comparison src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 6432c3bb6240
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_binaryTreeDictionary.cpp.incl"
27
28 ////////////////////////////////////////////////////////////////////////////////
29 // A binary tree based search structure for free blocks.
30 // This is currently used in the Concurrent Mark&Sweep implementation.
31 ////////////////////////////////////////////////////////////////////////////////
32
33 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
34 // Do some assertion checking here.
35 return (TreeChunk*) fc;
36 }
37
38 void TreeChunk::verifyTreeChunkList() const {
39 TreeChunk* nextTC = (TreeChunk*)next();
40 if (prev() != NULL) { // interior list node shouldn'r have tree fields
41 guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
42 embedded_list()->right() == NULL, "should be clear");
43 }
44 if (nextTC != NULL) {
45 guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
46 guarantee(nextTC->size() == size(), "wrong size");
47 nextTC->verifyTreeChunkList();
48 }
49 }
50
51
52 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
53 // This first free chunk in the list will be the tree list.
54 assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
55 TreeList* tl = tc->embedded_list();
56 tc->set_list(tl);
57 #ifdef ASSERT
58 tl->set_protecting_lock(NULL);
59 #endif
60 tl->set_hint(0);
61 tl->set_size(tc->size());
62 tl->link_head(tc);
63 tl->link_tail(tc);
64 tl->set_count(1);
65 tl->init_statistics();
66 tl->setParent(NULL);
67 tl->setLeft(NULL);
68 tl->setRight(NULL);
69 return tl;
70 }
71 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
72 TreeChunk* tc = (TreeChunk*) addr;
73 assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
74 assert(tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL,
75 "Space should be clear");
76 tc->setSize(size);
77 tc->linkPrev(NULL);
78 tc->linkNext(NULL);
79 TreeList* tl = TreeList::as_TreeList(tc);
80 return tl;
81 }
82
83 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
84
85 TreeList* retTL = this;
86 FreeChunk* list = head();
87 assert(!list || list != list->next(), "Chunk on list twice");
88 assert(tc != NULL, "Chunk being removed is NULL");
89 assert(parent() == NULL || this == parent()->left() ||
90 this == parent()->right(), "list is inconsistent");
91 assert(tc->isFree(), "Header is not marked correctly");
92 assert(head() == NULL || head()->prev() == NULL, "list invariant");
93 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
94
95 FreeChunk* prevFC = tc->prev();
96 TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
97 assert(list != NULL, "should have at least the target chunk");
98
99 // Is this the first item on the list?
100 if (tc == list) {
101 // The "getChunk..." functions for a TreeList will not return the
102 // first chunk in the list unless it is the last chunk in the list
103 // because the first chunk is also acting as the tree node.
104 // When coalescing happens, however, the first chunk in the a tree
105 // list can be the start of a free range. Free ranges are removed
106 // from the free lists so that they are not available to be
107 // allocated when the sweeper yields (giving up the free list lock)
108 // to allow mutator activity. If this chunk is the first in the
109 // list and is not the last in the list, do the work to copy the
110 // TreeList from the first chunk to the next chunk and update all
111 // the TreeList pointers in the chunks in the list.
112 if (nextTC == NULL) {
113 assert(prevFC == NULL, "Not last chunk in the list")
114 set_tail(NULL);
115 set_head(NULL);
116 } else {
117 // copy embedded list.
118 nextTC->set_embedded_list(tc->embedded_list());
119 retTL = nextTC->embedded_list();
120 // Fix the pointer to the list in each chunk in the list.
121 // This can be slow for a long list. Consider having
122 // an option that does not allow the first chunk on the
123 // list to be coalesced.
124 for (TreeChunk* curTC = nextTC; curTC != NULL;
125 curTC = TreeChunk::as_TreeChunk(curTC->next())) {
126 curTC->set_list(retTL);
127 }
128 // Fix the parent to point to the new TreeList.
129 if (retTL->parent() != NULL) {
130 if (this == retTL->parent()->left()) {
131 retTL->parent()->setLeft(retTL);
132 } else {
133 assert(this == retTL->parent()->right(), "Parent is incorrect");
134 retTL->parent()->setRight(retTL);
135 }
136 }
137 // Fix the children's parent pointers to point to the
138 // new list.
139 assert(right() == retTL->right(), "Should have been copied");
140 if (retTL->right() != NULL) {
141 retTL->right()->setParent(retTL);
142 }
143 assert(left() == retTL->left(), "Should have been copied");
144 if (retTL->left() != NULL) {
145 retTL->left()->setParent(retTL);
146 }
147 retTL->link_head(nextTC);
148 assert(nextTC->isFree(), "Should be a free chunk");
149 }
150 } else {
151 if (nextTC == NULL) {
152 // Removing chunk at tail of list
153 link_tail(prevFC);
154 }
155 // Chunk is interior to the list
156 prevFC->linkAfter(nextTC);
157 }
158
159 // Below this point the embeded TreeList being used for the
160 // tree node may have changed. Don't use "this"
161 // TreeList*.
