comparison src/cpu/x86/vm/c1_LIRGenerator_x86.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children d5fc211aea19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_c1_LIRGenerator_x86.cpp.incl"
27
28 #ifdef ASSERT
29 #define __ gen()->lir(__FILE__, __LINE__)->
30 #else
31 #define __ gen()->lir()->
32 #endif
33
34 // Item will be loaded into a byte register; Intel only
35 void LIRItem::load_byte_item() {
36 load_item();
37 LIR_Opr res = result();
38
39 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
40 // make sure that it is a byte register
41 assert(!value()->type()->is_float() && !value()->type()->is_double(),
42 "can't load floats in byte register");
43 LIR_Opr reg = _gen->rlock_byte(T_BYTE);
44 __ move(res, reg);
45
46 _result = reg;
47 }
48 }
49
50
51 void LIRItem::load_nonconstant() {
52 LIR_Opr r = value()->operand();
53 if (r->is_constant()) {
54 _result = r;
55 } else {
56 load_item();
57 }
58 }
59
60 //--------------------------------------------------------------
61 // LIRGenerator
62 //--------------------------------------------------------------
63
64
65 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
66 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
67 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
68 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
69 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
70 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
71 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
72 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
73
74
75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
76 LIR_Opr opr;
77 switch (type->tag()) {
78 case intTag: opr = FrameMap::rax_opr; break;
79 case objectTag: opr = FrameMap::rax_oop_opr; break;
80 case longTag: opr = FrameMap::rax_rdx_long_opr; break;
81 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
82 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
83
84 case addressTag:
85 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
86 }
87
88 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
89 return opr;
90 }
91
92
93 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
94 LIR_Opr reg = new_register(T_INT);
95 set_vreg_flag(reg, LIRGenerator::byte_reg);
96 return reg;
97 }
98
99
100 //--------- loading items into registers --------------------------------
101
102
103 // i486 instructions can inline constants
104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
105 if (type == T_SHORT || type == T_CHAR) {
106 // there is no immediate move of word values in asembler_i486.?pp
107 return false;
108 }
109 Constant* c = v->as_Constant();
110 if (c && c->state() == NULL) {
111 // constants of any type can be stored directly, except for
112 // unloaded object constants.
113 return true;
114 }
115 return false;
116 }
117
118
119 bool LIRGenerator::can_inline_as_constant(Value v) const {
120 return v->type()->tag() != objectTag ||
121 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
122 }
123
124
125 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
126 return c->type() != T_OBJECT || c->as_jobject() == NULL;
127 }
128
129
130 LIR_Opr LIRGenerator::safepoint_poll_register() {
131 return LIR_OprFact::illegalOpr;
132 }
133
134
135 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
136 int shift, int disp, BasicType type) {
137 assert(base->is_register(), "must be");
138 if (index->is_constant()) {
139 return new LIR_Address(base,
140 (index->as_constant_ptr()->as_jint() << shift) + disp,
141 type);
142 } else {
143 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
144 }
145 }
146
147
148 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
149 BasicType type, bool needs_card_mark) {
150 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
151
152 LIR_Address* addr;
153 if (index_opr->is_constant()) {
154 int elem_size = type2aelembytes[type];
155 addr = new LIR_Address(array_opr,
156 offset_in_bytes + index_opr->as_jint() * elem_size, type);
157 } else {
158 addr = new LIR_Address(array_opr,
159 index_opr,
160 LIR_Address::scale(type),
161 offset_in_bytes, type);
162 }
163 if (needs_card_mark) {
164 // This store will need a precise card mark, so go ahead and
165 // compute the full adddres instead of computing once for the
166 // store and again for the card mark.
