comparison src/cpu/x86/vm/templateTable_x86_64.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_templateTable_x86_64.cpp.incl"
27
28 #define __ _masm->
29
30 // Platform-dependent initialization
31
32 void TemplateTable::pd_initialize() {
33 // No amd64 specific initialization
34 }
35
36 // Address computation: local variables
37
38 static inline Address iaddress(int n) {
39 return Address(r14, Interpreter::local_offset_in_bytes(n));
40 }
41
42 static inline Address laddress(int n) {
43 return iaddress(n + 1);
44 }
45
46 static inline Address faddress(int n) {
47 return iaddress(n);
48 }
49
50 static inline Address daddress(int n) {
51 return laddress(n);
52 }
53
54 static inline Address aaddress(int n) {
55 return iaddress(n);
56 }
57
58 static inline Address iaddress(Register r) {
59 return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
60 }
61
62 static inline Address laddress(Register r) {
63 return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
64 }
65
66 static inline Address faddress(Register r) {
67 return iaddress(r);
68 }
69
70 static inline Address daddress(Register r) {
71 return laddress(r);
72 }
73
74 static inline Address aaddress(Register r) {
75 return iaddress(r);
76 }
77
78 static inline Address at_rsp() {
79 return Address(rsp, 0);
80 }
81
82 // At top of Java expression stack which may be different than esp(). It
83 // isn't for category 1 objects.
84 static inline Address at_tos () {
85 return Address(rsp, Interpreter::expr_offset_in_bytes(0));
86 }
87
88 static inline Address at_tos_p1() {
89 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
90 }
91
92 static inline Address at_tos_p2() {
93 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
94 }
95
96 static inline Address at_tos_p3() {
97 return Address(rsp, Interpreter::expr_offset_in_bytes(3));
98 }
99
100 // Condition conversion
101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
102 switch (cc) {
103 case TemplateTable::equal : return Assembler::notEqual;
104 case TemplateTable::not_equal : return Assembler::equal;
105 case TemplateTable::less : return Assembler::greaterEqual;
106 case TemplateTable::less_equal : return Assembler::greater;
107 case TemplateTable::greater : return Assembler::lessEqual;
108 case TemplateTable::greater_equal: return Assembler::less;
109 }
110 ShouldNotReachHere();
111 return Assembler::zero;
112 }
113
114
115 // Miscelaneous helper routines
116
117 Address TemplateTable::at_bcp(int offset) {
118 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
119 return Address(r13, offset);
120 }
121
122 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
123 Register scratch,
124 bool load_bc_into_scratch/*=true*/) {
125 if (!RewriteBytecodes) {
126 return;
127 }
128 // the pair bytecodes have already done the load.
129 if (load_bc_into_scratch) {
130 __ movl(bc, bytecode);
131 }
132 Label patch_done;
133 if (JvmtiExport::can_post_breakpoint()) {
134 Label fast_patch;
135 // if a breakpoint is present we can't rewrite the stream directly
136 __ movzbl(scratch, at_bcp(0));
137 __ cmpl(scratch, Bytecodes::_breakpoint);
138 __ jcc(Assembler::notEqual, fast_patch);
139 __ get_method(scratch);
140 // Let breakpoint table handling rewrite to quicker bytecode
141 __ call_VM(noreg,
142 CAST_FROM_FN_PTR(address,
143 InterpreterRuntime::set_original_bytecode_at),
144 scratch, r13, bc);
145 #ifndef ASSERT
146 __ jmpb(patch_done);
147 __ bind(fast_patch);
148 }
149 #else
150 __ jmp(patch_done);
151 __ bind(fast_patch);
152 }
153 Label okay;
154 __ load_unsigned_byte(scratch, at_bcp(0));
155 __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
156 __ jcc(Assembler::equal, okay);
157 __ cmpl(scratch, bc);
158 __ jcc(Assembler::equal, okay);
159 __ stop("patching the wrong bytecode");
160 __ bind(okay);
161 #endif
162 // patch bytecode
163 __ movb(at_bcp(0), bc);
164 __ bind(patch_done);
165 }
166
167
168 // Individual instructions
169
170 void TemplateTable::nop() {
171 transition(vtos, vtos);
172 // nothing to do
173 }
174
175 void TemplateTable::shouldnotreachhere() {
176 transition(vtos, vtos);
177 __ stop("shouldnotreachhere bytecode");
178 }
179
180 void TemplateTable::aconst_null() {
181 transition(vtos, atos);
182 __ xorl(rax, rax);
183 }
184
185 void TemplateTable::iconst(int value) {
186 transition(vtos, itos);
187 if (value == 0) {
188 __ xorl(rax, rax);
189 } else {
190 __ movl(rax, value);
191 }
192 }
193
194 void TemplateTable::lconst(int value) {
195 transition(vtos, ltos);
196 if (value == 0) {
197 __ xorl(rax, rax);
198 } else {
199 __ movl(rax, value);
200 }
201 }
202
203 void TemplateTable::fconst(int value) {
204 transition(vtos, ftos);
205 static float one = 1.0f, two = 2.0f;
206 switch (value) {
207 case 0:
208 __ xorps(xmm0, xmm0);
209 break;
210 case 1:
211 __ movflt(xmm0, ExternalAddress((address) &one));
212 break;
213 case 2:
214 __ movflt(xmm0, ExternalAddress((address) &two));
215 break;
216 default:
217 ShouldNotReachHere();
218 break;
219 }
220 }
221
222 void TemplateTable::dconst(int value) {
223 transition(vtos, dtos);
224 static double one = 1.0;
225 switch (value) {
226 case 0:
227 __ xorpd(xmm0, xmm0);
228 break;
229 case 1:
230 __ movdbl(xmm0, ExternalAddress((address) &one));
231 break;
232 default:
233 ShouldNotReachHere();
234 break;
235 }
236 }
237
238 void TemplateTable::bipush() {
239 transition(vtos, itos);
240 __ load_signed_byte(rax, at_bcp(1));
241 }
242
243 void TemplateTable::sipush() {
244 transition(vtos, itos);
245 __ load_unsigned_word(rax, at_bcp(1));
246 __ bswapl(rax);
247 __ sarl(rax, 16);
248 }
249
250 void TemplateTable::ldc(bool wide) {
251 transition(vtos, vtos);
252 Label call_ldc, notFloat, notClass, Done;
253
254 if (wide) {
255 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
256 } else {
257 __ load_unsigned_byte(rbx, at_bcp(1));
258 }
259
260 __ get_cpool_and_tags(rcx, rax);
261 const int base_offset = constantPoolOopDesc::header_size() * wordSize;
262 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
263
264 // get type
265 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
266
267 // unresolved string - get the resolved string
268 __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
269 __ jccb(Assembler::equal, call_ldc);
270
271 // unresolved class - get the resolved class
272 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
273 __ jccb(Assembler::equal, call_ldc);
274
275 // unresolved class in error state - call into runtime to throw the error
276 // from the first resolution attempt
277 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
278 __ jccb(Assembler::equal, call_ldc);
279
280 // resolved class - need to call vm to get java mirror of the class
281 __ cmpl(rdx, JVM_CONSTANT_Class);
282 __ jcc(Assembler::notEqual, notClass);
283
284 __ bind(call_ldc);
285 __ movl(c_rarg1, wide);
286 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
287 __ push_ptr(rax);
288 __ verify_oop(rax);
289 __ jmp(Done);
290
291 __ bind(notClass);
292 __ cmpl(rdx, JVM_CONSTANT_Float);
293 __ jccb(Assembler::notEqual, notFloat);
294 // ftos
295 __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
296 __ push_f();
297 __ jmp(Done);
298
299 __ bind(notFloat);
300 #ifdef ASSERT
301 {
302 Label L;
303 __ cmpl(rdx, JVM_CONSTANT_Integer);
304 __ jcc(Assembler::equal, L);
305 __ cmpl(rdx, JVM_CONSTANT_String);
306 __ jcc(Assembler::equal, L);
307 __ stop("unexpected tag type in ldc");
308 __ bind(L);
309 }
310 #endif
311 // atos and itos
312 Label isOop;
313 __ cmpl(rdx, JVM_CONSTANT_Integer);
314 __ jcc(Assembler::notEqual, isOop);
315 __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
316 __ push_i(rax);
317 __ jmp(Done);
318
319 __ bind(isOop);
320 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
321 __ push_ptr(rax);
322
323 if (VerifyOops) {
324 __ verify_oop(rax);
325 }
326
327 __ bind(Done);
328 }
329
330 void TemplateTable::ldc2_w() {
331 transition(vtos, vtos);
332 Label Long, Done;
333 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
334
335 __ get_cpool_and_tags(rcx, rax);
336 const int base_offset = constantPoolOopDesc::header_size() * wordSize;
337 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
338
339 // get type
340 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
341 JVM_CONSTANT_Double);
342 __ jccb(Assembler::notEqual, Long);
343 // dtos
344 __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
345 __ push_d();
346 __ jmpb(Done);
347
348 __ bind(Long);
349 // ltos
350 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
351 __ push_l();
352
353 __ bind(Done);
354 }
355
356 void TemplateTable::locals_index(Register reg, int offset) {
357 __ load_unsigned_byte(reg, at_bcp(offset));
358 __ negq(reg);
359 if (TaggedStackInterpreter) __ shlq(reg, 1); // index = index*2
360 }
361
362 void TemplateTable::iload() {
363 transition(vtos, itos);
364 if (RewriteFrequentPairs) {
365 Label rewrite, done;
366 const Register bc = c_rarg3;
367 assert(rbx != bc, "register damaged");
368
369 // get next byte
370 __ load_unsigned_byte(rbx,
371 at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
372 // if _iload, wait to rewrite to iload2. We only want to rewrite the
373 // last two iloads in a pair. Comparing against fast_iload means that
374 // the next bytecode is neither an iload or a caload, and therefore
375 // an iload pair.
376 __ cmpl(rbx, Bytecodes::_iload);
377 __ jcc(Assembler::equal, done);
378
379 __ cmpl(rbx, Bytecodes::_fast_iload);
380 __ movl(bc, Bytecodes::_fast_iload2);
381 __ jccb(Assembler::equal, rewrite);
382
383 // if _caload, rewrite to fast_icaload
384 __ cmpl(rbx, Bytecodes::_caload);
385 __ movl(bc, Bytecodes::_fast_icaload);
386 __ jccb(Assembler::equal, rewrite);
387
388 // rewrite so iload doesn't check again.
