comparison src/cpu/sparc/vm/sharedRuntime_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_sharedRuntime_sparc.cpp.incl"
27
28 #define __ masm->
29
30 #ifdef COMPILER2
31 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
32 #endif // COMPILER2
33
34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
35 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
36 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
37 RuntimeStub* SharedRuntime::_wrong_method_blob;
38 RuntimeStub* SharedRuntime::_ic_miss_blob;
39 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
40 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
41 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
42
43 class RegisterSaver {
44
45 // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
46 // The Oregs are problematic. In the 32bit build the compiler can
47 // have O registers live with 64 bit quantities. A window save will
48 // cut the heads off of the registers. We have to do a very extensive
49 // stack dance to save and restore these properly.
50
51 // Note that the Oregs problem only exists if we block at either a polling
52 // page exception a compiled code safepoint that was not originally a call
53 // or deoptimize following one of these kinds of safepoints.
54
55 // Lots of registers to save. For all builds, a window save will preserve
56 // the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
57 // builds a window-save will preserve the %o registers. In the LION build
58 // we need to save the 64-bit %o registers which requires we save them
59 // before the window-save (as then they become %i registers and get their
60 // heads chopped off on interrupt). We have to save some %g registers here
61 // as well.
62 enum {
63 // This frame's save area. Includes extra space for the native call:
64 // vararg's layout space and the like. Briefly holds the caller's
65 // register save area.
66 call_args_area = frame::register_save_words_sp_offset +
67 frame::memory_parameter_word_sp_offset*wordSize,
68 // Make sure save locations are always 8 byte aligned.
69 // can't use round_to because it doesn't produce compile time constant
70 start_of_extra_save_area = ((call_args_area + 7) & ~7),
71 g1_offset = start_of_extra_save_area, // g-regs needing saving
72 g3_offset = g1_offset+8,
73 g4_offset = g3_offset+8,
74 g5_offset = g4_offset+8,
75 o0_offset = g5_offset+8,
76 o1_offset = o0_offset+8,
77 o2_offset = o1_offset+8,
78 o3_offset = o2_offset+8,
79 o4_offset = o3_offset+8,
80 o5_offset = o4_offset+8,
81 start_of_flags_save_area = o5_offset+8,
82 ccr_offset = start_of_flags_save_area,
83 fsr_offset = ccr_offset + 8,
84 d00_offset = fsr_offset+8, // Start of float save area
85 register_save_size = d00_offset+8*32
86 };
87
88
89 public:
90
91 static int Oexception_offset() { return o0_offset; };
92 static int G3_offset() { return g3_offset; };
93 static int G5_offset() { return g5_offset; };
94 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
95 static void restore_live_registers(MacroAssembler* masm);
96
97 // During deoptimization only the result register need to be restored
98 // all the other values have already been extracted.
99
100 static void restore_result_registers(MacroAssembler* masm);
101 };
102
103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
104 // Record volatile registers as callee-save values in an OopMap so their save locations will be
105 // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
106 // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
107 // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
108 // (as the stub's I's) when the runtime routine called by the stub creates its frame.
109 int i;
110 // Always make the frame size 16 bytr aligned.
111 int frame_size = round_to(additional_frame_words + register_save_size, 16);
112 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
113 int frame_size_in_slots = frame_size / sizeof(jint);
114 // CodeBlob frame size is in words.
115 *total_frame_words = frame_size / wordSize;
116 // OopMap* map = new OopMap(*total_frame_words, 0);
117 OopMap* map = new OopMap(frame_size_in_slots, 0);
118
119 #if !defined(_LP64)
120
121 // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
122 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
123 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
124 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
125 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
126 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
127 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
128 #endif /* _LP64 */
129
130 __ save(SP, -frame_size, SP);
131
132 #ifndef _LP64
133 // Reload the 64 bit Oregs. Although they are now Iregs we load them
134 // to Oregs here to avoid interrupts cutting off their heads
135
136 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
137 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
138 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
139 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
140 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
141 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
142
143 __ stx(O0, SP, o0_offset+STACK_BIAS);
144 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
145
146 __ stx(O1, SP, o1_offset+STACK_BIAS);
147
148 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
149
150 __ stx(O2, SP, o2_offset+STACK_BIAS);
151 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
152
153 __ stx(O3, SP, o3_offset+STACK_BIAS);
154 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
155
156 __ stx(O4, SP, o4_offset+STACK_BIAS);
157 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
158
159 __ stx(O5, SP, o5_offset+STACK_BIAS);
160 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
161 #endif /* _LP64 */
162
163 // Save the G's
164 __ stx(G1, SP, g1_offset+STACK_BIAS);
165 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + 4)>>2), G1->as_VMReg());
166
167 __ stx(G3, SP, g3_offset+STACK_BIAS);
168 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + 4)>>2), G3->as_VMReg());
169
170 __ stx(G4, SP, g4_offset+STACK_BIAS);
171 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + 4)>>2), G4->as_VMReg());
172
173 __ stx(G5, SP, g5_offset+STACK_BIAS);
174 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + 4)>>2), G5->as_VMReg());
175
176 // This is really a waste but we'll keep things as they were for now
177 if (true) {
178 #ifndef _LP64
179 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
180 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
181 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
182 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
183 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
184 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
185 #endif /* _LP64 */
186 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
187 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
188 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
189 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
190 }
191
192
193 // Save the flags
194 __ rdccr( G5 );
195 __ stx(G5, SP, ccr_offset+STACK_BIAS);
196 __ stxfsr(SP, fsr_offset+STACK_BIAS);
197
198 // Save all the FP registers
199 int offset = d00_offset;
200 for( int i=0; i<64; i+=2 ) {
201 FloatRegister f = as_FloatRegister(i);
202 __ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
203 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
204 if (true) {
205 map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
206 }
207 offset += sizeof(double);
208 }
209
210 // And we're done.
211
212 return map;
213 }
214
215
216 // Pop the current frame and restore all the registers that we
217 // saved.
218 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
219
220 // Restore all the FP registers
221 for( int i=0; i<64; i+=2 ) {
222 __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
223 }
224
225 __ ldx(SP, ccr_offset+STACK_BIAS, G1);
226 __ wrccr (G1) ;
227
228 // Restore the G's
229 // Note that G2 (AKA GThread) must be saved and restored separately.
230 // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
231
232 __ ldx(SP, g1_offset+STACK_BIAS, G1);
233 __ ldx(SP, g3_offset+STACK_BIAS, G3);
234 __ ldx(SP, g4_offset+STACK_BIAS, G4);
235 __ ldx(SP, g5_offset+STACK_BIAS, G5);
236
237
238 #if !defined(_LP64)
239 // Restore the 64-bit O's.
240 __ ldx(SP, o0_offset+STACK_BIAS, O0);
241 __ ldx(SP, o1_offset+STACK_BIAS, O1);
242 __ ldx(SP, o2_offset+STACK_BIAS, O2);
243 __ ldx(SP, o3_offset+STACK_BIAS, O3);
244 __ ldx(SP, o4_offset+STACK_BIAS, O4);
245 __ ldx(SP, o5_offset+STACK_BIAS, O5);
246
247 // And temporarily place them in TLS
248
249 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
250 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
251 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
252 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
253 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
254 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
255 #endif /* _LP64 */
256
257 // Restore flags
258
259 __ ldxfsr(SP, fsr_offset+STACK_BIAS);
260
261 __ restore();
262
263 #if !defined(_LP64)
264 // Now reload the 64bit Oregs after we've restore the window.
265 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
266 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
267 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
268 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
269 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
270 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
271 #endif /* _LP64 */
272
273 }
274
275 // Pop the current frame and restore the registers that might be holding
276 // a result.
277 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
278
279 #if !defined(_LP64)
280 // 32bit build returns longs in G1
281 __ ldx(SP, g1_offset+STACK_BIAS, G1);
282
283 // Retrieve the 64-bit O's.
284 __ ldx(SP, o0_offset+STACK_BIAS, O0);
285 __ ldx(SP, o1_offset+STACK_BIAS, O1);
286 // and save to TLS
287 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
288 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
289 #endif /* _LP64 */
290
291 __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
292
293 __ restore();
294
295 #if !defined(_LP64)
296 // Now reload the 64bit Oregs after we've restore the window.
297 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
298 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
299 #endif /* _LP64 */
300
301 }
302
303 // The java_calling_convention describes stack locations as ideal slots on
304 // a frame with no abi restrictions. Since we must observe abi restrictions
305 // (like the placement of the register window) the slots must be biased by
306 // the following value.
307 static int reg2offset(VMReg r) {
308 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
309 }
310
311 // ---------------------------------------------------------------------------
312 // Read the array of BasicTypes from a signature, and compute where the
313 // arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
314 // quantities. Values less than VMRegImpl::stack0 are registers, those above
315 // refer to 4-byte stack slots. All stack slots are based off of the window
316 // top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
317 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
318 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
319 // integer registers. Values 64-95 are the (32-bit only) float registers.
320 // Each 32-bit quantity is given its own number, so the integer registers
321 // (in either 32- or 64-bit builds) use 2 numbers. For example, there is
322 // an O0-low and an O0-high. Essentially, all int register numbers are doubled.
323
324 // Register results are passed in O0-O5, for outgoing call arguments. To
325 // convert to incoming arguments, convert all O's to I's. The regs array
326 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
327 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
328 // 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
329 // passed (used as a placeholder for the other half of longs and doubles in
330 // the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
331 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
332 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
333 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
334 // same VMRegPair.
335
336 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
337 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
338 // units regardless of build.
339
340
341 // ---------------------------------------------------------------------------
342 // The compiled Java calling convention. The Java convention always passes
343 // 64-bit values in adjacent aligned locations (either registers or stack),
344 // floats in float registers and doubles in aligned float pairs. Values are
345 // packed in the registers. There is no backing varargs store for values in
346 // registers. In the 32-bit build, longs are passed in G1 and G4 (cannot be
347 // passed in I's, because longs in I's get their heads chopped off at
348 // interrupt).
349 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
350 VMRegPair *regs,
351 int total_args_passed,
352 int is_outgoing) {
353 assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
354
355 // Convention is to pack the first 6 int/oop args into the first 6 registers
356 // (I0-I5), extras spill to the stack. Then pack the first 8 float args
357 // into F0-F7, extras spill to the stack. Then pad all register sets to
358 // align. Then put longs and doubles into the same registers as they fit,
359 // else spill to the stack.
360 const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
361 const int flt_reg_max = 8;
362 //
363 // Where 32-bit 1-reg longs start being passed
364 // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
365 // So make it look like we've filled all the G regs that c2 wants to use.
366 Register g_reg = TieredCompilation ? noreg : G1;
367
368 // Count int/oop and float args. See how many stack slots we'll need and
369 // where the longs & doubles will go.
370 int int_reg_cnt = 0;
371 int flt_reg_cnt = 0;
372 // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
373 // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
374 int stk_reg_pairs = 0;
375 for (int i = 0; i < total_args_passed; i++) {
376 switch (sig_bt[i]) {
377 case T_LONG: // LP64, longs compete with int args
378 assert(sig_bt[i+1] == T_VOID, "");
379 #ifdef _LP64
380 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
381 #endif
382 break;
383 case T_OBJECT:
384 case T_ARRAY:
385 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
386 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
387 #ifndef _LP64
388 else stk_reg_pairs++;
389 #endif
390 break;
391 case T_INT:
392 case T_SHORT:
393 case T_CHAR:
394 case T_BYTE:
395 case T_BOOLEAN:
396 if (int_reg_cnt < int_reg_max) int_reg_cnt++;
397 else stk_reg_pairs++;
398 break;
399 case T_FLOAT:
400 if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
401 else stk_reg_pairs++;
402 break;
403 case T_DOUBLE:
404 assert(sig_bt[i+1] == T_VOID, "");
405 break;
406 case T_VOID:
407 break;
408 default:
409 ShouldNotReachHere();
410 }
411 }
412
413 // This is where the longs/doubles start on the stack.
414 stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
415
416 int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
417 int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
418
419 // int stk_reg = frame::register_save_words*(wordSize>>2);
420 // int stk_reg = SharedRuntime::out_preserve_stack_slots();
421 int stk_reg = 0;
422 int int_reg = 0;
423 int flt_reg = 0;
424
425 // Now do the signature layout
426 for (int i = 0; i < total_args_passed; i++) {
427 switch (sig_bt[i]) {
428 case T_INT:
429 case T_SHORT:
430 case T_CHAR:
431 case T_BYTE:
432 case T_BOOLEAN:
433 #ifndef _LP64
434 case T_OBJECT:
435 case T_ARRAY:
436 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
437 #endif // _LP64
438 if (int_reg < int_reg_max) {
439 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
440 regs[i].set1(r->as_VMReg());
441 } else {
442 regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
443 }
444 break;
445
446 #ifdef _LP64
447 case T_OBJECT:
448 case T_ARRAY:
449 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
450 if (int_reg < int_reg_max) {
451 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
452 regs[i].set2(r->as_VMReg());
453 } else {
454 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
455 stk_reg_pairs += 2;
456 }
457 break;
458 #endif // _LP64
459
460 case T_LONG:
461 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
462 #ifdef COMPILER2
463 #ifdef _LP64
464 // Can't be tiered (yet)
465 if (int_reg < int_reg_max) {
466 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
467 regs[i].set2(r->as_VMReg());
468 } else {
469 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
470 stk_reg_pairs += 2;
471 }
472 #else
473 // For 32-bit build, can't pass longs in O-regs because they become
474 // I-regs and get trashed. Use G-regs instead. G1 and G4 are almost
475 // spare and available. This convention isn't used by the Sparc ABI or
476 // anywhere else. If we're tiered then we don't use G-regs because c1
477 // can't deal with them as a "pair".