167 LIR_Opr tmp = new_register(T_INT);
168 __ leal(LIR_OprFact::address(addr), tmp);
169 return new LIR_Address(tmp, 0, type);
170 } else {
171 return addr;
172 }
173 }
174
175
176 void LIRGenerator::increment_counter(address counter, int step) {
177 LIR_Opr temp = new_register(T_INT);
178 LIR_Opr pointer = new_register(T_INT);
179 __ move(LIR_OprFact::intConst((int)counter), pointer);
180 LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
181 increment_counter(addr, step);
182 }
183
184
185 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
186 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
187 }
188
189
190 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
191 __ cmp_mem_int(condition, base, disp, c, info);
192 }
193
194
195 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
196 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
197 }
198
199
200 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
201 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
202 }
203
204
205 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
206 if (tmp->is_valid()) {
207 if (is_power_of_2(c + 1)) {
208 __ move(left, tmp);
209 __ shift_left(left, log2_intptr(c + 1), left);
210 __ sub(left, tmp, result);
211 return true;
212 } else if (is_power_of_2(c - 1)) {
213 __ move(left, tmp);
214 __ shift_left(left, log2_intptr(c - 1), left);
215 __ add(left, tmp, result);
216 return true;
217 }
218 }
219 return false;
220 }
221
222
223 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
224 BasicType type = item->type();
225 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
226 }
227
228 //----------------------------------------------------------------------
229 // visitor functions
230 //----------------------------------------------------------------------
231
232
233 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
234 assert(x->is_root(),"");
235 bool needs_range_check = true;
236 bool use_length = x->length() != NULL;
237 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
238 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
239 !get_jobject_constant(x->value())->is_null_object());
240
241 LIRItem array(x->array(), this);
242 LIRItem index(x->index(), this);
243 LIRItem value(x->value(), this);
244 LIRItem length(this);
245
246 array.load_item();
247 index.load_nonconstant();
248
249 if (use_length) {
250 needs_range_check = x->compute_needs_range_check();
251 if (needs_range_check) {
252 length.set_instruction(x->length());
253 length.load_item();
254 }
255 }
256 if (needs_store_check) {
257 value.load_item();
258 } else {
259 value.load_for_store(x->elt_type());
260 }
261
262 set_no_result(x);
263
264 // the CodeEmitInfo must be duplicated for each different
265 // LIR-instruction because spilling can occur anywhere between two
266 // instructions and so the debug information must be different
267 CodeEmitInfo* range_check_info = state_for(x);
268 CodeEmitInfo* null_check_info = NULL;
269 if (x->needs_null_check()) {
270 null_check_info = new CodeEmitInfo(range_check_info);
271 }
272
273 // emit array address setup early so it schedules better
274 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
275
276 if (GenerateRangeChecks && needs_range_check) {
277 if (use_length) {
278 __ cmp(lir_cond_belowEqual, length.result(), index.result());
279 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
280 } else {
281 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
282 // range_check also does the null check
283 null_check_info = NULL;
284 }
285 }
286
287 if (GenerateArrayStoreCheck && needs_store_check) {
288 LIR_Opr tmp1 = new_register(objectType);
289 LIR_Opr tmp2 = new_register(objectType);
290 LIR_Opr tmp3 = new_register(objectType);
291
292 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
293 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
294 }
295
296 if (obj_store) {
297 __ move(value.result(), array_addr, null_check_info);
298 // Seems to be a precise
299 post_barrier(LIR_OprFact::address(array_addr), value.result());
300 } else {
301 __ move(value.result(), array_addr, null_check_info);
302 }
303 }
304
305
306 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
307 assert(x->is_root(),"");
308 LIRItem obj(x->obj(), this);
309 obj.load_item();
310
311 set_no_result(x);
312
313 // "lock" stores the address of the monitor stack slot, so this is not an oop
314 LIR_Opr lock = new_register(T_INT);
315 // Need a scratch register for biased locking on x86
316 LIR_Opr scratch = LIR_OprFact::illegalOpr;
317 if (UseBiasedLocking) {
318 scratch = new_register(T_INT);
319 }
320
321 CodeEmitInfo* info_for_exception = NULL;
322 if (x->needs_null_check()) {
323 info_for_exception = state_for(x, x->lock_stack_before());
324 }
325 // this CodeEmitInfo must not have the xhandlers because here the
326 // object is already locked (xhandlers expect object to be unlocked)
327 CodeEmitInfo* info = state_for(x, x->state(), true);
328 monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
329 x->monitor_no(), info_for_exception, info);
330 }
331
332
333 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
334 assert(x->is_root(),"");
335
336 LIRItem obj(x->obj(), this);
337 obj.dont_load_item();
338
339 LIR_Opr lock = new_register(T_INT);
340 LIR_Opr obj_temp = new_register(T_INT);
341 set_no_result(x);
342 monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no());
343 }
344
345
346 // _ineg, _lneg, _fneg, _dneg
347 void LIRGenerator::do_NegateOp(NegateOp* x) {
348 LIRItem value(x->x(), this);
349 value.set_destroys_register();
350 value.load_item();
351 LIR_Opr reg = rlock(x);
