // the RegisterMap update logic from the Intel code.
343
344 // The constructor of the sender must know whether this frame is interpreted so it can set the
345 // sender's _sp_adjustment_by_callee field. An osr adapter frame was originally
346 // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
347 // explicitly recognized.
348
349 adjusted_stack = is_interpreted_frame();
350 if (adjusted_stack) {
351 map->make_integer_regs_unsaved();
352 map->shift_window(sp, younger_sp);
353 } else if (_cb != NULL) {
354 // Update the locations of implicitly saved registers to be their
355 // addresses in the register save area.
356 // For %o registers, the addresses of %i registers in the next younger
357 // frame are used.
358 map->shift_window(sp, younger_sp);
359 if (map->update_map()) {
360 // Tell GC to use argument oopmaps for some runtime stubs that need it.
361 // For C1, the runtime stub might not have oop maps, so set this flag
362 // outside of update_register_map.
363 map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
364 if (_cb->oop_maps() != NULL) {
365 OopMapSet::update_register_map(this, map);
366 }
367 }
368 }
369 return frame(sp, younger_sp, adjusted_stack);
370 }
371
372
373 void frame::patch_pc(Thread* thread, address pc) {
374 if(thread == Thread::current()) {
375 StubRoutines::Sparc::flush_callers_register_windows_func()();
376 }
377 if (TracePcPatching) {
378 // QQQ this assert is invalid (or too strong anyway) sice _pc could
379 // be original pc and frame could have the deopt pc.
380 // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
381 tty->print_cr("patch_pc at address 0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
382 }
383 _cb = CodeCache::find_blob(pc);
384 *O7_addr() = pc - pc_return_offset;
385 _cb = CodeCache::find_blob(_pc);
386 if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
387 address orig = ((nmethod*)_cb)->get_original_pc(this);
388 assert(orig == _pc, "expected original to be stored before patching");
389 _deopt_state = is_deoptimized;
390 } else {
391 _deopt_state = not_deoptimized;
392 }
393 }
394
395
396 static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
397 return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
398 sp <= old_sp &&
399 sp >= young_sp);
400 }
401
402
403 /*
404 Find the (biased) sp that is just younger than old_sp starting at sp.
405 If not found return NULL. Register windows are assumed to be flushed.
406 */
407 intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {
408
409 intptr_t* previous_sp = NULL;
410 intptr_t* orig_sp = sp;
411
412 int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
413 int max_frame2 = max_frames;
414 while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
415 if (max_frames-- <= 0)
416 // too many frames have gone by; invalid parameters given to this function
417 break;
418 previous_sp = sp;
419 sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
420 sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
421 }
422
423 return (sp == old_sp ? previous_sp : NULL);
424 }
425
426 /*
427 Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
428 "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
429 from "sp" to "valid_sp". The assumption is that the registers windows for the
430 thread stack in question are flushed.
431 */
432 bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
433 return next_younger_sp_or_null(valid_sp, sp) != NULL;
434 }
435
436
437 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
438 assert(is_interpreted_frame(), "must be interpreter frame");
439 return this->fp() == fp;
440 }
441
442
443 void frame::pd_gc_epilog() {
444 if (is_interpreted_frame()) {
445 // set constant pool cache entry for interpreter
446 methodOop m = interpreter_frame_method();
447
448 *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
449 }
450 }
451
452
453 bool frame::is_interpreted_frame_valid() const {
454 #ifdef CC_INTERP
455 // Is there anything to do?
456 #else
457 assert(is_interpreted_frame(), "Not an interpreted frame");
458 // These are reasonable sanity checks
459 if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
460 return false;
461 }
462 if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
463 return false;
464 }
465 const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
466 if (fp() + interpreter_frame_initial_sp_offset < sp()) {
467 return false;
468 }
469 // These are hacks to keep us out of trouble.
470 // The problem with these is that they mask other problems
471 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
472 return false;
473 }
474 if (fp() - sp() > 4096) { // stack frames shouldn't be large.
