comparison src/share/vm/code/relocInfo.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children c18cbe5936b8 1a5913bf5e19
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_relocInfo.cpp.incl"
27
28
29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
30
31
32 // Implementation of relocInfo
33
34 #ifdef ASSERT
35 relocInfo::relocInfo(relocType t, int off, int f) {
36 assert(t != data_prefix_tag, "cannot build a prefix this way");
37 assert((t & type_mask) == t, "wrong type");
38 assert((f & format_mask) == f, "wrong format");
39 assert(off >= 0 && off < offset_limit(), "offset out off bounds");
40 assert((off & (offset_unit-1)) == 0, "misaligned offset");
41 (*this) = relocInfo(t, RAW_BITS, off, f);
42 }
43 #endif
44
45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
46 relocInfo* data = this+1; // here's where the data might go
47 dest->set_locs_end(data); // sync end: the next call may read dest.locs_end
48 reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
49 relocInfo* data_limit = dest->locs_end();
50 if (data_limit > data) {
51 relocInfo suffix = (*this);
52 data_limit = this->finish_prefix((short*) data_limit);
53 // Finish up with the suffix. (Hack note: pack_data_to might edit this.)
54 *data_limit = suffix;
55 dest->set_locs_end(data_limit+1);
56 }
57 }
58
59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
60 assert(sizeof(relocInfo) == sizeof(short), "change this code");
61 short* p = (short*)(this+1);
62 assert(prefix_limit >= p, "must be a valid span of data");
63 int plen = prefix_limit - p;
64 if (plen == 0) {
65 debug_only(_value = 0xFFFF);
66 return this; // no data: remove self completely
67 }
68 if (plen == 1 && fits_into_immediate(p[0])) {
69 (*this) = immediate_relocInfo(p[0]); // move data inside self
70 return this+1;
71 }
72 // cannot compact, so just update the count and return the limit pointer
73 (*this) = prefix_relocInfo(plen); // write new datalen
74 assert(data() + datalen() == prefix_limit, "pointers must line up");
75 return (relocInfo*)prefix_limit;
76 }
77
78
79 void relocInfo::set_type(relocType t) {
80 int old_offset = addr_offset();
81 int old_format = format();
82 (*this) = relocInfo(t, old_offset, old_format);
83 assert(type()==(int)t, "sanity check");
84 assert(addr_offset()==old_offset, "sanity check");
85 assert(format()==old_format, "sanity check");
86 }
87
88
89 void relocInfo::set_format(int f) {
90 int old_offset = addr_offset();
91 assert((f & format_mask) == f, "wrong format");
92 _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
93 assert(addr_offset()==old_offset, "sanity check");
94 }
95
96
97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
98 bool found = false;
99 while (itr->next() && !found) {
100 if (itr->addr() == pc) {
101 assert(itr->type()==old_type, "wrong relocInfo type found");
102 itr->current()->set_type(new_type);
103 found=true;
104 }
105 }
106 assert(found, "no relocInfo found for pc");
107 }
108
109
110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
111 change_reloc_info_for_address(itr, pc, old_type, none);
112 }
113
114
115 // ----------------------------------------------------------------------------------------------------
116 // Implementation of RelocIterator
117
118 void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
119 initialize_misc();
120
121 if (cb == NULL && begin != NULL) {
122 // allow CodeBlob to be deduced from beginning address
123 cb = CodeCache::find_blob(begin);
124 }
125 assert(cb != NULL, "must be able to deduce nmethod from other arguments");
126
127 _code = cb;
128 _current = cb->relocation_begin()-1;
129 _end = cb->relocation_end();
130 _addr = (address) cb->instructions_begin();
131
132 assert(!has_current(), "just checking");
133 address code_end = cb->instructions_end();
134
135 assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
136 // FIX THIS assert(limit == NULL || limit <= code_end, "in bounds");
137 set_limits(begin, limit);
138 }
139
140
141 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
142 initialize_misc();
143
144 _current = cs->locs_start()-1;
145 _end = cs->locs_end();
146 _addr = cs->start();
147 _code = NULL; // Not cb->blob();
148
149 CodeBuffer* cb = cs->outer();
150 assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
151 for (int n = 0; n < (int)SECT_LIMIT; n++) {
152 _section_start[n] = cb->code_section(n)->start();
153 }
154
155 assert(!has_current(), "just checking");
156
157 assert(begin == NULL || begin >= cs->start(), "in bounds");
158 assert(limit == NULL || limit <= cs->end(), "in bounds");
159 set_limits(begin, limit);
160 }
161
162
163 enum { indexCardSize = 128 };
164 struct RelocIndexEntry {
165 jint addr_offset; // offset from header_end of an addr()
166 jint reloc_offset; // offset from header_end of a relocInfo (prefix)
167 };
168
169
170 static inline int num_cards(int code_size) {
171 return (code_size-1) / indexCardSize;
172 }
173
174
175 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
176 if (!UseRelocIndex) return locs_size; // no index
177 code_size = round_to(code_size, oopSize);
178 locs_size = round_to(locs_size, oopSize);
179 int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
180 // format of indexed relocs:
181 // relocation_begin: relocInfo ...