352 __ negate(value.result(), reg);
353
354 set_result(x, round_item(reg));
355 }
356
357
358 // for _fadd, _fmul, _fsub, _fdiv, _frem
359 // _dadd, _dmul, _dsub, _ddiv, _drem
360 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
361 LIRItem left(x->x(), this);
362 LIRItem right(x->y(), this);
363 LIRItem* left_arg = &left;
364 LIRItem* right_arg = &right;
365 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
366 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
367 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
368 left.load_item();
369 } else {
370 left.dont_load_item();
371 }
372
373 // do not load right operand if it is a constant. only 0 and 1 are
374 // loaded because there are special instructions for loading them
375 // without memory access (not needed for SSE2 instructions)
376 bool must_load_right = false;
377 if (right.is_constant()) {
378 LIR_Const* c = right.result()->as_constant_ptr();
379 assert(c != NULL, "invalid constant");
380 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
381
382 if (c->type() == T_FLOAT) {
383 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
384 } else {
385 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
386 }
387 }
388
389 if (must_load_both) {
390 // frem and drem destroy also right operand, so move it to a new register
391 right.set_destroys_register();
392 right.load_item();
393 } else if (right.is_register() || must_load_right) {
394 right.load_item();
395 } else {
396 right.dont_load_item();
397 }
398 LIR_Opr reg = rlock(x);
399 LIR_Opr tmp = LIR_OprFact::illegalOpr;
400 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
401 tmp = new_register(T_DOUBLE);
402 }
403
404 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
405 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
406 LIR_Opr fpu0, fpu1;
407 if (x->op() == Bytecodes::_frem) {
408 fpu0 = LIR_OprFact::single_fpu(0);
409 fpu1 = LIR_OprFact::single_fpu(1);
410 } else {
411 fpu0 = LIR_OprFact::double_fpu(0);
412 fpu1 = LIR_OprFact::double_fpu(1);
413 }
414 __ move(right.result(), fpu1); // order of left and right operand is important!
415 __ move(left.result(), fpu0);
416 __ rem (fpu0, fpu1, fpu0);
417 __ move(fpu0, reg);
418
419 } else {
420 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
421 }
422
423 set_result(x, round_item(reg));
424 }
425
426
427 // for _ladd, _lmul, _lsub, _ldiv, _lrem
428 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
429 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
430 // long division is implemented as a direct call into the runtime
431 LIRItem left(x->x(), this);
432 LIRItem right(x->y(), this);
433
434 // the check for division by zero destroys the right operand
435 right.set_destroys_register();
436
437 BasicTypeList signature(2);
438 signature.append(T_LONG);
439 signature.append(T_LONG);
440 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
441
442 // check for division by zero (destroys registers of right operand!)
443 CodeEmitInfo* info = state_for(x);
444
445 const LIR_Opr result_reg = result_register_for(x->type());
446 left.load_item_force(cc->at(1));
447 right.load_item();
448
449 __ move(right.result(), cc->at(0));
450
451 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
452 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
453
454 address entry;
455 switch (x->op()) {
456 case Bytecodes::_lrem:
457 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
458 break; // check if dividend is 0 is done elsewhere
459 case Bytecodes::_ldiv:
460 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
461 break; // check if dividend is 0 is done elsewhere
462 case Bytecodes::_lmul:
463 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
464 break;
465 default:
466 ShouldNotReachHere();
467 }
468
469 LIR_Opr result = rlock_result(x);
470 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
471 __ move(result_reg, result);
472 } else if (x->op() == Bytecodes::_lmul) {
473 // missing test if instr is commutative and if we should swap
474 LIRItem left(x->x(), this);
475 LIRItem right(x->y(), this);
476
477 // right register is destroyed by the long mul, so it must be
478 // copied to a new register.
479 right.set_destroys_register();
480
481 left.load_item();
482 right.load_item();
483
484 LIR_Opr reg = FrameMap::rax_rdx_long_opr;
485 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
486 LIR_Opr result = rlock_result(x);
487 __ move(reg, result);
488 } else {
489 // missing test if instr is commutative and if we should swap
490 LIRItem left(x->x(), this);
491 LIRItem right(x->y(), this);
492
493 left.load_item();
494 // dont load constants to save register
495 right.load_nonconstant();
496 rlock_result(x);
497 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
498 }
499 }
500
501
502
503 // for: _iadd, _imul, _isub, _idiv, _irem
504 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
505 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
506 // The requirements for division and modulo
507 // input : rax,: dividend min_int
508 // reg: divisor (may not be rax,/rdx) -1
509 //
510 // output: rax,: quotient (= rax, idiv reg) min_int
511 // rdx: remainder (= rax, irem reg) 0
512
513 // rax, and rdx will be destroyed
514
515 // Note: does this invalidate the spec ???
516 LIRItem right(x->y(), this);
517 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
518
519 // call state_for before load_item_force because state_for may
520 // force the evaluation of other instructions that are needed for
521 // correct debug info. Otherwise the live range of the fix
522 // register might be too long.