475 return false;
476 }
477 #endif /* CC_INTERP */
478 return true;
479 }
480
481
482 // Windows have been flushed on entry (but not marked). Capture the pc that
483 // is the return address to the frame that contains "sp" as its stack pointer.
484 // This pc resides in the called of the frame corresponding to "sp".
485 // As a side effect we mark this JavaFrameAnchor as having flushed the windows.
486 // This side effect lets us mark stacked JavaFrameAnchors (stacked in the
487 // call_helper) as flushed when we have flushed the windows for the most
488 // recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
489 // and lets us find the pc just once rather than multiple times as it did
490 // in the bad old _post_Java_state days.
491 //
492 void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
493 if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
494 // try and find the sp just younger than _last_Java_sp
495 intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
496 // Really this should never fail otherwise VM call must have non-standard
497 // frame linkage (bad) or stack is not properly flushed (worse).
498 guarantee(_post_Java_sp != NULL, "bad stack!");
499 _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;
500
501 }
502 set_window_flushed();
503 }
504
505 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
506 if (walkable()) return;
507 // Eventually make an assert
508 guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
509 // We always flush in case the profiler wants it but we won't mark
510 // the windows as flushed unless we have a last_Java_frame
511 intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
512 if (last_Java_sp() != NULL ) {
513 capture_last_Java_pc(sp);
514 }
515 }
516
517 intptr_t* frame::entry_frame_argument_at(int offset) const {
518 // convert offset to index to deal with tsi
519 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
520
521 intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
522 return &LSP[index+1];
523 }
524
525
526 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
527 assert(is_interpreted_frame(), "interpreted frame expected");
528 methodOop method = interpreter_frame_method();
529 BasicType type = method->result_type();
530
531 if (method->is_native()) {
532 // Prior to notifying the runtime of the method_exit the possible result
533 // value is saved to l_scratch and d_scratch.
534
535 #ifdef CC_INTERP
536 interpreterState istate = get_interpreterState();
537 intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
538 intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
539 #else /* CC_INTERP */
540 intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
541 intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
542 #endif /* CC_INTERP */
543
544 address l_addr = (address)l_scratch;
545 #ifdef _LP64
546 // On 64-bit the result for 1/8/16/32-bit result types is in the other
547 // word half
548 l_addr += wordSize/2;
549 #endif
550
551 switch (type) {
552 case T_OBJECT:
553 case T_ARRAY: {
554 #ifdef CC_INTERP
555 *oop_result = istate->_oop_temp;
556 #else
557 oop obj = (oop) at(interpreter_frame_oop_temp_offset);
558 assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
559 *oop_result = obj;
560 #endif // CC_INTERP
561 break;
562 }
563
564 case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
565 case T_BYTE : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
566 case T_CHAR : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
567 case T_SHORT : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
568 case T_INT : value_result->i = *(jint*)l_addr; break;
569 case T_LONG : value_result->j = *(jlong*)l_scratch; break;
570 case T_FLOAT : value_result->f = *(jfloat*)d_scratch; break;
571 case T_DOUBLE : value_result->d = *(jdouble*)d_scratch; break;
572 case T_VOID : /* Nothing to do */ break;
573 default : ShouldNotReachHere();
574 }
575 } else {
576 intptr_t* tos_addr = interpreter_frame_tos_address();
577
578 switch(type) {
579 case T_OBJECT:
580 case T_ARRAY: {
581 oop obj = (oop)*tos_addr;
582 assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
583 *oop_result = obj;
584 break;
585 }
586 case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
587 case T_BYTE : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
588 case T_CHAR : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
589 case T_SHORT : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
590 case T_INT : value_result->i = *(jint*)tos_addr; break;
591 case T_LONG : value_result->j = *(jlong*)tos_addr; break;
592 case T_FLOAT : value_result->f = *(jfloat*)tos_addr; break;
593 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
594 case T_VOID : /* Nothing to do */ break;
595 default : ShouldNotReachHere();
596 }
597 };
598
599 return type;
600 }
601
602 // Lesp pointer is one word lower than the top item on the stack.
603 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
604 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
605 return &interpreter_frame_tos_address()[index];
606 }