478 // G0: zero
479 // G1: 1st Long arg
480 // G2: global allocated to TLS
481 // G3: used in inline cache check
482 // G4: 2nd Long arg
483 // G5: used in inline cache check
484 // G6: used by OS
485 // G7: used by OS
486
487 if (g_reg == G1) {
488 regs[i].set2(G1->as_VMReg()); // This long arg in G1
489 g_reg = G4; // Where the next arg goes
490 } else if (g_reg == G4) {
491 regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
492 g_reg = noreg; // No more longs in registers
493 } else {
494 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
495 stk_reg_pairs += 2;
496 }
497 #endif // _LP64
498 #else // COMPILER2
499 if (int_reg_pairs + 1 < int_reg_max) {
500 if (is_outgoing) {
501 regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
502 } else {
503 regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
504 }
505 int_reg_pairs += 2;
506 } else {
507 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
508 stk_reg_pairs += 2;
509 }
510 #endif // COMPILER2
511 break;
512
513 case T_FLOAT:
514 if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
515 else regs[i].set1( VMRegImpl::stack2reg(stk_reg++));
516 break;
517 case T_DOUBLE:
518 assert(sig_bt[i+1] == T_VOID, "expecting half");
519 if (flt_reg_pairs + 1 < flt_reg_max) {
520 regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
521 flt_reg_pairs += 2;
522 } else {
523 regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
524 stk_reg_pairs += 2;
525 }
526 break;
527 case T_VOID: regs[i].set_bad(); break; // Halves of longs & doubles
528 default:
529 ShouldNotReachHere();
530 }
531 }
532
533 // retun the amount of stack space these arguments will need.
534 return stk_reg_pairs;
535
536 }
537
538 // Helper class mostly to avoid passing masm everywhere, and handle store
539 // displacement overflow logic for LP64
540 class AdapterGenerator {
541 MacroAssembler *masm;
542 #ifdef _LP64
543 Register Rdisp;
544 void set_Rdisp(Register r) { Rdisp = r; }
545 #endif // _LP64
546
547 void patch_callers_callsite();
548 void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
549
550 // base+st_off points to top of argument
551 int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
552 int next_arg_offset(const int st_off) {
553 return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
554 }
555
556 #ifdef _LP64
557 // On _LP64 argument slot values are loaded first into a register
558 // because they might not fit into displacement.
559 Register arg_slot(const int st_off);
560 Register next_arg_slot(const int st_off);
561 #else
562 int arg_slot(const int st_off) { return arg_offset(st_off); }
563 int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
564 #endif // _LP64
565
566 // Stores long into offset pointed to by base
567 void store_c2i_long(Register r, Register base,
568 const int st_off, bool is_stack);
569 void store_c2i_object(Register r, Register base,
570 const int st_off);
571 void store_c2i_int(Register r, Register base,
572 const int st_off);
573 void store_c2i_double(VMReg r_2,
574 VMReg r_1, Register base, const int st_off);
575 void store_c2i_float(FloatRegister f, Register base,
576 const int st_off);
577
578 public:
579 void gen_c2i_adapter(int total_args_passed,
580 // VMReg max_arg,
581 int comp_args_on_stack, // VMRegStackSlots
582 const BasicType *sig_bt,
583 const VMRegPair *regs,
584 Label& skip_fixup);
585 void gen_i2c_adapter(int total_args_passed,
586 // VMReg max_arg,
587 int comp_args_on_stack, // VMRegStackSlots
588 const BasicType *sig_bt,
589 const VMRegPair *regs);
590
591 AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
592 };
593
594
595 // Patch the callers callsite with entry to compiled code if it exists.
596 void AdapterGenerator::patch_callers_callsite() {
597 Label L;
598 __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
599 __ br_null(G3_scratch, false, __ pt, L);
600 // Schedule the branch target address early.
601 __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
602 // Call into the VM to patch the caller, then jump to compiled callee
603 __ save_frame(4); // Args in compiled layout; do not blow them
604
605 // Must save all the live Gregs the list is:
606 // G1: 1st Long arg (32bit build)
607 // G2: global allocated to TLS
608 // G3: used in inline cache check (scratch)
609 // G4: 2nd Long arg (32bit build);
610 // G5: used in inline cache check (methodOop)
611
612 // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
613
614 #ifdef _LP64
615 // mov(s,d)
616 __ mov(G1, L1);
617 __ mov(G4, L4);
618 __ mov(G5_method, L5);
619 __ mov(G5_method, O0); // VM needs target method
620 __ mov(I7, O1); // VM needs caller's callsite
621 // Must be a leaf call...
622 // can be very far once the blob has been relocated
623 Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
624 __ relocate(relocInfo::runtime_call_type);
625 __ jumpl_to(dest, O7);
626 __ delayed()->mov(G2_thread, L7_thread_cache);
627 __ mov(L7_thread_cache, G2_thread);
628 __ mov(L1, G1);
629 __ mov(L4, G4);
630 __ mov(L5, G5_method);
631 #else
632 __ stx(G1, FP, -8 + STACK_BIAS);
633 __ stx(G4, FP, -16 + STACK_BIAS);
634 __ mov(G5_method, L5);
635 __ mov(G5_method, O0); // VM needs target method
636 __ mov(I7, O1); // VM needs caller's callsite
637 // Must be a leaf call...
638 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
639 __ delayed()->mov(G2_thread, L7_thread_cache);
640 __ mov(L7_thread_cache, G2_thread);
641 __ ldx(FP, -8 + STACK_BIAS, G1);
642 __ ldx(FP, -16 + STACK_BIAS, G4);
643 __ mov(L5, G5_method);
644 __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
645 #endif /* _LP64 */
646
647 __ restore(); // Restore args
648 __ bind(L);
649 }
650
651 void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
652 Register scratch) {
653 if (TaggedStackInterpreter) {
654 int tag_off = st_off + Interpreter::tag_offset_in_bytes();
655 #ifdef _LP64
656 Register tag_slot = Rdisp;
657 __ set(tag_off, tag_slot);
658 #else
659 int tag_slot = tag_off;
660 #endif // _LP64
661 // have to store zero because local slots can be reused (rats!)
662 if (t == frame::TagValue) {
663 __ st_ptr(G0, base, tag_slot);
664 } else if (t == frame::TagCategory2) {
665 __ st_ptr(G0, base, tag_slot);
666 int next_tag_off = st_off - Interpreter::stackElementSize() +
667 Interpreter::tag_offset_in_bytes();
668 #ifdef _LP64
669 __ set(next_tag_off, tag_slot);
670 #else
671 tag_slot = next_tag_off;
672 #endif // _LP64
673 __ st_ptr(G0, base, tag_slot);
674 } else {
675 __ mov(t, scratch);
676 __ st_ptr(scratch, base, tag_slot);
677 }
678 }
679 }
680
681 #ifdef _LP64
682 Register AdapterGenerator::arg_slot(const int st_off) {
683 __ set( arg_offset(st_off), Rdisp);
684 return Rdisp;
685 }
686
687 Register AdapterGenerator::next_arg_slot(const int st_off){
688 __ set( next_arg_offset(st_off), Rdisp);
689 return Rdisp;
690 }
691 #endif // _LP64
692
693 // Stores long into offset pointed to by base
694 void AdapterGenerator::store_c2i_long(Register r, Register base,
695 const int st_off, bool is_stack) {
696 #ifdef COMPILER2
697 #ifdef _LP64
698 // In V9, longs are given 2 64-bit slots in the interpreter, but the
699 // data is passed in only 1 slot.
700 __ stx(r, base, next_arg_slot(st_off));
701 #else
702 // Misaligned store of 64-bit data
703 __ stw(r, base, arg_slot(st_off)); // lo bits
704 __ srlx(r, 32, r);
705 __ stw(r, base, next_arg_slot(st_off)); // hi bits
706 #endif // _LP64
707 #else
708 if (is_stack) {
709 // Misaligned store of 64-bit data
710 __ stw(r, base, arg_slot(st_off)); // lo bits
711 __ srlx(r, 32, r);
712 __ stw(r, base, next_arg_slot(st_off)); // hi bits
713 } else {
714 __ stw(r->successor(), base, arg_slot(st_off) ); // lo bits
715 __ stw(r , base, next_arg_slot(st_off)); // hi bits
716 }
717 #endif // COMPILER2
718 tag_c2i_arg(frame::TagCategory2, base, st_off, r);
719 }
720
721 void AdapterGenerator::store_c2i_object(Register r, Register base,
722 const int st_off) {
723 __ st_ptr (r, base, arg_slot(st_off));
724 tag_c2i_arg(frame::TagReference, base, st_off, r);
725 }
726
727 void AdapterGenerator::store_c2i_int(Register r, Register base,
728 const int st_off) {
729 __ st (r, base, arg_slot(st_off));
730 tag_c2i_arg(frame::TagValue, base, st_off, r);
731 }
732
733 // Stores into offset pointed to by base
734 void AdapterGenerator::store_c2i_double(VMReg r_2,
735 VMReg r_1, Register base, const int st_off) {
736 #ifdef _LP64
737 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
738 // data is passed in only 1 slot.
739 __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
740 #else
741 // Need to marshal 64-bit value from misaligned Lesp loads
742 __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
743 __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
744 #endif
745 tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
746 }
747
748 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
749 const int st_off) {
750 __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
751 tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
752 }
753
754 void AdapterGenerator::gen_c2i_adapter(
755 int total_args_passed,
756 // VMReg max_arg,
757 int comp_args_on_stack, // VMRegStackSlots
758 const BasicType *sig_bt,
759 const VMRegPair *regs,
760 Label& skip_fixup) {
761
762 // Before we get into the guts of the C2I adapter, see if we should be here
763 // at all. We've come from compiled code and are attempting to jump to the
764 // interpreter, which means the caller made a static call to get here
765 // (vcalls always get a compiled target if there is one). Check for a
766 // compiled target. If there is one, we need to patch the caller's call.
767 // However we will run interpreted if we come thru here. The next pass
768 // thru the call site will run compiled. If we ran compiled here then
769 // we can (theorectically) do endless i2c->c2i->i2c transitions during
770 // deopt/uncommon trap cycles. If we always go interpreted here then
771 // we can have at most one and don't need to play any tricks to keep
772 // from endlessly growing the stack.
773 //
774 // Actually if we detected that we had an i2c->c2i transition here we
775 // ought to be able to reset the world back to the state of the interpreted
776 // call and not bother building another interpreter arg area. We don't
777 // do that at this point.
778
779 patch_callers_callsite();
780
781 __ bind(skip_fixup);
782
783 // Since all args are passed on the stack, total_args_passed*wordSize is the
784 // space we need. Add in varargs area needed by the interpreter. Round up
785 // to stack alignment.
786 const int arg_size = total_args_passed * Interpreter::stackElementSize();
787 const int varargs_area =
788 (frame::varargs_offset - frame::register_save_words)*wordSize;
789 const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
790
791 int bias = STACK_BIAS;
792 const int interp_arg_offset = frame::varargs_offset*wordSize +
793 (total_args_passed-1)*Interpreter::stackElementSize();
794
795 Register base = SP;
796
797 #ifdef _LP64
798 // In the 64bit build because of wider slots and STACKBIAS we can run
799 // out of bits in the displacement to do loads and stores. Use g3 as
800 // temporary displacement.