523 CodeEmitInfo* info = state_for(x);
524
525 left.load_item_force(divInOpr());
526
527 right.load_item();
528
529 LIR_Opr result = rlock_result(x);
530 LIR_Opr result_reg;
531 if (x->op() == Bytecodes::_idiv) {
532 result_reg = divOutOpr();
533 } else {
534 result_reg = remOutOpr();
535 }
536
537 if (!ImplicitDiv0Checks) {
538 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
539 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
540 }
541 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
542 if (x->op() == Bytecodes::_irem) {
543 __ irem(left.result(), right.result(), result_reg, tmp, info);
544 } else if (x->op() == Bytecodes::_idiv) {
545 __ idiv(left.result(), right.result(), result_reg, tmp, info);
546 } else {
547 ShouldNotReachHere();
548 }
549
550 __ move(result_reg, result);
551 } else {
552 // missing test if instr is commutative and if we should swap
553 LIRItem left(x->x(), this);
554 LIRItem right(x->y(), this);
555 LIRItem* left_arg = &left;
556 LIRItem* right_arg = &right;
557 if (x->is_commutative() && left.is_stack() && right.is_register()) {
558 // swap them if left is real stack (or cached) and right is real register(not cached)
559 left_arg = &right;
560 right_arg = &left;
561 }
562
563 left_arg->load_item();
564
565 // do not need to load right, as we can handle stack and constants
566 if (x->op() == Bytecodes::_imul ) {
567 // check if we can use shift instead
568 bool use_constant = false;
569 bool use_tmp = false;
570 if (right_arg->is_constant()) {
571 int iconst = right_arg->get_jint_constant();
572 if (iconst > 0) {
573 if (is_power_of_2(iconst)) {
574 use_constant = true;
575 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
576 use_constant = true;
577 use_tmp = true;
578 }
579 }
580 }
581 if (use_constant) {
582 right_arg->dont_load_item();
583 } else {
584 right_arg->load_item();
585 }
586 LIR_Opr tmp = LIR_OprFact::illegalOpr;
587 if (use_tmp) {
588 tmp = new_register(T_INT);
589 }
590 rlock_result(x);
591
592 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
593 } else {
594 right_arg->dont_load_item();
595 rlock_result(x);
596 LIR_Opr tmp = LIR_OprFact::illegalOpr;
597 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
598 }
599 }
600 }
601
602
603 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
604 // when an operand with use count 1 is the left operand, then it is
605 // likely that no move for 2-operand-LIR-form is necessary
606 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
607 x->swap_operands();
608 }
609
610 ValueTag tag = x->type()->tag();
611 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
612 switch (tag) {
613 case floatTag:
614 case doubleTag: do_ArithmeticOp_FPU(x); return;
615 case longTag: do_ArithmeticOp_Long(x); return;
616 case intTag: do_ArithmeticOp_Int(x); return;
617 }
618 ShouldNotReachHere();
619 }
620
621
622 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
623 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
624 // count must always be in rcx
625 LIRItem value(x->x(), this);
626 LIRItem count(x->y(), this);
627
628 ValueTag elemType = x->type()->tag();
629 bool must_load_count = !count.is_constant() || elemType == longTag;
630 if (must_load_count) {
631 // count for long must be in register
632 count.load_item_force(shiftCountOpr());
633 } else {
634 count.dont_load_item();
635 }
636 value.load_item();
637 LIR_Opr reg = rlock_result(x);
638
639 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
640 }
641
642
643 // _iand, _land, _ior, _lor, _ixor, _lxor
644 void LIRGenerator::do_LogicOp(LogicOp* x) {
645 // when an operand with use count 1 is the left operand, then it is
646 // likely that no move for 2-operand-LIR-form is necessary
647 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
648 x->swap_operands();
649 }
650
651 LIRItem left(x->x(), this);
652 LIRItem right(x->y(), this);
653
654 left.load_item();
655 right.load_nonconstant();
656 LIR_Opr reg = rlock_result(x);
657
658 logic_op(x->op(), reg, left.result(), right.result());
659 }
660
661
662
663 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
664 void LIRGenerator::do_CompareOp(CompareOp* x) {
665 LIRItem left(x->x(), this);
666 LIRItem right(x->y(), this);
667 ValueTag tag = x->x()->type()->tag();
668 if (tag == longTag) {
669 left.set_destroys_register();
670 }
671 left.load_item();
672 right.load_item();
673 LIR_Opr reg = rlock_result(x);
674
675 if (x->x()->type()->is_float_kind()) {
676 Bytecodes::Code code = x->op();
677 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
678 } else if (x->x()->type()->tag() == longTag) {
679 __ lcmp2int(left.result(), right.result(), reg);
680 } else {
681 Unimplemented();
682 }
683 }
684
685
686 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
687 assert(x->number_of_arguments() == 3, "wrong type");
688 LIRItem obj (x->argument_at(0), this); // AtomicLong object
689 LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
690 LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
691
692 // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
693 cmp_value.load_item_force(FrameMap::rax_rdx_long_opr);
694
695 // new value must be in rcx,ebx (hi,lo)
696 new_value.load_item_force(FrameMap::rbx_rcx_long_opr);
697
698 // object pointer register is overwritten with field address
699 obj.load_item();
700
701 // generate compare-and-swap; produces zero condition if swap occurs
702 int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