162 // chunk should still be a free chunk (bit set in _prev)
163 assert(!retTL->head() || retTL->size() == retTL->head()->size(),
164 "Wrong sized chunk in list");
165 debug_only(
166 tc->linkPrev(NULL);
167 tc->linkNext(NULL);
168 tc->set_list(NULL);
169 bool prev_found = false;
170 bool next_found = false;
171 for (FreeChunk* curFC = retTL->head();
172 curFC != NULL; curFC = curFC->next()) {
173 assert(curFC != tc, "Chunk is still in list");
174 if (curFC == prevFC) {
175 prev_found = true;
176 }
177 if (curFC == nextTC) {
178 next_found = true;
179 }
180 }
181 assert(prevFC == NULL || prev_found, "Chunk was lost from list");
182 assert(nextTC == NULL || next_found, "Chunk was lost from list");
183 assert(retTL->parent() == NULL ||
184 retTL == retTL->parent()->left() ||
185 retTL == retTL->parent()->right(),
186 "list is inconsistent");
187 )
188 retTL->decrement_count();
189
190 assert(tc->isFree(), "Should still be a free chunk");
191 assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
192 "list invariant");
193 assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
194 "list invariant");
195 return retTL;
196 }
197 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
198 assert(chunk != NULL, "returning NULL chunk");
199 assert(chunk->list() == this, "list should be set for chunk");
200 assert(tail() != NULL, "The tree list is embedded in the first chunk");
201 // which means that the list can never be empty.
202 assert(!verifyChunkInFreeLists(chunk), "Double entry");
203 assert(head() == NULL || head()->prev() == NULL, "list invariant");
204 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
205
206 FreeChunk* fc = tail();
207 fc->linkAfter(chunk);
208 link_tail(chunk);
209
210 assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
211 increment_count();
212 debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
213 assert(head() == NULL || head()->prev() == NULL, "list invariant");
214 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
215 }
216
217 // Add this chunk at the head of the list. "At the head of the list"
218 // is defined to be after the chunk pointer to by head(). This is
219 // because the TreeList is embedded in the first TreeChunk in the
220 // list. See the definition of TreeChunk.
221 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
222 assert(chunk->list() == this, "list should be set for chunk");
223 assert(head() != NULL, "The tree list is embedded in the first chunk");
224 assert(chunk != NULL, "returning NULL chunk");
225 assert(!verifyChunkInFreeLists(chunk), "Double entry");
226 assert(head() == NULL || head()->prev() == NULL, "list invariant");
227 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
228
229 FreeChunk* fc = head()->next();
230 if (fc != NULL) {
231 chunk->linkAfter(fc);
232 } else {
233 assert(tail() == NULL, "List is inconsistent");
234 link_tail(chunk);
235 }
236 head()->linkAfter(chunk);
237 assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
238 increment_count();
239 debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
240 assert(head() == NULL || head()->prev() == NULL, "list invariant");
241 assert(tail() == NULL || tail()->next() == NULL, "list invariant");
242 }
243
244 TreeChunk* TreeList::head_as_TreeChunk() {
245 assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
246 "Wrong type of chunk?");
247 return TreeChunk::as_TreeChunk(head());
248 }
249
250 TreeChunk* TreeList::first_available() {
251 guarantee(head() != NULL, "The head of the list cannot be NULL");
252 FreeChunk* fc = head()->next();
253 TreeChunk* retTC;
254 if (fc == NULL) {
255 retTC = head_as_TreeChunk();
256 } else {
257 retTC = TreeChunk::as_TreeChunk(fc);
258 }
259 assert(retTC->list() == this, "Wrong type of chunk.");
260 return retTC;
261 }
262
263 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
264 _splay(splay)
265 {
266 assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
267
268 reset(mr);
269 assert(root()->left() == NULL, "reset check failed");
270 assert(root()->right() == NULL, "reset check failed");
271 assert(root()->head()->next() == NULL, "reset check failed");
272 assert(root()->head()->prev() == NULL, "reset check failed");
273 assert(totalSize() == root()->size(), "reset check failed");
274 assert(totalFreeBlocks() == 1, "reset check failed");
275 }
276
277 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
278 _totalSize = _totalSize + inc;
279 }
280
281 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
282 _totalSize = _totalSize - dec;
283 }
284
285 void BinaryTreeDictionary::reset(MemRegion mr) {
286 assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
287 set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
288 set_totalSize(mr.word_size());
289 set_totalFreeBlocks(1);
290 }
291
292 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
293 MemRegion mr(addr, heap_word_size(byte_size));
294 reset(mr);
295 }
296
297 void BinaryTreeDictionary::reset() {
298 set_root(NULL);
299 set_totalSize(0);
300 set_totalFreeBlocks(0);
301 }
302
303 // Get a free block of size at least size from tree, or NULL.
304 // If a splay step is requested, the removal algorithm (only) incorporates
305 // a splay step as follows:
306 // . the search proceeds down the tree looking for a possible
307 // match. At the (closest) matching location, an appropriate splay step is applied
308 // (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
309 // if available, and if it's the last chunk, the node is deleted. A deteleted
310 // node is replaced in place by its tree successor.
311 TreeChunk*
312 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
313 {
314 TreeList *curTL, *prevTL;
315 TreeChunk* retTC = NULL;
316 assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
317 if (FLSVerifyDictionary) {
318 verifyTree();
319 }
320 // starting at the root, work downwards trying to find match.