182 // index: (addr,reloc#) ...
183 // indexSize :relocation_end
184 return locs_size + index_size + BytesPerInt;
185 }
186
187
188 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
189 address relocation_begin = (address)dest_begin;
190 address relocation_end = (address)dest_end;
191 int total_size = relocation_end - relocation_begin;
192 int locs_size = dest_count * sizeof(relocInfo);
193 if (!UseRelocIndex) {
194 Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
195 return;
196 }
197 int index_size = total_size - locs_size - BytesPerInt; // find out how much space is left
198 int ncards = index_size / sizeof(RelocIndexEntry);
199 assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
200 assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
201 jint* index_size_addr = (jint*)relocation_end - 1;
202
203 assert(sizeof(jint) == BytesPerInt, "change this code");
204
205 *index_size_addr = index_size;
206 if (index_size != 0) {
207 assert(index_size > 0, "checkin'");
208
209 RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
210 assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
211
212 // walk over the relocations, and fill in index entries as we go
213 RelocIterator iter;
214 const address initial_addr = NULL;
215 relocInfo* const initial_current = dest_begin - 1; // biased by -1 like elsewhere
216
217 iter._code = NULL;
218 iter._addr = initial_addr;
219 iter._limit = (address)(intptr_t)(ncards * indexCardSize);
220 iter._current = initial_current;
221 iter._end = dest_begin + dest_count;
222
223 int i = 0;
224 address next_card_addr = (address)indexCardSize;
225 int addr_offset = 0;
226 int reloc_offset = 0;
227 while (true) {
228 // Checkpoint the iterator before advancing it.
229 addr_offset = iter._addr - initial_addr;
230 reloc_offset = iter._current - initial_current;
231 if (!iter.next()) break;
232 while (iter.addr() >= next_card_addr) {
233 index[i].addr_offset = addr_offset;
234 index[i].reloc_offset = reloc_offset;
235 i++;
236 next_card_addr += indexCardSize;
237 }
238 }
239 while (i < ncards) {
240 index[i].addr_offset = addr_offset;
241 index[i].reloc_offset = reloc_offset;
242 i++;
243 }
244 }
245 }
246
247
248 void RelocIterator::set_limits(address begin, address limit) {
249 int index_size = 0;
250 if (UseRelocIndex && _code != NULL) {
251 index_size = ((jint*)_end)[-1];
252 _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
253 }
254
255 _limit = limit;
256
257 // the limit affects this next stuff:
258 if (begin != NULL) {
259 #ifdef ASSERT
260 // In ASSERT mode we do not actually use the index, but simply
261 // check that its contents would have led us to the right answer.
262 address addrCheck = _addr;
263 relocInfo* infoCheck = _current;
264 #endif // ASSERT
265 if (index_size > 0) {
266 // skip ahead
267 RelocIndexEntry* index = (RelocIndexEntry*)_end;
268 RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
269 assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
270 int card = (begin - _addr) / indexCardSize;
271 if (card > 0) {
272 if (index+card-1 < index_limit) index += card-1;
273 else index = index_limit - 1;
274 #ifdef ASSERT
275 addrCheck = _addr + index->addr_offset;
276 infoCheck = _current + index->reloc_offset;
277 #else
278 // Advance the iterator immediately to the last valid state
279 // for the previous card. Calling "next" will then advance
280 // it to the first item on the required card.
281 _addr += index->addr_offset;
282 _current += index->reloc_offset;
283 #endif // ASSERT
284 }
285 }
286
287 relocInfo* backup;
288 address backup_addr;
289 while (true) {
290 backup = _current;
291 backup_addr = _addr;
292 #ifdef ASSERT
293 if (backup == infoCheck) {
294 assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
295 } else {
296 assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
297 }
298 #endif // ASSERT
299 if (!next() || addr() >= begin) break;
300 }
301 assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
302 assert(infoCheck == NULL || infoCheck == backup, "must have matched infoCheck");
303 // At this point, either we are at the first matching record,
304 // or else there is no such record, and !has_current().