703 LIR_Opr addr = obj.result();
704 __ add(addr, LIR_OprFact::intConst(value_offset), addr);
705 LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed
706 LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed
707 __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
708
709 // generate conditional move of boolean result
710 LIR_Opr result = rlock_result(x);
711 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
712 }
713
714
715 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
716 assert(x->number_of_arguments() == 4, "wrong type");
717 LIRItem obj (x->argument_at(0), this); // object
718 LIRItem offset(x->argument_at(1), this); // offset of field
719 LIRItem cmp (x->argument_at(2), this); // value to compare with field
720 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
721
722 assert(obj.type()->tag() == objectTag, "invalid type");
723 assert(offset.type()->tag() == intTag, "invalid type");
724 assert(cmp.type()->tag() == type->tag(), "invalid type");
725 assert(val.type()->tag() == type->tag(), "invalid type");
726
727 // get address of field
728 obj.load_item();
729 offset.load_nonconstant();
730
731 if (type == objectType) {
732 cmp.load_item_force(FrameMap::rax_oop_opr);
733 val.load_item();
734 } else if (type == intType) {
735 cmp.load_item_force(FrameMap::rax_opr);
736 val.load_item();
737 } else if (type == longType) {
738 cmp.load_item_force(FrameMap::rax_rdx_long_opr);
739 val.load_item_force(FrameMap::rbx_rcx_long_opr);
740 } else {
741 ShouldNotReachHere();
742 }
743
744 LIR_Opr addr = new_pointer_register();
745 __ move(obj.result(), addr);
746 __ add(addr, offset.result(), addr);
747
748
749
750 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
751 if (type == objectType)
752 __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
753 else if (type == intType)
754 __ cas_int(addr, cmp.result(), val.result(), ill, ill);
755 else if (type == longType)
756 __ cas_long(addr, cmp.result(), val.result(), ill, ill);
757 else {
758 ShouldNotReachHere();
759 }
760
761 // generate conditional move of boolean result
762 LIR_Opr result = rlock_result(x);
763 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
764 if (type == objectType) { // Write-barrier needed for Object fields.
765 // Seems to be precise
766 post_barrier(addr, val.result());
767 }
768 }
769
770
771 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
772 assert(x->number_of_arguments() == 1, "wrong type");
773 LIRItem value(x->argument_at(0), this);
774
775 bool use_fpu = false;
776 if (UseSSE >= 2) {
777 switch(x->id()) {
778 case vmIntrinsics::_dsin:
779 case vmIntrinsics::_dcos:
780 case vmIntrinsics::_dtan:
781 case vmIntrinsics::_dlog:
782 case vmIntrinsics::_dlog10:
783 use_fpu = true;
784 }
785 } else {
786 value.set_destroys_register();
787 }
788
789 value.load_item();
790
791 LIR_Opr calc_input = value.result();
792 LIR_Opr calc_result = rlock_result(x);
793
794 // sin and cos need two free fpu stack slots, so register two temporary operands
795 LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
796 LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
797
798 if (use_fpu) {
799 LIR_Opr tmp = FrameMap::fpu0_double_opr;
800 __ move(calc_input, tmp);
801
802 calc_input = tmp;
803 calc_result = tmp;
804 tmp1 = FrameMap::caller_save_fpu_reg_at(1);
805 tmp2 = FrameMap::caller_save_fpu_reg_at(2);
806 }
807
808 switch(x->id()) {
809 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
810 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
811 case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
812 case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
813 case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
814 case vmIntrinsics::_dlog: __ log (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
815 case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, LIR_OprFact::illegalOpr); break;
816 default: ShouldNotReachHere();
817 }
818
819 if (use_fpu) {
820 __ move(calc_result, x->operand());
821 }
822 }
823
824
825 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
826 assert(x->number_of_arguments() == 5, "wrong type");
827 LIRItem src(x->argument_at(0), this);
828 LIRItem src_pos(x->argument_at(1), this);
829 LIRItem dst(x->argument_at(2), this);
830 LIRItem dst_pos(x->argument_at(3), this);
831 LIRItem length(x->argument_at(4), this);
832
833 // operands for arraycopy must use fixed registers, otherwise
834 // LinearScan will fail allocation (because arraycopy always needs a
835 // call)
836 src.load_item_force (FrameMap::rcx_oop_opr);
837 src_pos.load_item_force (FrameMap::rdx_opr);
838 dst.load_item_force (FrameMap::rax_oop_opr);
839 dst_pos.load_item_force (FrameMap::rbx_opr);
840 length.load_item_force (FrameMap::rdi_opr);
841 LIR_Opr tmp = (FrameMap::rsi_opr);
842 set_no_result(x);
843
844 int flags;
845 ciArrayKlass* expected_type;
846 arraycopy_helper(x, &flags, &expected_type);
847
848 CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
849 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
850 }
851
852
853 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
854 // _i2b, _i2c, _i2s
855 LIR_Opr fixed_register_for(BasicType type) {
856 switch (type) {
857 case T_FLOAT: return FrameMap::fpu0_float_opr;
858 case T_DOUBLE: return FrameMap::fpu0_double_opr;
859 case T_INT: return FrameMap::rax_opr;
860 case T_LONG: return FrameMap::rax_rdx_long_opr;
861 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
862 }