389 __ movl(bc, Bytecodes::_fast_iload);
390
391 // rewrite
392 // bc: fast bytecode
393 __ bind(rewrite);
394 patch_bytecode(Bytecodes::_iload, bc, rbx, false);
395 __ bind(done);
396 }
397
398 // Get the local value into tos
399 locals_index(rbx);
400 __ movl(rax, iaddress(rbx));
401 debug_only(__ verify_local_tag(frame::TagValue, rbx));
402 }
403
404 void TemplateTable::fast_iload2() {
405 transition(vtos, itos);
406 locals_index(rbx);
407 __ movl(rax, iaddress(rbx));
408 debug_only(__ verify_local_tag(frame::TagValue, rbx));
409 __ push(itos);
410 locals_index(rbx, 3);
411 __ movl(rax, iaddress(rbx));
412 debug_only(__ verify_local_tag(frame::TagValue, rbx));
413 }
414
415 void TemplateTable::fast_iload() {
416 transition(vtos, itos);
417 locals_index(rbx);
418 __ movl(rax, iaddress(rbx));
419 debug_only(__ verify_local_tag(frame::TagValue, rbx));
420 }
421
422 void TemplateTable::lload() {
423 transition(vtos, ltos);
424 locals_index(rbx);
425 __ movq(rax, laddress(rbx));
426 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
427 }
428
429 void TemplateTable::fload() {
430 transition(vtos, ftos);
431 locals_index(rbx);
432 __ movflt(xmm0, faddress(rbx));
433 debug_only(__ verify_local_tag(frame::TagValue, rbx));
434 }
435
436 void TemplateTable::dload() {
437 transition(vtos, dtos);
438 locals_index(rbx);
439 __ movdbl(xmm0, daddress(rbx));
440 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
441 }
442
443 void TemplateTable::aload() {
444 transition(vtos, atos);
445 locals_index(rbx);
446 __ movq(rax, aaddress(rbx));
447 debug_only(__ verify_local_tag(frame::TagReference, rbx));
448 }
449
450 void TemplateTable::locals_index_wide(Register reg) {
451 __ movl(reg, at_bcp(2));
452 __ bswapl(reg);
453 __ shrl(reg, 16);
454 __ negq(reg);
455 if (TaggedStackInterpreter) __ shlq(reg, 1); // index = index*2
456 }
457
458 void TemplateTable::wide_iload() {
459 transition(vtos, itos);
460 locals_index_wide(rbx);
461 __ movl(rax, iaddress(rbx));
462 debug_only(__ verify_local_tag(frame::TagValue, rbx));
463 }
464
465 void TemplateTable::wide_lload() {
466 transition(vtos, ltos);
467 locals_index_wide(rbx);
468 __ movq(rax, laddress(rbx));
469 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
470 }
471
472 void TemplateTable::wide_fload() {
473 transition(vtos, ftos);
474 locals_index_wide(rbx);
475 __ movflt(xmm0, faddress(rbx));
476 debug_only(__ verify_local_tag(frame::TagValue, rbx));
477 }
478
479 void TemplateTable::wide_dload() {
480 transition(vtos, dtos);
481 locals_index_wide(rbx);
482 __ movdbl(xmm0, daddress(rbx));
483 debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
484 }
485
486 void TemplateTable::wide_aload() {
487 transition(vtos, atos);
488 locals_index_wide(rbx);
489 __ movq(rax, aaddress(rbx));
490 debug_only(__ verify_local_tag(frame::TagReference, rbx));
491 }
492
493 void TemplateTable::index_check(Register array, Register index) {
494 // destroys rbx
495 // check array
496 __ null_check(array, arrayOopDesc::length_offset_in_bytes());
497 // sign extend index for use by indexed load
498 __ movslq(index, index);
499 // check index
500 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
501 if (index != rbx) {
502 // ??? convention: move aberrant index into ebx for exception message
503 assert(rbx != array, "different registers");
504 __ movl(rbx, index);
505 }
506 __ jump_cc(Assembler::aboveEqual,
507 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
508 }
509
510 void TemplateTable::iaload() {
511 transition(itos, itos);
512 __ pop_ptr(rdx);
513 // eax: index
514 // rdx: array
515 index_check(rdx, rax); // kills rbx
516 __ movl(rax, Address(rdx, rax,
517 Address::times_4,
518 arrayOopDesc::base_offset_in_bytes(T_INT)));
519 }
520
521 void TemplateTable::laload() {
522 transition(itos, ltos);
523 __ pop_ptr(rdx);
524 // eax: index
525 // rdx: array
526 index_check(rdx, rax); // kills rbx
527 __ movq(rax, Address(rdx, rbx,
528 Address::times_8,
529 arrayOopDesc::base_offset_in_bytes(T_LONG)));
530 }
531
532 void TemplateTable::faload() {
533 transition(itos, ftos);
534 __ pop_ptr(rdx);
535 // eax: index
536 // rdx: array
537 index_check(rdx, rax); // kills rbx
538 __ movflt(xmm0, Address(rdx, rax,
539 Address::times_4,
540 arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
541 }
542
543 void TemplateTable::daload() {
544 transition(itos, dtos);
545 __ pop_ptr(rdx);
546 // eax: index
547 // rdx: array
548 index_check(rdx, rax); // kills rbx
549 __ movdbl(xmm0, Address(rdx, rax,
550 Address::times_8,
551 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
552 }
553
554 void TemplateTable::aaload() {
555 transition(itos, atos);
556 __ pop_ptr(rdx);
557 // eax: index
558 // rdx: array
559 index_check(rdx, rax); // kills rbx
560 __ movq(rax, Address(rdx, rax,
561 Address::times_8,
562 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
563 }
564
565 void TemplateTable::baload() {
566 transition(itos, itos);
567 __ pop_ptr(rdx);
568 // eax: index
569 // rdx: array
570 index_check(rdx, rax); // kills rbx
571 __ load_signed_byte(rax,
572 Address(rdx, rax,
573 Address::times_1,
574 arrayOopDesc::base_offset_in_bytes(T_BYTE)));
575 }
576
577 void TemplateTable::caload() {
578 transition(itos, itos);
579 __ pop_ptr(rdx);
580 // eax: index
581 // rdx: array
582 index_check(rdx, rax); // kills rbx
583 __ load_unsigned_word(rax,
584 Address(rdx, rax,
585 Address::times_2,
586 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
587 }
588
589 // iload followed by caload frequent pair
590 void TemplateTable::fast_icaload() {
591 transition(vtos, itos);
592 // load index out of locals
593 locals_index(rbx);
594 __ movl(rax, iaddress(rbx));
595 debug_only(__ verify_local_tag(frame::TagValue, rbx));
596
597 // eax: index
598 // rdx: array
599 __ pop_ptr(rdx);
600 index_check(rdx, rax); // kills rbx
601 __ load_unsigned_word(rax,
602 Address(rdx, rax,
603 Address::times_2,
604 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
605 }
606
607 void TemplateTable::saload() {
608 transition(itos, itos);
609 __ pop_ptr(rdx);
610 // eax: index
611 // rdx: array
612 index_check(rdx, rax); // kills rbx
613 __ load_signed_word(rax,
614 Address(rdx, rax,
615 Address::times_2,
616 arrayOopDesc::base_offset_in_bytes(T_SHORT)));
617 }
618
619 void TemplateTable::iload(int n) {
620 transition(vtos, itos);
621 __ movl(rax, iaddress(n));
622 debug_only(__ verify_local_tag(frame::TagValue, n));
623 }
624
625 void TemplateTable::lload(int n) {
626 transition(vtos, ltos);
627 __ movq(rax, laddress(n));
628 debug_only(__ verify_local_tag(frame::TagCategory2, n));
629 }
630
631 void TemplateTable::fload(int n) {
632 transition(vtos, ftos);
633 __ movflt(xmm0, faddress(n));
634 debug_only(__ verify_local_tag(frame::TagValue, n));
635 }
636
637 void TemplateTable::dload(int n) {
638 transition(vtos, dtos);
639 __ movdbl(xmm0, daddress(n));
640 debug_only(__ verify_local_tag(frame::TagCategory2, n));
641 }
642
643 void TemplateTable::aload(int n) {
644 transition(vtos, atos);
645 __ movq(rax, aaddress(n));
646 debug_only(__ verify_local_tag(frame::TagReference, n));
647 }
648
649 void TemplateTable::aload_0() {
650 transition(vtos, atos);
651 // According to bytecode histograms, the pairs:
652 //
653 // _aload_0, _fast_igetfield
654 // _aload_0, _fast_agetfield
655 // _aload_0, _fast_fgetfield
656 //
657 // occur frequently. If RewriteFrequentPairs is set, the (slow)
658 // _aload_0 bytecode checks if the next bytecode is either
659 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
660 // rewrites the current bytecode into a pair bytecode; otherwise it
661 // rewrites the current bytecode into _fast_aload_0 that doesn't do
662 // the pair check anymore.
663 //
664 // Note: If the next bytecode is _getfield, the rewrite must be
665 // delayed, otherwise we may miss an opportunity for a pair.
666 //
667 // Also rewrite frequent pairs
668 // aload_0, aload_1
669 // aload_0, iload_1
670 // These bytecodes with a small amount of code are most profitable
671 // to rewrite
672 if (RewriteFrequentPairs) {
673 Label rewrite, done;
674 const Register bc = c_rarg3;
675 assert(rbx != bc, "register damaged");
676 // get next byte
677 __ load_unsigned_byte(rbx,
678 at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
679
680 // do actual aload_0
681 aload(0);
682
683 // if _getfield then wait with rewrite
684 __ cmpl(rbx, Bytecodes::_getfield);
685 __ jcc(Assembler::equal, done);
686
687 // if _igetfield then reqrite to _fast_iaccess_0
688 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
689 Bytecodes::_aload_0,
690 "fix bytecode definition");
691 __ cmpl(rbx, Bytecodes::_fast_igetfield);
692 __ movl(bc, Bytecodes::_fast_iaccess_0);
693 __ jccb(Assembler::equal, rewrite);
694
695 // if _agetfield then reqrite to _fast_aaccess_0
696 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
697 Bytecodes::_aload_0,
698 "fix bytecode definition");
699 __ cmpl(rbx, Bytecodes::_fast_agetfield);
700 __ movl(bc, Bytecodes::_fast_aaccess_0);
701 __ jccb(Assembler::equal, rewrite);
702
703 // if _fgetfield then reqrite to _fast_faccess_0
704 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
705 Bytecodes::_aload_0,
706 "fix bytecode definition");
707 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
708 __ movl(bc, Bytecodes::_fast_faccess_0);
709 __ jccb(Assembler::equal, rewrite);
710
711 // else rewrite to _fast_aload0
712 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
713 Bytecodes::_aload_0,
714 "fix bytecode definition");
715 __ movl(bc, Bytecodes::_fast_aload_0);
716
717 // rewrite
718 // bc: fast bytecode
719 __ bind(rewrite);
720 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
721
722 __ bind(done);
723 } else {
724 aload(0);
725 }
726 }
727
728 void TemplateTable::istore() {
729 transition(itos, vtos);
730 locals_index(rbx);
731 __ movl(iaddress(rbx), rax);
732 __ tag_local(frame::TagValue, rbx);
733 }
734
735 void TemplateTable::lstore() {
736 transition(ltos, vtos);
737 locals_index(rbx);
738 __ movq(laddress(rbx), rax);
739 __ tag_local(frame::TagCategory2, rbx);
740 }
741
742 void TemplateTable::fstore() {
743 transition(ftos, vtos);
744 locals_index(rbx);
745 __ movflt(faddress(rbx), xmm0);
746 __ tag_local(frame::TagValue, rbx);
747 }
748
749 void TemplateTable::dstore() {
750 transition(dtos, vtos);
751 locals_index(rbx);
752 __ movdbl(daddress(rbx), xmm0);
753 __ tag_local(frame::TagCategory2, rbx);
754 }
755
756 void TemplateTable::astore() {
757 transition(vtos, vtos);
758 __ pop_ptr(rax, rdx); // will need to pop tag too
759 locals_index(rbx);
760 __ movq(aaddress(rbx), rax);
761 __ tag_local(rdx, rbx); // store tag from stack, might be returnAddr
762 }
763
764 void TemplateTable::wide_istore() {
765 transition(vtos, vtos);
766 __ pop_i();
767 locals_index_wide(rbx);
768 __ movl(iaddress(rbx), rax);
769 __ tag_local(frame::TagValue, rbx);
770 }
771
772 void TemplateTable::wide_lstore() {
773 transition(vtos, vtos);
774 __ pop_l();
775 locals_index_wide(rbx);
776 __ movq(laddress(rbx), rax);
777 __ tag_local(frame::TagCategory2, rbx);
778 }
779
780 void TemplateTable::wide_fstore() {
781 transition(vtos, vtos);
782 __ pop_f();
783 locals_index_wide(rbx);
784 __ movflt(faddress(rbx), xmm0);
785 __ tag_local(frame::TagValue, rbx);
786 }
787
788 void TemplateTable::wide_dstore() {
789 transition(vtos, vtos);
790 __ pop_d();
791 locals_index_wide(rbx);
792 __ movdbl(daddress(rbx), xmm0);
793 __ tag_local(frame::TagCategory2, rbx);
794 }
795
796 void TemplateTable::wide_astore() {
797 transition(vtos, vtos);
798 __ pop_ptr(rax, rdx); // will need to pop tag too
799 locals_index_wide(rbx);
800 __ movq(aaddress(rbx), rax);
801 __ tag_local(rdx, rbx); // store tag from stack, might be returnAddr
802 }
803
804 void TemplateTable::iastore() {
805 transition(itos, vtos);
806 __ pop_i(rbx);
807 __ pop_ptr(rdx);
808 // eax: value
809 // ebx: index
810 // rdx: array
811 index_check(rdx, rbx); // prefer index in ebx
812 __ movl(Address(rdx, rbx,
813 Address::times_4,
814 arrayOopDesc::base_offset_in_bytes(T_INT)),
815 rax);
816 }
817
818 void TemplateTable::lastore() {
819 transition(ltos, vtos);
820 __ pop_i(rbx);
821 __ pop_ptr(rdx);
822 // rax: value
823 // ebx: index
824 // rdx: array
825 index_check(rdx, rbx); // prefer index in ebx
826 __ movq(Address(rdx, rbx,
827 Address::times_8,
828 arrayOopDesc::base_offset_in_bytes(T_LONG)),
829 rax);
830 }
831
832 void TemplateTable::fastore() {
833 transition(ftos, vtos);
834 __ pop_i(rbx);
835 __ pop_ptr(rdx);
836 // xmm0: value
837 // ebx: index
838 // rdx: array
839 index_check(rdx, rbx); // prefer index in ebx
840 __ movflt(Address(rdx, rbx,
841 Address::times_4,
842 arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
843 xmm0);
844 }
845
846 void TemplateTable::dastore() {
847 transition(dtos, vtos);
848 __ pop_i(rbx);
849 __ pop_ptr(rdx);
850 // xmm0: value
851 // ebx: index
852 // rdx: array
853 index_check(rdx, rbx); // prefer index in ebx
854 __ movdbl(Address(rdx, rbx,
855 Address::times_8,
856 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
857 xmm0);
858 }
859
860 void TemplateTable::aastore() {
861 Label is_null, ok_is_subtype, done;
862 transition(vtos, vtos);
863 // stack: ..., array, index, value
864 __ movq(rax, at_tos()); // value
865 __ movl(rcx, at_tos_p1()); // index
866 __ movq(rdx, at_tos_p2()); // array
867 index_check(rdx, rcx); // kills rbx
868 // do array store check - check for NULL value first
869 __ testq(rax, rax);
870 __ jcc(Assembler::zero, is_null);
871
872 // Move subklass into rbx
873 __ movq(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
874 // Move superklass into rax
875 __ movq(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
876 __ movq(rax, Address(rax,
877 sizeof(oopDesc) +
878 objArrayKlass::element_klass_offset_in_bytes()));
879 // Compress array + index*8 + 12 into a single register. Frees rcx.
880 __ leaq(rdx, Address(rdx, rcx,
881 Address::times_8,
882 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
883
884 // Generate subtype check. Blows rcx, rdi
885 // Superklass in rax. Subklass in rbx.
