comparison src/cpu/x86/vm/nativeInst_x86.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 018d5b58dd4f
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // We have interfaces for the following instructions:
26 // - NativeInstruction
27 // - - NativeCall
28 // - - NativeMovConstReg
29 // - - NativeMovConstRegPatching
30 // - - NativeMovRegMem
31 // - - NativeMovRegMemPatching
32 // - - NativeJump
33 // - - NativeIllegalOpCode
34 // - - NativeGeneralJump
35 // - - NativeReturn
36 // - - NativeReturnX (return with argument)
37 // - - NativePushConst
38 // - - NativeTstRegMem
39
40 // The base class for different kinds of native instruction abstractions.
41 // Provides the primitive operations to manipulate code relative to this.
42
43 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
44 friend class Relocation;
45
46 public:
47 enum Intel_specific_constants {
48 nop_instruction_code = 0x90,
49 nop_instruction_size = 1
50 };
51
52 bool is_nop() { return ubyte_at(0) == nop_instruction_code; }
53 inline bool is_call();
54 inline bool is_illegal();
55 inline bool is_return();
56 inline bool is_jump();
57 inline bool is_cond_jump();
58 inline bool is_safepoint_poll();
59 inline bool is_mov_literal64();
60
61 protected:
62 address addr_at(int offset) const { return address(this) + offset; }
63
64 s_char sbyte_at(int offset) const { return *(s_char*) addr_at(offset); }
65 u_char ubyte_at(int offset) const { return *(u_char*) addr_at(offset); }
66
67 jint int_at(int offset) const { return *(jint*) addr_at(offset); }
68
69 intptr_t ptr_at(int offset) const { return *(intptr_t*) addr_at(offset); }
70
71 oop oop_at (int offset) const { return *(oop*) addr_at(offset); }
72
73
74 void set_char_at(int offset, char c) { *addr_at(offset) = (u_char)c; wrote(offset); }
75 void set_int_at(int offset, jint i) { *(jint*)addr_at(offset) = i; wrote(offset); }
76 void set_ptr_at (int offset, intptr_t ptr) { *(intptr_t*) addr_at(offset) = ptr; wrote(offset); }
77 void set_oop_at (int offset, oop o) { *(oop*) addr_at(offset) = o; wrote(offset); }
78
79 // This doesn't really do anything on Intel, but it is the place where
80 // cache invalidation belongs, generically:
81 void wrote(int offset);
82
83 public:
84
85 // unit test stuff
86 static void test() {} // override for testing
87
88 inline friend NativeInstruction* nativeInstruction_at(address address);
89 };
90
91 inline NativeInstruction* nativeInstruction_at(address address) {
92 NativeInstruction* inst = (NativeInstruction*)address;
93 #ifdef ASSERT
94 //inst->verify();
95 #endif
96 return inst;
97 }
98
99 inline NativeCall* nativeCall_at(address address);
100 // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
101 // instructions (used to manipulate inline caches, primitive & dll calls, etc.).
102
103 class NativeCall: public NativeInstruction {
104 public:
105 enum Intel_specific_constants {
106 instruction_code = 0xE8,
107 instruction_size = 5,
108 instruction_offset = 0,
109 displacement_offset = 1,
110 return_address_offset = 5
111 };
112
113 enum { cache_line_size = BytesPerWord }; // conservative estimate!
114
115 address instruction_address() const { return addr_at(instruction_offset); }
116 address next_instruction_address() const { return addr_at(return_address_offset); }
117 int displacement() const { return (jint) int_at(displacement_offset); }
118 address displacement_address() const { return addr_at(displacement_offset); }
119 address return_address() const { return addr_at(return_address_offset); }
120 address destination() const;
121 void set_destination(address dest) {
122 #ifdef AMD64
123 assert((labs((intptr_t) dest - (intptr_t) return_address()) &
124 0xFFFFFFFF00000000) == 0,
125 "must be 32bit offset");
126 #endif // AMD64
127 set_int_at(displacement_offset, dest - return_address());
128 }
129 void set_destination_mt_safe(address dest);
130
131 void verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
132 void verify();
133 void print();
134
135 // Creation
136 inline friend NativeCall* nativeCall_at(address address);
137 inline friend NativeCall* nativeCall_before(address return_address);
138
139 static bool is_call_at(address instr) {
140 return ((*instr) & 0xFF) == NativeCall::instruction_code;
141 }
142
143 static bool is_call_before(address return_address) {
144 return is_call_at(return_address - NativeCall::return_address_offset);
145 }
146
147 static bool is_call_to(address instr, address target) {
148 return nativeInstruction_at(instr)->is_call() &&
149 nativeCall_at(instr)->destination() == target;
150 }
151
152 // MT-safe patching of a call instruction.