321 // Remember the last node of size too great or too small.
322 for (prevTL = curTL = root(); curTL != NULL;) {
323 if (curTL->size() == size) { // exact match
324 break;
325 }
326 prevTL = curTL;
327 if (curTL->size() < size) { // proceed to right sub-tree
328 curTL = curTL->right();
329 } else { // proceed to left sub-tree
330 assert(curTL->size() > size, "size inconsistency");
331 curTL = curTL->left();
332 }
333 }
334 if (curTL == NULL) { // couldn't find exact match
335 // try and find the next larger size by walking back up the search path
336 for (curTL = prevTL; curTL != NULL;) {
337 if (curTL->size() >= size) break;
338 else curTL = curTL->parent();
339 }
340 assert(curTL == NULL || curTL->count() > 0,
341 "An empty list should not be in the tree");
342 }
343 if (curTL != NULL) {
344 assert(curTL->size() >= size, "size inconsistency");
345 if (UseCMSAdaptiveFreeLists) {
346
347 // A candidate chunk has been found. If it is already under
348 // populated, get a chunk associated with the hint for this
349 // chunk.
350 if (curTL->surplus() <= 0) {
351 /* Use the hint to find a size with a surplus, and reset the hint. */
352 TreeList* hintTL = curTL;
353 while (hintTL->hint() != 0) {
354 assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
355 "hint points in the wrong direction");
356 hintTL = findList(hintTL->hint());
357 assert(curTL != hintTL, "Infinite loop");
358 if (hintTL == NULL ||
359 hintTL == curTL /* Should not happen but protect against it */ ) {
360 // No useful hint. Set the hint to NULL and go on.
361 curTL->set_hint(0);
362 break;
363 }
364 assert(hintTL->size() > size, "hint is inconsistent");
365 if (hintTL->surplus() > 0) {
366 // The hint led to a list that has a surplus. Use it.
367 // Set the hint for the candidate to an overpopulated
368 // size.
369 curTL->set_hint(hintTL->size());
370 // Change the candidate.
371 curTL = hintTL;
372 break;
373 }
374 // The evm code reset the hint of the candidate as
375 // at an interrim point. Why? Seems like this leaves
376 // the hint pointing to a list that didn't work.
377 // curTL->set_hint(hintTL->size());
378 }
379 }
380 }
381 // don't waste time splaying if chunk's singleton
382 if (splay && curTL->head()->next() != NULL) {
383 semiSplayStep(curTL);
384 }
385 retTC = curTL->first_available();
386 assert((retTC != NULL) && (curTL->count() > 0),
387 "A list in the binary tree should not be NULL");
388 assert(retTC->size() >= size,
389 "A chunk of the wrong size was found");
390 removeChunkFromTree(retTC);
391 assert(retTC->isFree(), "Header is not marked correctly");
392 }
393
394 if (FLSVerifyDictionary) {
395 verify();
396 }
397 return retTC;
398 }
399
400 TreeList* BinaryTreeDictionary::findList(size_t size) const {
401 TreeList* curTL;
402 for (curTL = root(); curTL != NULL;) {
403 if (curTL->size() == size) { // exact match
404 break;
405 }
406
407 if (curTL->size() < size) { // proceed to right sub-tree
408 curTL = curTL->right();
409 } else { // proceed to left sub-tree
410 assert(curTL->size() > size, "size inconsistency");
411 curTL = curTL->left();
412 }
413 }
414 return curTL;
415 }
416
417
418 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
419 size_t size = tc->size();
420 TreeList* tl = findList(size);
421 if (tl == NULL) {
422 return false;
423 } else {
424 return tl->verifyChunkInFreeLists(tc);
425 }
426 }
427
428 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
429 TreeList *curTL = root();
430 if (curTL != NULL) {
431 while(curTL->right() != NULL) curTL = curTL->right();
432 return curTL->first_available();
433 } else {
434 return NULL;
435 }
436 }
437
438 // Remove the current chunk from the tree. If it is not the last
439 // chunk in a list on a tree node, just unlink it.
440 // If it is the last chunk in the list (the next link is NULL),
441 // remove the node and repair the tree.
442 TreeChunk*
443 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
444 assert(tc != NULL, "Should not call with a NULL chunk");
445 assert(tc->isFree(), "Header is not marked correctly");
446
447 TreeList *newTL, *parentTL;
448 TreeChunk* retTC;
449 TreeList* tl = tc->list();
450 debug_only(
451 bool removing_only_chunk = false;
452 if (tl == _root) {
453 if ((_root->left() == NULL) && (_root->right() == NULL)) {
454 if (_root->count() == 1) {
455 assert(_root->head() == tc, "Should only be this one chunk");
456 removing_only_chunk = true;
457 }
458 }
459 }
460 )
461 assert(tl != NULL, "List should be set");
462 assert(tl->parent() == NULL || tl == tl->parent()->left() ||
463 tl == tl->parent()->right(), "list is inconsistent");
464
465 bool complicatedSplice = false;
466
467 retTC = tc;
468 // Removing this chunk can have the side effect of changing the node
469 // (TreeList*) in the tree. If the node is the root, update it.