305 // In either case, revert to the immediatly preceding state.
306 _current = backup;
307 _addr = backup_addr;
308 set_has_current(false);
309 }
310 }
311
312
313 void RelocIterator::set_limit(address limit) {
314 address code_end = (address)code() + code()->size();
315 assert(limit == NULL || limit <= code_end, "in bounds");
316 _limit = limit;
317 }
318
319
320 void PatchingRelocIterator:: prepass() {
321 // turn breakpoints off during patching
322 _init_state = (*this); // save cursor
323 while (next()) {
324 if (type() == relocInfo::breakpoint_type) {
325 breakpoint_reloc()->set_active(false);
326 }
327 }
328 (RelocIterator&)(*this) = _init_state; // reset cursor for client
329 }
330
331
332 void PatchingRelocIterator:: postpass() {
333 // turn breakpoints back on after patching
334 (RelocIterator&)(*this) = _init_state; // reset cursor again
335 while (next()) {
336 if (type() == relocInfo::breakpoint_type) {
337 breakpoint_Relocation* bpt = breakpoint_reloc();
338 bpt->set_active(bpt->enabled());
339 }
340 }
341 }
342
343
344 // All the strange bit-encodings are in here.
345 // The idea is to encode relocation data which are small integers
346 // very efficiently (a single extra halfword). Larger chunks of
347 // relocation data need a halfword header to hold their size.
348 void RelocIterator::advance_over_prefix() {
349 if (_current->is_datalen()) {
350 _data = (short*) _current->data();
351 _datalen = _current->datalen();
352 _current += _datalen + 1; // skip the embedded data & header
353 } else {
354 _databuf = _current->immediate();
355 _data = &_databuf;
356 _datalen = 1;
357 _current++; // skip the header
358 }
359 // The client will see the following relocInfo, whatever that is.
360 // It is the reloc to which the preceding data applies.
361 }
362
363
364 address RelocIterator::compute_section_start(int n) const {
365 // This routine not only computes a section start, but also
366 // memoizes it for later.
367 #define CACHE ((RelocIterator*)this)->_section_start[n]
368 CodeBlob* cb = code();
369 guarantee(cb != NULL, "must have a code blob");
370 if (n == CodeBuffer::SECT_INSTS)
371 return CACHE = cb->instructions_begin();
372 assert(cb->is_nmethod(), "only nmethods have these sections");
373 nmethod* nm = (nmethod*) cb;
374 address res = NULL;
375 switch (n) {
376 case CodeBuffer::SECT_STUBS:
377 res = nm->stub_begin();
378 break;
379 case CodeBuffer::SECT_CONSTS:
380 res = nm->consts_begin();
381 break;
382 default:
383 ShouldNotReachHere();
384 }
385 assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
386 CACHE = res;
387 return res;
388 #undef CACHE
389 }
390
391
392 Relocation* RelocIterator::reloc() {
393 // (take the "switch" out-of-line)
394 relocInfo::relocType t = type();
395 if (false) {}
396 #define EACH_TYPE(name) \
397 else if (t == relocInfo::name##_type) { \
398 return name##_reloc(); \
399 }
400 APPLY_TO_RELOCATIONS(EACH_TYPE);
401 #undef EACH_TYPE
402 assert(t == relocInfo::none, "must be padding");
403 return new(_rh) Relocation();
404 }
405
406
407 //////// Methods for flyweight Relocation types
408
409
410 RelocationHolder RelocationHolder::plus(int offset) const {
411 if (offset != 0) {
412 switch (type()) {
413 case relocInfo::none:
414 break;
415 case relocInfo::oop_type:
416 {
417 oop_Relocation* r = (oop_Relocation*)reloc();
418 return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
419 }
420 default:
421 ShouldNotReachHere();
422 }
423 }
424 return (*this);
425 }
426
427
428 void Relocation::guarantee_size() {
429 guarantee(false, "Make _relocbuf bigger!");
430 }
431
432 // some relocations can compute their own values
433 address Relocation::value() {
434 ShouldNotReachHere();
435 return NULL;
436 }
437
438
439 void Relocation::set_value(address x) {
440 ShouldNotReachHere();
441 }
442
443
444 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
445 if (rtype == relocInfo::none) return RelocationHolder::none;
446 relocInfo ri = relocInfo(rtype, 0);
447 RelocIterator itr;
448 itr.set_current(ri);
449 itr.reloc();
450 return itr._rh;
451 }
452
453
454 static inline bool is_index(intptr_t index) {