153 static void insert(address code_pos, address entry);
154
155 static void replace_mt_safe(address instr_addr, address code_buffer);
156 };
157
158 inline NativeCall* nativeCall_at(address address) {
159 NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
160 #ifdef ASSERT
161 call->verify();
162 #endif
163 return call;
164 }
165
166 inline NativeCall* nativeCall_before(address return_address) {
167 NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
168 #ifdef ASSERT
169 call->verify();
170 #endif
171 return call;
172 }
173
174 // An interface for accessing/manipulating native mov reg, imm32 instructions.
175 // (used to manipulate inlined 32bit data dll calls, etc.)
176 class NativeMovConstReg: public NativeInstruction {
177 #ifdef AMD64
178 static const bool has_rex = true;
179 static const int rex_size = 1;
180 #else
181 static const bool has_rex = false;
182 static const int rex_size = 0;
183 #endif // AMD64
184 public:
185 enum Intel_specific_constants {
186 instruction_code = 0xB8,
187 instruction_size = 1 + rex_size + wordSize,
188 instruction_offset = 0,
189 data_offset = 1 + rex_size,
190 next_instruction_offset = instruction_size,
191 register_mask = 0x07
192 };
193
194 address instruction_address() const { return addr_at(instruction_offset); }
195 address next_instruction_address() const { return addr_at(next_instruction_offset); }
196 intptr_t data() const { return ptr_at(data_offset); }
197 void set_data(intptr_t x) { set_ptr_at(data_offset, x); }
198
199 void verify();
200 void print();
201
202 // unit test stuff
203 static void test() {}
204
205 // Creation
206 inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
207 inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
208 };
209
210 inline NativeMovConstReg* nativeMovConstReg_at(address address) {
211 NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
212 #ifdef ASSERT
213 test->verify();
214 #endif
215 return test;
216 }
217
218 inline NativeMovConstReg* nativeMovConstReg_before(address address) {
219 NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
220 #ifdef ASSERT
221 test->verify();
222 #endif
223 return test;
224 }
225
226 class NativeMovConstRegPatching: public NativeMovConstReg {
227 private:
228 friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
229 NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
230 #ifdef ASSERT
231 test->verify();
232 #endif
233 return test;
234 }
235 };
236
237 #ifndef AMD64
238
239 // An interface for accessing/manipulating native moves of the form:
240 // mov[b/w/l] [reg + offset], reg (instruction_code_reg2mem)
241 // mov[b/w/l] reg, [reg+offset] (instruction_code_mem2reg
242 // mov[s/z]x[w/b] [reg + offset], reg
243 // fld_s [reg+offset]
244 // fld_d [reg+offset]
245 // fstp_s [reg + offset]
246 // fstp_d [reg + offset]
247 //
248 // Warning: These routines must be able to handle any instruction sequences
249 // that are generated as a result of the load/store byte,word,long
250 // macros. For example: The load_unsigned_byte instruction generates
251 // an xor reg,reg inst prior to generating the movb instruction. This
252 // class must skip the xor instruction.
253
254 class NativeMovRegMem: public NativeInstruction {
255 public:
256 enum Intel_specific_constants {
257 instruction_code_xor = 0x33,
258 instruction_extended_prefix = 0x0F,
259 instruction_code_mem2reg_movzxb = 0xB6,
260 instruction_code_mem2reg_movsxb = 0xBE,
261 instruction_code_mem2reg_movzxw = 0xB7,
262 instruction_code_mem2reg_movsxw = 0xBF,
263 instruction_operandsize_prefix = 0x66,
264 instruction_code_reg2meml = 0x89,
265 instruction_code_mem2regl = 0x8b,
266 instruction_code_reg2memb = 0x88,
267 instruction_code_mem2regb = 0x8a,
268 instruction_code_float_s = 0xd9,
269 instruction_code_float_d = 0xdd,
270 instruction_code_long_volatile = 0xdf,
271 instruction_code_xmm_ss_prefix = 0xf3,
272 instruction_code_xmm_sd_prefix = 0xf2,
273 instruction_code_xmm_code = 0x0f,
274 instruction_code_xmm_load = 0x10,
275 instruction_code_xmm_store = 0x11,
276 instruction_code_xmm_lpd = 0x12,
277
278 instruction_size = 4,
279 instruction_offset = 0,
280 data_offset = 2,
281 next_instruction_offset = 4
282 };
283
284 address instruction_address() const {
285 if (*addr_at(instruction_offset) == instruction_operandsize_prefix &&
286 *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