470 TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
471 assert(tc->isFree(), "Chunk should still be free");
472 assert(replacementTL->parent() == NULL ||
473 replacementTL == replacementTL->parent()->left() ||
474 replacementTL == replacementTL->parent()->right(),
475 "list is inconsistent");
476 if (tl == root()) {
477 assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
478 set_root(replacementTL);
479 }
480 debug_only(
481 if (tl != replacementTL) {
482 assert(replacementTL->head() != NULL,
483 "If the tree list was replaced, it should not be a NULL list");
484 TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
485 TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
486 assert(rhl == replacementTL, "Broken head");
487 assert(rtl == replacementTL, "Broken tail");
488 assert(replacementTL->size() == tc->size(), "Broken size");
489 }
490 )
491
492 // Does the tree need to be repaired?
493 if (replacementTL->count() == 0) {
494 assert(replacementTL->head() == NULL &&
495 replacementTL->tail() == NULL, "list count is incorrect");
496 // Find the replacement node for the (soon to be empty) node being removed.
497 // if we have a single (or no) child, splice child in our stead
498 if (replacementTL->left() == NULL) {
499 // left is NULL so pick right. right may also be NULL.
500 newTL = replacementTL->right();
501 debug_only(replacementTL->clearRight();)
502 } else if (replacementTL->right() == NULL) {
503 // right is NULL
504 newTL = replacementTL->left();
505 debug_only(replacementTL->clearLeft();)
506 } else { // we have both children, so, by patriarchal convention,
507 // my replacement is least node in right sub-tree
508 complicatedSplice = true;
509 newTL = removeTreeMinimum(replacementTL->right());
510 assert(newTL != NULL && newTL->left() == NULL &&
511 newTL->right() == NULL, "sub-tree minimum exists");
512 }
513 // newTL is the replacement for the (soon to be empty) node.
514 // newTL may be NULL.
515 // should verify; we just cleanly excised our replacement
516 if (FLSVerifyDictionary) {
517 verifyTree();
518 }
519 // first make newTL my parent's child
520 if ((parentTL = replacementTL->parent()) == NULL) {
521 // newTL should be root
522 assert(tl == root(), "Incorrectly replacing root");
523 set_root(newTL);
524 if (newTL != NULL) {
525 newTL->clearParent();
526 }
527 } else if (parentTL->right() == replacementTL) {
528 // replacementTL is a right child
529 parentTL->setRight(newTL);
530 } else { // replacementTL is a left child
531 assert(parentTL->left() == replacementTL, "should be left child");
532 parentTL->setLeft(newTL);
533 }
534 debug_only(replacementTL->clearParent();)
535 if (complicatedSplice) { // we need newTL to get replacementTL's
536 // two children
537 assert(newTL != NULL &&
538 newTL->left() == NULL && newTL->right() == NULL,
539 "newTL should not have encumbrances from the past");
540 // we'd like to assert as below:
541 // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
542 // "else !complicatedSplice");
543 // ... however, the above assertion is too strong because we aren't
544 // guaranteed that replacementTL->right() is still NULL.
545 // Recall that we removed
546 // the right sub-tree minimum from replacementTL.
547 // That may well have been its right
548 // child! So we'll just assert half of the above:
549 assert(replacementTL->left() != NULL, "else !complicatedSplice");
550 newTL->setLeft(replacementTL->left());
551 newTL->setRight(replacementTL->right());
552 debug_only(
553 replacementTL->clearRight();
554 replacementTL->clearLeft();
555 )
556 }
557 assert(replacementTL->right() == NULL &&
558 replacementTL->left() == NULL &&
559 replacementTL->parent() == NULL,
560 "delete without encumbrances");
561 }
562
563 assert(totalSize() >= retTC->size(), "Incorrect total size");
564 dec_totalSize(retTC->size()); // size book-keeping
565 assert(totalFreeBlocks() > 0, "Incorrect total count");
566 set_totalFreeBlocks(totalFreeBlocks() - 1);
567
568 assert(retTC != NULL, "null chunk?");
569 assert(retTC->prev() == NULL && retTC->next() == NULL,
570 "should return without encumbrances");
571 if (FLSVerifyDictionary) {
572 verifyTree();
573 }
574 assert(!removing_only_chunk || _root == NULL, "root should be NULL");
575 return TreeChunk::as_TreeChunk(retTC);
576 }
577
578 // Remove the leftmost node (lm) in the tree and return it.
579 // If lm has a right child, link it to the left node of
580 // the parent of lm.
581 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
582 assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
583 // locate the subtree minimum by walking down left branches
584 TreeList* curTL = tl;
585 for (; curTL->left() != NULL; curTL = curTL->left());
586 // obviously curTL now has at most one child, a right child
587 if (curTL != root()) { // Should this test just be removed?
588 TreeList* parentTL = curTL->parent();
589 if (parentTL->left() == curTL) { // curTL is a left child
590 parentTL->setLeft(curTL->right());
591 } else {
592 // If the list tl has no left child, then curTL may be
593 // the right child of parentTL.
594 assert(parentTL->right() == curTL, "should be a right child");
595 parentTL->setRight(curTL->right());
596 }
597 } else {
598 // The only use of this method would not pass the root of the
599 // tree (as indicated by the assertion above that the tree list
600 // has a parent) but the specification does not explicitly exclude the
601 // passing of the root so accomodate it.