455 return 0 < index && index < os::vm_page_size();
456 }
457
458
459 int32_t Relocation::runtime_address_to_index(address runtime_address) {
460 assert(!is_index((intptr_t)runtime_address), "must not look like an index");
461
462 if (runtime_address == NULL) return 0;
463
464 StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
465 if (p != NULL && p->begin() == runtime_address) {
466 assert(is_index(p->index()), "there must not be too many stubs");
467 return (int32_t)p->index();
468 } else {
469 // Known "miscellaneous" non-stub pointers:
470 // os::get_polling_page(), SafepointSynchronize::address_of_state()
471 if (PrintRelocations) {
472 tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
473 }
474 #ifndef _LP64
475 return (int32_t) (intptr_t)runtime_address;
476 #else
477 // didn't fit return non-index
478 return -1;
479 #endif /* _LP64 */
480 }
481 }
482
483
484 address Relocation::index_to_runtime_address(int32_t index) {
485 if (index == 0) return NULL;
486
487 if (is_index(index)) {
488 StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
489 assert(p != NULL, "there must be a stub for this index");
490 return p->begin();
491 } else {
492 #ifndef _LP64
493 // this only works on 32bit machines
494 return (address) ((intptr_t) index);
495 #else
496 fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
497 return NULL;
498 #endif /* _LP64 */
499 }
500 }
501
502 address Relocation::old_addr_for(address newa,
503 const CodeBuffer* src, CodeBuffer* dest) {
504 int sect = dest->section_index_of(newa);
505 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
506 address ostart = src->code_section(sect)->start();
507 address nstart = dest->code_section(sect)->start();
508 return ostart + (newa - nstart);
509 }
510
511 address Relocation::new_addr_for(address olda,
512 const CodeBuffer* src, CodeBuffer* dest) {
513 debug_only(const CodeBuffer* src0 = src);
514 int sect = CodeBuffer::SECT_NONE;
515 // Look for olda in the source buffer, and all previous incarnations
516 // if the source buffer has been expanded.
517 for (; src != NULL; src = src->before_expand()) {
518 sect = src->section_index_of(olda);
519 if (sect != CodeBuffer::SECT_NONE) break;
520 }
521 guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
522 address ostart = src->code_section(sect)->start();
523 address nstart = dest->code_section(sect)->start();
524 return nstart + (olda - ostart);
525 }
526
527 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
528 address addr0 = addr;
529 if (addr0 == NULL || dest->allocates2(addr0)) return;
530 CodeBuffer* cb = dest->outer();
531 addr = new_addr_for(addr0, cb, cb);
532 assert(allow_other_sections || dest->contains2(addr),
533 "addr must be in required section");
534 }
535
536
537 void CallRelocation::set_destination(address x) {
538 pd_set_call_destination(x);
539 }
540
541 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
542 // Usually a self-relative reference to an external routine.
543 // On some platforms, the reference is absolute (not self-relative).
544 // The enhanced use of pd_call_destination sorts this all out.
545 address orig_addr = old_addr_for(addr(), src, dest);
546 address callee = pd_call_destination(orig_addr);
547 // Reassert the callee address, this time in the new copy of the code.
548 pd_set_call_destination(callee);
549 }
550
551
552 //// pack/unpack methods
553
554 void oop_Relocation::pack_data_to(CodeSection* dest) {
555 short* p = (short*) dest->locs_end();
556 p = pack_2_ints_to(p, _oop_index, _offset);
557 dest->set_locs_end((relocInfo*) p);
558 }
559
560
561 void oop_Relocation::unpack_data() {
562 unpack_2_ints(_oop_index, _offset);
563 }
564
565
566 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
567 short* p = (short*) dest->locs_end();
568 address point = dest->locs_point();
569
570 // Try to make a pointer NULL first.
571 if (_oop_limit >= point &&
572 _oop_limit <= point + NativeCall::instruction_size) {
573 _oop_limit = NULL;
574 }
575 // If the _oop_limit is NULL, it "defaults" to the end of the call.
576 // See ic_call_Relocation::oop_limit() below.