287 return addr_at(instruction_offset+1); // Not SSE instructions
288 }
289 else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
290 return addr_at(instruction_offset+1);
291 }
292 else if (*addr_at(instruction_offset) == instruction_code_xor) {
293 return addr_at(instruction_offset+2);
294 }
295 else return addr_at(instruction_offset);
296 }
297
298 address next_instruction_address() const {
299 switch (*addr_at(instruction_offset)) {
300 case instruction_operandsize_prefix:
301 if (*addr_at(instruction_offset+1) == instruction_code_xmm_code)
302 return instruction_address() + instruction_size; // SSE instructions
303 case instruction_extended_prefix:
304 return instruction_address() + instruction_size + 1;
305 case instruction_code_reg2meml:
306 case instruction_code_mem2regl:
307 case instruction_code_reg2memb:
308 case instruction_code_mem2regb:
309 case instruction_code_xor:
310 return instruction_address() + instruction_size + 2;
311 default:
312 return instruction_address() + instruction_size;
313 }
314 }
315 int offset() const{
316 if (*addr_at(instruction_offset) == instruction_operandsize_prefix &&
317 *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
318 return int_at(data_offset+1); // Not SSE instructions
319 }
320 else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
321 return int_at(data_offset+1);
322 }
323 else if (*addr_at(instruction_offset) == instruction_code_xor ||
324 *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
325 *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
326 *addr_at(instruction_offset) == instruction_operandsize_prefix) {
327 return int_at(data_offset+2);
328 }
329 else return int_at(data_offset);
330 }
331
332 void set_offset(int x) {
333 if (*addr_at(instruction_offset) == instruction_operandsize_prefix &&
334 *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
335 set_int_at(data_offset+1, x); // Not SSE instructions
336 }
337 else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
338 set_int_at(data_offset+1, x);
339 }
340 else if (*addr_at(instruction_offset) == instruction_code_xor ||
341 *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
342 *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
343 *addr_at(instruction_offset) == instruction_operandsize_prefix) {
344 set_int_at(data_offset+2, x);
345 }
346 else set_int_at(data_offset, x);
347 }
348
349 void add_offset_in_bytes(int add_offset) { set_offset ( ( offset() + add_offset ) ); }
350 void copy_instruction_to(address new_instruction_address);
351
352 void verify();
353 void print ();
354
355 // unit test stuff
356 static void test() {}
357
358 private:
359 inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
360 };
361
362 inline NativeMovRegMem* nativeMovRegMem_at (address address) {
363 NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
364 #ifdef ASSERT
365 test->verify();
366 #endif
367 return test;
368 }
369
370 class NativeMovRegMemPatching: public NativeMovRegMem {
371 private:
372 friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
373 NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
374 #ifdef ASSERT
375 test->verify();
376 #endif
377 return test;
378 }
379 };
380
381
382
383 // An interface for accessing/manipulating native leal instruction of form:
384 // leal reg, [reg + offset]
385
386 class NativeLoadAddress: public NativeMovRegMem {
387 public:
388 enum Intel_specific_constants {
389 instruction_code = 0x8D
390 };
391
392 void verify();
393 void print ();
394
395 // unit test stuff
396 static void test() {}
397
398 private:
399 friend NativeLoadAddress* nativeLoadAddress_at (address address) {
400 NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
401 #ifdef ASSERT
402 test->verify();
403 #endif
404 return test;
405 }
406 };
407
408 #endif // AMD64
409
410 // jump rel32off
411
412 class NativeJump: public NativeInstruction {
413 public:
414 enum Intel_specific_constants {
415 instruction_code = 0xe9,
416 instruction_size = 5,
417 instruction_offset = 0,
418 data_offset = 1,
419 next_instruction_offset = 5
420 };
421
422 address instruction_address() const { return addr_at(instruction_offset); }
423 address next_instruction_address() const { return addr_at(next_instruction_offset); }
424 address jump_destination() const {
425 address dest = (int_at(data_offset)+next_instruction_address());
426 #ifdef AMD64 // What is this about?