886 __ gen_subtype_check(rbx, ok_is_subtype);
887
888 // Come here on failure
889 // object is at TOS
890 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
891
892 // Come here on success
893 __ bind(ok_is_subtype);
894 __ movq(rax, at_tos()); // Value
895 __ movq(Address(rdx, 0), rax);
896 __ store_check(rdx);
897 __ jmp(done);
898
899 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx]
900 __ bind(is_null);
901 __ profile_null_seen(rbx);
902 __ movq(Address(rdx, rcx,
903 Address::times_8,
904 arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
905 rax);
906
907 // Pop stack arguments
908 __ bind(done);
909 __ addq(rsp, 3 * Interpreter::stackElementSize());
910 }
911
912 void TemplateTable::bastore() {
913 transition(itos, vtos);
914 __ pop_i(rbx);
915 __ pop_ptr(rdx);
916 // eax: value
917 // ebx: index
918 // rdx: array
919 index_check(rdx, rbx); // prefer index in ebx
920 __ movb(Address(rdx, rbx,
921 Address::times_1,
922 arrayOopDesc::base_offset_in_bytes(T_BYTE)),
923 rax);
924 }
925
926 void TemplateTable::castore() {
927 transition(itos, vtos);
928 __ pop_i(rbx);
929 __ pop_ptr(rdx);
930 // eax: value
931 // ebx: index
932 // rdx: array
933 index_check(rdx, rbx); // prefer index in ebx
934 __ movw(Address(rdx, rbx,
935 Address::times_2,
936 arrayOopDesc::base_offset_in_bytes(T_CHAR)),
937 rax);
938 }
939
940 void TemplateTable::sastore() {
941 castore();
942 }
943
944 void TemplateTable::istore(int n) {
945 transition(itos, vtos);
946 __ movl(iaddress(n), rax);
947 __ tag_local(frame::TagValue, n);
948 }
949
950 void TemplateTable::lstore(int n) {
951 transition(ltos, vtos);
952 __ movq(laddress(n), rax);
953 __ tag_local(frame::TagCategory2, n);
954 }
955
956 void TemplateTable::fstore(int n) {
957 transition(ftos, vtos);
958 __ movflt(faddress(n), xmm0);
959 __ tag_local(frame::TagValue, n);
960 }
961
962 void TemplateTable::dstore(int n) {
963 transition(dtos, vtos);
964 __ movdbl(daddress(n), xmm0);
965 __ tag_local(frame::TagCategory2, n);
966 }
967
968 void TemplateTable::astore(int n) {
969 transition(vtos, vtos);
970 __ pop_ptr(rax, rdx);
971 __ movq(aaddress(n), rax);
972 __ tag_local(rdx, n);
973 }
974
975 void TemplateTable::pop() {
976 transition(vtos, vtos);
977 __ addq(rsp, Interpreter::stackElementSize());
978 }
979
980 void TemplateTable::pop2() {
981 transition(vtos, vtos);
982 __ addq(rsp, 2 * Interpreter::stackElementSize());
983 }
984
985 void TemplateTable::dup() {
986 transition(vtos, vtos);
987 __ load_ptr_and_tag(0, rax, rdx);
988 __ push_ptr(rax, rdx);
989 // stack: ..., a, a
990 }
991
992 void TemplateTable::dup_x1() {
993 transition(vtos, vtos);
994 // stack: ..., a, b
995 __ load_ptr_and_tag(0, rax, rdx); // load b
996 __ load_ptr_and_tag(1, rcx, rbx); // load a
997 __ store_ptr_and_tag(1, rax, rdx); // store b
998 __ store_ptr_and_tag(0, rcx, rbx); // store a
999 __ push_ptr(rax, rdx); // push b
1000 // stack: ..., b, a, b
1001 }
1002
1003 void TemplateTable::dup_x2() {
1004 transition(vtos, vtos);
1005 // stack: ..., a, b, c
1006 __ load_ptr_and_tag(0, rax, rdx); // load c
1007 __ load_ptr_and_tag(2, rcx, rbx); // load a
1008 __ store_ptr_and_tag(2, rax, rdx); // store c in a
1009 __ push_ptr(rax, rdx); // push c
1010 // stack: ..., c, b, c, c
1011 __ load_ptr_and_tag(2, rax, rdx); // load b
1012 __ store_ptr_and_tag(2, rcx, rbx); // store a in b
1013 // stack: ..., c, a, c, c
1014 __ store_ptr_and_tag(1, rax, rdx); // store b in c
1015 // stack: ..., c, a, b, c
1016 }
1017
1018 void TemplateTable::dup2() {
1019 transition(vtos, vtos);
1020 // stack: ..., a, b
1021 __ load_ptr_and_tag(1, rax, rdx); // load a
1022 __ push_ptr(rax, rdx); // push a
1023 __ load_ptr_and_tag(1, rax, rdx); // load b
1024 __ push_ptr(rax, rdx); // push b
1025 // stack: ..., a, b, a, b
1026 }
1027
1028 void TemplateTable::dup2_x1() {
1029 transition(vtos, vtos);
1030 // stack: ..., a, b, c
1031 __ load_ptr_and_tag(0, rcx, rbx); // load c
1032 __ load_ptr_and_tag(1, rax, rdx); // load b
1033 __ push_ptr(rax, rdx); // push b
1034 __ push_ptr(rcx, rbx); // push c
1035 // stack: ..., a, b, c, b, c
1036 __ store_ptr_and_tag(3, rcx, rbx); // store c in b
1037 // stack: ..., a, c, c, b, c
1038 __ load_ptr_and_tag(4, rcx, rbx); // load a
1039 __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
1040 // stack: ..., a, c, a, b, c
1041 __ store_ptr_and_tag(4, rax, rdx); // store b in a
1042 // stack: ..., b, c, a, b, c
1043 }
1044
1045 void TemplateTable::dup2_x2() {
1046 transition(vtos, vtos);
1047 // stack: ..., a, b, c, d
1048 __ load_ptr_and_tag(0, rcx, rbx); // load d
1049 __ load_ptr_and_tag(1, rax, rdx); // load c
1050 __ push_ptr(rax, rdx); // push c
1051 __ push_ptr(rcx, rbx); // push d
1052 // stack: ..., a, b, c, d, c, d
1053 __ load_ptr_and_tag(4, rax, rdx); // load b
1054 __ store_ptr_and_tag(2, rax, rdx); // store b in d
1055 __ store_ptr_and_tag(4, rcx, rbx); // store d in b
1056 // stack: ..., a, d, c, b, c, d
1057 __ load_ptr_and_tag(5, rcx, rbx); // load a
1058 __ load_ptr_and_tag(3, rax, rdx); // load c
1059 __ store_ptr_and_tag(3, rcx, rbx); // store a in c
1060 __ store_ptr_and_tag(5, rax, rdx); // store c in a
1061 // stack: ..., c, d, a, b, c, d
1062 }
1063
1064 void TemplateTable::swap() {
1065 transition(vtos, vtos);
1066 // stack: ..., a, b
1067 __ load_ptr_and_tag(1, rcx, rbx); // load a
1068 __ load_ptr_and_tag(0, rax, rdx); // load b
1069 __ store_ptr_and_tag(0, rcx, rbx); // store a in b
1070 __ store_ptr_and_tag(1, rax, rdx); // store b in a
1071 // stack: ..., b, a
1072 }
1073
1074 void TemplateTable::iop2(Operation op) {
1075 transition(itos, itos);
1076 switch (op) {
1077 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1078 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1079 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1080 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1081 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1082 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1083 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break;
1084 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break;
1085 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break;
1086 default : ShouldNotReachHere();
1087 }
1088 }
1089
1090 void TemplateTable::lop2(Operation op) {
1091 transition(ltos, ltos);
1092 switch (op) {
1093 case add : __ pop_l(rdx); __ addq (rax, rdx); break;
1094 case sub : __ movq(rdx, rax); __ pop_l(rax); __ subq (rax, rdx); break;
1095 case _and : __ pop_l(rdx); __ andq (rax, rdx); break;
1096 case _or : __ pop_l(rdx); __ orq (rax, rdx); break;
1097 case _xor : __ pop_l(rdx); __ xorq (rax, rdx); break;
1098 default : ShouldNotReachHere();
1099 }
1100 }
1101
1102 void TemplateTable::idiv() {
1103 transition(itos, itos);
1104 __ movl(rcx, rax);
1105 __ pop_i(rax);
1106 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1107 // they are not equal, one could do a normal division (no correction
1108 // needed), which may speed up this implementation for the common case.
1109 // (see also JVM spec., p.243 & p.271)
1110 __ corrected_idivl(rcx);
1111 }
1112
1113 void TemplateTable::irem() {
1114 transition(itos, itos);
1115 __ movl(rcx, rax);
1116 __ pop_i(rax);
1117 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1118 // they are not equal, one could do a normal division (no correction
1119 // needed), which may speed up this implementation for the common case.
1120 // (see also JVM spec., p.243 & p.271)
1121 __ corrected_idivl(rcx);
1122 __ movl(rax, rdx);
1123 }
1124
1125 void TemplateTable::lmul() {
1126 transition(ltos, ltos);
1127 __ pop_l(rdx);
1128 __ imulq(rax, rdx);
1129 }
1130
1131 void TemplateTable::ldiv() {
1132 transition(ltos, ltos);
1133 __ movq(rcx, rax);
1134 __ pop_l(rax);
1135 // generate explicit div0 check
1136 __ testq(rcx, rcx);
1137 __ jump_cc(Assembler::zero,
1138 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1139 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1140 // they are not equal, one could do a normal division (no correction
1141 // needed), which may speed up this implementation for the common case.
1142 // (see also JVM spec., p.243 & p.271)
1143 __ corrected_idivq(rcx); // kills rbx
1144 }
1145
1146 void TemplateTable::lrem() {
1147 transition(ltos, ltos);
1148 __ movq(rcx, rax);
1149 __ pop_l(rax);
1150 __ testq(rcx, rcx);
1151 __ jump_cc(Assembler::zero,
1152 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1153 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1154 // they are not equal, one could do a normal division (no correction
1155 // needed), which may speed up this implementation for the common case.
1156 // (see also JVM spec., p.243 & p.271)
1157 __ corrected_idivq(rcx); // kills rbx
1158 __ movq(rax, rdx);
1159 }
1160
1161 void TemplateTable::lshl() {
1162 transition(itos, ltos);
1163 __ movl(rcx, rax); // get shift count
1164 __ pop_l(rax); // get shift value
1165 __ shlq(rax);
1166 }
1167
1168 void TemplateTable::lshr() {
1169 transition(itos, ltos);
1170 __ movl(rcx, rax); // get shift count
1171 __ pop_l(rax); // get shift value
1172 __ sarq(rax);
1173 }
1174
1175 void TemplateTable::lushr() {
1176 transition(itos, ltos);
1177 __ movl(rcx, rax); // get shift count
1178 __ pop_l(rax); // get shift value
1179 __ shrq(rax);
1180 }
1181
1182 void TemplateTable::fop2(Operation op) {
1183 transition(ftos, ftos);
1184 switch (op) {
1185 case add:
1186 __ addss(xmm0, at_rsp());
1187 __ addq(rsp, Interpreter::stackElementSize());
1188 break;
1189 case sub:
1190 __ movflt(xmm1, xmm0);
1191 __ pop_f(xmm0);
1192 __ subss(xmm0, xmm1);
1193 break;
1194 case mul:
1195 __ mulss(xmm0, at_rsp());
1196 __ addq(rsp, Interpreter::stackElementSize());
1197 break;
1198 case div:
1199 __ movflt(xmm1, xmm0);
1200 __ pop_f(xmm0);
1201 __ divss(xmm0, xmm1);
1202 break;
1203 case rem:
1204 __ movflt(xmm1, xmm0);
1205 __ pop_f(xmm0);
1206 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1207 break;
1208 default:
1209 ShouldNotReachHere();
1210 break;
1211 }
1212 }
1213
1214 void TemplateTable::dop2(Operation op) {
1215 transition(dtos, dtos);
1216 switch (op) {
1217 case add:
1218 __ addsd(xmm0, at_rsp());
1219 __ addq(rsp, 2 * Interpreter::stackElementSize());
1220 break;
1221 case sub:
1222 __ movdbl(xmm1, xmm0);
1223 __ pop_d(xmm0);
1224 __ subsd(xmm0, xmm1);
1225 break;
1226 case mul:
1227 __ mulsd(xmm0, at_rsp());
1228 __ addq(rsp, 2 * Interpreter::stackElementSize());
1229 break;
1230 case div:
1231 __ movdbl(xmm1, xmm0);
1232 __ pop_d(xmm0);
1233 __ divsd(xmm0, xmm1);
1234 break;
1235 case rem:
1236 __ movdbl(xmm1, xmm0);
1237 __ pop_d(xmm0);
1238 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1239 break;
1240 default:
1241 ShouldNotReachHere();
1242 break;
1243 }
1244 }
1245
1246 void TemplateTable::ineg() {
1247 transition(itos, itos);
1248 __ negl(rax);
1249 }
1250
1251 void TemplateTable::lneg() {
1252 transition(ltos, ltos);
1253 __ negq(rax);
1254 }
1255
1256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1258 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1259 // of 128-bits operands for SSE instructions.
1260 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1261 // Store the value to a 128-bits operand.
1262 operand[0] = lo;
1263 operand[1] = hi;
1264 return operand;
1265 }
1266
1267 // Buffer for 128-bits masks used by SSE instructions.
1268 static jlong float_signflip_pool[2*2];
1269 static jlong double_signflip_pool[2*2];
1270
1271 void TemplateTable::fneg() {
1272 transition(ftos, ftos);
1273 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1274 __ xorps(xmm0, ExternalAddress((address) float_signflip));
1275 }
1276
1277 void TemplateTable::dneg() {
1278 transition(dtos, dtos);
1279 static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1280 __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1281 }
1282
1283 void TemplateTable::iinc() {
1284 transition(vtos, vtos);
1285 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1286 locals_index(rbx);
1287 __ addl(iaddress(rbx), rdx);
1288 }
1289
1290 void TemplateTable::wide_iinc() {
1291 transition(vtos, vtos);
1292 __ movl(rdx, at_bcp(4)); // get constant
1293 locals_index_wide(rbx);
1294 __ bswapl(rdx); // swap bytes & sign-extend constant
1295 __ sarl(rdx, 16);
1296 __ addl(iaddress(rbx), rdx);
1297 // Note: should probably use only one movl to get both
1298 // the index and the constant -> fix this
1299 }
1300
1301 void TemplateTable::convert() {
1302 // Checking
1303 #ifdef ASSERT
1304 {
1305 TosState tos_in = ilgl;
1306 TosState tos_out = ilgl;
1307 switch (bytecode()) {
1308 case Bytecodes::_i2l: // fall through
1309 case Bytecodes::_i2f: // fall through
1310 case Bytecodes::_i2d: // fall through
1311 case Bytecodes::_i2b: // fall through
1312 case Bytecodes::_i2c: // fall through
1313 case Bytecodes::_i2s: tos_in = itos; break;
1314 case Bytecodes::_l2i: // fall through
1315 case Bytecodes::_l2f: // fall through
1316 case Bytecodes::_l2d: tos_in = ltos; break;
1317 case Bytecodes::_f2i: // fall through
1318 case Bytecodes::_f2l: // fall through
1319 case Bytecodes::_f2d: tos_in = ftos; break;
1320 case Bytecodes::_d2i: // fall through
1321 case Bytecodes::_d2l: // fall through
1322 case Bytecodes::_d2f: tos_in = dtos; break;
1323 default : ShouldNotReachHere();
1324 }
1325 switch (bytecode()) {
1326 case Bytecodes::_l2i: // fall through
1327 case Bytecodes::_f2i: // fall through
1328 case Bytecodes::_d2i: // fall through
1329 case Bytecodes::_i2b: // fall through
1330 case Bytecodes::_i2c: // fall through
1331 case Bytecodes::_i2s: tos_out = itos; break;
1332 case Bytecodes::_i2l: // fall through
1333 case Bytecodes::_f2l: // fall through
1334 case Bytecodes::_d2l: tos_out = ltos; break;
1335 case Bytecodes::_i2f: // fall through
1336 case Bytecodes::_l2f: // fall through
1337 case Bytecodes::_d2f: tos_out = ftos; break;
1338 case Bytecodes::_i2d: // fall through
1339 case Bytecodes::_l2d: // fall through
1340 case Bytecodes::_f2d: tos_out = dtos; break;
1341 default : ShouldNotReachHere();
1342 }
1343 transition(tos_in, tos_out);
1344 }
1345 #endif // ASSERT
1346
1347 static const int64_t is_nan = 0x8000000000000000L;
1348
1349 // Conversion
1350 switch (bytecode()) {
1351 case Bytecodes::_i2l:
1352 __ movslq(rax, rax);
1353 break;
1354 case Bytecodes::_i2f:
1355 __ cvtsi2ssl(xmm0, rax);
1356 break;
1357 case Bytecodes::_i2d:
1358 __ cvtsi2sdl(xmm0, rax);
1359 break;
1360 case Bytecodes::_i2b:
1361 __ movsbl(rax, rax);
1362 break;
1363 case Bytecodes::_i2c:
1364 __ movzwl(rax, rax);
1365 break;
1366 case Bytecodes::_i2s:
1367 __ movswl(rax, rax);
1368 break;
1369 case Bytecodes::_l2i:
1370 __ movl(rax, rax);
1371 break;
1372 case Bytecodes::_l2f:
1373 __ cvtsi2ssq(xmm0, rax);
1374 break;
1375 case Bytecodes::_l2d:
1376 __ cvtsi2sdq(xmm0, rax);
1377 break;
1378 case Bytecodes::_f2i:
1379 {
1380 Label L;
1381 __ cvttss2sil(rax, xmm0);
1382 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1383 __ jcc(Assembler::notEqual, L);
1384 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1385 __ bind(L);
1386 }
1387 break;
1388 case Bytecodes::_f2l:
1389 {
1390 Label L;
1391 __ cvttss2siq(rax, xmm0);
1392 // NaN or overflow/underflow?