577
578 normalize_address(_first_oop, dest);
579 normalize_address(_oop_limit, dest);
580 jint x0 = scaled_offset_null_special(_first_oop, point);
581 jint x1 = scaled_offset_null_special(_oop_limit, point);
582 p = pack_2_ints_to(p, x0, x1);
583 dest->set_locs_end((relocInfo*) p);
584 }
585
586
587 void virtual_call_Relocation::unpack_data() {
588 jint x0, x1; unpack_2_ints(x0, x1);
589 address point = addr();
590 _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
591 _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
592 }
593
594
595 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
596 short* p = (short*) dest->locs_end();
597 CodeSection* insts = dest->outer()->insts();
598 normalize_address(_static_call, insts);
599 p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
600 dest->set_locs_end((relocInfo*) p);
601 }
602
603 void static_stub_Relocation::unpack_data() {
604 address base = binding()->section_start(CodeBuffer::SECT_INSTS);
605 _static_call = address_from_scaled_offset(unpack_1_int(), base);
606 }
607
608
609 void external_word_Relocation::pack_data_to(CodeSection* dest) {
610 short* p = (short*) dest->locs_end();
611 int32_t index = runtime_address_to_index(_target);
612 #ifndef _LP64
613 p = pack_1_int_to(p, index);
614 #else
615 if (is_index(index)) {
616 p = pack_2_ints_to(p, index, 0);
617 } else {
618 jlong t = (jlong) _target;
619 int32_t lo = low(t);
620 int32_t hi = high(t);
621 p = pack_2_ints_to(p, lo, hi);
622 DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
623 assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
624 }
625 #endif /* _LP64 */
626 dest->set_locs_end((relocInfo*) p);
627 }
628
629
630 void external_word_Relocation::unpack_data() {
631 #ifndef _LP64
632 _target = index_to_runtime_address(unpack_1_int());
633 #else
634 int32_t lo, hi;
635 unpack_2_ints(lo, hi);
636 jlong t = jlong_from(hi, lo);;
637 if (is_index(t)) {
638 _target = index_to_runtime_address(t);
639 } else {
640 _target = (address) t;
641 }
642 #endif /* _LP64 */
643 }
644
645
646 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
647 short* p = (short*) dest->locs_end();
648 normalize_address(_target, dest, true);
649
650 // Check whether my target address is valid within this section.
651 // If not, strengthen the relocation type to point to another section.
652 int sindex = _section;
653 if (sindex == CodeBuffer::SECT_NONE && _target != NULL
654 && (!dest->allocates(_target) || _target == dest->locs_point())) {
655 sindex = dest->outer()->section_index_of(_target);
656 guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
657 relocInfo* base = dest->locs_end() - 1;
658 assert(base->type() == this->type(), "sanity");
659 // Change the written type, to be section_word_type instead.
660 base->set_type(relocInfo::section_word_type);
661 }
662
663 // Note: An internal_word relocation cannot refer to its own instruction,
664 // because we reserve "0" to mean that the pointer itself is embedded
665 // in the code stream. We use a section_word relocation for such cases.
666
667 if (sindex == CodeBuffer::SECT_NONE) {
668 assert(type() == relocInfo::internal_word_type, "must be base class");
669 guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
670 jint x0 = scaled_offset_null_special(_target, dest->locs_point());
671 assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
672 p = pack_1_int_to(p, x0);
673 } else {
674 assert(_target != NULL, "sanity");
675 CodeSection* sect = dest->outer()->code_section(sindex);
676 guarantee(sect->allocates2(_target), "must be in correct section");
677 address base = sect->start();
678 jint offset = scaled_offset(_target, base);
679 assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
680 assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
681 p = pack_1_int_to(p, (offset << section_width) | sindex);
682 }
683
684 dest->set_locs_end((relocInfo*) p);
685 }
686
687
688 void internal_word_Relocation::unpack_data() {
689 jint x0 = unpack_1_int();
690 _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
691 _section = CodeBuffer::SECT_NONE;
692 }
693
694
695 void section_word_Relocation::unpack_data() {
696 jint x = unpack_1_int();
697 jint offset = (x >> section_width);
698 int sindex = (x & ((1<<section_width)-1));
699 address base = binding()->section_start(sindex);
700
701 _section = sindex;
702 _target = address_from_scaled_offset(offset, base);
703 }
704
705
706 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
707 short* p = (short*) dest->locs_end();