602 set_root(NULL);
603 }
604 debug_only(
605 curTL->clearParent(); // Test if this needs to be cleared
606 curTL->clearRight(); // recall, above, left child is already null
607 )
608 // we just excised a (non-root) node, we should still verify all tree invariants
609 if (FLSVerifyDictionary) {
610 verifyTree();
611 }
612 return curTL;
613 }
614
615 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
616 // The simplifications are the following:
617 // . we splay only when we delete (not when we insert)
618 // . we apply a single spay step per deletion/access
619 // By doing such partial splaying, we reduce the amount of restructuring,
620 // while getting a reasonably efficient search tree (we think).
621 // [Measurements will be needed to (in)validate this expectation.]
622
623 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
624 // apply a semi-splay step at the given node:
625 // . if root, norting needs to be done
626 // . if child of root, splay once
627 // . else zig-zig or sig-zag depending on path from grandparent
628 if (root() == tc) return;
629 warning("*** Splaying not yet implemented; "
630 "tree operations may be inefficient ***");
631 }
632
633 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
634 TreeList *curTL, *prevTL;
635 size_t size = fc->size();
636
637 assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
638 if (FLSVerifyDictionary) {
639 verifyTree();
640 }
641 // XXX: do i need to clear the FreeChunk fields, let me do it just in case
642 // Revisit this later
643
644 fc->clearNext();
645 fc->linkPrev(NULL);
646
647 // work down from the _root, looking for insertion point
648 for (prevTL = curTL = root(); curTL != NULL;) {
649 if (curTL->size() == size) // exact match
650 break;
651 prevTL = curTL;
652 if (curTL->size() > size) { // follow left branch
653 curTL = curTL->left();
654 } else { // follow right branch
655 assert(curTL->size() < size, "size inconsistency");
656 curTL = curTL->right();
657 }
658 }
659 TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
660 // This chunk is being returned to the binary try. It's embedded
661 // TreeList should be unused at this point.
662 tc->initialize();
663 if (curTL != NULL) { // exact match
664 tc->set_list(curTL);
665 curTL->returnChunkAtTail(tc);
666 } else { // need a new node in tree
667 tc->clearNext();
668 tc->linkPrev(NULL);
669 TreeList* newTL = TreeList::as_TreeList(tc);
670 assert(((TreeChunk*)tc)->list() == newTL,
671 "List was not initialized correctly");
672 if (prevTL == NULL) { // we are the only tree node
673 assert(root() == NULL, "control point invariant");
674 set_root(newTL);
675 } else { // insert under prevTL ...
676 if (prevTL->size() < size) { // am right child
677 assert(prevTL->right() == NULL, "control point invariant");
678 prevTL->setRight(newTL);
679 } else { // am left child
680 assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
681 prevTL->setLeft(newTL);
682 }
683 }
684 }
685 assert(tc->list() != NULL, "Tree list should be set");
686
687 inc_totalSize(size);
688 // Method 'totalSizeInTree' walks through the every block in the
689 // tree, so it can cause significant performance loss if there are
690 // many blocks in the tree
691 assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
692 set_totalFreeBlocks(totalFreeBlocks() + 1);
693 if (FLSVerifyDictionary) {
694 verifyTree();
695 }
696 }
697
698 size_t BinaryTreeDictionary::maxChunkSize() const {
699 verify_par_locked();
700 TreeList* tc = root();
701 if (tc == NULL) return 0;
702 for (; tc->right() != NULL; tc = tc->right());
703 return tc->size();
704 }
705
706 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
707 size_t res;
708 res = tl->count();
709 #ifdef ASSERT
710 size_t cnt;
711 FreeChunk* tc = tl->head();
712 for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
713 assert(res == cnt, "The count is not being maintained correctly");
714 #endif
715 return res;
716 }
717
718 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
719 if (tl == NULL)
720 return 0;
721 return (tl->size() * totalListLength(tl)) +
722 totalSizeInTree(tl->left()) +
723 totalSizeInTree(tl->right());
724 }
725
726 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
727 if (tl == NULL) {
728 return 0.0;
729 }
730 double size = (double)(tl->size());
731 double curr = size * size * totalListLength(tl);
732 curr += sum_of_squared_block_sizes(tl->left());
733 curr += sum_of_squared_block_sizes(tl->right());
734 return curr;
735 }
736
737 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
738 if (tl == NULL)
739 return 0;
740 return totalListLength(tl) +
741 totalFreeBlocksInTree(tl->left()) +
742 totalFreeBlocksInTree(tl->right());
743 }
744
745 size_t BinaryTreeDictionary::numFreeBlocks() const {
746 assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
747 "_totalFreeBlocks inconsistency");
748 return totalFreeBlocks();
749 }
750
751 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
752 if (tl == NULL)
753 return 0;
754 return 1 + MAX2(treeHeightHelper(tl->left()),
755 treeHeightHelper(tl->right()));
756 }
757
758 size_t BinaryTreeDictionary::treeHeight() const {
759 return treeHeightHelper(root());
760 }
761
762 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
763 if (tl == NULL) {
764 return 0;
765 }
766 return 1 + totalNodesHelper(tl->left()) +
767 totalNodesHelper(tl->right());
768 }
769
770 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
771 return totalNodesHelper(root());
772 }
773
774 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
775 TreeList* nd = findList(size);
776 if (nd) {
777 if (split) {
778 if (birth) {
779 nd->increment_splitBirths();
780 nd->increment_surplus();
781 } else {
782 nd->increment_splitDeaths();
783 nd->decrement_surplus();
784 }
785 } else {
786 if (birth) {
787 nd->increment_coalBirths();
788 nd->increment_surplus();
789 } else {
790 nd->increment_coalDeaths();
791 nd->decrement_surplus();
792 }
793 }
794 }
795 // A list for this size may not be found (nd == 0) if
796 // This is a death where the appropriate list is now
797 // empty and has been removed from the list.