1393 __ cmp64(rax, ExternalAddress((address) &is_nan));
1394 __ jcc(Assembler::notEqual, L);
1395 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1396 __ bind(L);
1397 }
1398 break;
1399 case Bytecodes::_f2d:
1400 __ cvtss2sd(xmm0, xmm0);
1401 break;
1402 case Bytecodes::_d2i:
1403 {
1404 Label L;
1405 __ cvttsd2sil(rax, xmm0);
1406 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1407 __ jcc(Assembler::notEqual, L);
1408 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1409 __ bind(L);
1410 }
1411 break;
1412 case Bytecodes::_d2l:
1413 {
1414 Label L;
1415 __ cvttsd2siq(rax, xmm0);
1416 // NaN or overflow/underflow?
1417 __ cmp64(rax, ExternalAddress((address) &is_nan));
1418 __ jcc(Assembler::notEqual, L);
1419 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1420 __ bind(L);
1421 }
1422 break;
1423 case Bytecodes::_d2f:
1424 __ cvtsd2ss(xmm0, xmm0);
1425 break;
1426 default:
1427 ShouldNotReachHere();
1428 }
1429 }
1430
1431 void TemplateTable::lcmp() {
1432 transition(ltos, itos);
1433 Label done;
1434 __ pop_l(rdx);
1435 __ cmpq(rdx, rax);
1436 __ movl(rax, -1);
1437 __ jccb(Assembler::less, done);
1438 __ setb(Assembler::notEqual, rax);
1439 __ movzbl(rax, rax);
1440 __ bind(done);
1441 }
1442
1443 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1444 Label done;
1445 if (is_float) {
1446 // XXX get rid of pop here, use ... reg, mem32
1447 __ pop_f(xmm1);
1448 __ ucomiss(xmm1, xmm0);
1449 } else {
1450 // XXX get rid of pop here, use ... reg, mem64
1451 __ pop_d(xmm1);
1452 __ ucomisd(xmm1, xmm0);
1453 }
1454 if (unordered_result < 0) {
1455 __ movl(rax, -1);
1456 __ jccb(Assembler::parity, done);
1457 __ jccb(Assembler::below, done);
1458 __ setb(Assembler::notEqual, rdx);
1459 __ movzbl(rax, rdx);
1460 } else {
1461 __ movl(rax, 1);
1462 __ jccb(Assembler::parity, done);
1463 __ jccb(Assembler::above, done);
1464 __ movl(rax, 0);
1465 __ jccb(Assembler::equal, done);
1466 __ decrementl(rax);
1467 }
1468 __ bind(done);
1469 }
1470
1471 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1472 __ get_method(rcx); // rcx holds method
1473 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1474 // holds bumped taken count
1475
1476 const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1477 InvocationCounter::counter_offset();
1478 const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1479 InvocationCounter::counter_offset();
1480 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1481
1482 // Load up edx with the branch displacement
1483 __ movl(rdx, at_bcp(1));
1484 __ bswapl(rdx);
1485
1486 if (!is_wide) {
1487 __ sarl(rdx, 16);
1488 }
1489 __ movslq(rdx, rdx);
1490
1491 // Handle all the JSR stuff here, then exit.
1492 // It's much shorter and cleaner than intermingling with the non-JSR
1493 // normal-branch stuff occuring below.
1494 if (is_jsr) {
1495 // Pre-load the next target bytecode into rbx
1496 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1497
1498 // compute return address as bci in rax
1499 __ leaq(rax, at_bcp((is_wide ? 5 : 3) -
1500 in_bytes(constMethodOopDesc::codes_offset())));
1501 __ subq(rax, Address(rcx, methodOopDesc::const_offset()));
1502 // Adjust the bcp in r13 by the displacement in rdx
1503 __ addq(r13, rdx);
1504 // jsr returns atos that is not an oop
1505 __ push_i(rax);
1506 __ dispatch_only(vtos);
1507 return;
1508 }
1509
1510 // Normal (non-jsr) branch handling
1511
1512 // Adjust the bcp in r13 by the displacement in rdx
1513 __ addq(r13, rdx);
1514
1515 assert(UseLoopCounter || !UseOnStackReplacement,
1516 "on-stack-replacement requires loop counters");
1517 Label backedge_counter_overflow;
1518 Label profile_method;
1519 Label dispatch;
1520 if (UseLoopCounter) {
1521 // increment backedge counter for backward branches
1522 // rax: MDO
1523 // ebx: MDO bumped taken-count
1524 // rcx: method
1525 // rdx: target offset
1526 // r13: target bcp
1527 // r14: locals pointer
1528 __ testl(rdx, rdx); // check if forward or backward branch
1529 __ jcc(Assembler::positive, dispatch); // count only if backward branch
1530
1531 // increment counter
1532 __ movl(rax, Address(rcx, be_offset)); // load backedge counter
1533 __ incrementl(rax, InvocationCounter::count_increment); // increment
1534 // counter
1535 __ movl(Address(rcx, be_offset), rax); // store counter
1536
1537 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter
1538 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1539 __ addl(rax, Address(rcx, be_offset)); // add both counters
1540
1541 if (ProfileInterpreter) {
1542 // Test to see if we should create a method data oop
1543 __ cmp32(rax,
1544 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1545 __ jcc(Assembler::less, dispatch);
1546
1547 // if no method data exists, go to profile method
1548 __ test_method_data_pointer(rax, profile_method);
1549
1550 if (UseOnStackReplacement) {
1551 // check for overflow against ebx which is the MDO taken count
1552 __ cmp32(rbx,
1553 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1554 __ jcc(Assembler::below, dispatch);
1555
1556 // When ProfileInterpreter is on, the backedge_count comes
1557 // from the methodDataOop, which value does not get reset on
1558 // the call to frequency_counter_overflow(). To avoid
1559 // excessive calls to the overflow routine while the method is
1560 // being compiled, add a second test to make sure the overflow
1561 // function is called only once every overflow_frequency.
1562 const int overflow_frequency = 1024;
1563 __ andl(rbx, overflow_frequency - 1);
1564 __ jcc(Assembler::zero, backedge_counter_overflow);
1565
1566 }
1567 } else {
1568 if (UseOnStackReplacement) {
1569 // check for overflow against eax, which is the sum of the
1570 // counters
1571 __ cmp32(rax,
1572 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1573 __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1574
1575 }
1576 }
1577 __ bind(dispatch);
1578 }
1579
1580 // Pre-load the next target bytecode into rbx
1581 __ load_unsigned_byte(rbx, Address(r13, 0));
1582
1583 // continue with the bytecode @ target
1584 // eax: return bci for jsr's, unused otherwise
1585 // ebx: target bytecode
1586 // r13: target bcp
1587 __ dispatch_only(vtos);
1588
1589 if (UseLoopCounter) {
1590 if (ProfileInterpreter) {
1591 // Out-of-line code to allocate method data oop.
1592 __ bind(profile_method);
1593 __ call_VM(noreg,
1594 CAST_FROM_FN_PTR(address,
1595 InterpreterRuntime::profile_method), r13);
1596 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode
1597 __ movq(rcx, Address(rbp, method_offset));
1598 __ movq(rcx, Address(rcx,
1599 in_bytes(methodOopDesc::method_data_offset())));
1600 __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
1601 rcx);
1602 __ test_method_data_pointer(rcx, dispatch);
1603 // offset non-null mdp by MDO::data_offset() + IR::profile_method()
1604 __ addq(rcx, in_bytes(methodDataOopDesc::data_offset()));
1605 __ addq(rcx, rax);
1606 __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
1607 rcx);
1608 __ jmp(dispatch);
1609 }
1610
1611 if (UseOnStackReplacement) {
1612 // invocation counter overflow
1613 __ bind(backedge_counter_overflow);
1614 __ negq(rdx);
1615 __ addq(rdx, r13); // branch bcp
1616 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1617 __ call_VM(noreg,
1618 CAST_FROM_FN_PTR(address,
1619 InterpreterRuntime::frequency_counter_overflow),
1620 rdx);
1621 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode
1622
1623 // rax: osr nmethod (osr ok) or NULL (osr not possible)
1624 // ebx: target bytecode
1625 // rdx: scratch
1626 // r14: locals pointer
1627 // r13: bcp
1628 __ testq(rax, rax); // test result
1629 __ jcc(Assembler::zero, dispatch); // no osr if null
1630 // nmethod may have been invalidated (VM may block upon call_VM return)
1631 __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1632 __ cmpl(rcx, InvalidOSREntryBci);
1633 __ jcc(Assembler::equal, dispatch);
1634
1635 // We have the address of an on stack replacement routine in eax
1636 // We need to prepare to execute the OSR method. First we must
1637 // migrate the locals and monitors off of the stack.
1638
1639 __ movq(r13, rax); // save the nmethod
1640
1641 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1642
1643 // eax is OSR buffer, move it to expected parameter location
1644 __ movq(j_rarg0, rax);
1645
1646 // We use j_rarg definitions here so that registers don't conflict as parameter
1647 // registers change across platforms as we are in the midst of a calling
1648 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1649
1650 const Register retaddr = j_rarg2;
1651 const Register sender_sp = j_rarg1;
1652
1653 // pop the interpreter frame
1654 __ movq(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1655 __ leave(); // remove frame anchor
1656 __ popq(retaddr); // get return address
1657 __ movq(rsp, sender_sp); // set sp to sender sp
1658 // Ensure compiled code always sees stack at proper alignment
1659 __ andq(rsp, -(StackAlignmentInBytes));
1660
1661 // unlike x86 we need no specialized return from compiled code
1662 // to the interpreter or the call stub.
1663
1664 // push the return address
1665 __ pushq(retaddr);
1666
1667 // and begin the OSR nmethod
1668 __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1669 }
1670 }
1671 }
1672
1673
1674 void TemplateTable::if_0cmp(Condition cc) {
1675 transition(itos, vtos);
1676 // assume branch is more often taken than not (loops use backward branches)
1677 Label not_taken;
1678 __ testl(rax, rax);
1679 __ jcc(j_not(cc), not_taken);
1680 branch(false, false);
1681 __ bind(not_taken);
1682 __ profile_not_taken_branch(rax);
1683 }
1684
1685 void TemplateTable::if_icmp(Condition cc) {
1686 transition(itos, vtos);
1687 // assume branch is more often taken than not (loops use backward branches)
1688 Label not_taken;
1689 __ pop_i(rdx);
1690 __ cmpl(rdx, rax);
1691 __ jcc(j_not(cc), not_taken);
1692 branch(false, false);
1693 __ bind(not_taken);
1694 __ profile_not_taken_branch(rax);
1695 }
1696
1697 void TemplateTable::if_nullcmp(Condition cc) {
1698 transition(atos, vtos);
1699 // assume branch is more often taken than not (loops use backward branches)
1700 Label not_taken;
1701 __ testq(rax, rax);
1702 __ jcc(j_not(cc), not_taken);
1703 branch(false, false);
1704 __ bind(not_taken);
1705 __ profile_not_taken_branch(rax);
1706 }
1707
1708 void TemplateTable::if_acmp(Condition cc) {
1709 transition(atos, vtos);
1710 // assume branch is more often taken than not (loops use backward branches)
1711 Label not_taken;
1712 __ pop_ptr(rdx);
1713 __ cmpq(rdx, rax);
1714 __ jcc(j_not(cc), not_taken);
1715 branch(false, false);
1716 __ bind(not_taken);
1717 __ profile_not_taken_branch(rax);
1718 }
1719
1720 void TemplateTable::ret() {
1721 transition(vtos, vtos);
1722 locals_index(rbx);
1723 __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
1724 __ profile_ret(rbx, rcx);
1725 __ get_method(rax);
1726 __ movq(r13, Address(rax, methodOopDesc::const_offset()));
1727 __ leaq(r13, Address(r13, rbx, Address::times_1,
1728 constMethodOopDesc::codes_offset()));
1729 __ dispatch_next(vtos);
1730 }
1731
1732 void TemplateTable::wide_ret() {
1733 transition(vtos, vtos);
1734 locals_index_wide(rbx);
1735 __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
1736 __ profile_ret(rbx, rcx);
1737 __ get_method(rax);
1738 __ movq(r13, Address(rax, methodOopDesc::const_offset()));
1739 __ leaq(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1740 __ dispatch_next(vtos);
1741 }
1742
1743 void TemplateTable::tableswitch() {
1744 Label default_case, continue_execution;
1745 transition(itos, vtos);
1746 // align r13
1747 __ leaq(rbx, at_bcp(BytesPerInt));
1748 __ andq(rbx, -BytesPerInt);
1749 // load lo & hi
1750 __ movl(rcx, Address(rbx, BytesPerInt));
1751 __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1752 __ bswapl(rcx);
1753 __ bswapl(rdx);
1754 // check against lo & hi
1755 __ cmpl(rax, rcx);
1756 __ jcc(Assembler::less, default_case);
1757 __ cmpl(rax, rdx);
1758 __ jcc(Assembler::greater, default_case);
1759 // lookup dispatch offset
1760 __ subl(rax, rcx);
1761 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1762 __ profile_switch_case(rax, rbx, rcx);
1763 // continue execution
1764 __ bind(continue_execution);
1765 __ bswapl(rdx);
1766 __ movslq(rdx, rdx);
1767 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1768 __ addq(r13, rdx);
1769 __ dispatch_only(vtos);
1770 // handle default
1771 __ bind(default_case);
1772 __ profile_switch_default(rax);
1773 __ movl(rdx, Address(rbx, 0));
1774 __ jmp(continue_execution);
1775 }
1776
1777 void TemplateTable::lookupswitch() {
1778 transition(itos, itos);
1779 __ stop("lookupswitch bytecode should have been rewritten");
1780 }
1781
1782 void TemplateTable::fast_linearswitch() {
1783 transition(itos, vtos);
1784 Label loop_entry, loop, found, continue_execution;
1785 // bswap rax so we can avoid bswapping the table entries
1786 __ bswapl(rax);
1787 // align r13
1788 __ leaq(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1789 // this instruction (change offsets
1790 // below)
1791 __ andq(rbx, -BytesPerInt);
1792 // set counter
1793 __ movl(rcx, Address(rbx, BytesPerInt));
1794 __ bswapl(rcx);
1795 __ jmpb(loop_entry);
1796 // table search
1797 __ bind(loop);
1798 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1799 __ jcc(Assembler::equal, found);
1800 __ bind(loop_entry);
1801 __ decrementl(rcx);
1802 __ jcc(Assembler::greaterEqual, loop);
1803 // default case
1804 __ profile_switch_default(rax);
1805 __ movl(rdx, Address(rbx, 0));
1806 __ jmp(continue_execution);
1807 // entry found -> get offset
1808 __ bind(found);
1809 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1810 __ profile_switch_case(rcx, rax, rbx);
1811 // continue execution
1812 __ bind(continue_execution);
1813 __ bswapl(rdx);
1814 __ movslq(rdx, rdx);
1815 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1816 __ addq(r13, rdx);
1817 __ dispatch_only(vtos);
1818 }
1819
1820 void TemplateTable::fast_binaryswitch() {
1821 transition(itos, vtos);
1822 // Implementation using the following core algorithm:
1823 //
1824 // int binary_search(int key, LookupswitchPair* array, int n) {
1825 // // Binary search according to "Methodik des Programmierens" by
1826 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1827 // int i = 0;
1828 // int j = n;
1829 // while (i+1 < j) {
1830 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1831 // // with Q: for all i: 0 <= i < n: key < a[i]
1832 // // where a stands for the array and assuming that the (inexisting)
1833 // // element a[n] is infinitely big.