708 address point = dest->locs_point();
709
710 *p++ = _bits;
711
712 assert(_target != NULL, "sanity");
713
714 if (internal()) normalize_address(_target, dest);
715
716 jint target_bits =
717 (jint)( internal() ? scaled_offset (_target, point)
718 : runtime_address_to_index(_target) );
719 if (settable()) {
720 // save space for set_target later
721 p = add_jint(p, target_bits);
722 } else {
723 p = add_var_int(p, target_bits);
724 }
725
726 for (int i = 0; i < instrlen(); i++) {
727 // put placeholder words until bytes can be saved
728 p = add_short(p, (short)0x7777);
729 }
730
731 dest->set_locs_end((relocInfo*) p);
732 }
733
734
735 void breakpoint_Relocation::unpack_data() {
736 _bits = live_bits();
737
738 int targetlen = datalen() - 1 - instrlen();
739 jint target_bits = 0;
740 if (targetlen == 0) target_bits = 0;
741 else if (targetlen == 1) target_bits = *(data()+1);
742 else if (targetlen == 2) target_bits = relocInfo::jint_from_data(data()+1);
743 else { ShouldNotReachHere(); }
744
745 _target = internal() ? address_from_scaled_offset(target_bits, addr())
746 : index_to_runtime_address (target_bits);
747 }
748
749
750 //// miscellaneous methods
751 oop* oop_Relocation::oop_addr() {
752 int n = _oop_index;
753 if (n == 0) {
754 // oop is stored in the code stream
755 return (oop*) pd_address_in_code();
756 } else {
757 // oop is stored in table at CodeBlob::oops_begin
758 return code()->oop_addr_at(n);
759 }
760 }
761
762
763 oop oop_Relocation::oop_value() {
764 oop v = *oop_addr();
765 // clean inline caches store a special pseudo-null
766 if (v == (oop)Universe::non_oop_word()) v = NULL;
767 return v;
768 }
769
770
771 void oop_Relocation::fix_oop_relocation() {
772 if (!oop_is_immediate()) {
773 // get the oop from the pool, and re-insert it into the instruction:
774 set_value(value());
775 }
776 }
777
778
779 RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
780 oop* &oop_addr, bool *is_optimized) {
781 assert(ic_call != NULL, "ic_call address must be set");
782 assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
783 if (code == NULL) {
784 if (ic_call != NULL) {
785 code = CodeCache::find_blob(ic_call);
786 } else if (first_oop != NULL) {
787 code = CodeCache::find_blob(first_oop);
788 }
789 assert(code != NULL, "address to parse must be in CodeBlob");
790 }
791 assert(ic_call == NULL || code->contains(ic_call), "must be in CodeBlob");
792 assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
793
794 address oop_limit = NULL;
795
796 if (ic_call != NULL) {
797 // search for the ic_call at the given address
798 RelocIterator iter(code, ic_call, ic_call+1);
799 bool ret = iter.next();
800 assert(ret == true, "relocInfo must exist at this address");
801 assert(iter.addr() == ic_call, "must find ic_call");
802 if (iter.type() == relocInfo::virtual_call_type) {
803 virtual_call_Relocation* r = iter.virtual_call_reloc();
804 first_oop = r->first_oop();
805 oop_limit = r->oop_limit();
806 *is_optimized = false;
807 } else {
808 assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
809 *is_optimized = true;
810 oop_addr = NULL;
811 first_oop = NULL;
812 return iter;
813 }
814 }
815
816 // search for the first_oop, to get its oop_addr
817 RelocIterator all_oops(code, first_oop);
818 RelocIterator iter = all_oops;
819 iter.set_limit(first_oop+1);
820 bool found_oop = false;
821 while (iter.next()) {
822 if (iter.type() == relocInfo::oop_type) {
823 assert(iter.addr() == first_oop, "must find first_oop");
824 oop_addr = iter.oop_reloc()->oop_addr();
825 found_oop = true;
826 break;
827 }
828 }
829 assert(found_oop, "must find first_oop");
830
831 bool did_reset = false;
832 while (ic_call == NULL) {
833 // search forward for the ic_call matching the given first_oop
834 while (iter.next()) {
835 if (iter.type() == relocInfo::virtual_call_type) {
836 virtual_call_Relocation* r = iter.virtual_call_reloc();
837 if (r->first_oop() == first_oop) {
838 ic_call = r->addr();
839 oop_limit = r->oop_limit();
840 break;
841 }
842 }
843 }
844 guarantee(!did_reset, "cannot find ic_call");
845 iter = RelocIterator(code); // search the whole CodeBlob
846 did_reset = true;
847 }
848
849 assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
850 all_oops.set_limit(oop_limit);
851 return all_oops;
852 }
853
854
855 address virtual_call_Relocation::first_oop() {
856 assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
857 return _first_oop;
858 }
859
860
861 address virtual_call_Relocation::oop_limit() {
862 if (_oop_limit == NULL)