801 if (! __ is_simm13(extraspace)) {
802 __ set(extraspace, G3_scratch);
803 __ sub(SP, G3_scratch, SP);
804 } else {
805 __ sub(SP, extraspace, SP);
806 }
807 set_Rdisp(G3_scratch);
808 #else
809 __ sub(SP, extraspace, SP);
810 #endif // _LP64
811
812 // First write G1 (if used) to where ever it must go
813 for (int i=0; i<total_args_passed; i++) {
814 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
815 VMReg r_1 = regs[i].first();
816 VMReg r_2 = regs[i].second();
817 if (r_1 == G1_scratch->as_VMReg()) {
818 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
819 store_c2i_object(G1_scratch, base, st_off);
820 } else if (sig_bt[i] == T_LONG) {
821 assert(!TieredCompilation, "should not use register args for longs");
822 store_c2i_long(G1_scratch, base, st_off, false);
823 } else {
824 store_c2i_int(G1_scratch, base, st_off);
825 }
826 }
827 }
828
829 // Now write the args into the outgoing interpreter space
830 for (int i=0; i<total_args_passed; i++) {
831 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
832 VMReg r_1 = regs[i].first();
833 VMReg r_2 = regs[i].second();
834 if (!r_1->is_valid()) {
835 assert(!r_2->is_valid(), "");
836 continue;
837 }
838 // Skip G1 if found as we did it first in order to free it up
839 if (r_1 == G1_scratch->as_VMReg()) {
840 continue;
841 }
842 #ifdef ASSERT
843 bool G1_forced = false;
844 #endif // ASSERT
845 if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
846 #ifdef _LP64
847 Register ld_off = Rdisp;
848 __ set(reg2offset(r_1) + extraspace + bias, ld_off);
849 #else
850 int ld_off = reg2offset(r_1) + extraspace + bias;
851 #ifdef ASSERT
852 G1_forced = true;
853 #endif // ASSERT
854 #endif // _LP64
855 r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
856 if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
857 else __ ldx(base, ld_off, G1_scratch);
858 }
859
860 if (r_1->is_Register()) {
861 Register r = r_1->as_Register()->after_restore();
862 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
863 store_c2i_object(r, base, st_off);
864 } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
865 if (TieredCompilation) {
866 assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
867 }
868 store_c2i_long(r, base, st_off, r_2->is_stack());
869 } else {
870 store_c2i_int(r, base, st_off);
871 }
872 } else {
873 assert(r_1->is_FloatRegister(), "");
874 if (sig_bt[i] == T_FLOAT) {
875 store_c2i_float(r_1->as_FloatRegister(), base, st_off);
876 } else {
877 assert(sig_bt[i] == T_DOUBLE, "wrong type");
878 store_c2i_double(r_2, r_1, base, st_off);
879 }
880 }
881 }
882
883 #ifdef _LP64
884 // Need to reload G3_scratch, used for temporary displacements.
885 __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
886
887 // Pass O5_savedSP as an argument to the interpreter.
888 // The interpreter will restore SP to this value before returning.
889 __ set(extraspace, G1);
890 __ add(SP, G1, O5_savedSP);
891 #else
892 // Pass O5_savedSP as an argument to the interpreter.
893 // The interpreter will restore SP to this value before returning.
894 __ add(SP, extraspace, O5_savedSP);
895 #endif // _LP64
896
897 __ mov((frame::varargs_offset)*wordSize -
898 1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
899 // Jump to the interpreter just as if interpreter was doing it.
900 __ jmpl(G3_scratch, 0, G0);
901 // Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
902 // (really L0) is in use by the compiled frame as a generic temp. However,
903 // the interpreter does not know where its args are without some kind of
904 // arg pointer being passed in. Pass it in Gargs.
905 __ delayed()->add(SP, G1, Gargs);
906 }
907
908 void AdapterGenerator::gen_i2c_adapter(
909 int total_args_passed,
910 // VMReg max_arg,
911 int comp_args_on_stack, // VMRegStackSlots
912 const BasicType *sig_bt,
913 const VMRegPair *regs) {
914
915 // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
916 // layout. Lesp was saved by the calling I-frame and will be restored on
917 // return. Meanwhile, outgoing arg space is all owned by the callee
918 // C-frame, so we can mangle it at will. After adjusting the frame size,
919 // hoist register arguments and repack other args according to the compiled
920 // code convention. Finally, end in a jump to the compiled code. The entry
921 // point address is the start of the buffer.
922
923 // We will only enter here from an interpreted frame and never from after
924 // passing thru a c2i. Azul allowed this but we do not. If we lose the
925 // race and use a c2i we will remain interpreted for the race loser(s).
926 // This removes all sorts of headaches on the x86 side and also eliminates
927 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
928
929 // As you can see from the list of inputs & outputs there are not a lot
930 // of temp registers to work with: mostly G1, G3 & G4.
931
932 // Inputs:
933 // G2_thread - TLS
934 // G5_method - Method oop
935 // O0 - Flag telling us to restore SP from O5
936 // O4_args - Pointer to interpreter's args
937 // O5 - Caller's saved SP, to be restored if needed
938 // O6 - Current SP!
939 // O7 - Valid return address
940 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
941
942 // Outputs:
943 // G2_thread - TLS
944 // G1, G4 - Outgoing long args in 32-bit build
945 // O0-O5 - Outgoing args in compiled layout
946 // O6 - Adjusted or restored SP
947 // O7 - Valid return address
948 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
949 // F0-F7 - more outgoing args
950
951
952 // O4 is about to get loaded up with compiled callee's args
953 __ sub(Gargs, BytesPerWord, Gargs);
954
955 #ifdef ASSERT
956 {
957 // on entry OsavedSP and SP should be equal
958 Label ok;
959 __ cmp(O5_savedSP, SP);
960 __ br(Assembler::equal, false, Assembler::pt, ok);
961 __ delayed()->nop();
962 __ stop("I5_savedSP not set");
963 __ should_not_reach_here();
964 __ bind(ok);
965 }
966 #endif
967
968 // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
969 // WITH O7 HOLDING A VALID RETURN PC
970 //
971 // | |
972 // : java stack :
973 // | |
974 // +--------------+ <--- start of outgoing args
975 // | receiver | |
976 // : rest of args : |---size is java-arg-words
977 // | | |
978 // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
979 // | | |
980 // : unused : |---Space for max Java stack, plus stack alignment
981 // | | |
982 // +--------------+ <--- SP + 16*wordsize
983 // | |
984 // : window :
985 // | |
986 // +--------------+ <--- SP
987
988 // WE REPACK THE STACK. We use the common calling convention layout as
989 // discovered by calling SharedRuntime::calling_convention. We assume it
990 // causes an arbitrary shuffle of memory, which may require some register
991 // temps to do the shuffle. We hope for (and optimize for) the case where
992 // temps are not needed. We may have to resize the stack slightly, in case
993 // we need alignment padding (32-bit interpreter can pass longs & doubles
994 // misaligned, but the compilers expect them aligned).
995 //
996 // | |
997 // : java stack :
998 // | |
999 // +--------------+ <--- start of outgoing args
1000 // | pad, align | |
1001 // +--------------+ |
1002 // | ints, floats | |---Outgoing stack args, packed low.
1003 // +--------------+ | First few args in registers.
1004 // : doubles : |
1005 // | longs | |
1006 // +--------------+ <--- SP' + 16*wordsize
1007 // | |
1008 // : window :
1009 // | |
1010 // +--------------+ <--- SP'
1011
1012 // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
1013 // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
1014 // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
1015
1016 // Cut-out for having no stack args. Since up to 6 args are passed
1017 // in registers, we will commonly have no stack args.
1018 if (comp_args_on_stack > 0) {
1019
1020 // Convert VMReg stack slots to words.
1021 int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1022 // Round up to miminum stack alignment, in wordSize
1023 comp_words_on_stack = round_to(comp_words_on_stack, 2);
1024 // Now compute the distance from Lesp to SP. This calculation does not
1025 // include the space for total_args_passed because Lesp has not yet popped
1026 // the arguments.
1027 __ sub(SP, (comp_words_on_stack)*wordSize, SP);
1028 }
1029
1030 // Will jump to the compiled code just as if compiled code was doing it.
1031 // Pre-load the register-jump target early, to schedule it better.
1032 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1033
1034 // Now generate the shuffle code. Pick up all register args and move the
1035 // rest through G1_scratch.
1036 for (int i=0; i<total_args_passed; i++) {
1037 if (sig_bt[i] == T_VOID) {
1038 // Longs and doubles are passed in native word order, but misaligned
1039 // in the 32-bit build.
1040 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1041 continue;
1042 }
1043
1044 // Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
1045 // 32-bit build and aligned in the 64-bit build. Look for the obvious
1046 // ldx/lddf optimizations.
1047
1048 // Load in argument order going down.
1049 const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1050 #ifdef _LP64
1051 set_Rdisp(G1_scratch);
1052 #endif // _LP64
1053
1054 VMReg r_1 = regs[i].first();
1055 VMReg r_2 = regs[i].second();
1056 if (!r_1->is_valid()) {
1057 assert(!r_2->is_valid(), "");
1058 continue;
1059 }
1060 if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
1061 r_1 = F8->as_VMReg(); // as part of the load/store shuffle
1062 if (r_2->is_valid()) r_2 = r_1->next();
1063 }
1064 if (r_1->is_Register()) { // Register argument
1065 Register r = r_1->as_Register()->after_restore();
1066 if (!r_2->is_valid()) {
1067 __ ld(Gargs, arg_slot(ld_off), r);
1068 } else {
1069 #ifdef _LP64
1070 // In V9, longs are given 2 64-bit slots in the interpreter, but the
1071 // data is passed in only 1 slot.
1072 Register slot = (sig_bt[i]==T_LONG) ?
1073 next_arg_slot(ld_off) : arg_slot(ld_off);
1074 __ ldx(Gargs, slot, r);
1075 #else
1076 // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
1077 // stack shuffle. Load the first 2 longs into G1/G4 later.
1078 #endif
1079 }
1080 } else {
1081 assert(r_1->is_FloatRegister(), "");
1082 if (!r_2->is_valid()) {
1083 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
1084 } else {
1085 #ifdef _LP64
1086 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
1087 // data is passed in only 1 slot. This code also handles longs that
1088 // are passed on the stack, but need a stack-to-stack move through a
1089 // spare float register.
1090 Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
1091 next_arg_slot(ld_off) : arg_slot(ld_off);
1092 __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
1093 #else
1094 // Need to marshal 64-bit value from misaligned Lesp loads
1095 __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
1096 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
1097 #endif
1098 }
1099 }
1100 // Was the argument really intended to be on the stack, but was loaded
1101 // into F8/F9?
1102 if (regs[i].first()->is_stack()) {
1103 assert(r_1->as_FloatRegister() == F8, "fix this code");
1104 // Convert stack slot to an SP offset
1105 int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
1106 // Store down the shuffled stack word. Target address _is_ aligned.
1107 if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
1108 else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
1109 }
1110 }
1111 bool made_space = false;
1112 #ifndef _LP64
1113 // May need to pick up a few long args in G1/G4
1114 bool g4_crushed = false;
1115 bool g3_crushed = false;
1116 for (int i=0; i<total_args_passed; i++) {
1117 if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
1118 // Load in argument order going down
1119 int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
1120 // Need to marshal 64-bit value from misaligned Lesp loads
1121 Register r = regs[i].first()->as_Register()->after_restore();
1122 if (r == G1 || r == G4) {
1123 assert(!g4_crushed, "ordering problem");
1124 if (r == G4){
1125 g4_crushed = true;
1126 __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
1127 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
1128 } else {
1129 // better schedule this way
1130 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
1131 __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
1132 }
1133 g3_crushed = true;
1134 __ sllx(r, 32, r);
1135 __ or3(G3_scratch, r, r);
1136 } else {
1137 assert(r->is_out(), "longs passed in two O registers");
1138 __ ld (Gargs, arg_slot(ld_off) , r->successor()); // Load lo bits
1139 __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
1140 }
1141 }
1142 }
1143 #endif
1144
1145 // Jump to the compiled code just as if compiled code was doing it.
1146 //
1147 #ifndef _LP64
1148 if (g3_crushed) {
1149 // Rats load was wasted, at least it is in cache...
1150 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
1151 }
1152 #endif /* _LP64 */
1153
1154 // 6243940 We might end up in handle_wrong_method if
1155 // the callee is deoptimized as we race thru here. If that
1156 // happens we don't want to take a safepoint because the
1157 // caller frame will look interpreted and arguments are now
1158 // "compiled" so it is much better to make this transition
1159 // invisible to the stack walking code. Unfortunately if
1160 // we try and find the callee by normal means a safepoint
1161 // is possible. So we stash the desired callee in the thread
1162 // and the vm will find there should this case occur.
1163 Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset()));
1164 __ st_ptr(G5_method, callee_target_addr);
1165
1166 if (StressNonEntrant) {
1167 // Open a big window for deopt failure
1168 __ save_frame(0);
1169 __ mov(G0, L0);
1170 Label loop;
1171 __ bind(loop);
1172 __ sub(L0, 1, L0);
1173 __ br_null(L0, false, Assembler::pt, loop);
1174 __ delayed()->nop();
1175
1176 __ restore();
1177 }
1178
1179
1180 __ jmpl(G3, 0, G0);
1181 __ delayed()->nop();
1182 }
1183
1184 // ---------------------------------------------------------------
1185 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1186 int total_args_passed,
1187 // VMReg max_arg,
1188 int comp_args_on_stack, // VMRegStackSlots
1189 const BasicType *sig_bt,
1190 const VMRegPair *regs) {
1191 address i2c_entry = __ pc();
1192
1193 AdapterGenerator agen(masm);
1194
1195 agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1196
1197
1198 // -------------------------------------------------------------------------
1199 // Generate a C2I adapter. On entry we know G5 holds the methodOop. The
1200 // args start out packed in the compiled layout. They need to be unpacked
1201 // into the interpreter layout. This will almost always require some stack
1202 // space. We grow the current (compiled) stack, then repack the args. We
1203 // finally end in a jump to the generic interpreter entry point. On exit
1204 // from the interpreter, the interpreter will restore our SP (lest the
1205 // compiled code, which relys solely on SP and not FP, get sick).