1834 // int h = (i + j) >> 1;
1835 // // i < h < j
1836 // if (key < array[h].fast_match()) {
1837 // j = h;
1838 // } else {
1839 // i = h;
1840 // }
1841 // }
1842 // // R: a[i] <= key < a[i+1] or Q
1843 // // (i.e., if key is within array, i is the correct index)
1844 // return i;
1845 // }
1846
1847 // Register allocation
1848 const Register key = rax; // already set (tosca)
1849 const Register array = rbx;
1850 const Register i = rcx;
1851 const Register j = rdx;
1852 const Register h = rdi;
1853 const Register temp = rsi;
1854
1855 // Find array start
1856 __ leaq(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1857 // get rid of this
1858 // instruction (change
1859 // offsets below)
1860 __ andq(array, -BytesPerInt);
1861
1862 // Initialize i & j
1863 __ xorl(i, i); // i = 0;
1864 __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1865
1866 // Convert j into native byteordering
1867 __ bswapl(j);
1868
1869 // And start
1870 Label entry;
1871 __ jmp(entry);
1872
1873 // binary search loop
1874 {
1875 Label loop;
1876 __ bind(loop);
1877 // int h = (i + j) >> 1;
1878 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1879 __ sarl(h, 1); // h = (i + j) >> 1;
1880 // if (key < array[h].fast_match()) {
1881 // j = h;
1882 // } else {
1883 // i = h;
1884 // }
1885 // Convert array[h].match to native byte-ordering before compare
1886 __ movl(temp, Address(array, h, Address::times_8));
1887 __ bswapl(temp);
1888 __ cmpl(key, temp);
1889 // j = h if (key < array[h].fast_match())
1890 __ cmovl(Assembler::less, j, h);
1891 // i = h if (key >= array[h].fast_match())
1892 __ cmovl(Assembler::greaterEqual, i, h);
1893 // while (i+1 < j)
1894 __ bind(entry);
1895 __ leal(h, Address(i, 1)); // i+1
1896 __ cmpl(h, j); // i+1 < j
1897 __ jcc(Assembler::less, loop);
1898 }
1899
1900 // end of binary search, result index is i (must check again!)
1901 Label default_case;
1902 // Convert array[i].match to native byte-ordering before compare
1903 __ movl(temp, Address(array, i, Address::times_8));
1904 __ bswapl(temp);
1905 __ cmpl(key, temp);
1906 __ jcc(Assembler::notEqual, default_case);
1907
1908 // entry found -> j = offset
1909 __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
1910 __ profile_switch_case(i, key, array);
1911 __ bswapl(j);
1912 __ movslq(j, j);
1913 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
1914 __ addq(r13, j);
1915 __ dispatch_only(vtos);
1916
1917 // default case -> j = default offset
1918 __ bind(default_case);
1919 __ profile_switch_default(i);
1920 __ movl(j, Address(array, -2 * BytesPerInt));
1921 __ bswapl(j);
1922 __ movslq(j, j);
1923 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
1924 __ addq(r13, j);
1925 __ dispatch_only(vtos);
1926 }
1927
1928
1929 void TemplateTable::_return(TosState state) {
1930 transition(state, state);
1931 assert(_desc->calls_vm(),
1932 "inconsistent calls_vm information"); // call in remove_activation
1933
1934 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1935 assert(state == vtos, "only valid state");
1936 __ movq(c_rarg1, aaddress(0));
1937 __ movq(rdi, Address(c_rarg1, oopDesc::klass_offset_in_bytes()));
1938 __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
1939 __ testl(rdi, JVM_ACC_HAS_FINALIZER);
1940 Label skip_register_finalizer;
1941 __ jcc(Assembler::zero, skip_register_finalizer);
1942
1943 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
1944
1945 __ bind(skip_register_finalizer);
1946 }
1947
1948 __ remove_activation(state, r13);
1949 __ jmp(r13);
1950 }
1951
1952 // ----------------------------------------------------------------------------
1953 // Volatile variables demand their effects be made known to all CPU's
1954 // in order. Store buffers on most chips allow reads & writes to
1955 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
1956 // without some kind of memory barrier (i.e., it's not sufficient that
1957 // the interpreter does not reorder volatile references, the hardware
1958 // also must not reorder them).
1959 //
1960 // According to the new Java Memory Model (JMM):
1961 // (1) All volatiles are serialized wrt to each other. ALSO reads &
1962 // writes act as aquire & release, so:
1963 // (2) A read cannot let unrelated NON-volatile memory refs that
1964 // happen after the read float up to before the read. It's OK for
1965 // non-volatile memory refs that happen before the volatile read to
1966 // float down below it.
1967 // (3) Similar a volatile write cannot let unrelated NON-volatile
1968 // memory refs that happen BEFORE the write float down to after the
1969 // write. It's OK for non-volatile memory refs that happen after the
1970 // volatile write to float up before it.
1971 //
1972 // We only put in barriers around volatile refs (they are expensive),
1973 // not _between_ memory refs (that would require us to track the
1974 // flavor of the previous memory refs). Requirements (2) and (3)
1975 // require some barriers before volatile stores and after volatile
1976 // loads. These nearly cover requirement (1) but miss the
1977 // volatile-store-volatile-load case. This final case is placed after
1978 // volatile-stores although it could just as well go before
1979 // volatile-loads.
1980 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
1981 order_constraint) {
1982 // Helper function to insert a is-volatile test and memory barrier
1983 if (os::is_MP()) { // Not needed on single CPU
1984 __ membar(order_constraint);
1985 }
1986 }
1987
1988 void TemplateTable::resolve_cache_and_index(int byte_no,
1989 Register Rcache,
1990 Register index) {
1991 assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
1992
1993 const Register temp = rbx;
1994 assert_different_registers(Rcache, index, temp);
1995
1996 const int shift_count = (1 + byte_no) * BitsPerByte;
1997 Label resolved;
1998 __ get_cache_and_index_at_bcp(Rcache, index, 1);
1999 __ movl(temp, Address(Rcache,
2000 index, Address::times_8,
2001 constantPoolCacheOopDesc::base_offset() +
2002 ConstantPoolCacheEntry::indices_offset()));
2003 __ shrl(temp, shift_count);
2004 // have we resolved this bytecode?
2005 __ andl(temp, 0xFF);
2006 __ cmpl(temp, (int) bytecode());
2007 __ jcc(Assembler::equal, resolved);
2008
2009 // resolve first time through
2010 address entry;
2011 switch (bytecode()) {
2012 case Bytecodes::_getstatic:
2013 case Bytecodes::_putstatic:
2014 case Bytecodes::_getfield:
2015 case Bytecodes::_putfield:
2016 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2017 break;
2018 case Bytecodes::_invokevirtual:
2019 case Bytecodes::_invokespecial:
2020 case Bytecodes::_invokestatic:
2021 case Bytecodes::_invokeinterface:
2022 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2023 break;
2024 default:
2025 ShouldNotReachHere();
2026 break;
2027 }
2028 __ movl(temp, (int) bytecode());
2029 __ call_VM(noreg, entry, temp);
2030
2031 // Update registers with resolved info
2032 __ get_cache_and_index_at_bcp(Rcache, index, 1);
2033 __ bind(resolved);
2034 }
2035
2036 // The Rcache and index registers must be set before call
2037 void TemplateTable::load_field_cp_cache_entry(Register obj,
2038 Register cache,
2039 Register index,
2040 Register off,
2041 Register flags,
2042 bool is_static = false) {
2043 assert_different_registers(cache, index, flags, off);
2044
2045 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2046 // Field offset
2047 __ movq(off, Address(cache, index, Address::times_8,
2048 in_bytes(cp_base_offset +
2049 ConstantPoolCacheEntry::f2_offset())));
2050 // Flags
2051 __ movl(flags, Address(cache, index, Address::times_8,
2052 in_bytes(cp_base_offset +
2053 ConstantPoolCacheEntry::flags_offset())));
2054
2055 // klass overwrite register
2056 if (is_static) {
2057 __ movq(obj, Address(cache, index, Address::times_8,
2058 in_bytes(cp_base_offset +
2059 ConstantPoolCacheEntry::f1_offset())));
2060 }
2061 }
2062
2063 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2064 Register method,
2065 Register itable_index,
2066 Register flags,
2067 bool is_invokevirtual,
2068 bool is_invokevfinal /*unused*/) {
2069 // setup registers
2070 const Register cache = rcx;
2071 const Register index = rdx;
2072 assert_different_registers(method, flags);
2073 assert_different_registers(method, cache, index);
2074 assert_different_registers(itable_index, flags);
2075 assert_different_registers(itable_index, cache, index);
2076 // determine constant pool cache field offsets
2077 const int method_offset = in_bytes(
2078 constantPoolCacheOopDesc::base_offset() +
2079 (is_invokevirtual
2080 ? ConstantPoolCacheEntry::f2_offset()
2081 : ConstantPoolCacheEntry::f1_offset()));
2082 const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2083 ConstantPoolCacheEntry::flags_offset());
2084 // access constant pool cache fields
2085 const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2086 ConstantPoolCacheEntry::f2_offset());
2087
2088 resolve_cache_and_index(byte_no, cache, index);
2089
2090 assert(wordSize == 8, "adjust code below");
2091 __ movq(method, Address(cache, index, Address::times_8, method_offset));
2092 if (itable_index != noreg) {
2093 __ movq(itable_index,
2094 Address(cache, index, Address::times_8, index_offset));
2095 }
2096 __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
2097 }
2098
2099
2100 // The registers cache and index expected to be set before call.
2101 // Correct values of the cache and index registers are preserved.
2102 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2103 bool is_static, bool has_tos) {
2104 // do the JVMTI work here to avoid disturbing the register state below
2105 // We use c_rarg registers here because we want to use the register used in
2106 // the call to the VM
2107 if (JvmtiExport::can_post_field_access()) {
2108 // Check to see if a field access watch has been set before we
2109 // take the time to call into the VM.
2110 Label L1;
2111 assert_different_registers(cache, index, rax);
2112 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2113 __ testl(rax, rax);
2114 __ jcc(Assembler::zero, L1);
2115
2116 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2117
2118 // cache entry pointer
2119 __ addq(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2120 __ shll(c_rarg3, LogBytesPerWord);
2121 __ addq(c_rarg2, c_rarg3);
2122 if (is_static) {
2123 __ xorl(c_rarg1, c_rarg1); // NULL object reference
2124 } else {
2125 __ movq(c_rarg1, at_tos()); // get object pointer without popping it
2126 __ verify_oop(c_rarg1);
2127 }
2128 // c_rarg1: object pointer or NULL
2129 // c_rarg2: cache entry pointer
2130 // c_rarg3: jvalue object on the stack
2131 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2132 InterpreterRuntime::post_field_access),
2133 c_rarg1, c_rarg2, c_rarg3);
2134 __ get_cache_and_index_at_bcp(cache, index, 1);
2135 __ bind(L1);
2136 }
2137 }
2138
2139 void TemplateTable::pop_and_check_object(Register r) {
2140 __ pop_ptr(r);
2141 __ null_check(r); // for field access must check obj.
2142 __ verify_oop(r);
2143 }
2144
2145 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2146 transition(vtos, vtos);
2147
2148 const Register cache = rcx;
2149 const Register index = rdx;
2150 const Register obj = c_rarg3;
2151 const Register off = rbx;
2152 const Register flags = rax;
2153 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2154
2155 resolve_cache_and_index(byte_no, cache, index);
2156 jvmti_post_field_access(cache, index, is_static, false);
2157 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2158
2159 if (!is_static) {
2160 // obj is on the stack
2161 pop_and_check_object(obj);
2162 }
2163
2164 const Address field(obj, off, Address::times_1);
2165
2166 Label Done, notByte, notInt, notShort, notChar,
2167 notLong, notFloat, notObj, notDouble;
2168
2169 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2170 assert(btos == 0, "change code, btos != 0");
2171
2172 __ andl(flags, 0x0F);
2173 __ jcc(Assembler::notZero, notByte);
2174 // btos
2175 __ load_signed_byte(rax, field);
2176 __ push(btos);
2177 // Rewrite bytecode to be faster
2178 if (!is_static) {
2179 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2180 }
2181 __ jmp(Done);
2182
2183 __ bind(notByte);
2184 __ cmpl(flags, atos);
2185 __ jcc(Assembler::notEqual, notObj);
2186 // atos
2187 __ movq(rax, field);
2188 __ push(atos);
2189 if (!is_static) {
2190 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2191 }
2192 __ jmp(Done);
2193
2194 __ bind(notObj);
2195 __ cmpl(flags, itos);
2196 __ jcc(Assembler::notEqual, notInt);
2197 // itos
2198 __ movl(rax, field);
2199 __ push(itos);
2200 // Rewrite bytecode to be faster
2201 if (!is_static) {
2202 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2203 }
2204 __ jmp(Done);
2205
2206 __ bind(notInt);
2207 __ cmpl(flags, ctos);
2208 __ jcc(Assembler::notEqual, notChar);
2209 // ctos
2210 __ load_unsigned_word(rax, field);
2211 __ push(ctos);
2212 // Rewrite bytecode to be faster
2213 if (!is_static) {
2214 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2215 }
2216 __ jmp(Done);
2217
2218 __ bind(notChar);
2219 __ cmpl(flags, stos);
2220 __ jcc(Assembler::notEqual, notShort);
2221 // stos
2222 __ load_signed_word(rax, field);
2223 __ push(stos);
2224 // Rewrite bytecode to be faster
2225 if (!is_static) {
2226 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2227 }
2228 __ jmp(Done);
2229
2230 __ bind(notShort);
2231 __ cmpl(flags, ltos);
2232 __ jcc(Assembler::notEqual, notLong);
2233 // ltos
2234 __ movq(rax, field);
2235 __ push(ltos);
2236 // Rewrite bytecode to be faster
2237 if (!is_static) {
2238 patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2239 }
2240 __ jmp(Done);
2241
2242 __ bind(notLong);
2243 __ cmpl(flags, ftos);
2244 __ jcc(Assembler::notEqual, notFloat);
2245 // ftos
2246 __ movflt(xmm0, field);
2247 __ push(ftos);
2248 // Rewrite bytecode to be faster
2249 if (!is_static) {
2250 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2251 }
2252 __ jmp(Done);
2253
2254 __ bind(notFloat);
2255 #ifdef ASSERT
2256 __ cmpl(flags, dtos);
2257 __ jcc(Assembler::notEqual, notDouble);
2258 #endif
2259 // dtos
2260 __ movdbl(xmm0, field);
2261 __ push(dtos);
2262 // Rewrite bytecode to be faster
2263 if (!is_static) {
2264 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2265 }
2266 #ifdef ASSERT
2267 __ jmp(Done);
2268
2269 __ bind(notDouble);
2270 __ stop("Bad state");
2271 #endif
2272
2273 __ bind(Done);
2274 // [jk] not needed currently
2275 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2276 // Assembler::LoadStore));
2277 }
2278
2279
2280 void TemplateTable::getfield(int byte_no) {
2281 getfield_or_static(byte_no, false);
2282 }
2283
2284 void TemplateTable::getstatic(int byte_no) {
2285 getfield_or_static(byte_no, true);
2286 }
2287
2288 // The registers cache and index expected to be set before call.