863 }
864
865 void LIRGenerator::do_Convert(Convert* x) {
866 // flags that vary for the different operations and different SSE-settings
867 bool fixed_input, fixed_result, round_result, needs_stub;
868
869 switch (x->op()) {
870 case Bytecodes::_i2l: // fall through
871 case Bytecodes::_l2i: // fall through
872 case Bytecodes::_i2b: // fall through
873 case Bytecodes::_i2c: // fall through
874 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
875
876 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
877 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
878 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
879 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
880 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
881 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
882 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
883 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
884 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
885 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
886 default: ShouldNotReachHere();
887 }
888
889 LIRItem value(x->value(), this);
890 value.load_item();
891 LIR_Opr input = value.result();
892 LIR_Opr result = rlock(x);
893
894 // arguments of lir_convert
895 LIR_Opr conv_input = input;
896 LIR_Opr conv_result = result;
897 ConversionStub* stub = NULL;
898
899 if (fixed_input) {
900 conv_input = fixed_register_for(input->type());
901 __ move(input, conv_input);
902 }
903
904 assert(fixed_result == false || round_result == false, "cannot set both");
905 if (fixed_result) {
906 conv_result = fixed_register_for(result->type());
907 } else if (round_result) {
908 result = new_register(result->type());
909 set_vreg_flag(result, must_start_in_memory);
910 }
911
912 if (needs_stub) {
913 stub = new ConversionStub(x->op(), conv_input, conv_result);
914 }
915
916 __ convert(x->op(), conv_input, conv_result, stub);
917
918 if (result != conv_result) {
919 __ move(conv_result, result);
920 }
921
922 assert(result->is_virtual(), "result must be virtual register");
923 set_result(x, result);
924 }
925
926
927 void LIRGenerator::do_NewInstance(NewInstance* x) {
928 if (PrintNotLoaded && !x->klass()->is_loaded()) {
929 tty->print_cr(" ###class not loaded at new bci %d", x->bci());
930 }
931 CodeEmitInfo* info = state_for(x, x->state());
932 LIR_Opr reg = result_register_for(x->type());
933 LIR_Opr klass_reg = new_register(objectType);
934 new_instance(reg, x->klass(),
935 FrameMap::rcx_oop_opr,
936 FrameMap::rdi_oop_opr,
937 FrameMap::rsi_oop_opr,
938 LIR_OprFact::illegalOpr,
939 FrameMap::rdx_oop_opr, info);
940 LIR_Opr result = rlock_result(x);
941 __ move(reg, result);
942 }
943
944
945 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
946 CodeEmitInfo* info = state_for(x, x->state());
947
948 LIRItem length(x->length(), this);
949 length.load_item_force(FrameMap::rbx_opr);
950
951 LIR_Opr reg = result_register_for(x->type());
952 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
953 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
954 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
955 LIR_Opr tmp4 = reg;
956 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
957 LIR_Opr len = length.result();
958 BasicType elem_type = x->elt_type();
959
960 __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
961
962 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
963 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
964
965 LIR_Opr result = rlock_result(x);
966 __ move(reg, result);
967 }
968
969
970 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
971 LIRItem length(x->length(), this);
972 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
973 // and therefore provide the state before the parameters have been consumed
974 CodeEmitInfo* patching_info = NULL;
975 if (!x->klass()->is_loaded() || PatchALot) {
976 patching_info = state_for(x, x->state_before());
977 }
978
979 CodeEmitInfo* info = state_for(x, x->state());
980
981 const LIR_Opr reg = result_register_for(x->type());
982 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
983 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
984 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
985 LIR_Opr tmp4 = reg;
986 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
987
988 length.load_item_force(FrameMap::rbx_opr);
989 LIR_Opr len = length.result();
990
991 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
992 ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
993 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
994 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
995 }
996 jobject2reg_with_patching(klass_reg, obj, patching_info);
997 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
998
999 LIR_Opr result = rlock_result(x);
1000 __ move(reg, result);
1001 }
1002
1003
1004 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1005 Values* dims = x->dims();
1006 int i = dims->length();
1007 LIRItemList* items = new LIRItemList(dims->length(), NULL);
1008 while (i-- > 0) {
1009 LIRItem* size = new LIRItem(dims->at(i), this);
1010 items->at_put(i, size);
1011 }
1012
1013 // need to get the info before, as the items may become invalid through item_free
1014 CodeEmitInfo* patching_info = NULL;
1015 if (!x->klass()->is_loaded() || PatchALot) {
1016 patching_info = state_for(x, x->state_before());
1017
1018 // cannot re-use same xhandlers for multiple CodeEmitInfos, so
1019 // clone all handlers.