1206
1207 address c2i_unverified_entry = __ pc();
1208 Label skip_fixup;
1209 {
1210 #if !defined(_LP64) && defined(COMPILER2)
1211 Register R_temp = L0; // another scratch register
1212 #else
1213 Register R_temp = G1; // another scratch register
1214 #endif
1215
1216 Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub());
1217
1218 __ verify_oop(O0);
1219 __ verify_oop(G5_method);
1220 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
1221 __ verify_oop(G3_scratch);
1222
1223 #if !defined(_LP64) && defined(COMPILER2)
1224 __ save(SP, -frame::register_save_words*wordSize, SP);
1225 __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1226 __ verify_oop(R_temp);
1227 __ cmp(G3_scratch, R_temp);
1228 __ restore();
1229 #else
1230 __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
1231 __ verify_oop(R_temp);
1232 __ cmp(G3_scratch, R_temp);
1233 #endif
1234
1235 Label ok, ok2;
1236 __ brx(Assembler::equal, false, Assembler::pt, ok);
1237 __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
1238 __ jump_to(ic_miss);
1239 __ delayed()->nop();
1240
1241 __ bind(ok);
1242 // Method might have been compiled since the call site was patched to
1243 // interpreted if that is the case treat it as a miss so we can get
1244 // the call site corrected.
1245 __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
1246 __ bind(ok2);
1247 __ br_null(G3_scratch, false, __ pt, skip_fixup);
1248 __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
1249 __ jump_to(ic_miss);
1250 __ delayed()->nop();
1251
1252 }
1253
1254 address c2i_entry = __ pc();
1255
1256 agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1257
1258 __ flush();
1259 return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
1260
1261 }
1262
1263 // Helper function for native calling conventions
1264 static VMReg int_stk_helper( int i ) {
1265 // Bias any stack based VMReg we get by ignoring the window area
1266 // but not the register parameter save area.
1267 //
1268 // This is strange for the following reasons. We'd normally expect
1269 // the calling convention to return an VMReg for a stack slot
1270 // completely ignoring any abi reserved area. C2 thinks of that
1271 // abi area as only out_preserve_stack_slots. This does not include
1272 // the area allocated by the C abi to store down integer arguments
1273 // because the java calling convention does not use it. So
1274 // since c2 assumes that there are only out_preserve_stack_slots
1275 // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1276 // location the c calling convention must add in this bias amount
1277 // to make up for the fact that the out_preserve_stack_slots is
1278 // insufficient for C calls. What a mess. I sure hope those 6
1279 // stack words were worth it on every java call!
1280
1281 // Another way of cleaning this up would be for out_preserve_stack_slots
1282 // to take a parameter to say whether it was C or java calling conventions.
1283 // Then things might look a little better (but not much).
1284
1285 int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1286 if( mem_parm_offset < 0 ) {
1287 return as_oRegister(i)->as_VMReg();
1288 } else {
1289 int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1290 // Now return a biased offset that will be correct when out_preserve_slots is added back in
1291 return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1292 }
1293 }
1294
1295
1296 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1297 VMRegPair *regs,
1298 int total_args_passed) {
1299
1300 // Return the number of VMReg stack_slots needed for the args.
1301 // This value does not include an abi space (like register window
1302 // save area).
1303
1304 // The native convention is V8 if !LP64
1305 // The LP64 convention is the V9 convention which is slightly more sane.
1306
1307 // We return the amount of VMReg stack slots we need to reserve for all
1308 // the arguments NOT counting out_preserve_stack_slots. Since we always
1309 // have space for storing at least 6 registers to memory we start with that.
1310 // See int_stk_helper for a further discussion.
1311 int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1312
1313 #ifdef _LP64
1314 // V9 convention: All things "as-if" on double-wide stack slots.
1315 // Hoist any int/ptr/long's in the first 6 to int regs.
1316 // Hoist any flt/dbl's in the first 16 dbl regs.
1317 int j = 0; // Count of actual args, not HALVES
1318 for( int i=0; i<total_args_passed; i++, j++ ) {
1319 switch( sig_bt[i] ) {
1320 case T_BOOLEAN:
1321 case T_BYTE:
1322 case T_CHAR:
1323 case T_INT:
1324 case T_SHORT:
1325 regs[i].set1( int_stk_helper( j ) ); break;
1326 case T_LONG:
1327 assert( sig_bt[i+1] == T_VOID, "expecting half" );
1328 case T_ADDRESS: // raw pointers, like current thread, for VM calls
1329 case T_ARRAY:
1330 case T_OBJECT:
1331 regs[i].set2( int_stk_helper( j ) );
1332 break;
1333 case T_FLOAT:
1334 if ( j < 16 ) {
1335 // V9ism: floats go in ODD registers
1336 regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1337 } else {
1338 // V9ism: floats go in ODD stack slot
1339 regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1340 }
1341 break;
1342 case T_DOUBLE:
1343 assert( sig_bt[i+1] == T_VOID, "expecting half" );
1344 if ( j < 16 ) {
1345 // V9ism: doubles go in EVEN/ODD regs
1346 regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1347 } else {
1348 // V9ism: doubles go in EVEN/ODD stack slots
1349 regs[i].set2(VMRegImpl::stack2reg(j<<1));
1350 }
1351 break;
1352 case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES
1353 default:
1354 ShouldNotReachHere();
1355 }
1356 if (regs[i].first()->is_stack()) {
1357 int off = regs[i].first()->reg2stack();
1358 if (off > max_stack_slots) max_stack_slots = off;
1359 }
1360 if (regs[i].second()->is_stack()) {
1361 int off = regs[i].second()->reg2stack();
1362 if (off > max_stack_slots) max_stack_slots = off;
1363 }
1364 }
1365
1366 #else // _LP64
1367 // V8 convention: first 6 things in O-regs, rest on stack.
1368 // Alignment is willy-nilly.
1369 for( int i=0; i<total_args_passed; i++ ) {
1370 switch( sig_bt[i] ) {
1371 case T_ADDRESS: // raw pointers, like current thread, for VM calls
1372 case T_ARRAY:
1373 case T_BOOLEAN:
1374 case T_BYTE:
1375 case T_CHAR:
1376 case T_FLOAT:
1377 case T_INT:
1378 case T_OBJECT:
1379 case T_SHORT:
1380 regs[i].set1( int_stk_helper( i ) );
1381 break;
1382 case T_DOUBLE:
1383 case T_LONG:
1384 assert( sig_bt[i+1] == T_VOID, "expecting half" );
1385 regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1386 break;
1387 case T_VOID: regs[i].set_bad(); break;
1388 default:
1389 ShouldNotReachHere();
1390 }
1391 if (regs[i].first()->is_stack()) {
1392 int off = regs[i].first()->reg2stack();
1393 if (off > max_stack_slots) max_stack_slots = off;
1394 }
1395 if (regs[i].second()->is_stack()) {
1396 int off = regs[i].second()->reg2stack();
1397 if (off > max_stack_slots) max_stack_slots = off;
1398 }
1399 }
1400 #endif // _LP64
1401
1402 return round_to(max_stack_slots + 1, 2);
1403
1404 }
1405
1406
1407 // ---------------------------------------------------------------------------
1408 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1409 switch (ret_type) {
1410 case T_FLOAT:
1411 __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1412 break;
1413 case T_DOUBLE:
1414 __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1415 break;
1416 }
1417 }
1418
1419 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1420 switch (ret_type) {
1421 case T_FLOAT:
1422 __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1423 break;
1424 case T_DOUBLE:
1425 __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1426 break;
1427 }
1428 }
1429
1430 // Check and forward and pending exception. Thread is stored in
1431 // L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
1432 // is no exception handler. We merely pop this frame off and throw the
1433 // exception in the caller's frame.
1434 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1435 Label L;
1436 __ br_null(Rex_oop, false, Assembler::pt, L);
1437 __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1438 // Since this is a native call, we *know* the proper exception handler
1439 // without calling into the VM: it's the empty function. Just pop this
1440 // frame and then jump to forward_exception_entry; O7 will contain the
1441 // native caller's return PC.
1442 Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry());
1443 __ jump_to(exception_entry);
1444 __ delayed()->restore(); // Pop this frame off.
1445 __ bind(L);
1446 }
1447
1448 // A simple move of integer like type
1449 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1450 if (src.first()->is_stack()) {
1451 if (dst.first()->is_stack()) {
1452 // stack to stack
1453 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1454 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1455 } else {
1456 // stack to reg
1457 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1458 }
1459 } else if (dst.first()->is_stack()) {
1460 // reg to stack
1461 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1462 } else {
1463 __ mov(src.first()->as_Register(), dst.first()->as_Register());
1464 }
1465 }
1466
1467 // On 64 bit we will store integer like items to the stack as
1468 // 64 bits items (sparc abi) even though java would only store
1469 // 32bits for a parameter. On 32bit it will simply be 32 bits
1470 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1471 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1472 if (src.first()->is_stack()) {
1473 if (dst.first()->is_stack()) {
1474 // stack to stack
1475 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1476 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1477 } else {
1478 // stack to reg
1479 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1480 }
1481 } else if (dst.first()->is_stack()) {
1482 // reg to stack
1483 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1484 } else {
1485 __ mov(src.first()->as_Register(), dst.first()->as_Register());
1486 }
1487 }
1488
1489
1490 // An oop arg. Must pass a handle not the oop itself
1491 static void object_move(MacroAssembler* masm,
1492 OopMap* map,
1493 int oop_handle_offset,
1494 int framesize_in_slots,
1495 VMRegPair src,
1496 VMRegPair dst,
1497 bool is_receiver,
1498 int* receiver_offset) {
1499
1500 // must pass a handle. First figure out the location we use as a handle
1501
1502 if (src.first()->is_stack()) {
1503 // Oop is already on the stack
1504 Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1505 __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1506 __ ld_ptr(rHandle, 0, L4);
1507 #ifdef _LP64
1508 __ movr( Assembler::rc_z, L4, G0, rHandle );
1509 #else
1510 __ tst( L4 );
1511 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1512 #endif
1513 if (dst.first()->is_stack()) {
1514 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1515 }
1516 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1517 if (is_receiver) {
1518 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1519 }
1520 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1521 } else {
1522 // Oop is in an input register pass we must flush it to the stack
1523 const Register rOop = src.first()->as_Register();
1524 const Register rHandle = L5;
1525 int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1526 int offset = oop_slot*VMRegImpl::stack_slot_size;
1527 Label skip;
1528 __ st_ptr(rOop, SP, offset + STACK_BIAS);
1529 if (is_receiver) {
1530 *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1531 }
1532 map->set_oop(VMRegImpl::stack2reg(oop_slot));
1533 __ add(SP, offset + STACK_BIAS, rHandle);
1534 #ifdef _LP64
1535 __ movr( Assembler::rc_z, rOop, G0, rHandle );
1536 #else
1537 __ tst( rOop );
1538 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1539 #endif
1540
1541 if (dst.first()->is_stack()) {
1542 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1543 } else {
1544 __ mov(rHandle, dst.first()->as_Register());
1545 }
1546 }
1547 }
1548
1549 // A float arg may have to do float reg int reg conversion
1550 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1551 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1552
1553 if (src.first()->is_stack()) {
1554 if (dst.first()->is_stack()) {
1555 // stack to stack the easiest of the bunch
1556 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1557 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1558 } else {
1559 // stack to reg
1560 if (dst.first()->is_Register()) {
1561 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1562 } else {
1563 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1564 }
1565 }
1566 } else if (dst.first()->is_stack()) {
1567 // reg to stack
1568 if (src.first()->is_Register()) {
1569 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1570 } else {
1571 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1572 }
1573 } else {
1574 // reg to reg
1575 if (src.first()->is_Register()) {
1576 if (dst.first()->is_Register()) {
1577 // gpr -> gpr
1578 __ mov(src.first()->as_Register(), dst.first()->as_Register());
1579 } else {
1580 // gpr -> fpr
1581 __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1582 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1583 }
1584 } else if (dst.first()->is_Register()) {
1585 // fpr -> gpr
1586 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1587 __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1588 } else {
1589 // fpr -> fpr
1590 // In theory these overlap but the ordering is such that this is likely a nop
1591 if ( src.first() != dst.first()) {
1592 __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1593 }
1594 }
1595 }
1596 }
1597
1598 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1599 VMRegPair src_lo(src.first());
1600 VMRegPair src_hi(src.second());
1601 VMRegPair dst_lo(dst.first());
1602 VMRegPair dst_hi(dst.second());
1603 simple_move32(masm, src_lo, dst_lo);
1604 simple_move32(masm, src_hi, dst_hi);
1605 }
1606
1607 // A long move
1608 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1609
1610 // Do the simple ones here else do two int moves
1611 if (src.is_single_phys_reg() ) {
1612 if (dst.is_single_phys_reg()) {
1613 __ mov(src.first()->as_Register(), dst.first()->as_Register());
1614 } else {
1615 // split src into two separate registers
1616 // Remember hi means hi address or lsw on sparc
1617 // Move msw to lsw
1618 if (dst.second()->is_reg()) {
1619 // MSW -> MSW
1620 __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1621 // Now LSW -> LSW
1622 // this will only move lo -> lo and ignore hi
1623 VMRegPair split(dst.second());
1624 simple_move32(masm, src, split);
1625 } else {
1626 VMRegPair split(src.first(), L4->as_VMReg());
1627 // MSW -> MSW (lo ie. first word)
1628 __ srax(src.first()->as_Register(), 32, L4);
1629 split_long_move(masm, split, dst);
1630 }
1631 }
1632 } else if (dst.is_single_phys_reg()) {
1633 if (src.is_adjacent_aligned_on_stack(2)) {
1634 __ ldd(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1635 } else {
1636 // dst is a single reg.