2289 // The function may destroy various registers, just not the cache and index registers.
2290 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2291 transition(vtos, vtos);
2292
2293 ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2294
2295 if (JvmtiExport::can_post_field_modification()) {
2296 // Check to see if a field modification watch has been set before
2297 // we take the time to call into the VM.
2298 Label L1;
2299 assert_different_registers(cache, index, rax);
2300 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2301 __ testl(rax, rax);
2302 __ jcc(Assembler::zero, L1);
2303
2304 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2305
2306 if (is_static) {
2307 // Life is simple. Null out the object pointer.
2308 __ xorl(c_rarg1, c_rarg1);
2309 } else {
2310 // Life is harder. The stack holds the value on top, followed by
2311 // the object. We don't know the size of the value, though; it
2312 // could be one or two words depending on its type. As a result,
2313 // we must find the type to determine where the object is.
2314 __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2315 Address::times_8,
2316 in_bytes(cp_base_offset +
2317 ConstantPoolCacheEntry::flags_offset())));
2318 __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2319 // Make sure we don't need to mask rcx for tosBits after the
2320 // above shift
2321 ConstantPoolCacheEntry::verify_tosBits();
2322 __ movq(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2323 __ cmpl(c_rarg3, ltos);
2324 __ cmovq(Assembler::equal,
2325 c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2326 __ cmpl(c_rarg3, dtos);
2327 __ cmovq(Assembler::equal,
2328 c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2329 }
2330 // cache entry pointer
2331 __ addq(c_rarg2, in_bytes(cp_base_offset));
2332 __ shll(rscratch1, LogBytesPerWord);
2333 __ addq(c_rarg2, rscratch1);
2334 // object (tos)
2335 __ movq(c_rarg3, rsp);
2336 // c_rarg1: object pointer set up above (NULL if static)
2337 // c_rarg2: cache entry pointer
2338 // c_rarg3: jvalue object on the stack
2339 __ call_VM(noreg,
2340 CAST_FROM_FN_PTR(address,
2341 InterpreterRuntime::post_field_modification),
2342 c_rarg1, c_rarg2, c_rarg3);
2343 __ get_cache_and_index_at_bcp(cache, index, 1);
2344 __ bind(L1);
2345 }
2346 }
2347
2348 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2349 transition(vtos, vtos);
2350
2351 const Register cache = rcx;
2352 const Register index = rdx;
2353 const Register obj = rcx;
2354 const Register off = rbx;
2355 const Register flags = rax;
2356 const Register bc = c_rarg3;
2357
2358 resolve_cache_and_index(byte_no, cache, index);
2359 jvmti_post_field_mod(cache, index, is_static);
2360 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2361
2362 // [jk] not needed currently
2363 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2364 // Assembler::StoreStore));
2365
2366 Label notVolatile, Done;
2367 __ movl(rdx, flags);
2368 __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2369 __ andl(rdx, 0x1);
2370
2371 // field address
2372 const Address field(obj, off, Address::times_1);
2373
2374 Label notByte, notInt, notShort, notChar,
2375 notLong, notFloat, notObj, notDouble;
2376
2377 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2378
2379 assert(btos == 0, "change code, btos != 0");
2380 __ andl(flags, 0x0f);
2381 __ jcc(Assembler::notZero, notByte);
2382 // btos
2383 __ pop(btos);
2384 if (!is_static) pop_and_check_object(obj);
2385 __ movb(field, rax);
2386 if (!is_static) {
2387 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
2388 }
2389 __ jmp(Done);
2390
2391 __ bind(notByte);
2392 __ cmpl(flags, atos);
2393 __ jcc(Assembler::notEqual, notObj);
2394 // atos
2395 __ pop(atos);
2396 if (!is_static) pop_and_check_object(obj);
2397 __ movq(field, rax);
2398 __ store_check(obj, field); // Need to mark card
2399 if (!is_static) {
2400 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
2401 }
2402 __ jmp(Done);
2403
2404 __ bind(notObj);
2405 __ cmpl(flags, itos);
2406 __ jcc(Assembler::notEqual, notInt);
2407 // itos
2408 __ pop(itos);
2409 if (!is_static) pop_and_check_object(obj);
2410 __ movl(field, rax);
2411 if (!is_static) {
2412 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
2413 }
2414 __ jmp(Done);
2415
2416 __ bind(notInt);
2417 __ cmpl(flags, ctos);
2418 __ jcc(Assembler::notEqual, notChar);
2419 // ctos
2420 __ pop(ctos);
2421 if (!is_static) pop_and_check_object(obj);
2422 __ movw(field, rax);
2423 if (!is_static) {
2424 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
2425 }
2426 __ jmp(Done);
2427
2428 __ bind(notChar);
2429 __ cmpl(flags, stos);
2430 __ jcc(Assembler::notEqual, notShort);
2431 // stos
2432 __ pop(stos);
2433 if (!is_static) pop_and_check_object(obj);
2434 __ movw(field, rax);
2435 if (!is_static) {
2436 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
2437 }
2438 __ jmp(Done);
2439
2440 __ bind(notShort);
2441 __ cmpl(flags, ltos);
2442 __ jcc(Assembler::notEqual, notLong);
2443 // ltos
2444 __ pop(ltos);
2445 if (!is_static) pop_and_check_object(obj);
2446 __ movq(field, rax);
2447 if (!is_static) {
2448 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
2449 }
2450 __ jmp(Done);
2451
2452 __ bind(notLong);
2453 __ cmpl(flags, ftos);
2454 __ jcc(Assembler::notEqual, notFloat);
2455 // ftos
2456 __ pop(ftos);
2457 if (!is_static) pop_and_check_object(obj);
2458 __ movflt(field, xmm0);
2459 if (!is_static) {
2460 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
2461 }
2462 __ jmp(Done);
2463
2464 __ bind(notFloat);
2465 #ifdef ASSERT
2466 __ cmpl(flags, dtos);
2467 __ jcc(Assembler::notEqual, notDouble);
2468 #endif
2469 // dtos
2470 __ pop(dtos);
2471 if (!is_static) pop_and_check_object(obj);
2472 __ movdbl(field, xmm0);
2473 if (!is_static) {
2474 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
2475 }
2476
2477 #ifdef ASSERT
2478 __ jmp(Done);
2479
2480 __ bind(notDouble);
2481 __ stop("Bad state");
2482 #endif
2483
2484 __ bind(Done);
2485 // Check for volatile store
2486 __ testl(rdx, rdx);
2487 __ jcc(Assembler::zero, notVolatile);
2488 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2489 Assembler::StoreStore));
2490
2491 __ bind(notVolatile);
2492 }
2493
2494 void TemplateTable::putfield(int byte_no) {
2495 putfield_or_static(byte_no, false);
2496 }
2497
2498 void TemplateTable::putstatic(int byte_no) {
2499 putfield_or_static(byte_no, true);
2500 }
2501
2502 void TemplateTable::jvmti_post_fast_field_mod() {
2503 if (JvmtiExport::can_post_field_modification()) {
2504 // Check to see if a field modification watch has been set before
2505 // we take the time to call into the VM.
2506 Label L2;
2507 __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2508 __ testl(c_rarg3, c_rarg3);
2509 __ jcc(Assembler::zero, L2);
2510 __ pop_ptr(rbx); // copy the object pointer from tos
2511 __ verify_oop(rbx);
2512 __ push_ptr(rbx); // put the object pointer back on tos
2513 __ subq(rsp, sizeof(jvalue)); // add space for a jvalue object
2514 __ movq(c_rarg3, rsp);
2515 const Address field(c_rarg3, 0);
2516
2517 switch (bytecode()) { // load values into the jvalue object
2518 case Bytecodes::_fast_aputfield: // fall through
2519 case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2520 case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2521 case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2522 case Bytecodes::_fast_sputfield: // fall through
2523 case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2524 case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2525 case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2526 default:
2527 ShouldNotReachHere();
2528 }
2529
2530 // Save rax because call_VM() will clobber it, then use it for
2531 // JVMTI purposes
2532 __ pushq(rax);
2533 // access constant pool cache entry
2534 __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2535 __ verify_oop(rbx);
2536 // rbx: object pointer copied above
2537 // c_rarg2: cache entry pointer
2538 // c_rarg3: jvalue object on the stack
2539 __ call_VM(noreg,
2540 CAST_FROM_FN_PTR(address,
2541 InterpreterRuntime::post_field_modification),
2542 rbx, c_rarg2, c_rarg3);
2543 __ popq(rax); // restore lower value
2544 __ addq(rsp, sizeof(jvalue)); // release jvalue object space
2545 __ bind(L2);
2546 }
2547 }
2548
2549 void TemplateTable::fast_storefield(TosState state) {
2550 transition(state, vtos);
2551
2552 ByteSize base = constantPoolCacheOopDesc::base_offset();
2553
2554 jvmti_post_fast_field_mod();
2555
2556 // access constant pool cache
2557 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2558
2559 // test for volatile with rdx
2560 __ movl(rdx, Address(rcx, rbx, Address::times_8,
2561 in_bytes(base +
2562 ConstantPoolCacheEntry::flags_offset())));
2563
2564 // replace index with field offset from cache entry
2565 __ movq(rbx, Address(rcx, rbx, Address::times_8,
2566 in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2567
2568 // [jk] not needed currently
2569 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2570 // Assembler::StoreStore));
2571
2572 Label notVolatile;
2573 __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2574 __ andl(rdx, 0x1);
2575
2576 // Get object from stack
2577 pop_and_check_object(rcx);
2578
2579 // field address
2580 const Address field(rcx, rbx, Address::times_1);
2581
2582 // access field
2583 switch (bytecode()) {
2584 case Bytecodes::_fast_aputfield:
2585 __ movq(field, rax);
2586 __ store_check(rcx, field);
2587 break;
2588 case Bytecodes::_fast_lputfield:
2589 __ movq(field, rax);
2590 break;
2591 case Bytecodes::_fast_iputfield:
2592 __ movl(field, rax);
2593 break;
2594 case Bytecodes::_fast_bputfield:
2595 __ movb(field, rax);
2596 break;
2597 case Bytecodes::_fast_sputfield:
2598 // fall through
2599 case Bytecodes::_fast_cputfield:
2600 __ movw(field, rax);
2601 break;
2602 case Bytecodes::_fast_fputfield:
2603 __ movflt(field, xmm0);
2604 break;
2605 case Bytecodes::_fast_dputfield:
2606 __ movdbl(field, xmm0);
2607 break;
2608 default:
2609 ShouldNotReachHere();
2610 }
2611
2612 // Check for volatile store
2613 __ testl(rdx, rdx);
2614 __ jcc(Assembler::zero, notVolatile);
2615 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2616 Assembler::StoreStore));
2617 __ bind(notVolatile);
2618 }
2619
2620
2621 void TemplateTable::fast_accessfield(TosState state) {
2622 transition(atos, state);
2623
2624 // Do the JVMTI work here to avoid disturbing the register state below
2625 if (JvmtiExport::can_post_field_access()) {
2626 // Check to see if a field access watch has been set before we
2627 // take the time to call into the VM.