1020 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1021 }
1022
1023 CodeEmitInfo* info = state_for(x, x->state());
1024
1025 i = dims->length();
1026 while (i-- > 0) {
1027 LIRItem* size = items->at(i);
1028 size->load_nonconstant();
1029
1030 store_stack_parameter(size->result(), in_ByteSize(i*4));
1031 }
1032
1033 LIR_Opr reg = result_register_for(x->type());
1034 jobject2reg_with_patching(reg, x->klass(), patching_info);
1035
1036 LIR_Opr rank = FrameMap::rbx_opr;
1037 __ move(LIR_OprFact::intConst(x->rank()), rank);
1038 LIR_Opr varargs = FrameMap::rcx_opr;
1039 __ move(FrameMap::rsp_opr, varargs);
1040 LIR_OprList* args = new LIR_OprList(3);
1041 args->append(reg);
1042 args->append(rank);
1043 args->append(varargs);
1044 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1045 LIR_OprFact::illegalOpr,
1046 reg, args, info);
1047
1048 LIR_Opr result = rlock_result(x);
1049 __ move(reg, result);
1050 }
1051
1052
1053 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1054 // nothing to do for now
1055 }
1056
1057
1058 void LIRGenerator::do_CheckCast(CheckCast* x) {
1059 LIRItem obj(x->obj(), this);
1060
1061 CodeEmitInfo* patching_info = NULL;
1062 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1063 // must do this before locking the destination register as an oop register,
1064 // and before the obj is loaded (the latter is for deoptimization)
1065 patching_info = state_for(x, x->state_before());
1066 }
1067 obj.load_item();
1068
1069 // info for exceptions
1070 CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
1071
1072 CodeStub* stub;
1073 if (x->is_incompatible_class_change_check()) {
1074 assert(patching_info == NULL, "can't patch this");
1075 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1076 } else {
1077 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1078 }
1079 LIR_Opr reg = rlock_result(x);
1080 __ checkcast(reg, obj.result(), x->klass(),
1081 new_register(objectType), new_register(objectType),
1082 !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
1083 x->direct_compare(), info_for_exception, patching_info, stub,
1084 x->profiled_method(), x->profiled_bci());
1085 }
1086
1087
1088 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1089 LIRItem obj(x->obj(), this);
1090
1091 // result and test object may not be in same register
1092 LIR_Opr reg = rlock_result(x);
1093 CodeEmitInfo* patching_info = NULL;
1094 if ((!x->klass()->is_loaded() || PatchALot)) {
1095 // must do this before locking the destination register as an oop register
1096 patching_info = state_for(x, x->state_before());
1097 }
1098 obj.load_item();
1099 LIR_Opr tmp = new_register(objectType);
1100 __ instanceof(reg, obj.result(), x->klass(),
1101 tmp, new_register(objectType), LIR_OprFact::illegalOpr,
1102 x->direct_compare(), patching_info);
1103 }
1104
1105
1106 void LIRGenerator::do_If(If* x) {
1107 assert(x->number_of_sux() == 2, "inconsistency");
1108 ValueTag tag = x->x()->type()->tag();
1109 bool is_safepoint = x->is_safepoint();
1110
1111 If::Condition cond = x->cond();
1112
1113 LIRItem xitem(x->x(), this);
1114 LIRItem yitem(x->y(), this);
1115 LIRItem* xin = &xitem;
1116 LIRItem* yin = &yitem;
1117
1118 if (tag == longTag) {
1119 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1120 // mirror for other conditions
1121 if (cond == If::gtr || cond == If::leq) {
1122 cond = Instruction::mirror(cond);
1123 xin = &yitem;
1124 yin = &xitem;
1125 }
1126 xin->set_destroys_register();
1127 }
1128 xin->load_item();
1129 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1130 // inline long zero
1131 yin->dont_load_item();
1132 } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1133 // longs cannot handle constants at right side
1134 yin->load_item();
1135 } else {
1136 yin->dont_load_item();
1137 }
1138
1139 // add safepoint before generating condition code so it can be recomputed
1140 if (x->is_safepoint()) {
1141 // increment backedge counter if needed
1142 increment_backedge_counter(state_for(x, x->state_before()));
1143