1637 // Remember lo is low address not msb for stack slots
1638 // and lo is the "real" register for registers
1639 // src is
1640
1641 VMRegPair split;
1642
1643 if (src.first()->is_reg()) {
1644 // src.lo (msw) is a reg, src.hi is stk/reg
1645 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1646 split.set_pair(dst.first(), src.first());
1647 } else {
1648 // msw is stack move to L5
1649 // lsw is stack move to dst.lo (real reg)
1650 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1651 split.set_pair(dst.first(), L5->as_VMReg());
1652 }
1653
1654 // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1655 // msw -> src.lo/L5, lsw -> dst.lo
1656 split_long_move(masm, src, split);
1657
1658 // So dst now has the low order correct position the
1659 // msw half
1660 __ sllx(split.first()->as_Register(), 32, L5);
1661
1662 const Register d = dst.first()->as_Register();
1663 __ or3(L5, d, d);
1664 }
1665 } else {
1666 // For LP64 we can probably do better.
1667 split_long_move(masm, src, dst);
1668 }
1669 }
1670
1671 // A double move
1672 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1673
1674 // The painful thing here is that like long_move a VMRegPair might be
1675 // 1: a single physical register
1676 // 2: two physical registers (v8)
1677 // 3: a physical reg [lo] and a stack slot [hi] (v8)
1678 // 4: two stack slots
1679
1680 // Since src is always a java calling convention we know that the src pair
1681 // is always either all registers or all stack (and aligned?)
1682
1683 // in a register [lo] and a stack slot [hi]
1684 if (src.first()->is_stack()) {
1685 if (dst.first()->is_stack()) {
1686 // stack to stack the easiest of the bunch
1687 // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1688 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1689 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1690 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1691 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1692 } else {
1693 // stack to reg
1694 if (dst.second()->is_stack()) {
1695 // stack -> reg, stack -> stack
1696 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1697 if (dst.first()->is_Register()) {
1698 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1699 } else {
1700 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1701 }
1702 // This was missing. (very rare case)
1703 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1704 } else {
1705 // stack -> reg
1706 // Eventually optimize for alignment QQQ
1707 if (dst.first()->is_Register()) {
1708 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1709 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1710 } else {
1711 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1712 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1713 }
1714 }
1715 }
1716 } else if (dst.first()->is_stack()) {
1717 // reg to stack
1718 if (src.first()->is_Register()) {
1719 // Eventually optimize for alignment QQQ
1720 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1721 if (src.second()->is_stack()) {
1722 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1723 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1724 } else {
1725 __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1726 }
1727 } else {
1728 // fpr to stack
1729 if (src.second()->is_stack()) {
1730 ShouldNotReachHere();
1731 } else {
1732 // Is the stack aligned?
1733 if (reg2offset(dst.first()) & 0x7) {
1734 // No do as pairs
1735 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1736 __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1737 } else {
1738 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1739 }
1740 }
1741 }
1742 } else {
1743 // reg to reg
1744 if (src.first()->is_Register()) {
1745 if (dst.first()->is_Register()) {
1746 // gpr -> gpr
1747 __ mov(src.first()->as_Register(), dst.first()->as_Register());
1748 __ mov(src.second()->as_Register(), dst.second()->as_Register());
1749 } else {
1750 // gpr -> fpr
1751 // ought to be able to do a single store
1752 __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1753 __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1754 // ought to be able to do a single load
1755 __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1756 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1757 }
1758 } else if (dst.first()->is_Register()) {
1759 // fpr -> gpr
1760 // ought to be able to do a single store
1761 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1762 // ought to be able to do a single load
1763 // REMEMBER first() is low address not LSB
1764 __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1765 if (dst.second()->is_Register()) {
1766 __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1767 } else {
1768 __ ld(FP, -4 + STACK_BIAS, L4);
1769 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1770 }
1771 } else {
1772 // fpr -> fpr
1773 // In theory these overlap but the ordering is such that this is likely a nop
1774 if ( src.first() != dst.first()) {
1775 __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1776 }
1777 }
1778 }
1779 }
1780
1781 // Creates an inner frame if one hasn't already been created, and
1782 // saves a copy of the thread in L7_thread_cache
1783 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1784 if (!*already_created) {
1785 __ save_frame(0);
1786 // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1787 // Don't use save_thread because it smashes G2 and we merely want to save a
1788 // copy
1789 __ mov(G2_thread, L7_thread_cache);
1790 *already_created = true;
1791 }
1792 }
1793
1794 // ---------------------------------------------------------------------------
1795 // Generate a native wrapper for a given method. The method takes arguments
1796 // in the Java compiled code convention, marshals them to the native
1797 // convention (handlizes oops, etc), transitions to native, makes the call,
1798 // returns to java state (possibly blocking), unhandlizes any result and
1799 // returns.
1800 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1801 methodHandle method,
1802 int total_in_args,
1803 int comp_args_on_stack, // in VMRegStackSlots
1804 BasicType *in_sig_bt,
1805 VMRegPair *in_regs,
1806 BasicType ret_type) {
1807
1808
1809 // Native nmethod wrappers never take possesion of the oop arguments.
1810 // So the caller will gc the arguments. The only thing we need an
1811 // oopMap for is if the call is static
1812 //
1813 // An OopMap for lock (and class if static), and one for the VM call itself
1814 OopMapSet *oop_maps = new OopMapSet();
1815 intptr_t start = (intptr_t)__ pc();
1816
1817 // First thing make an ic check to see if we should even be here
1818 {
1819 Label L;
1820 const Register temp_reg = G3_scratch;
1821 Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
1822 __ verify_oop(O0);
1823 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
1824 __ cmp(temp_reg, G5_inline_cache_reg);
1825 __ brx(Assembler::equal, true, Assembler::pt, L);
1826 __ delayed()->nop();
1827
1828 __ jump_to(ic_miss, 0);
1829 __ delayed()->nop();
1830 __ align(CodeEntryAlignment);
1831 __ bind(L);
1832 }
1833
1834 int vep_offset = ((intptr_t)__ pc()) - start;
1835
1836 #ifdef COMPILER1
1837 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1838 // Object.hashCode can pull the hashCode from the header word
1839 // instead of doing a full VM transition once it's been computed.
1840 // Since hashCode is usually polymorphic at call sites we can't do
1841 // this optimization at the call site without a lot of work.
1842 Label slowCase;
1843 Register receiver = O0;
1844 Register result = O0;
1845 Register header = G3_scratch;
1846 Register hash = G3_scratch; // overwrite header value with hash value
1847 Register mask = G1; // to get hash field from header
1848
1849 // Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
1850 // We depend on hash_mask being at most 32 bits and avoid the use of
1851 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1852 // vm: see markOop.hpp.
1853 __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1854 __ sethi(markOopDesc::hash_mask, mask);
1855 __ btst(markOopDesc::unlocked_value, header);
1856 __ br(Assembler::zero, false, Assembler::pn, slowCase);
1857 if (UseBiasedLocking) {
1858 // Check if biased and fall through to runtime if so
1859 __ delayed()->nop();
1860 __ btst(markOopDesc::biased_lock_bit_in_place, header);
1861 __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1862 }
1863 __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1864
1865 // Check for a valid (non-zero) hash code and get its value.
1866 #ifdef _LP64
1867 __ srlx(header, markOopDesc::hash_shift, hash);
1868 #else
1869 __ srl(header, markOopDesc::hash_shift, hash);
1870 #endif
1871 __ andcc(hash, mask, hash);
1872 __ br(Assembler::equal, false, Assembler::pn, slowCase);
1873 __ delayed()->nop();
1874
1875 // leaf return.
1876 __ retl();
1877 __ delayed()->mov(hash, result);
1878 __ bind(slowCase);
1879 }
1880 #endif // COMPILER1
1881
1882
1883 // We have received a description of where all the java arg are located
1884 // on entry to the wrapper. We need to convert these args to where
1885 // the jni function will expect them. To figure out where they go
1886 // we convert the java signature to a C signature by inserting
1887 // the hidden arguments as arg[0] and possibly arg[1] (static method)
1888
1889 int total_c_args = total_in_args + 1;
1890 if (method->is_static()) {
1891 total_c_args++;
1892 }
1893
1894 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1895 VMRegPair * out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1896
1897 int argc = 0;
1898 out_sig_bt[argc++] = T_ADDRESS;
1899 if (method->is_static()) {
1900 out_sig_bt[argc++] = T_OBJECT;
1901 }
1902
1903 for (int i = 0; i < total_in_args ; i++ ) {
1904 out_sig_bt[argc++] = in_sig_bt[i];
1905 }
1906
1907 // Now figure out where the args must be stored and how much stack space
1908 // they require (neglecting out_preserve_stack_slots but space for storing
1909 // the 1st six register arguments). It's weird see int_stk_helper.
1910 //
1911 int out_arg_slots;
1912 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1913
1914 // Compute framesize for the wrapper. We need to handlize all oops in
1915 // registers. We must create space for them here that is disjoint from
1916 // the windowed save area because we have no control over when we might
1917 // flush the window again and overwrite values that gc has since modified.
1918 // (The live window race)
1919 //
1920 // We always just allocate 6 word for storing down these object. This allow
1921 // us to simply record the base and use the Ireg number to decide which
1922 // slot to use. (Note that the reg number is the inbound number not the
1923 // outbound number).
1924 // We must shuffle args to match the native convention, and include var-args space.
1925
1926 // Calculate the total number of stack slots we will need.
1927
1928 // First count the abi requirement plus all of the outgoing args
1929 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1930
1931 // Now the space for the inbound oop handle area
1932
1933 int oop_handle_offset = stack_slots;
1934 stack_slots += 6*VMRegImpl::slots_per_word;
1935
1936 // Now any space we need for handlizing a klass if static method
1937
1938 int oop_temp_slot_offset = 0;
1939 int klass_slot_offset = 0;
1940 int klass_offset = -1;
1941 int lock_slot_offset = 0;
1942 bool is_static = false;
1943
1944 if (method->is_static()) {
1945 klass_slot_offset = stack_slots;
1946 stack_slots += VMRegImpl::slots_per_word;
1947 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1948 is_static = true;
1949 }
1950
1951 // Plus a lock if needed
1952
1953 if (method->is_synchronized()) {
1954 lock_slot_offset = stack_slots;
1955 stack_slots += VMRegImpl::slots_per_word;
1956 }
1957
1958 // Now a place to save return value or as a temporary for any gpr -> fpr moves
1959 stack_slots += 2;
1960
1961 // Ok The space we have allocated will look like:
1962 //
1963 //
1964 // FP-> | |
1965 // |---------------------|
1966 // | 2 slots for moves |
1967 // |---------------------|
1968 // | lock box (if sync) |
1969 // |---------------------| <- lock_slot_offset
1970 // | klass (if static) |
1971 // |---------------------| <- klass_slot_offset
1972 // | oopHandle area |
1973 // |---------------------| <- oop_handle_offset
1974 // | outbound memory |
1975 // | based arguments |
1976 // | |
1977 // |---------------------|
1978 // | vararg area |
1979 // |---------------------|
1980 // | |
1981 // SP-> | out_preserved_slots |
1982 //
1983 //
1984
1985
1986 // Now compute actual number of stack words we need rounding to make
1987 // stack properly aligned.
1988 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
1989
1990 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1991
1992 // Generate stack overflow check before creating frame
1993 __ generate_stack_overflow_check(stack_size);
1994
1995 // Generate a new frame for the wrapper.
1996 __ save(SP, -stack_size, SP);
1997
1998 int frame_complete = ((intptr_t)__ pc()) - start;
1999
2000 __ verify_thread();
2001
2002
2003 //
2004 // We immediately shuffle the arguments so that any vm call we have to
2005 // make from here on out (sync slow path, jvmti, etc.) we will have
2006 // captured the oops from our caller and have a valid oopMap for
2007 // them.
2008
2009 // -----------------
2010 // The Grand Shuffle
2011 //
2012 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2013 // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2014 // the class mirror instead of a receiver. This pretty much guarantees that
2015 // register layout will not match. We ignore these extra arguments during
2016 // the shuffle. The shuffle is described by the two calling convention
2017 // vectors we have in our possession. We simply walk the java vector to
2018 // get the source locations and the c vector to get the destinations.