427 // return -1 if jump to self
428 dest = (dest == (address) this) ? (address) -1 : dest;
429 #endif // AMD64
430 return dest;
431 }
432
433 void set_jump_destination(address dest) {
434 intptr_t val = dest - next_instruction_address();
435 #ifdef AMD64
436 if (dest == (address) -1) { // can't encode jump to -1
437 val = -5; // jump to self
438 } else {
439 assert((labs(val) & 0xFFFFFFFF00000000) == 0,
440 "must be 32bit offset");
441 }
442 #endif // AMD64
443 set_int_at(data_offset, (jint)val);
444 }
445
446 // Creation
447 inline friend NativeJump* nativeJump_at(address address);
448
449 void verify();
450
451 // Unit testing stuff
452 static void test() {}
453
454 // Insertion of native jump instruction
455 static void insert(address code_pos, address entry);
456 // MT-safe insertion of native jump at verified method entry
457 static void check_verified_entry_alignment(address entry, address verified_entry);
458 static void patch_verified_entry(address entry, address verified_entry, address dest);
459 };
460
461 inline NativeJump* nativeJump_at(address address) {
462 NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
463 #ifdef ASSERT
464 jump->verify();
465 #endif
466 return jump;
467 }
468
469 // Handles all kinds of jump on Intel. Long/far, conditional/unconditional
470 class NativeGeneralJump: public NativeInstruction {
471 public:
472 enum Intel_specific_constants {
473 // Constants does not apply, since the lengths and offsets depends on the actual jump
474 // used
475 // Instruction codes:
476 // Unconditional jumps: 0xE9 (rel32off), 0xEB (rel8off)
477 // Conditional jumps: 0x0F8x (rel32off), 0x7x (rel8off)
478 unconditional_long_jump = 0xe9,
479 unconditional_short_jump = 0xeb,
480 instruction_size = 5
481 };
482
483 address instruction_address() const { return addr_at(0); }
484 address jump_destination() const;
485
486 // Creation
487 inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
488
489 // Insertion of native general jump instruction
490 static void insert_unconditional(address code_pos, address entry);
491 static void replace_mt_safe(address instr_addr, address code_buffer);
492
493 void verify();
494 };
495
496 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
497 NativeGeneralJump* jump = (NativeGeneralJump*)(address);
498 debug_only(jump->verify();)
499 return jump;
500 }
501
502 class NativePopReg : public NativeInstruction {
503 public:
504 enum Intel_specific_constants {
505 instruction_code = 0x58,
506 instruction_size = 1,
507 instruction_offset = 0,
508 data_offset = 1,
509 next_instruction_offset = 1
510 };
511
512 // Insert a pop instruction
513 static void insert(address code_pos, Register reg);
514 };
515
516
517 class NativeIllegalInstruction: public NativeInstruction {
518 public:
519 enum Intel_specific_constants {
520 instruction_code = 0x0B0F, // Real byte order is: 0x0F, 0x0B
521 instruction_size = 2,
522 instruction_offset = 0,
523 next_instruction_offset = 2
524 };
525
526 // Insert illegal opcode as specific address
527 static void insert(address code_pos);
528 };
529
530 // return instruction that does not pop values of the stack
531 class NativeReturn: public NativeInstruction {
532 public:
533 enum Intel_specific_constants {
534 instruction_code = 0xC3,
535 instruction_size = 1,
536 instruction_offset = 0,
537 next_instruction_offset = 1
538 };
539 };
540
541 // return instruction that does pop values of the stack
542 class NativeReturnX: public NativeInstruction {
543 public:
544 enum Intel_specific_constants {
545 instruction_code = 0xC2,
546 instruction_size = 2,
547 instruction_offset = 0,
548 next_instruction_offset = 2
549 };
550 };
551
552 // Simple test vs memory
553 class NativeTstRegMem: public NativeInstruction {
554 public:
555 enum Intel_specific_constants {
556 instruction_code_memXregl = 0x85
557 };
558 };
559
560 inline bool NativeInstruction::is_illegal() { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
561 inline bool NativeInstruction::is_call() { return ubyte_at(0) == NativeCall::instruction_code; }
562 inline bool NativeInstruction::is_return() { return ubyte_at(0) == NativeReturn::instruction_code ||
563 ubyte_at(0) == NativeReturnX::instruction_code; }
564 inline bool NativeInstruction::is_jump() { return ubyte_at(0) == NativeJump::instruction_code ||
565 ubyte_at(0) == 0xEB; /* short jump */ }
566 inline bool NativeInstruction::is_cond_jump() { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
567 (ubyte_at(0) & 0xF0) == 0x70; /* short jump */ }
568 inline bool NativeInstruction::is_safepoint_poll() {
569 #ifdef AMD64
570 return ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
571 ubyte_at(1) == 0x05 && // 00 rax 101
572 ((intptr_t) addr_at(6)) + int_at(2) == (intptr_t) os::get_polling_page();
573 #else
574 return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2regl ||
575 ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
576 (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
577 (os::is_poll_address((address)int_at(2)));
578 #endif // AMD64
579 }
580
581 inline bool NativeInstruction::is_mov_literal64() {
582 #ifdef AMD64
583 return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
584 (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
585 #else
586 return false;
587 #endif // AMD64
588 }