798 // This is a birth associated with a LinAB. The chunk
799 // for the LinAB is not in the dictionary.
800 }
801
802 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
803 TreeList* list_of_size = findList(size);
804 // None of requested size implies overpopulated.
805 return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
806 list_of_size->count() > list_of_size->coalDesired();
807 }
808
809 // Closures for walking the binary tree.
810 // do_list() walks the free list in a node applying the closure
811 // to each free chunk in the list
812 // do_tree() walks the nodes in the binary tree applying do_list()
813 // to each list at each node.
814
815 class TreeCensusClosure : public StackObj {
816 protected:
817 virtual void do_list(FreeList* fl) = 0;
818 public:
819 virtual void do_tree(TreeList* tl) = 0;
820 };
821
822 class AscendTreeCensusClosure : public TreeCensusClosure {
823 public:
824 void do_tree(TreeList* tl) {
825 if (tl != NULL) {
826 do_tree(tl->left());
827 do_list(tl);
828 do_tree(tl->right());
829 }
830 }
831 };
832
833 class DescendTreeCensusClosure : public TreeCensusClosure {
834 public:
835 void do_tree(TreeList* tl) {
836 if (tl != NULL) {
837 do_tree(tl->right());
838 do_list(tl);
839 do_tree(tl->left());
840 }
841 }
842 };
843
844 // For each list in the tree, calculate the desired, desired
845 // coalesce, count before sweep, and surplus before sweep.
846 class BeginSweepClosure : public AscendTreeCensusClosure {
847 double _percentage;
848 float _inter_sweep_current;
849 float _inter_sweep_estimate;
850
851 public:
852 BeginSweepClosure(double p, float inter_sweep_current,
853 float inter_sweep_estimate) :
854 _percentage(p),
855 _inter_sweep_current(inter_sweep_current),
856 _inter_sweep_estimate(inter_sweep_estimate) { }
857
858 void do_list(FreeList* fl) {
859 double coalSurplusPercent = _percentage;
860 fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate);
861 fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
862 fl->set_beforeSweep(fl->count());
863 fl->set_bfrSurp(fl->surplus());
864 }
865 };
866
867 // Used to search the tree until a condition is met.
868 // Similar to TreeCensusClosure but searches the
869 // tree and returns promptly when found.
870
871 class TreeSearchClosure : public StackObj {
872 protected:
873 virtual bool do_list(FreeList* fl) = 0;
874 public:
875 virtual bool do_tree(TreeList* tl) = 0;
876 };
877
878 #if 0 // Don't need this yet but here for symmetry.
879 class AscendTreeSearchClosure : public TreeSearchClosure {
880 public:
881 bool do_tree(TreeList* tl) {
882 if (tl != NULL) {
883 if (do_tree(tl->left())) return true;
884 if (do_list(tl)) return true;
885 if (do_tree(tl->right())) return true;
886 }
887 return false;
888 }
889 };
890 #endif
891
892 class DescendTreeSearchClosure : public TreeSearchClosure {
893 public:
894 bool do_tree(TreeList* tl) {
895 if (tl != NULL) {
896 if (do_tree(tl->right())) return true;
897 if (do_list(tl)) return true;
898 if (do_tree(tl->left())) return true;
899 }
900 return false;
901 }
902 };
903
904 // Searches the tree for a chunk that ends at the
905 // specified address.
906 class EndTreeSearchClosure : public DescendTreeSearchClosure {
907 HeapWord* _target;
908 FreeChunk* _found;
909
910 public:
911 EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
912 bool do_list(FreeList* fl) {
913 FreeChunk* item = fl->head();
914 while (item != NULL) {
915 if (item->end() == _target) {
916 _found = item;
917 return true;
918 }
919 item = item->next();
920 }
921 return false;
922 }
923 FreeChunk* found() { return _found; }
924 };
925
926 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
927 EndTreeSearchClosure etsc(target);
928 bool found_target = etsc.do_tree(root());
929 assert(found_target || etsc.found() == NULL, "Consistency check");
930 assert(!found_target || etsc.found() != NULL, "Consistency check");
931 return etsc.found();
932 }
933
934 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
935 float inter_sweep_current, float inter_sweep_estimate) {
936 BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
937 inter_sweep_estimate);
938 bsc.do_tree(root());
939 }
940
941 // Closures and methods for calculating total bytes returned to the
942 // free lists in the tree.