863 return addr() + NativeCall::instruction_size;
864 else
865 return _oop_limit;
866 }
867
868
869
870 void virtual_call_Relocation::clear_inline_cache() {
871 // No stubs for ICs
872 // Clean IC
873 ResourceMark rm;
874 CompiledIC* icache = CompiledIC_at(this);
875 icache->set_to_clean();
876 }
877
878
879 void opt_virtual_call_Relocation::clear_inline_cache() {
880 // No stubs for ICs
881 // Clean IC
882 ResourceMark rm;
883 CompiledIC* icache = CompiledIC_at(this);
884 icache->set_to_clean();
885 }
886
887
888 address opt_virtual_call_Relocation::static_stub() {
889 // search for the static stub who points back to this static call
890 address static_call_addr = addr();
891 RelocIterator iter(code());
892 while (iter.next()) {
893 if (iter.type() == relocInfo::static_stub_type) {
894 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
895 return iter.addr();
896 }
897 }
898 }
899 return NULL;
900 }
901
902
903 void static_call_Relocation::clear_inline_cache() {
904 // Safe call site info
905 CompiledStaticCall* handler = compiledStaticCall_at(this);
906 handler->set_to_clean();
907 }
908
909
910 address static_call_Relocation::static_stub() {
911 // search for the static stub who points back to this static call
912 address static_call_addr = addr();
913 RelocIterator iter(code());
914 while (iter.next()) {
915 if (iter.type() == relocInfo::static_stub_type) {
916 if (iter.static_stub_reloc()->static_call() == static_call_addr) {
917 return iter.addr();
918 }
919 }
920 }
921 return NULL;
922 }
923
924
925 void static_stub_Relocation::clear_inline_cache() {
926 // Call stub is only used when calling the interpreted code.
927 // It does not really need to be cleared, except that we want to clean out the methodoop.
928 CompiledStaticCall::set_stub_to_clean(this);
929 }
930
931
932 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
933 address target = _target;
934 if (target == NULL) {
935 // An absolute embedded reference to an external location,
936 // which means there is nothing to fix here.
937 return;
938 }
939 // Probably this reference is absolute, not relative, so the
940 // following is probably a no-op.
941 assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
942 set_value(target);
943 }
944
945
946 address external_word_Relocation::target() {
947 address target = _target;
948 if (target == NULL) {
949 target = pd_get_address_from_code();
950 }
951 return target;
952 }
953
954
955 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
956 address target = _target;
957 if (target == NULL) {
958 if (addr_in_const()) {
959 target = new_addr_for(*(address*)addr(), src, dest);
960 } else {
961 target = new_addr_for(pd_get_address_from_code(), src, dest);
962 }
963 }
964 set_value(target);
965 }
966
967
968 address internal_word_Relocation::target() {
969 address target = _target;
970 if (target == NULL) {
971 target = pd_get_address_from_code();
972 }
973 return target;
974 }
975
976
977 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
978 bool active = false;
979 bool enabled = (kind == initialization);
980 bool removable = (kind != safepoint);
981 bool settable = (target == NULL);
982
983 int bits = kind;
984 if (enabled) bits |= enabled_state;
985 if (internal) bits |= internal_attr;
986 if (removable) bits |= removable_attr;
987 if (settable) bits |= settable_attr;
988
989 _bits = bits | high_bit;
990 _target = target;
991
992 assert(this->kind() == kind, "kind encoded");
993 assert(this->enabled() == enabled, "enabled encoded");
994 assert(this->active() == active, "active encoded");
995 assert(this->internal() == internal, "internal encoded");
996 assert(this->removable() == removable, "removable encoded");
997 assert(this->settable() == settable, "settable encoded");
998 }
999
1000
1001 address breakpoint_Relocation::target() const {
1002 return _target;
1003 }
1004
1005
1006 void breakpoint_Relocation::set_target(address x) {
1007 assert(settable(), "must be settable");
1008 jint target_bits =
1009 (jint)(internal() ? scaled_offset (x, addr())
1010 : runtime_address_to_index(x));
1011 short* p = &live_bits() + 1;
1012 p = add_jint(p, target_bits);
1013 assert(p == instrs(), "new target must fit");
1014 _target = x;
1015 }
1016
1017
1018 void breakpoint_Relocation::set_enabled(bool b) {
1019 if (enabled() == b) return;
1020
1021 if (b) {
1022 set_bits(bits() | enabled_state);
1023 } else {
1024 set_active(false); // remove the actual breakpoint insn, if any
1025 set_bits(bits() & ~enabled_state);
1026 }
1027 }
1028
1029