1144 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1145 }
1146 set_no_result(x);
1147
1148 LIR_Opr left = xin->result();
1149 LIR_Opr right = yin->result();
1150 __ cmp(lir_cond(cond), left, right);
1151 profile_branch(x, cond);
1152 move_to_phi(x->state());
1153 if (x->x()->type()->is_float_kind()) {
1154 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1155 } else {
1156 __ branch(lir_cond(cond), right->type(), x->tsux());
1157 }
1158 assert(x->default_sux() == x->fsux(), "wrong destination above");
1159 __ jump(x->default_sux());
1160 }
1161
1162
1163 LIR_Opr LIRGenerator::getThreadPointer() {
1164 LIR_Opr result = new_register(T_INT);
1165 __ get_thread(result);
1166 return result;
1167 }
1168
1169 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1170 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1171 LIR_OprList* args = new LIR_OprList();
1172 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1173 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1174 }
1175
1176
1177 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1178 CodeEmitInfo* info) {
1179 if (address->type() == T_LONG) {
1180 address = new LIR_Address(address->base(),
1181 address->index(), address->scale(),
1182 address->disp(), T_DOUBLE);
1183 // Transfer the value atomically by using FP moves. This means
1184 // the value has to be moved between CPU and FPU registers. It
1185 // always has to be moved through spill slot since there's no
1186 // quick way to pack the value into an SSE register.
1187 LIR_Opr temp_double = new_register(T_DOUBLE);
1188 LIR_Opr spill = new_register(T_LONG);
1189 set_vreg_flag(spill, must_start_in_memory);
1190 __ move(value, spill);
1191 __ volatile_move(spill, temp_double, T_LONG);
1192 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1193 } else {
1194 __ store(value, address, info);
1195 }
1196 }
1197
1198
1199
1200 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1201 CodeEmitInfo* info) {
1202 if (address->type() == T_LONG) {
1203 address = new LIR_Address(address->base(),
1204 address->index(), address->scale(),
1205 address->disp(), T_DOUBLE);
1206 // Transfer the value atomically by using FP moves. This means
1207 // the value has to be moved between CPU and FPU registers. In
1208 // SSE0 and SSE1 mode it has to be moved through spill slot but in
1209 // SSE2+ mode it can be moved directly.
1210 LIR_Opr temp_double = new_register(T_DOUBLE);
1211 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1212 __ volatile_move(temp_double, result, T_LONG);
1213 if (UseSSE < 2) {
1214 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1215 set_vreg_flag(result, must_start_in_memory);
1216 }
1217 } else {
1218 __ load(address, result, info);
1219 }
1220 }
1221
1222 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1223 BasicType type, bool is_volatile) {
1224 if (is_volatile && type == T_LONG) {
1225 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1226 LIR_Opr tmp = new_register(T_DOUBLE);
1227 __ load(addr, tmp);
1228 LIR_Opr spill = new_register(T_LONG);
1229 set_vreg_flag(spill, must_start_in_memory);
1230 __ move(tmp, spill);
1231 __ move(spill, dst);
1232 } else {
1233 LIR_Address* addr = new LIR_Address(src, offset, type);
1234 __ load(addr, dst);
1235 }
1236 }
1237
1238
1239 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1240 BasicType type, bool is_volatile) {
1241 if (is_volatile && type == T_LONG) {
1242 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1243 LIR_Opr tmp = new_register(T_DOUBLE);
1244 LIR_Opr spill = new_register(T_DOUBLE);
1245 set_vreg_flag(spill, must_start_in_memory);
1246 __ move(data, spill);
1247 __ move(spill, tmp);
1248 __ move(tmp, addr);
1249 } else {
1250 LIR_Address* addr = new LIR_Address(src, offset, type);
1251 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1252 if (is_obj) {
1253 __ move(data, addr);
1254 assert(src->is_register(), "must be register");
1255 // Seems to be a precise address
1256 post_barrier(LIR_OprFact::address(addr), data);
1257 } else {
1258 __ move(data, addr);
1259 }
1260 }
1261 }