943 NOT_PRODUCT(
944 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
945 public:
946 void do_list(FreeList* fl) {
947 fl->set_returnedBytes(0);
948 }
949 };
950
951 void BinaryTreeDictionary::initializeDictReturnedBytes() {
952 InitializeDictReturnedBytesClosure idrb;
953 idrb.do_tree(root());
954 }
955
956 class ReturnedBytesClosure : public AscendTreeCensusClosure {
957 size_t _dictReturnedBytes;
958 public:
959 ReturnedBytesClosure() { _dictReturnedBytes = 0; }
960 void do_list(FreeList* fl) {
961 _dictReturnedBytes += fl->returnedBytes();
962 }
963 size_t dictReturnedBytes() { return _dictReturnedBytes; }
964 };
965
966 size_t BinaryTreeDictionary::sumDictReturnedBytes() {
967 ReturnedBytesClosure rbc;
968 rbc.do_tree(root());
969
970 return rbc.dictReturnedBytes();
971 }
972
973 // Count the number of entries in the tree.
974 class treeCountClosure : public DescendTreeCensusClosure {
975 public:
976 uint count;
977 treeCountClosure(uint c) { count = c; }
978 void do_list(FreeList* fl) {
979 count++;
980 }
981 };
982
983 size_t BinaryTreeDictionary::totalCount() {
984 treeCountClosure ctc(0);
985 ctc.do_tree(root());
986 return ctc.count;
987 }
988 )
989
990 // Calculate surpluses for the lists in the tree.
991 class setTreeSurplusClosure : public AscendTreeCensusClosure {
992 double percentage;
993 public:
994 setTreeSurplusClosure(double v) { percentage = v; }
995 void do_list(FreeList* fl) {
996 double splitSurplusPercent = percentage;
997 fl->set_surplus(fl->count() -
998 (ssize_t)((double)fl->desired() * splitSurplusPercent));
999 }
1000 };
1001
1002 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
1003 setTreeSurplusClosure sts(splitSurplusPercent);
1004 sts.do_tree(root());
1005 }
1006
1007 // Set hints for the lists in the tree.
1008 class setTreeHintsClosure : public DescendTreeCensusClosure {
1009 size_t hint;
1010 public:
1011 setTreeHintsClosure(size_t v) { hint = v; }
1012 void do_list(FreeList* fl) {
1013 fl->set_hint(hint);
1014 assert(fl->hint() == 0 || fl->hint() > fl->size(),
1015 "Current hint is inconsistent");
1016 if (fl->surplus() > 0) {
1017 hint = fl->size();
1018 }
1019 }
1020 };
1021
1022 void BinaryTreeDictionary::setTreeHints(void) {
1023 setTreeHintsClosure sth(0);
1024 sth.do_tree(root());
1025 }
1026
1027 // Save count before previous sweep and splits and coalesces.
1028 class clearTreeCensusClosure : public AscendTreeCensusClosure {
1029 void do_list(FreeList* fl) {
1030 fl->set_prevSweep(fl->count());
1031 fl->set_coalBirths(0);
1032 fl->set_coalDeaths(0);
1033 fl->set_splitBirths(0);
1034 fl->set_splitDeaths(0);
1035 }
1036 };
1037
1038 void BinaryTreeDictionary::clearTreeCensus(void) {
1039 clearTreeCensusClosure ctc;
1040 ctc.do_tree(root());
1041 }
1042
1043 // Do reporting and post sweep clean up.
1044 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
1045 // Does walking the tree 3 times hurt?
1046 setTreeSurplus(splitSurplusPercent);
1047 setTreeHints();
1048 if (PrintGC && Verbose) {
1049 reportStatistics();
1050 }
1051 clearTreeCensus();
1052 }
1053
1054 // Print summary statistics
1055 void BinaryTreeDictionary::reportStatistics() const {
1056 verify_par_locked();
1057 gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1058 "------------------------------------\n");
1059 size_t totalSize = totalChunkSize(debug_only(NULL));
1060 size_t freeBlocks = numFreeBlocks();
1061 gclog_or_tty->print("Total Free Space: %d\n", totalSize);
1062 gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
1063 gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
1064 if (freeBlocks > 0) {
1065 gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
1066 }
1067 gclog_or_tty->print("Tree Height: %d\n", treeHeight());
1068 }
1069
1070 // Print census information - counts, births, deaths, etc.
1071 // for each list in the tree. Also print some summary
1072 // information.