2019 // Because we have a new window and the argument registers are completely
2020 // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2021 // here.
2022
2023 // This is a trick. We double the stack slots so we can claim
2024 // the oops in the caller's frame. Since we are sure to have
2025 // more args than the caller doubling is enough to make
2026 // sure we can capture all the incoming oop args from the
2027 // caller.
2028 //
2029 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2030 int c_arg = total_c_args - 1;
2031 // Record sp-based slot for receiver on stack for non-static methods
2032 int receiver_offset = -1;
2033
2034 // We move the arguments backward because the floating point registers
2035 // destination will always be to a register with a greater or equal register
2036 // number or the stack.
2037
2038 #ifdef ASSERT
2039 bool reg_destroyed[RegisterImpl::number_of_registers];
2040 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2041 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2042 reg_destroyed[r] = false;
2043 }
2044 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2045 freg_destroyed[f] = false;
2046 }
2047
2048 #endif /* ASSERT */
2049
2050 for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
2051
2052 #ifdef ASSERT
2053 if (in_regs[i].first()->is_Register()) {
2054 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2055 } else if (in_regs[i].first()->is_FloatRegister()) {
2056 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2057 }
2058 if (out_regs[c_arg].first()->is_Register()) {
2059 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2060 } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2061 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2062 }
2063 #endif /* ASSERT */
2064
2065 switch (in_sig_bt[i]) {
2066 case T_ARRAY:
2067 case T_OBJECT:
2068 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2069 ((i == 0) && (!is_static)),
2070 &receiver_offset);
2071 break;
2072 case T_VOID:
2073 break;
2074
2075 case T_FLOAT:
2076 float_move(masm, in_regs[i], out_regs[c_arg]);
2077 break;
2078
2079 case T_DOUBLE:
2080 assert( i + 1 < total_in_args &&
2081 in_sig_bt[i + 1] == T_VOID &&
2082 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2083 double_move(masm, in_regs[i], out_regs[c_arg]);
2084 break;
2085
2086 case T_LONG :
2087 long_move(masm, in_regs[i], out_regs[c_arg]);
2088 break;
2089
2090 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2091
2092 default:
2093 move32_64(masm, in_regs[i], out_regs[c_arg]);
2094 }
2095 }
2096
2097 // Pre-load a static method's oop into O1. Used both by locking code and
2098 // the normal JNI call code.
2099 if (method->is_static()) {
2100 __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
2101
2102 // Now handlize the static class mirror in O1. It's known not-null.
2103 __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2104 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2105 __ add(SP, klass_offset + STACK_BIAS, O1);
2106 }
2107
2108
2109 const Register L6_handle = L6;
2110
2111 if (method->is_synchronized()) {
2112 __ mov(O1, L6_handle);
2113 }
2114
2115 // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2116 // except O6/O7. So if we must call out we must push a new frame. We immediately
2117 // push a new frame and flush the windows.
2118
2119 #ifdef _LP64
2120 intptr_t thepc = (intptr_t) __ pc();
2121 {
2122 address here = __ pc();
2123 // Call the next instruction
2124 __ call(here + 8, relocInfo::none);
2125 __ delayed()->nop();
2126 }
2127 #else
2128 intptr_t thepc = __ load_pc_address(O7, 0);
2129 #endif /* _LP64 */
2130
2131 // We use the same pc/oopMap repeatedly when we call out
2132 oop_maps->add_gc_map(thepc - start, map);
2133
2134 // O7 now has the pc loaded that we will use when we finally call to native.
2135
2136 // Save thread in L7; it crosses a bunch of VM calls below
2137 // Don't use save_thread because it smashes G2 and we merely
2138 // want to save a copy
2139 __ mov(G2_thread, L7_thread_cache);
2140
2141
2142 // If we create an inner frame once is plenty
2143 // when we create it we must also save G2_thread
2144 bool inner_frame_created = false;
2145
2146 // dtrace method entry support
2147 {
2148 SkipIfEqual skip_if(
2149 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2150 // create inner frame
2151 __ save_frame(0);
2152 __ mov(G2_thread, L7_thread_cache);
2153 __ set_oop_constant(JNIHandles::make_local(method()), O1);
2154 __ call_VM_leaf(L7_thread_cache,
2155 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2156 G2_thread, O1);
2157 __ restore();
2158 }
2159
2160 // We are in the jni frame unless saved_frame is true in which case
2161 // we are in one frame deeper (the "inner" frame). If we are in the
2162 // "inner" frames the args are in the Iregs and if the jni frame then
2163 // they are in the Oregs.
2164 // If we ever need to go to the VM (for locking, jvmti) then
2165 // we will always be in the "inner" frame.
2166
2167 // Lock a synchronized method
2168 int lock_offset = -1; // Set if locked
2169 if (method->is_synchronized()) {
2170 Register Roop = O1;
2171 const Register L3_box = L3;
2172
2173 create_inner_frame(masm, &inner_frame_created);
2174
2175 __ ld_ptr(I1, 0, O1);
2176 Label done;
2177
2178 lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2179 __ add(FP, lock_offset+STACK_BIAS, L3_box);
2180 #ifdef ASSERT
2181 if (UseBiasedLocking) {
2182 // making the box point to itself will make it clear it went unused
2183 // but also be obviously invalid
2184 __ st_ptr(L3_box, L3_box, 0);
2185 }
2186 #endif // ASSERT
2187 //
2188 // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2189 //
2190 __ compiler_lock_object(Roop, L1, L3_box, L2);
2191 __ br(Assembler::equal, false, Assembler::pt, done);
2192 __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2193
2194
2195 // None of the above fast optimizations worked so we have to get into the
2196 // slow case of monitor enter. Inline a special case of call_VM that
2197 // disallows any pending_exception.
2198 __ mov(Roop, O0); // Need oop in O0
2199 __ mov(L3_box, O1);
2200
2201 // Record last_Java_sp, in case the VM code releases the JVM lock.
2202
2203 __ set_last_Java_frame(FP, I7);
2204
2205 // do the call
2206 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2207 __ delayed()->mov(L7_thread_cache, O2);
2208
2209 __ restore_thread(L7_thread_cache); // restore G2_thread
2210 __ reset_last_Java_frame();
2211
2212 #ifdef ASSERT
2213 { Label L;
2214 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2215 __ br_null(O0, false, Assembler::pt, L);
2216 __ delayed()->nop();
2217 __ stop("no pending exception allowed on exit from IR::monitorenter");
2218 __ bind(L);
2219 }
2220 #endif
2221 __ bind(done);
2222 }
2223
2224
2225 // Finally just about ready to make the JNI call
2226
2227 __ flush_windows();
2228 if (inner_frame_created) {
2229 __ restore();
2230 } else {
2231 // Store only what we need from this frame
2232 // QQQ I think that non-v9 (like we care) we don't need these saves
2233 // either as the flush traps and the current window goes too.
2234 __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2235 __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2236 }
2237
2238 // get JNIEnv* which is first argument to native
2239
2240 __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2241
2242 // Use that pc we placed in O7 a while back as the current frame anchor
2243
2244 __ set_last_Java_frame(SP, O7);
2245
2246 // Transition from _thread_in_Java to _thread_in_native.
2247 __ set(_thread_in_native, G3_scratch);
2248 __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2249
2250 // We flushed the windows ages ago now mark them as flushed
2251
2252 // mark windows as flushed
2253 __ set(JavaFrameAnchor::flushed, G3_scratch);
2254
2255 Address flags(G2_thread,
2256 0,
2257 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
2258
2259 #ifdef _LP64
2260 Address dest(O7, method->native_function());
2261 __ relocate(relocInfo::runtime_call_type);
2262 __ jumpl_to(dest, O7);
2263 #else
2264 __ call(method->native_function(), relocInfo::runtime_call_type);
2265 #endif
2266 __ delayed()->st(G3_scratch, flags);
2267
2268 __ restore_thread(L7_thread_cache); // restore G2_thread
2269
2270 // Unpack native results. For int-types, we do any needed sign-extension
2271 // and move things into I0. The return value there will survive any VM
2272 // calls for blocking or unlocking. An FP or OOP result (handle) is done
2273 // specially in the slow-path code.
2274 switch (ret_type) {
2275 case T_VOID: break; // Nothing to do!
2276 case T_FLOAT: break; // Got it where we want it (unless slow-path)
2277 case T_DOUBLE: break; // Got it where we want it (unless slow-path)
2278 // In 64 bits build result is in O0, in O0, O1 in 32bit build
2279 case T_LONG:
2280 #ifndef _LP64
2281 __ mov(O1, I1);
2282 #endif
2283 // Fall thru
2284 case T_OBJECT: // Really a handle
2285 case T_ARRAY:
2286 case T_INT:
2287 __ mov(O0, I0);
2288 break;
2289 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2290 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
2291 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
2292 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
2293 break; // Cannot de-handlize until after reclaiming jvm_lock
2294 default:
2295 ShouldNotReachHere();
2296 }
2297
2298 // must we block?
2299
2300 // Block, if necessary, before resuming in _thread_in_Java state.
2301 // In order for GC to work, don't clear the last_Java_sp until after blocking.
2302 { Label no_block;
2303 Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
2304
2305 // Switch thread to "native transition" state before reading the synchronization state.
2306 // This additional state is necessary because reading and testing the synchronization
2307 // state is not atomic w.r.t. GC, as this scenario demonstrates:
2308 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2309 // VM thread changes sync state to synchronizing and suspends threads for GC.
2310 // Thread A is resumed to finish this native method, but doesn't block here since it
2311 // didn't see any synchronization is progress, and escapes.
2312 __ set(_thread_in_native_trans, G3_scratch);
2313 __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2314 if(os::is_MP()) {
2315 if (UseMembar) {
2316 // Force this write out before the read below
2317 __ membar(Assembler::StoreLoad);
2318 } else {
2319 // Write serialization page so VM thread can do a pseudo remote membar.
2320 // We use the current thread pointer to calculate a thread specific
2321 // offset to write to within the page. This minimizes bus traffic
2322 // due to cache line collision.
2323 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2324 }
2325 }
2326 __ load_contents(sync_state, G3_scratch);
2327 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2328
2329 Label L;
2330 Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
2331 __ br(Assembler::notEqual, false, Assembler::pn, L);
2332 __ delayed()->
2333 ld(suspend_state, G3_scratch);
2334 __ cmp(G3_scratch, 0);
2335 __ br(Assembler::equal, false, Assembler::pt, no_block);
2336 __ delayed()->nop();
2337 __ bind(L);
2338
2339 // Block. Save any potential method result value before the operation and
2340 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2341 // lets us share the oopMap we used when we went native rather the create
2342 // a distinct one for this pc
2343 //
2344 save_native_result(masm, ret_type, stack_slots);
2345 __ call_VM_leaf(L7_thread_cache,
2346 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2347 G2_thread);
2348
2349 // Restore any method result value
2350 restore_native_result(masm, ret_type, stack_slots);
2351 __ bind(no_block);
2352 }
2353
2354 // thread state is thread_in_native_trans. Any safepoint blocking has already
2355 // happened so we can now change state to _thread_in_Java.
2356
2357
2358 __ set(_thread_in_Java, G3_scratch);
2359 __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
2360
2361
2362 Label no_reguard;
2363 __ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch);
2364 __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
2365 __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
2366 __ delayed()->nop();
2367
2368 save_native_result(masm, ret_type, stack_slots);
2369 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2370 __ delayed()->nop();
2371
2372 __ restore_thread(L7_thread_cache); // restore G2_thread
2373 restore_native_result(masm, ret_type, stack_slots);
2374
2375 __ bind(no_reguard);
2376
2377 // Handle possible exception (will unlock if necessary)
2378
2379 // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2380
2381 // Unlock
2382 if (method->is_synchronized()) {
2383 Label done;
2384 Register I2_ex_oop = I2;
2385 const Register L3_box = L3;
2386 // Get locked oop from the handle we passed to jni
2387 __ ld_ptr(L6_handle, 0, L4);
2388 __ add(SP, lock_offset+STACK_BIAS, L3_box);
2389 // Must save pending exception around the slow-path VM call. Since it's a
2390 // leaf call, the pending exception (if any) can be kept in a register.
2391 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2392 // Now unlock
2393 // (Roop, Rmark, Rbox, Rscratch)
2394 __ compiler_unlock_object(L4, L1, L3_box, L2);
2395 __ br(Assembler::equal, false, Assembler::pt, done);
2396 __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2397
2398 // save and restore any potential method result value around the unlocking
2399 // operation. Will save in I0 (or stack for FP returns).
2400 save_native_result(masm, ret_type, stack_slots);
2401
2402 // Must clear pending-exception before re-entering the VM. Since this is
2403 // a leaf call, pending-exception-oop can be safely kept in a register.
2404 __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2405
2406 // slow case of monitor enter. Inline a special case of call_VM that
2407 // disallows any pending_exception.