1030 void breakpoint_Relocation::set_active(bool b) {
1031 assert(!b || enabled(), "cannot activate a disabled breakpoint");
1032
1033 if (active() == b) return;
1034
1035 // %%% should probably seize a lock here (might not be the right lock)
1036 //MutexLockerEx ml_patch(Patching_lock, true);
1037 //if (active() == b) return; // recheck state after locking
1038
1039 if (b) {
1040 set_bits(bits() | active_state);
1041 if (instrlen() == 0)
1042 fatal("breakpoints in original code must be undoable");
1043 pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1044 } else {
1045 set_bits(bits() & ~active_state);
1046 pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1047 }
1048 }
1049
1050
1051 //---------------------------------------------------------------------------------
1052 // Non-product code
1053
1054 #ifndef PRODUCT
1055
1056 static const char* reloc_type_string(relocInfo::relocType t) {
1057 switch (t) {
1058 #define EACH_CASE(name) \
1059 case relocInfo::name##_type: \
1060 return #name;
1061
1062 APPLY_TO_RELOCATIONS(EACH_CASE);
1063 #undef EACH_CASE
1064
1065 case relocInfo::none:
1066 return "none";
1067 case relocInfo::data_prefix_tag:
1068 return "prefix";
1069 default:
1070 return "UNKNOWN RELOC TYPE";
1071 }
1072 }
1073
1074
1075 void RelocIterator::print_current() {
1076 if (!has_current()) {
1077 tty->print_cr("(no relocs)");
1078 return;
1079 }
1080 tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
1081 _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
1082 if (current()->format() != 0)
1083 tty->print(" format=%d", current()->format());
1084 if (datalen() == 1) {
1085 tty->print(" data=%d", data()[0]);
1086 } else if (datalen() > 0) {
1087 tty->print(" data={");
1088 for (int i = 0; i < datalen(); i++) {
1089 tty->print("%04x", data()[i] & 0xFFFF);
1090 }
1091 tty->print("}");
1092 }
1093 tty->print("]");
1094 switch (type()) {
1095 case relocInfo::oop_type:
1096 {
1097 oop_Relocation* r = oop_reloc();
1098 oop* oop_addr = NULL;
1099 oop raw_oop = NULL;
1100 oop oop_value = NULL;
1101 if (code() != NULL || r->oop_is_immediate()) {
1102 oop_addr = r->oop_addr();
1103 raw_oop = *oop_addr;
1104 oop_value = r->oop_value();
1105 }
1106 tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1107 oop_addr, (address)raw_oop, r->offset());
1108 // Do not print the oop by default--we want this routine to
1109 // work even during GC or other inconvenient times.
1110 if (WizardMode && oop_value != NULL) {
1111 tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1112 oop_value->print_value_on(tty);
1113 }
1114 break;
1115 }
1116 case relocInfo::external_word_type:
1117 case relocInfo::internal_word_type:
1118 case relocInfo::section_word_type:
1119 {
1120 DataRelocation* r = (DataRelocation*) reloc();
1121 tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1122 break;
1123 }
1124 case relocInfo::static_call_type:
1125 case relocInfo::runtime_call_type:
1126 {
1127 CallRelocation* r = (CallRelocation*) reloc();
1128 tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1129 break;
1130 }
1131 case relocInfo::virtual_call_type:
1132 {
1133 virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1134 tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1135 r->destination(), r->first_oop(), r->oop_limit());
1136 break;
1137 }
1138 case relocInfo::static_stub_type:
1139 {
1140 static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1141 tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1142 break;
1143 }
1144 }
1145 tty->cr();
1146 }
1147
1148
1149 void RelocIterator::print() {
1150 RelocIterator save_this = (*this);
1151 relocInfo* scan = _current;
1152 if (!has_current()) scan += 1; // nothing to scan here!
1153
1154 bool skip_next = has_current();
1155 bool got_next;
1156 while (true) {
1157 got_next = (skip_next || next());
1158 skip_next = false;
1159
1160 tty->print(" @" INTPTR_FORMAT ": ", scan);
1161 relocInfo* newscan = _current+1;
1162 if (!has_current()) newscan -= 1; // nothing to scan here!
1163 while (scan < newscan) {
1164 tty->print("%04x", *(short*)scan & 0xFFFF);
1165 scan++;
1166 }
1167 tty->cr();
1168
1169 if (!got_next) break;
1170 print_current();
1171 }
1172
1173 (*this) = save_this;
1174 }
1175
1176 // For the debugger:
1177 extern "C"
1178 void print_blob_locs(CodeBlob* cb) {
1179 cb->print();
1180 RelocIterator iter(cb);
1181 iter.print();
1182 }
1183 extern "C"
1184 void print_buf_locs(CodeBuffer* cb) {
1185 FlagSetting fs(PrintRelocations, true);
1186 cb->print();
1187 }
1188 #endif // !PRODUCT