2628 Label L1;
2629 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2630 __ testl(rcx, rcx);
2631 __ jcc(Assembler::zero, L1);
2632 // access constant pool cache entry
2633 __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2634 __ movq(r12, rax); // save object pointer before call_VM() clobbers it
2635 __ verify_oop(rax);
2636 __ movq(c_rarg1, rax);
2637 // c_rarg1: object pointer copied above
2638 // c_rarg2: cache entry pointer
2639 __ call_VM(noreg,
2640 CAST_FROM_FN_PTR(address,
2641 InterpreterRuntime::post_field_access),
2642 c_rarg1, c_rarg2);
2643 __ movq(rax, r12); // restore object pointer
2644 __ bind(L1);
2645 }
2646
2647 // access constant pool cache
2648 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2649 // replace index with field offset from cache entry
2650 // [jk] not needed currently
2651 // if (os::is_MP()) {
2652 // __ movl(rdx, Address(rcx, rbx, Address::times_8,
2653 // in_bytes(constantPoolCacheOopDesc::base_offset() +
2654 // ConstantPoolCacheEntry::flags_offset())));
2655 // __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2656 // __ andl(rdx, 0x1);
2657 // }
2658 __ movq(rbx, Address(rcx, rbx, Address::times_8,
2659 in_bytes(constantPoolCacheOopDesc::base_offset() +
2660 ConstantPoolCacheEntry::f2_offset())));
2661
2662 // rax: object
2663 __ verify_oop(rax);
2664 __ null_check(rax);
2665 Address field(rax, rbx, Address::times_1);
2666
2667 // access field
2668 switch (bytecode()) {
2669 case Bytecodes::_fast_agetfield:
2670 __ movq(rax, field);
2671 __ verify_oop(rax);
2672 break;
2673 case Bytecodes::_fast_lgetfield:
2674 __ movq(rax, field);
2675 break;
2676 case Bytecodes::_fast_igetfield:
2677 __ movl(rax, field);
2678 break;
2679 case Bytecodes::_fast_bgetfield:
2680 __ movsbl(rax, field);
2681 break;
2682 case Bytecodes::_fast_sgetfield:
2683 __ load_signed_word(rax, field);
2684 break;
2685 case Bytecodes::_fast_cgetfield:
2686 __ load_unsigned_word(rax, field);
2687 break;
2688 case Bytecodes::_fast_fgetfield:
2689 __ movflt(xmm0, field);
2690 break;
2691 case Bytecodes::_fast_dgetfield:
2692 __ movdbl(xmm0, field);
2693 break;
2694 default:
2695 ShouldNotReachHere();
2696 }
2697 // [jk] not needed currently
2698 // if (os::is_MP()) {
2699 // Label notVolatile;
2700 // __ testl(rdx, rdx);
2701 // __ jcc(Assembler::zero, notVolatile);
2702 // __ membar(Assembler::LoadLoad);
2703 // __ bind(notVolatile);
2704 //};
2705 }
2706
2707 void TemplateTable::fast_xaccess(TosState state) {
2708 transition(vtos, state);
2709
2710 // get receiver
2711 __ movq(rax, aaddress(0));
2712 debug_only(__ verify_local_tag(frame::TagReference, 0));
2713 // access constant pool cache
2714 __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2715 __ movq(rbx,
2716 Address(rcx, rdx, Address::times_8,
2717 in_bytes(constantPoolCacheOopDesc::base_offset() +
2718 ConstantPoolCacheEntry::f2_offset())));
2719 // make sure exception is reported in correct bcp range (getfield is
2720 // next instruction)
2721 __ incrementq(r13);
2722 __ null_check(rax);
2723 switch (state) {
2724 case itos:
2725 __ movl(rax, Address(rax, rbx, Address::times_1));
2726 break;
2727 case atos:
2728 __ movq(rax, Address(rax, rbx, Address::times_1));
2729 __ verify_oop(rax);
2730 break;
2731 case ftos:
2732 __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2733 break;
2734 default:
2735 ShouldNotReachHere();
2736 }
2737
2738 // [jk] not needed currently
2739 // if (os::is_MP()) {
2740 // Label notVolatile;
2741 // __ movl(rdx, Address(rcx, rdx, Address::times_8,
2742 // in_bytes(constantPoolCacheOopDesc::base_offset() +
2743 // ConstantPoolCacheEntry::flags_offset())));
2744 // __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2745 // __ testl(rdx, 0x1);
2746 // __ jcc(Assembler::zero, notVolatile);
2747 // __ membar(Assembler::LoadLoad);
2748 // __ bind(notVolatile);
2749 // }
2750
2751 __ decrementq(r13);
2752 }
2753
2754
2755
2756 //-----------------------------------------------------------------------------
2757 // Calls
2758
2759 void TemplateTable::count_calls(Register method, Register temp) {
2760 // implemented elsewhere
2761 ShouldNotReachHere();
2762 }
2763
2764 void TemplateTable::prepare_invoke(Register method,
2765 Register index,
2766 int byte_no,
2767 Bytecodes::Code code) {
2768 // determine flags
2769 const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
2770 const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
2771 const bool is_invokespecial = code == Bytecodes::_invokespecial;
2772 const bool load_receiver = code != Bytecodes::_invokestatic;
2773 const bool receiver_null_check = is_invokespecial;
2774 const bool save_flags = is_invokeinterface || is_invokevirtual;
2775 // setup registers & access constant pool cache
2776 const Register recv = rcx;
2777 const Register flags = rdx;
2778 assert_different_registers(method, index, recv, flags);
2779
2780 // save 'interpreter return address'
2781 __ save_bcp();
2782
2783 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
2784
2785 // load receiver if needed (note: no return address pushed yet)
2786 if (load_receiver) {
2787 __ movl(recv, flags);
2788 __ andl(recv, 0xFF);
2789 if (TaggedStackInterpreter) __ shll(recv, 1); // index*2
2790 __ movq(recv, Address(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1)));
2791 __ verify_oop(recv);
2792 }
2793
2794 // do null check if needed
2795 if (receiver_null_check) {
2796 __ null_check(recv);
2797 }
2798
2799 if (save_flags) {
2800 __ movl(r13, flags);
2801 }
2802
2803 // compute return type
2804 __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2805 // Make sure we don't need to mask flags for tosBits after the above shift
2806 ConstantPoolCacheEntry::verify_tosBits();
2807 // load return address
2808 {
2809 ExternalAddress return_5((address)Interpreter::return_5_addrs_by_index_table());
2810 ExternalAddress return_3((address)Interpreter::return_3_addrs_by_index_table());
2811 __ lea(rscratch1, (is_invokeinterface ? return_5 : return_3));
2812 __ movq(flags, Address(rscratch1, flags, Address::times_8));
2813 }
2814
2815 // push return address
2816 __ pushq(flags);
2817
2818 // Restore flag field from the constant pool cache, and restore esi
2819 // for later null checks. r13 is the bytecode pointer
2820 if (save_flags) {
2821 __ movl(flags, r13);
2822 __ restore_bcp();
2823 }
2824 }
2825
2826
2827 void TemplateTable::invokevirtual_helper(Register index,
2828 Register recv,
2829 Register flags) {
2830 // Uses temporary registers rax, rdx assert_different_registers(index, recv, rax, rdx);
2831
2832 // Test for an invoke of a final method
2833 Label notFinal;
2834 __ movl(rax, flags);
2835 __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2836 __ jcc(Assembler::zero, notFinal);
2837
2838 const Register method = index; // method must be rbx
2839 assert(method == rbx,
2840 "methodOop must be rbx for interpreter calling convention");
2841
2842 // do the call - the index is actually the method to call
2843 __ verify_oop(method);
2844
2845 // It's final, need a null check here!
2846 __ null_check(recv);
2847
2848 // profile this call
2849 __ profile_final_call(rax);
2850
2851 __ jump_from_interpreted(method, rax);
2852
2853 __ bind(notFinal);
2854
2855 // get receiver klass
2856 __ null_check(recv, oopDesc::klass_offset_in_bytes());
2857 __ movq(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
2858
2859 __ verify_oop(rax);
2860
2861 // profile this call
2862 __ profile_virtual_call(rax, r14, rdx);
2863
2864 // get target methodOop & entry point
2865 const int base = instanceKlass::vtable_start_offset() * wordSize;
2866 assert(vtableEntry::size() * wordSize == 8,
2867 "adjust the scaling in the code below");
2868 __ movq(method, Address(rax, index,
2869 Address::times_8,
2870 base + vtableEntry::method_offset_in_bytes()));
2871 __ movq(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
2872 __ jump_from_interpreted(method, rdx);
2873 }
2874
2875
2876 void TemplateTable::invokevirtual(int byte_no) {
2877 transition(vtos, vtos);
2878 prepare_invoke(rbx, noreg, byte_no, bytecode());
2879
2880 // rbx: index
2881 // rcx: receiver
2882 // rdx: flags
2883
2884 invokevirtual_helper(rbx, rcx, rdx);
2885 }
2886
2887
2888 void TemplateTable::invokespecial(int byte_no) {
2889 transition(vtos, vtos);
2890 prepare_invoke(rbx, noreg, byte_no, bytecode());
2891 // do the call
2892 __ verify_oop(rbx);
2893 __ profile_call(rax);
2894 __ jump_from_interpreted(rbx, rax);
2895 }
2896
2897
2898 void TemplateTable::invokestatic(int byte_no) {
2899 transition(vtos, vtos);
2900 prepare_invoke(rbx, noreg, byte_no, bytecode());
2901 // do the call
2902 __ verify_oop(rbx);
2903 __ profile_call(rax);
2904 __ jump_from_interpreted(rbx, rax);
2905 }
2906
2907 void TemplateTable::fast_invokevfinal(int byte_no) {
2908 transition(vtos, vtos);
2909 __ stop("fast_invokevfinal not used on amd64");
2910 }
2911
2912 void TemplateTable::invokeinterface(int byte_no) {
2913 transition(vtos, vtos);
2914 prepare_invoke(rax, rbx, byte_no, bytecode());
2915
2916 // rax: Interface
2917 // rbx: index
2918 // rcx: receiver
2919 // rdx: flags
2920
2921 // Special case of invokeinterface called for virtual method of
2922 // java.lang.Object. See cpCacheOop.cpp for details.
2923 // This code isn't produced by javac, but could be produced by
2924 // another compliant java compiler.
2925 Label notMethod;
2926 __ movl(r14, rdx);
2927 __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
2928 __ jcc(Assembler::zero, notMethod);
2929
2930 invokevirtual_helper(rbx, rcx, rdx);
2931 __ bind(notMethod);
2932
2933 // Get receiver klass into rdx - also a null check
2934 __ restore_locals(); // restore r14
2935 __ movq(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
2936 __ verify_oop(rdx);
2937
2938 // profile this call
2939 __ profile_virtual_call(rdx, r13, r14);
2940
2941 __ movq(r14, rdx); // Save klassOop in r14
2942
2943 // Compute start of first itableOffsetEntry (which is at the end of
2944 // the vtable)
2945 const int base = instanceKlass::vtable_start_offset() * wordSize;
2946 // Get length of vtable
2947 assert(vtableEntry::size() * wordSize == 8,
2948 "adjust the scaling in the code below");
2949 __ movl(r13, Address(rdx,
2950 instanceKlass::vtable_length_offset() * wordSize));
2951 __ leaq(rdx, Address(rdx, r13, Address::times_8, base));
2952
2953 if (HeapWordsPerLong > 1) {
2954 // Round up to align_object_offset boundary
2955 __ round_to_q(rdx, BytesPerLong);
2956 }
2957
2958 Label entry, search, interface_ok;
2959
2960 __ jmpb(entry);
2961 __ bind(search);
2962 __ addq(rdx, itableOffsetEntry::size() * wordSize);
2963
2964 __ bind(entry);
2965
2966 // Check that the entry is non-null. A null entry means that the
2967 // receiver class doesn't implement the interface, and wasn't the
2968 // same as the receiver class checked when the interface was
2969 // resolved.
2970 __ pushq(rdx);
2971 __ movq(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
2972 __ testq(rdx, rdx);
2973 __ jcc(Assembler::notZero, interface_ok);
2974 // throw exception
2975 __ popq(rdx); // pop saved register first.
2976 __ popq(rbx); // pop return address (pushed by prepare_invoke)
2977 __ restore_bcp(); // r13 must be correct for exception handler (was
2978 // destroyed)
2979 __ restore_locals(); // make sure locals pointer is correct as well
2980 // (was destroyed)
2981 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2982 InterpreterRuntime::throw_IncompatibleClassChangeError));
2983 // the call_VM checks for exception, so we should never return here.
2984 __ should_not_reach_here();
2985 __ bind(interface_ok);
2986
2987 __ popq(rdx);
2988
2989 __ cmpq(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
2990 __ jcc(Assembler::notEqual, search);
2991
2992 __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
2993
2994 __ addq(rdx, r14); // Add offset to klassOop
2995 assert(itableMethodEntry::size() * wordSize == 8,
2996 "adjust the scaling in the code below");
2997 __ movq(rbx, Address(rdx, rbx, Address::times_8));
2998 // rbx: methodOop to call
2999 // rcx: receiver
3000 // Check for abstract method error
3001 // Note: This should be done more efficiently via a
3002 // throw_abstract_method_error interpreter entry point and a
3003 // conditional jump to it in case of a null method.
3004 {
3005 Label L;
3006 __ testq(rbx, rbx);
3007 __ jcc(Assembler::notZero, L);
3008 // throw exception
3009 // note: must restore interpreter registers to canonical
3010 // state for exception handling to work correctly!
3011 __ popq(rbx); // pop return address (pushed by prepare_invoke)
3012 __ restore_bcp(); // r13 must be correct for exception handler
3013 // (was destroyed)
3014 __ restore_locals(); // make sure locals pointer is correct as
3015 // well (was destroyed)
3016 __ call_VM(noreg,
3017 CAST_FROM_FN_PTR(address,
3018 InterpreterRuntime::throw_AbstractMethodError));
3019 // the call_VM checks for exception, so we should never return here.
3020 __ should_not_reach_here();
3021 __ bind(L);
3022 }
3023
3024 __ movq(rcx, Address(rbx, methodOopDesc::interpreter_entry_offset()));
3025
3026 // do the call
3027 // rcx: receiver
3028 // rbx: methodOop
3029 __ jump_from_interpreted(rbx, rdx);
3030 }
3031
3032 //-----------------------------------------------------------------------------
3033 // Allocation
3034
3035 void TemplateTable::_new() {
3036 transition(vtos, atos);
3037 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3038 Label slow_case;
3039 Label done;
3040 Label initialize_header;
3041 Label initialize_object; // including clearing the fields
3042 Label allocate_shared;
3043 ExternalAddress top((address)Universe::heap()->top_addr());
3044 ExternalAddress end((address)Universe::heap()->end_addr());
3045
3046 __ get_cpool_and_tags(rsi, rax);
3047 // get instanceKlass
3048 __ movq(rsi, Address(rsi, rdx,
3049 Address::times_8, sizeof(constantPoolOopDesc)));
3050
3051 // make sure the class we're about to instantiate has been
3052 // resolved. Note: slow_case does a pop of stack, which is why we
3053 // loaded class/pushed above
3054 const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3055 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3056 JVM_CONSTANT_Class);
3057 __ jcc(Assembler::notEqual, slow_case);
3058
3059 // make sure klass is initialized & doesn't have finalizer
3060 // make sure klass is fully initialized
3061 __ cmpl(Address(rsi,
3062 instanceKlass::init_state_offset_in_bytes() +
3063 sizeof(oopDesc)),
3064 instanceKlass::fully_initialized);
3065 __ jcc(Assembler::notEqual, slow_case);
3066
3067 // get instance_size in instanceKlass (scaled to a count of bytes)
3068 __ movl(rdx,
3069 Address(rsi,
3070 Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3071 // test to see if it has a finalizer or is malformed in some way
3072 __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3073 __ jcc(Assembler::notZero, slow_case);
3074
3075 // Allocate the instance
3076 // 1) Try to allocate in the TLAB
3077 // 2) if fail and the object is large allocate in the shared Eden
3078 // 3) if the above fails (or is not applicable), go to a slow case
3079 // (creates a new TLAB, etc.)
3080
3081 const bool allow_shared_alloc =
3082 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3083
3084 if (UseTLAB) {
3085 __ movq(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3086 __ leaq(rbx, Address(rax, rdx, Address::times_1));
3087 __ cmpq(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3088 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3089 __ movq(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3090 if (ZeroTLAB) {
3091 // the fields have been already cleared
3092 __ jmp(initialize_header);
3093 } else {
3094 // initialize both the header and fields
3095 __ jmp(initialize_object);
3096 }
3097 }
3098
3099 // Allocation in the shared Eden, if allowed.