2408 __ mov(L3_box, O1);
2409
2410 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2411 __ delayed()->mov(L4, O0); // Need oop in O0
2412
2413 __ restore_thread(L7_thread_cache); // restore G2_thread
2414
2415 #ifdef ASSERT
2416 { Label L;
2417 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2418 __ br_null(O0, false, Assembler::pt, L);
2419 __ delayed()->nop();
2420 __ stop("no pending exception allowed on exit from IR::monitorexit");
2421 __ bind(L);
2422 }
2423 #endif
2424 restore_native_result(masm, ret_type, stack_slots);
2425 // check_forward_pending_exception jump to forward_exception if any pending
2426 // exception is set. The forward_exception routine expects to see the
2427 // exception in pending_exception and not in a register. Kind of clumsy,
2428 // since all folks who branch to forward_exception must have tested
2429 // pending_exception first and hence have it in a register already.
2430 __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2431 __ bind(done);
2432 }
2433
2434 // Tell dtrace about this method exit
2435 {
2436 SkipIfEqual skip_if(
2437 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2438 save_native_result(masm, ret_type, stack_slots);
2439 __ set_oop_constant(JNIHandles::make_local(method()), O1);
2440 __ call_VM_leaf(L7_thread_cache,
2441 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2442 G2_thread, O1);
2443 restore_native_result(masm, ret_type, stack_slots);
2444 }
2445
2446 // Clear "last Java frame" SP and PC.
2447 __ verify_thread(); // G2_thread must be correct
2448 __ reset_last_Java_frame();
2449
2450 // Unpack oop result
2451 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2452 Label L;
2453 __ addcc(G0, I0, G0);
2454 __ brx(Assembler::notZero, true, Assembler::pt, L);
2455 __ delayed()->ld_ptr(I0, 0, I0);
2456 __ mov(G0, I0);
2457 __ bind(L);
2458 __ verify_oop(I0);
2459 }
2460
2461 // reset handle block
2462 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2463 __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2464
2465 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2466 check_forward_pending_exception(masm, G3_scratch);
2467
2468
2469 // Return
2470
2471 #ifndef _LP64
2472 if (ret_type == T_LONG) {
2473
2474 // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2475 __ sllx(I0, 32, G1); // Shift bits into high G1
2476 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
2477 __ or3 (I1, G1, G1); // OR 64 bits into G1
2478 }
2479 #endif
2480
2481 __ ret();
2482 __ delayed()->restore();
2483
2484 __ flush();
2485
2486 nmethod *nm = nmethod::new_native_nmethod(method,
2487 masm->code(),
2488 vep_offset,
2489 frame_complete,
2490 stack_slots / VMRegImpl::slots_per_word,
2491 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2492 in_ByteSize(lock_offset),
2493 oop_maps);
2494 return nm;
2495
2496 }
2497
2498 // this function returns the adjust size (in number of words) to a c2i adapter
2499 // activation for use during deoptimization
2500 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2501 assert(callee_locals >= callee_parameters,
2502 "test and remove; got more parms than locals");
2503 if (callee_locals < callee_parameters)
2504 return 0; // No adjustment for negative locals
2505 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
2506 return round_to(diff, WordsPerLong);
2507 }
2508
2509 // "Top of Stack" slots that may be unused by the calling convention but must
2510 // otherwise be preserved.
2511 // On Intel these are not necessary and the value can be zero.
2512 // On Sparc this describes the words reserved for storing a register window
2513 // when an interrupt occurs.
2514 uint SharedRuntime::out_preserve_stack_slots() {
2515 return frame::register_save_words * VMRegImpl::slots_per_word;
2516 }
2517
2518 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
2519 //
2520 // Common out the new frame generation for deopt and uncommon trap
2521 //
2522 Register G3pcs = G3_scratch; // Array of new pcs (input)
2523 Register Oreturn0 = O0;
2524 Register Oreturn1 = O1;
2525 Register O2UnrollBlock = O2;
2526 Register O3array = O3; // Array of frame sizes (input)
2527 Register O4array_size = O4; // number of frames (input)
2528 Register O7frame_size = O7; // number of frames (input)
2529
2530 __ ld_ptr(O3array, 0, O7frame_size);
2531 __ sub(G0, O7frame_size, O7frame_size);
2532 __ save(SP, O7frame_size, SP);
2533 __ ld_ptr(G3pcs, 0, I7); // load frame's new pc
2534
2535 #ifdef ASSERT
2536 // make sure that the frames are aligned properly
2537 #ifndef _LP64
2538 __ btst(wordSize*2-1, SP);
2539 __ breakpoint_trap(Assembler::notZero);
2540 #endif
2541 #endif
2542
2543 // Deopt needs to pass some extra live values from frame to frame
2544
2545 if (deopt) {
2546 __ mov(Oreturn0->after_save(), Oreturn0);
2547 __ mov(Oreturn1->after_save(), Oreturn1);
2548 }
2549
2550 __ mov(O4array_size->after_save(), O4array_size);
2551 __ sub(O4array_size, 1, O4array_size);
2552 __ mov(O3array->after_save(), O3array);
2553 __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
2554 __ add(G3pcs, wordSize, G3pcs); // point to next pc value
2555
2556 #ifdef ASSERT
2557 // trash registers to show a clear pattern in backtraces
2558 __ set(0xDEAD0000, I0);
2559 __ add(I0, 2, I1);
2560 __ add(I0, 4, I2);
2561 __ add(I0, 6, I3);
2562 __ add(I0, 8, I4);
2563 // Don't touch I5 could have valuable savedSP
2564 __ set(0xDEADBEEF, L0);
2565 __ mov(L0, L1);
2566 __ mov(L0, L2);
2567 __ mov(L0, L3);
2568 __ mov(L0, L4);
2569 __ mov(L0, L5);
2570
2571 // trash the return value as there is nothing to return yet
2572 __ set(0xDEAD0001, O7);
2573 #endif
2574
2575 __ mov(SP, O5_savedSP);
2576 }
2577
2578
2579 static void make_new_frames(MacroAssembler* masm, bool deopt) {
2580 //
2581 // loop through the UnrollBlock info and create new frames
2582 //
2583 Register G3pcs = G3_scratch;
2584 Register Oreturn0 = O0;
2585 Register Oreturn1 = O1;
2586 Register O2UnrollBlock = O2;
2587 Register O3array = O3;
2588 Register O4array_size = O4;
2589 Label loop;
2590
2591 // Before we make new frames, check to see if stack is available.
2592 // Do this after the caller's return address is on top of stack
2593 if (UseStackBanging) {
2594 // Get total frame size for interpreted frames
2595 __ ld(Address(O2UnrollBlock, 0,
2596 Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4);
2597 __ bang_stack_size(O4, O3, G3_scratch);
2598 }
2599
2600 __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size);
2601 __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs);
2602
2603 __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array);
2604
2605 // Adjust old interpreter frame to make space for new frame's extra java locals
2606 //
2607 // We capture the original sp for the transition frame only because it is needed in
2608 // order to properly calculate interpreter_sp_adjustment. Even though in real life
2609 // every interpreter frame captures a savedSP it is only needed at the transition
2610 // (fortunately). If we had to have it correct everywhere then we would need to
2611 // be told the sp_adjustment for each frame we create. If the frame size array
2612 // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
2613 // for each frame we create and keep up the illusion every where.
2614 //
2615
2616 __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7);
2617 __ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
2618 __ sub(SP, O7, SP);
2619
2620 #ifdef ASSERT
2621 // make sure that there is at least one entry in the array
2622 __ tst(O4array_size);
2623 __ breakpoint_trap(Assembler::zero);
2624 #endif
2625
2626 // Now push the new interpreter frames
2627 __ bind(loop);
2628
2629 // allocate a new frame, filling the registers
2630
2631 gen_new_frame(masm, deopt); // allocate an interpreter frame
2632
2633 __ tst(O4array_size);
2634 __ br(Assembler::notZero, false, Assembler::pn, loop);
2635 __ delayed()->add(O3array, wordSize, O3array);
2636 __ ld_ptr(G3pcs, 0, O7); // load final frame new pc
2637
2638 }
2639
2640 //------------------------------generate_deopt_blob----------------------------
2641 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
2642 // instead.
2643 void SharedRuntime::generate_deopt_blob() {
2644 // allocate space for the code
2645 ResourceMark rm;
2646 // setup code generation tools
2647 int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
2648 #ifdef _LP64
2649 CodeBuffer buffer("deopt_blob", 2100+pad, 512);
2650 #else
2651 // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
2652 // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
2653 CodeBuffer buffer("deopt_blob", 1600+pad, 512);
2654 #endif /* _LP64 */
2655 MacroAssembler* masm = new MacroAssembler(&buffer);
2656 FloatRegister Freturn0 = F0;
2657 Register Greturn1 = G1;
2658 Register Oreturn0 = O0;
2659 Register Oreturn1 = O1;
2660 Register O2UnrollBlock = O2;
2661 Register O3tmp = O3;
2662 Register I5exception_tmp = I5;
2663 Register G4exception_tmp = G4_scratch;
2664 int frame_size_words;
2665 Address saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS);
2666 #if !defined(_LP64) && defined(COMPILER2)
2667 Address saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
2668 #endif
2669 Label cont;
2670
2671 OopMapSet *oop_maps = new OopMapSet();
2672
2673 //
2674 // This is the entry point for code which is returning to a de-optimized
2675 // frame.
2676 // The steps taken by this frame are as follows:
2677 // - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
2678 // and all potentially live registers (at a pollpoint many registers can be live).
2679 //
2680 // - call the C routine: Deoptimization::fetch_unroll_info (this function
2681 // returns information about the number and size of interpreter frames
2682 // which are equivalent to the frame which is being deoptimized)
2683 // - deallocate the unpack frame, restoring only results values. Other
2684 // volatile registers will now be captured in the vframeArray as needed.
2685 // - deallocate the deoptimization frame
2686 // - in a loop using the information returned in the previous step
2687 // push new interpreter frames (take care to propagate the return
2688 // values through each new frame pushed)
2689 // - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
2690 // - call the C routine: Deoptimization::unpack_frames (this function
2691 // lays out values on the interpreter frame which was just created)
2692 // - deallocate the dummy unpack_frame
2693 // - ensure that all the return values are correctly set and then do
2694 // a return to the interpreter entry point
2695 //
2696 // Refer to the following methods for more information:
2697 // - Deoptimization::fetch_unroll_info
2698 // - Deoptimization::unpack_frames
2699
2700 OopMap* map = NULL;
2701
2702 int start = __ offset();
2703
2704 // restore G2, the trampoline destroyed it
2705 __ get_thread();
2706
2707 // On entry we have been called by the deoptimized nmethod with a call that
2708 // replaced the original call (or safepoint polling location) so the deoptimizing
2709 // pc is now in O7. Return values are still in the expected places
2710
2711 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
2712 __ ba(false, cont);
2713 __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
2714
2715 int exception_offset = __ offset() - start;
2716
2717 // restore G2, the trampoline destroyed it
2718 __ get_thread();
2719
2720 // On entry we have been jumped to by the exception handler (or exception_blob
2721 // for server). O0 contains the exception oop and O7 contains the original
2722 // exception pc. So if we push a frame here it will look to the
2723 // stack walking code (fetch_unroll_info) just like a normal call so
2724 // state will be extracted normally.
2725
2726 // save exception oop in JavaThread and fall through into the
2727 // exception_in_tls case since they are handled in same way except
2728 // for where the pending exception is kept.
2729 __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
2730
2731 //
2732 // Vanilla deoptimization with an exception pending in exception_oop
2733 //
2734 int exception_in_tls_offset = __ offset() - start;
2735
2736 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
2737 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
2738
2739 // Restore G2_thread
2740 __ get_thread();
2741
2742 #ifdef ASSERT
2743 {
2744 // verify that there is really an exception oop in exception_oop
2745 Label has_exception;
2746 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
2747 __ br_notnull(Oexception, false, Assembler::pt, has_exception);
2748 __ delayed()-> nop();
2749 __ stop("no exception in thread");
2750 __ bind(has_exception);
2751
2752 // verify that there is no pending exception
2753 Label no_pending_exception;
2754 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
2755 __ ld_ptr(exception_addr, Oexception);
2756 __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
2757 __ delayed()->nop();
2758 __ stop("must not have pending exception here");
2759 __ bind(no_pending_exception);
2760 }
2761 #endif
2762
2763 __ ba(false, cont);
2764 __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
2765
2766 //
2767 // Reexecute entry, similar to c2 uncommon trap
2768 //
2769 int reexecute_offset = __ offset() - start;
2770
2771 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
2772 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
2773
2774 __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
2775
2776 __ bind(cont);
2777
2778 __ set_last_Java_frame(SP, noreg);
2779
2780 // do the call by hand so we can get the oopmap
2781
2782 __ mov(G2_thread, L7_thread_cache);
2783 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
2784 __ delayed()->mov(G2_thread, O0);
2785
2786 // Set an oopmap for the call site this describes all our saved volatile registers
2787
2788 oop_maps->add_gc_map( __ offset()-start, map);
2789
2790 __ mov(L7_thread_cache, G2_thread);
2791
2792 __ reset_last_Java_frame();
2793
2794 // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
2795 // so this move will survive
2796
2797 __ mov(I5exception_tmp, G4exception_tmp);
2798
2799 __ mov(O0, O2UnrollBlock->after_save());
2800
2801 RegisterSaver::restore_result_registers(masm);
2802
2803 Label noException;
2804 __ cmp(G4exception_tmp, Deoptimization::Unpack_exception); // Was exception pending?