1073 class printTreeCensusClosure : public AscendTreeCensusClosure {
1074 size_t _totalFree;
1075 AllocationStats _totals;
1076 size_t _count;
1077
1078 public:
1079 printTreeCensusClosure() {
1080 _totalFree = 0;
1081 _count = 0;
1082 _totals.initialize();
1083 }
1084 AllocationStats* totals() { return &_totals; }
1085 size_t count() { return _count; }
1086 void increment_count_by(size_t v) { _count += v; }
1087 size_t totalFree() { return _totalFree; }
1088 void increment_totalFree_by(size_t v) { _totalFree += v; }
1089 void do_list(FreeList* fl) {
1090 bool nl = false; // "maybe this is not needed" isNearLargestChunk(fl->head());
1091
1092 gclog_or_tty->print("%c %4d\t\t" "%7d\t" "%7d\t"
1093 "%7d\t" "%7d\t" "%7d\t" "%7d\t"
1094 "%7d\t" "%7d\t" "%7d\t"
1095 "%7d\t" "\n",
1096 " n"[nl], fl->size(), fl->bfrSurp(), fl->surplus(),
1097 fl->desired(), fl->prevSweep(), fl->beforeSweep(), fl->count(),
1098 fl->coalBirths(), fl->coalDeaths(), fl->splitBirths(),
1099 fl->splitDeaths());
1100
1101 increment_totalFree_by(fl->count() * fl->size());
1102 increment_count_by(fl->count());
1103 totals()->set_bfrSurp(totals()->bfrSurp() + fl->bfrSurp());
1104 totals()->set_surplus(totals()->splitDeaths() + fl->surplus());
1105 totals()->set_prevSweep(totals()->prevSweep() + fl->prevSweep());
1106 totals()->set_beforeSweep(totals()->beforeSweep() + fl->beforeSweep());
1107 totals()->set_coalBirths(totals()->coalBirths() + fl->coalBirths());
1108 totals()->set_coalDeaths(totals()->coalDeaths() + fl->coalDeaths());
1109 totals()->set_splitBirths(totals()->splitBirths() + fl->splitBirths());
1110 totals()->set_splitDeaths(totals()->splitDeaths() + fl->splitDeaths());
1111 }
1112 };
1113
1114 void BinaryTreeDictionary::printDictCensus(void) const {
1115
1116 gclog_or_tty->print("\nBinaryTree\n");
1117 gclog_or_tty->print(
1118 "%4s\t\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t"
1119 "%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "\n",
1120 "size", "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
1121 "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
1122
1123 printTreeCensusClosure ptc;
1124 ptc.do_tree(root());
1125
1126 gclog_or_tty->print(
1127 "\t\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t"
1128 "%7s\t" "%7s\t" "%7s\t" "%7s\t" "%7s\t" "\n",
1129 "bfrsurp", "surplus", "prvSwep", "bfrSwep",
1130 "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
1131 gclog_or_tty->print(
1132 "%s\t\t" "%7d\t" "%7d\t" "%7d\t" "%7d\t"
1133 "%7d\t" "%7d\t" "%7d\t" "%7d\t" "%7d\t" "\n",
1134 "totl",
1135 ptc.totals()->bfrSurp(),
1136 ptc.totals()->surplus(),
1137 ptc.totals()->prevSweep(),
1138 ptc.totals()->beforeSweep(),
1139 ptc.count(),
1140 ptc.totals()->coalBirths(),
1141 ptc.totals()->coalDeaths(),
1142 ptc.totals()->splitBirths(),
1143 ptc.totals()->splitDeaths());
1144 gclog_or_tty->print("totalFree(words): %7d growth: %8.5f deficit: %8.5f\n",
1145 ptc.totalFree(),
1146 (double)(ptc.totals()->splitBirths()+ptc.totals()->coalBirths()
1147 -ptc.totals()->splitDeaths()-ptc.totals()->coalDeaths())
1148 /(ptc.totals()->prevSweep() != 0 ?
1149 (double)ptc.totals()->prevSweep() : 1.0),
1150 (double)(ptc.totals()->desired() - ptc.count())
1151 /(ptc.totals()->desired() != 0 ?
1152 (double)ptc.totals()->desired() : 1.0));
1153 }
1154
1155 // Verify the following tree invariants:
1156 // . _root has no parent
1157 // . parent and child point to each other
1158 // . each node's key correctly related to that of its child(ren)
1159 void BinaryTreeDictionary::verifyTree() const {
1160 guarantee(root() == NULL || totalFreeBlocks() == 0 ||
1161 totalSize() != 0, "_totalSize should't be 0?");
1162 guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1163 verifyTreeHelper(root());
1164 }
1165
1166 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
1167 size_t ct = 0;
1168 for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1169 ct++;
1170 assert(curFC->prev() == NULL || curFC->prev()->isFree(),
1171 "Chunk should be free");
1172 }
1173 return ct;
1174 }
1175
1176 // Note: this helper is recursive rather than iterative, so use with
1177 // caution on very deep trees; and watch out for stack overflow errors;
1178 // In general, to be used only for debugging.
1179 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
1180 if (tl == NULL)
1181 return;
1182 guarantee(tl->size() != 0, "A list must has a size");
1183 guarantee(tl->left() == NULL || tl->left()->parent() == tl,
1184 "parent<-/->left");
1185 guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1186 "parent<-/->right");;
1187 guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
1188 "parent !> left");
1189 guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
1190 "parent !< left");
1191 guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
1192 guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1193 "list inconsistency");
1194 guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1195 "list count is inconsistent");
1196 guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1197 "list is incorrectly constructed");
1198 size_t count = verifyPrevFreePtrs(tl);
1199 guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1200 if (tl->head() != NULL) {
1201 tl->head_as_TreeChunk()->verifyTreeChunkList();
1202 }
1203 verifyTreeHelper(tl->left());
1204 verifyTreeHelper(tl->right());
1205 }
1206
1207 void BinaryTreeDictionary::verify() const {
1208 verifyTree();
1209 guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
1210 }