3100 //
3101 // rdx: instance size in bytes
3102 if (allow_shared_alloc) {
3103 __ bind(allocate_shared);
3104
3105 const Register RtopAddr = rscratch1;
3106 const Register RendAddr = rscratch2;
3107
3108 __ lea(RtopAddr, top);
3109 __ lea(RendAddr, end);
3110 __ movq(rax, Address(RtopAddr, 0));
3111
3112 // For retries rax gets set by cmpxchgq
3113 Label retry;
3114 __ bind(retry);
3115 __ leaq(rbx, Address(rax, rdx, Address::times_1));
3116 __ cmpq(rbx, Address(RendAddr, 0));
3117 __ jcc(Assembler::above, slow_case);
3118
3119 // Compare rax with the top addr, and if still equal, store the new
3120 // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3121 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3122 //
3123 // rax: object begin
3124 // rbx: object end
3125 // rdx: instance size in bytes
3126 if (os::is_MP()) {
3127 __ lock();
3128 }
3129 __ cmpxchgq(rbx, Address(RtopAddr, 0));
3130
3131 // if someone beat us on the allocation, try again, otherwise continue
3132 __ jcc(Assembler::notEqual, retry);
3133 }
3134
3135 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3136 // The object is initialized before the header. If the object size is
3137 // zero, go directly to the header initialization.
3138 __ bind(initialize_object);
3139 __ decrementl(rdx, sizeof(oopDesc));
3140 __ jcc(Assembler::zero, initialize_header);
3141
3142 // Initialize object fields
3143 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3144 __ shrl(rdx, LogBytesPerLong); // divide by oopSize to simplify the loop
3145 {
3146 Label loop;
3147 __ bind(loop);
3148 __ movq(Address(rax, rdx, Address::times_8,
3149 sizeof(oopDesc) - oopSize),
3150 rcx);
3151 __ decrementl(rdx);
3152 __ jcc(Assembler::notZero, loop);
3153 }
3154
3155 // initialize object header only.
3156 __ bind(initialize_header);
3157 if (UseBiasedLocking) {
3158 __ movq(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3159 __ movq(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3160 } else {
3161 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3162 (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3163 }
3164 __ movq(Address(rax, oopDesc::klass_offset_in_bytes()), rsi); // klass
3165 __ jmp(done);
3166 }
3167
3168 {
3169 SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3170 // Trigger dtrace event for fastpath
3171 __ push(atos); // save the return value
3172 __ call_VM_leaf(
3173 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3174 __ pop(atos); // restore the return value
3175 }
3176
3177 // slow case
3178 __ bind(slow_case);
3179 __ get_constant_pool(c_rarg1);
3180 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3181 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3182 __ verify_oop(rax);
3183
3184 // continue
3185 __ bind(done);
3186 }
3187
3188 void TemplateTable::newarray() {
3189 transition(itos, atos);
3190 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3191 __ movl(c_rarg2, rax);
3192 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3193 c_rarg1, c_rarg2);
3194 }
3195
3196 void TemplateTable::anewarray() {
3197 transition(itos, atos);
3198 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3199 __ get_constant_pool(c_rarg1);
3200 __ movl(c_rarg3, rax);
3201 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3202 c_rarg1, c_rarg2, c_rarg3);
3203 }
3204
3205 void TemplateTable::arraylength() {
3206 transition(atos, itos);
3207 __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3208 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3209 }
3210
3211 void TemplateTable::checkcast() {
3212 transition(atos, atos);
3213 Label done, is_null, ok_is_subtype, quicked, resolved;
3214 __ testq(rax, rax); // object is in rax
3215 __ jcc(Assembler::zero, is_null);
3216
3217 // Get cpool & tags index
3218 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3219 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3220 // See if bytecode has already been quicked
3221 __ cmpb(Address(rdx, rbx,
3222 Address::times_1,
3223 typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3224 JVM_CONSTANT_Class);
3225 __ jcc(Assembler::equal, quicked);
3226
3227 __ movq(r12, rcx); // save rcx XXX
3228 __ push(atos); // save receiver for result, and for GC
3229 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3230 __ pop_ptr(rdx); // restore receiver
3231 __ movq(rcx, r12); // restore rcx XXX
3232 __ jmpb(resolved);
3233
3234 // Get superklass in rax and subklass in rbx
3235 __ bind(quicked);
3236 __ movq(rdx, rax); // Save object in rdx; rax needed for subtype check
3237 __ movq(rax, Address(rcx, rbx,
3238 Address::times_8, sizeof(constantPoolOopDesc)));
3239
3240 __ bind(resolved);
3241 __ movq(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3242
3243 // Generate subtype check. Blows rcx, rdi. Object in rdx.
3244 // Superklass in rax. Subklass in rbx.
3245 __ gen_subtype_check(rbx, ok_is_subtype);
3246
3247 // Come here on failure
3248 __ push_ptr(rdx);
3249 // object is at TOS
3250 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3251
3252 // Come here on success
3253 __ bind(ok_is_subtype);
3254 __ movq(rax, rdx); // Restore object in rdx
3255
3256 // Collect counts on whether this check-cast sees NULLs a lot or not.
3257 if (ProfileInterpreter) {
3258 __ jmp(done);
3259 __ bind(is_null);
3260 __ profile_null_seen(rcx);
3261 } else {
3262 __ bind(is_null); // same as 'done'
3263 }
3264 __ bind(done);
3265 }
3266
3267 void TemplateTable::instanceof() {
3268 transition(atos, itos);
3269 Label done, is_null, ok_is_subtype, quicked, resolved;
3270 __ testq(rax, rax);
3271 __ jcc(Assembler::zero, is_null);
3272
3273 // Get cpool & tags index
3274 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3275 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3276 // See if bytecode has already been quicked
3277 __ cmpb(Address(rdx, rbx,
3278 Address::times_1,
3279 typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3280 JVM_CONSTANT_Class);
3281 __ jcc(Assembler::equal, quicked);
3282
3283 __ movq(r12, rcx); // save rcx
3284 __ push(atos); // save receiver for result, and for GC
3285 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3286 __ pop_ptr(rdx); // restore receiver
3287 __ movq(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
3288 __ movq(rcx, r12); // restore rcx
3289 __ jmpb(resolved);
3290
3291 // Get superklass in rax and subklass in rdx
3292 __ bind(quicked);
3293 __ movq(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
3294 __ movq(rax, Address(rcx, rbx,
3295 Address::times_8, sizeof(constantPoolOopDesc)));
3296
3297 __ bind(resolved);
3298
3299 // Generate subtype check. Blows rcx, rdi
3300 // Superklass in rax. Subklass in rdx.
3301 __ gen_subtype_check(rdx, ok_is_subtype);
3302
3303 // Come here on failure
3304 __ xorl(rax, rax);
3305 __ jmpb(done);
3306 // Come here on success
3307 __ bind(ok_is_subtype);
3308 __ movl(rax, 1);
3309
3310 // Collect counts on whether this test sees NULLs a lot or not.
3311 if (ProfileInterpreter) {
3312 __ jmp(done);
3313 __ bind(is_null);
3314 __ profile_null_seen(rcx);
3315 } else {
3316 __ bind(is_null); // same as 'done'
3317 }
3318 __ bind(done);
3319 // rax = 0: obj == NULL or obj is not an instanceof the specified klass
3320 // rax = 1: obj != NULL and obj is an instanceof the specified klass
3321 }
3322
3323 //-----------------------------------------------------------------------------
3324 // Breakpoints
3325 void TemplateTable::_breakpoint() {
3326 // Note: We get here even if we are single stepping..
3327 // jbug inists on setting breakpoints at every bytecode
3328 // even if we are in single step mode.
3329
3330 transition(vtos, vtos);
3331
3332 // get the unpatched byte code
3333 __ get_method(c_rarg1);
3334 __ call_VM(noreg,
3335 CAST_FROM_FN_PTR(address,
3336 InterpreterRuntime::get_original_bytecode_at),
3337 c_rarg1, r13);
3338 __ movq(rbx, rax);
3339
3340 // post the breakpoint event
3341 __ get_method(c_rarg1);
3342 __ call_VM(noreg,
3343 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3344 c_rarg1, r13);
3345
3346 // complete the execution of original bytecode
3347 __ dispatch_only_normal(vtos);
3348 }
3349
3350 //-----------------------------------------------------------------------------
3351 // Exceptions
3352
3353 void TemplateTable::athrow() {
3354 transition(atos, vtos);
3355 __ null_check(rax);
3356 __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3357 }
3358
3359 //-----------------------------------------------------------------------------
3360 // Synchronization
3361 //
3362 // Note: monitorenter & exit are symmetric routines; which is reflected
3363 // in the assembly code structure as well
3364 //
3365 // Stack layout:
3366 //
3367 // [expressions ] <--- rsp = expression stack top
3368 // ..
3369 // [expressions ]
3370 // [monitor entry] <--- monitor block top = expression stack bot
3371 // ..
3372 // [monitor entry]
3373 // [frame data ] <--- monitor block bot
3374 // ...
3375 // [saved rbp ] <--- rbp
3376 void TemplateTable::monitorenter() {
3377 transition(atos, vtos);
3378
3379 // check for NULL object
3380 __ null_check(rax);
3381
3382 const Address monitor_block_top(
3383 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3384 const Address monitor_block_bot(
3385 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3386 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3387
3388 Label allocated;
3389
3390 // initialize entry pointer
3391 __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3392
3393 // find a free slot in the monitor block (result in c_rarg1)
3394 {
3395 Label entry, loop, exit;
3396 __ movq(c_rarg3, monitor_block_top); // points to current entry,
3397 // starting with top-most entry
3398 __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
3399 // of monitor block
3400 __ jmpb(entry);
3401
3402 __ bind(loop);
3403 // check if current entry is used
3404 __ cmpq(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
3405 // if not used then remember entry in c_rarg1
3406 __ cmovq(Assembler::equal, c_rarg1, c_rarg3);
3407 // check if current entry is for same object
3408 __ cmpq(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3409 // if same object then stop searching
3410 __ jccb(Assembler::equal, exit);
3411 // otherwise advance to next entry
3412 __ addq(c_rarg3, entry_size);
3413 __ bind(entry);
3414 // check if bottom reached
3415 __ cmpq(c_rarg3, c_rarg2);
3416 // if not at bottom then check this entry
3417 __ jcc(Assembler::notEqual, loop);
3418 __ bind(exit);
3419 }
3420
3421 __ testq(c_rarg1, c_rarg1); // check if a slot has been found
3422 __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3423
3424 // allocate one if there's no free slot
3425 {
3426 Label entry, loop;
3427 // 1. compute new pointers // rsp: old expression stack top
3428 __ movq(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3429 __ subq(rsp, entry_size); // move expression stack top
3430 __ subq(c_rarg1, entry_size); // move expression stack bottom
3431 __ movq(c_rarg3, rsp); // set start value for copy loop
3432 __ movq(monitor_block_bot, c_rarg1); // set new monitor block bottom
3433 __ jmp(entry);
3434 // 2. move expression stack contents
3435 __ bind(loop);
3436 __ movq(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3437 // word from old location
3438 __ movq(Address(c_rarg3, 0), c_rarg2); // and store it at new location
3439 __ addq(c_rarg3, wordSize); // advance to next word
3440 __ bind(entry);
3441 __ cmpq(c_rarg3, c_rarg1); // check if bottom reached
3442 __ jcc(Assembler::notEqual, loop); // if not at bottom then
3443 // copy next word
3444 }
3445
3446 // call run-time routine
3447 // c_rarg1: points to monitor entry
3448 __ bind(allocated);
3449
3450 // Increment bcp to point to the next bytecode, so exception
3451 // handling for async. exceptions work correctly.
3452 // The object has already been poped from the stack, so the
3453 // expression stack looks correct.
3454 __ incrementq(r13);
3455
3456 // store object
3457 __ movq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3458 __ lock_object(c_rarg1);
3459
3460 // check to make sure this monitor doesn't cause stack overflow after locking
3461 __ save_bcp(); // in case of exception
3462 __ generate_stack_overflow_check(0);
3463
3464 // The bcp has already been incremented. Just need to dispatch to
3465 // next instruction.
3466 __ dispatch_next(vtos);
3467 }
3468
3469
3470 void TemplateTable::monitorexit() {
3471 transition(atos, vtos);
3472
3473 // check for NULL object
3474 __ null_check(rax);
3475
3476 const Address monitor_block_top(
3477 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3478 const Address monitor_block_bot(
3479 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3480 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3481
3482 Label found;
3483
3484 // find matching slot
3485 {
3486 Label entry, loop;
3487 __ movq(c_rarg1, monitor_block_top); // points to current entry,
3488 // starting with top-most entry
3489 __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
3490 // of monitor block
3491 __ jmpb(entry);
3492
3493 __ bind(loop);
3494 // check if current entry is for same object
3495 __ cmpq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3496 // if same object then stop searching
3497 __ jcc(Assembler::equal, found);
3498 // otherwise advance to next entry
3499 __ addq(c_rarg1, entry_size);
3500 __ bind(entry);
3501 // check if bottom reached
3502 __ cmpq(c_rarg1, c_rarg2);
3503 // if not at bottom then check this entry
3504 __ jcc(Assembler::notEqual, loop);
3505 }
3506
3507 // error handling. Unlocking was not block-structured
3508 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3509 InterpreterRuntime::throw_illegal_monitor_state_exception));
3510 __ should_not_reach_here();
3511
3512 // call run-time routine
3513 // rsi: points to monitor entry
3514 __ bind(found);
3515 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3516 __ unlock_object(c_rarg1);
3517 __ pop_ptr(rax); // discard object
3518 }
3519
3520
3521 // Wide instructions
3522 void TemplateTable::wide() {
3523 transition(vtos, vtos);
3524 __ load_unsigned_byte(rbx, at_bcp(1));
3525 __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3526 __ jmp(Address(rscratch1, rbx, Address::times_8));
3527 // Note: the r13 increment step is part of the individual wide
3528 // bytecode implementations
3529 }
3530
3531
3532 // Multi arrays
3533 void TemplateTable::multianewarray() {
3534 transition(vtos, atos);
3535 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3536 // last dim is on top of stack; we want address of first one:
3537 // first_addr = last_addr + (ndims - 1) * wordSize
3538 if (TaggedStackInterpreter) __ shll(rax, 1); // index*2
3539 __ leaq(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3540 call_VM(rax,
3541 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3542 c_rarg1);
3543 __ load_unsigned_byte(rbx, at_bcp(3));
3544 if (TaggedStackInterpreter) __ shll(rbx, 1); // index*2
3545 __ leaq(rsp, Address(rsp, rbx, Address::times_8));
3546 }