2805 __ br(Assembler::notEqual, false, Assembler::pt, noException);
2806 __ delayed()->nop();
2807
2808 // Move the pending exception from exception_oop to Oexception so
2809 // the pending exception will be picked up the interpreter.
2810 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
2811 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
2812 __ bind(noException);
2813
2814 // deallocate the deoptimization frame taking care to preserve the return values
2815 __ mov(Oreturn0, Oreturn0->after_save());
2816 __ mov(Oreturn1, Oreturn1->after_save());
2817 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
2818 __ restore();
2819
2820 // Allocate new interpreter frame(s) and possible c2i adapter frame
2821
2822 make_new_frames(masm, true);
2823
2824 // push a dummy "unpack_frame" taking care of float return values and
2825 // call Deoptimization::unpack_frames to have the unpacker layout
2826 // information in the interpreter frames just created and then return
2827 // to the interpreter entry point
2828 __ save(SP, -frame_size_words*wordSize, SP);
2829 __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
2830 #if !defined(_LP64)
2831 #if defined(COMPILER2)
2832 if (!TieredCompilation) {
2833 // 32-bit 1-register longs return longs in G1
2834 __ stx(Greturn1, saved_Greturn1_addr);
2835 }
2836 #endif
2837 __ set_last_Java_frame(SP, noreg);
2838 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
2839 #else
2840 // LP64 uses g4 in set_last_Java_frame
2841 __ mov(G4exception_tmp, O1);
2842 __ set_last_Java_frame(SP, G0);
2843 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
2844 #endif
2845 __ reset_last_Java_frame();
2846 __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
2847
2848 // In tiered we never use C2 to compile methods returning longs so
2849 // the result is where we expect it already.
2850
2851 #if !defined(_LP64) && defined(COMPILER2)
2852 // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
2853 // I0/I1 if the return value is long. In the tiered world there is
2854 // a mismatch between how C1 and C2 return longs compiles and so
2855 // currently compilation of methods which return longs is disabled
2856 // for C2 and so is this code. Eventually C1 and C2 will do the
2857 // same thing for longs in the tiered world.
2858 if (!TieredCompilation) {
2859 Label not_long;
2860 __ cmp(O0,T_LONG);
2861 __ br(Assembler::notEqual, false, Assembler::pt, not_long);
2862 __ delayed()->nop();
2863 __ ldd(saved_Greturn1_addr,I0);
2864 __ bind(not_long);
2865 }
2866 #endif
2867 __ ret();
2868 __ delayed()->restore();
2869
2870 masm->flush();
2871 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
2872 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2873 }
2874
2875 #ifdef COMPILER2
2876
2877 //------------------------------generate_uncommon_trap_blob--------------------
2878 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
2879 // instead.
2880 void SharedRuntime::generate_uncommon_trap_blob() {
2881 // allocate space for the code
2882 ResourceMark rm;
2883 // setup code generation tools
2884 int pad = VerifyThread ? 512 : 0;
2885 #ifdef _LP64
2886 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
2887 #else
2888 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
2889 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
2890 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
2891 #endif
2892 MacroAssembler* masm = new MacroAssembler(&buffer);
2893 Register O2UnrollBlock = O2;
2894 Register O3tmp = O3;
2895 Register O2klass_index = O2;
2896
2897 //
2898 // This is the entry point for all traps the compiler takes when it thinks
2899 // it cannot handle further execution of compilation code. The frame is
2900 // deoptimized in these cases and converted into interpreter frames for
2901 // execution
2902 // The steps taken by this frame are as follows:
2903 // - push a fake "unpack_frame"
2904 // - call the C routine Deoptimization::uncommon_trap (this function
2905 // packs the current compiled frame into vframe arrays and returns
2906 // information about the number and size of interpreter frames which
2907 // are equivalent to the frame which is being deoptimized)
2908 // - deallocate the "unpack_frame"
2909 // - deallocate the deoptimization frame
2910 // - in a loop using the information returned in the previous step
2911 // push interpreter frames;
2912 // - create a dummy "unpack_frame"
2913 // - call the C routine: Deoptimization::unpack_frames (this function
2914 // lays out values on the interpreter frame which was just created)
2915 // - deallocate the dummy unpack_frame
2916 // - return to the interpreter entry point
2917 //
2918 // Refer to the following methods for more information:
2919 // - Deoptimization::uncommon_trap
2920 // - Deoptimization::unpack_frame
2921
2922 // the unloaded class index is in O0 (first parameter to this blob)
2923
2924 // push a dummy "unpack_frame"
2925 // and call Deoptimization::uncommon_trap to pack the compiled frame into
2926 // vframe array and return the UnrollBlock information
2927 __ save_frame(0);
2928 __ set_last_Java_frame(SP, noreg);
2929 __ mov(I0, O2klass_index);
2930 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
2931 __ reset_last_Java_frame();
2932 __ mov(O0, O2UnrollBlock->after_save());
2933 __ restore();
2934
2935 // deallocate the deoptimized frame taking care to preserve the return values
2936 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
2937 __ restore();
2938
2939 // Allocate new interpreter frame(s) and possible c2i adapter frame
2940
2941 make_new_frames(masm, false);
2942
2943 // push a dummy "unpack_frame" taking care of float return values and
2944 // call Deoptimization::unpack_frames to have the unpacker layout
2945 // information in the interpreter frames just created and then return
2946 // to the interpreter entry point
2947 __ save_frame(0);
2948 __ set_last_Java_frame(SP, noreg);
2949 __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
2950 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
2951 __ reset_last_Java_frame();
2952 __ ret();
2953 __ delayed()->restore();
2954
2955 masm->flush();
2956 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
2957 }
2958
2959 #endif // COMPILER2
2960
2961 //------------------------------generate_handler_blob-------------------
2962 //
2963 // Generate a special Compile2Runtime blob that saves all registers, and sets
2964 // up an OopMap.
2965 //
2966 // This blob is jumped to (via a breakpoint and the signal handler) from a
2967 // safepoint in compiled code. On entry to this blob, O7 contains the
2968 // address in the original nmethod at which we should resume normal execution.
2969 // Thus, this blob looks like a subroutine which must preserve lots of
2970 // registers and return normally. Note that O7 is never register-allocated,
2971 // so it is guaranteed to be free here.
2972 //
2973
2974 // The hardest part of what this blob must do is to save the 64-bit %o
2975 // registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
2976 // an interrupt will chop off their heads. Making space in the caller's frame
2977 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
2978 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
2979 // SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
2980 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
2981 // Tricky, tricky, tricky...
2982
2983 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
2984 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2985
2986 // allocate space for the code
2987 ResourceMark rm;
2988 // setup code generation tools
2989 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
2990 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
2991 // even larger with TraceJumps
2992 int pad = TraceJumps ? 512 : 0;
2993 CodeBuffer buffer("handler_blob", 1600 + pad, 512);
2994 MacroAssembler* masm = new MacroAssembler(&buffer);
2995 int frame_size_words;
2996 OopMapSet *oop_maps = new OopMapSet();
2997 OopMap* map = NULL;
2998
2999 int start = __ offset();
3000
3001 // If this causes a return before the processing, then do a "restore"
3002 if (cause_return) {
3003 __ restore();
3004 } else {
3005 // Make it look like we were called via the poll
3006 // so that frame constructor always sees a valid return address
3007 __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3008 __ sub(O7, frame::pc_return_offset, O7);
3009 }
3010
3011 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3012
3013 // setup last_Java_sp (blows G4)
3014 __ set_last_Java_frame(SP, noreg);
3015
3016 // call into the runtime to handle illegal instructions exception
3017 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3018 __ mov(G2_thread, O0);
3019 __ save_thread(L7_thread_cache);
3020 __ call(call_ptr);
3021 __ delayed()->nop();
3022
3023 // Set an oopmap for the call site.
3024 // We need this not only for callee-saved registers, but also for volatile
3025 // registers that the compiler might be keeping live across a safepoint.
3026
3027 oop_maps->add_gc_map( __ offset() - start, map);
3028
3029 __ restore_thread(L7_thread_cache);
3030 // clear last_Java_sp
3031 __ reset_last_Java_frame();
3032
3033 // Check for exceptions
3034 Label pending;
3035
3036 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3037 __ tst(O1);
3038 __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3039 __ delayed()->nop();
3040
3041 RegisterSaver::restore_live_registers(masm);
3042
3043 // We are back the the original state on entry and ready to go.
3044
3045 __ retl();
3046 __ delayed()->nop();
3047
3048 // Pending exception after the safepoint
3049
3050 __ bind(pending);
3051
3052 RegisterSaver::restore_live_registers(masm);
3053
3054 // We are back the the original state on entry.
3055
3056 // Tail-call forward_exception_entry, with the issuing PC in O7,
3057 // so it looks like the original nmethod called forward_exception_entry.
3058 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3059 __ JMP(O0, 0);
3060 __ delayed()->nop();
3061
3062 // -------------
3063 // make sure all code is generated
3064 masm->flush();
3065
3066 // return exception blob
3067 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3068 }
3069
3070 //
3071 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3072 //
3073 // Generate a stub that calls into vm to find out the proper destination
3074 // of a java call. All the argument registers are live at this point
3075 // but since this is generic code we don't know what they are and the caller
3076 // must do any gc of the args.
3077 //
3078 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3079 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3080
3081 // allocate space for the code
3082 ResourceMark rm;
3083 // setup code generation tools
3084 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3085 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3086 // even larger with TraceJumps
3087 int pad = TraceJumps ? 512 : 0;
3088 CodeBuffer buffer(name, 1600 + pad, 512);
3089 MacroAssembler* masm = new MacroAssembler(&buffer);
3090 int frame_size_words;
3091 OopMapSet *oop_maps = new OopMapSet();
3092 OopMap* map = NULL;
3093
3094 int start = __ offset();
3095
3096 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3097
3098 int frame_complete = __ offset();
3099
3100 // setup last_Java_sp (blows G4)
3101 __ set_last_Java_frame(SP, noreg);
3102
3103 // call into the runtime to handle illegal instructions exception
3104 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3105 __ mov(G2_thread, O0);
3106 __ save_thread(L7_thread_cache);
3107 __ call(destination, relocInfo::runtime_call_type);
3108 __ delayed()->nop();
3109
3110 // O0 contains the address we are going to jump to assuming no exception got installed
3111
3112 // Set an oopmap for the call site.
3113 // We need this not only for callee-saved registers, but also for volatile
3114 // registers that the compiler might be keeping live across a safepoint.
3115
3116 oop_maps->add_gc_map( __ offset() - start, map);
3117
3118 __ restore_thread(L7_thread_cache);
3119 // clear last_Java_sp
3120 __ reset_last_Java_frame();
3121
3122 // Check for exceptions
3123 Label pending;
3124
3125 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3126 __ tst(O1);
3127 __ brx(Assembler::notEqual, true, Assembler::pn, pending);
3128 __ delayed()->nop();
3129
3130 // get the returned methodOop
3131
3132 __ get_vm_result(G5_method);
3133 __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3134
3135 // O0 is where we want to jump, overwrite G3 which is saved and scratch
3136
3137 __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3138
3139 RegisterSaver::restore_live_registers(masm);
3140
3141 // We are back the the original state on entry and ready to go.
3142
3143 __ JMP(G3, 0);
3144 __ delayed()->nop();
3145
3146 // Pending exception after the safepoint
3147
3148 __ bind(pending);
3149
3150 RegisterSaver::restore_live_registers(masm);
3151
3152 // We are back the the original state on entry.
3153
3154 // Tail-call forward_exception_entry, with the issuing PC in O7,
3155 // so it looks like the original nmethod called forward_exception_entry.
3156 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3157 __ JMP(O0, 0);
3158 __ delayed()->nop();
3159
3160 // -------------
3161 // make sure all code is generated
3162 masm->flush();
3163
3164 // return the blob
3165 // frame_size_words or bytes??
3166 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3167 }
3168
3169 void SharedRuntime::generate_stubs() {
3170
3171 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3172 "wrong_method_stub");
3173
3174 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3175 "ic_miss_stub");
3176
3177 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3178 "resolve_opt_virtual_call");
3179
3180 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3181 "resolve_virtual_call");
3182
3183 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3184 "resolve_static_call");
3185
3186 _polling_page_safepoint_handler_blob =
3187 generate_handler_blob(CAST_FROM_FN_PTR(address,
3188 SafepointSynchronize::handle_polling_page_exception), false);
3189
3190 _polling_page_return_handler_blob =
3191 generate_handler_blob(CAST_FROM_FN_PTR(address,
3192 SafepointSynchronize::handle_polling_page_exception), true);
3193
3194 generate_deopt_blob();
3195
3196 #ifdef COMPILER2
3197 generate_uncommon_trap_blob();
3198 #endif // COMPILER2
3199 }