comparison src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 183f41cf8bfe
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_parallelScavengeHeap.cpp.incl"
27
28 PSYoungGen* ParallelScavengeHeap::_young_gen = NULL;
29 PSOldGen* ParallelScavengeHeap::_old_gen = NULL;
30 PSPermGen* ParallelScavengeHeap::_perm_gen = NULL;
31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
35
36 static void trace_gen_sizes(const char* const str,
37 size_t pg_min, size_t pg_max,
38 size_t og_min, size_t og_max,
39 size_t yg_min, size_t yg_max)
40 {
41 if (TracePageSizes) {
42 tty->print_cr("%s: " SIZE_FORMAT "," SIZE_FORMAT " "
43 SIZE_FORMAT "," SIZE_FORMAT " "
44 SIZE_FORMAT "," SIZE_FORMAT " "
45 SIZE_FORMAT,
46 str, pg_min / K, pg_max / K,
47 og_min / K, og_max / K,
48 yg_min / K, yg_max / K,
49 (pg_max + og_max + yg_max) / K);
50 }
51 }
52
53 jint ParallelScavengeHeap::initialize() {
54 // Cannot be initialized until after the flags are parsed
55 GenerationSizer flag_parser;
56
57 size_t yg_min_size = flag_parser.min_young_gen_size();
58 size_t yg_max_size = flag_parser.max_young_gen_size();
59 size_t og_min_size = flag_parser.min_old_gen_size();
60 size_t og_max_size = flag_parser.max_old_gen_size();
61 // Why isn't there a min_perm_gen_size()?
62 size_t pg_min_size = flag_parser.perm_gen_size();
63 size_t pg_max_size = flag_parser.max_perm_gen_size();
64
65 trace_gen_sizes("ps heap raw",
66 pg_min_size, pg_max_size,
67 og_min_size, og_max_size,
68 yg_min_size, yg_max_size);
69
70 // The ReservedSpace ctor used below requires that the page size for the perm
71 // gen is <= the page size for the rest of the heap (young + old gens).
72 const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
73 yg_max_size + og_max_size,
74 8);
75 const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
76 pg_max_size, 16),
77 og_page_sz);
78
79 const size_t pg_align = set_alignment(_perm_gen_alignment, pg_page_sz);
80 const size_t og_align = set_alignment(_old_gen_alignment, og_page_sz);
81 const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
82
83 // Update sizes to reflect the selected page size(s).
84 //
85 // NEEDS_CLEANUP. The default TwoGenerationCollectorPolicy uses NewRatio; it
86 // should check UseAdaptiveSizePolicy. Changes from generationSizer could
87 // move to the common code.
88 yg_min_size = align_size_up(yg_min_size, yg_align);
89 yg_max_size = align_size_up(yg_max_size, yg_align);
90 size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
91 yg_cur_size = MAX2(yg_cur_size, yg_min_size);
92
93 og_min_size = align_size_up(og_min_size, og_align);
94 og_max_size = align_size_up(og_max_size, og_align);
95 size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
96 og_cur_size = MAX2(og_cur_size, og_min_size);
97
98 pg_min_size = align_size_up(pg_min_size, pg_align);
99 pg_max_size = align_size_up(pg_max_size, pg_align);
100 size_t pg_cur_size = pg_min_size;
101
102 trace_gen_sizes("ps heap rnd",
103 pg_min_size, pg_max_size,
104 og_min_size, og_max_size,
105 yg_min_size, yg_max_size);
106
107 // The main part of the heap (old gen + young gen) can often use a larger page
108 // size than is needed or wanted for the perm gen. Use the "compound
109 // alignment" ReservedSpace ctor to avoid having to use the same page size for
110 // all gens.
111 ReservedSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
112 og_align);
113 os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
114 heap_rs.base(), pg_max_size);
115 os::trace_page_sizes("ps main", og_min_size + yg_min_size,
116 og_max_size + yg_max_size, og_page_sz,
117 heap_rs.base() + pg_max_size,
118 heap_rs.size() - pg_max_size);
119 if (!heap_rs.is_reserved()) {
120 vm_shutdown_during_initialization(
121 "Could not reserve enough space for object heap");
122 return JNI_ENOMEM;
123 }
124
125 _reserved = MemRegion((HeapWord*)heap_rs.base(),
126 (HeapWord*)(heap_rs.base() + heap_rs.size()));
127
128 CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
129 _barrier_set = barrier_set;
130 oopDesc::set_bs(_barrier_set);
131 if (_barrier_set == NULL) {
132 vm_shutdown_during_initialization(
133 "Could not reserve enough space for barrier set");
134 return JNI_ENOMEM;
135 }
136
137 // Initial young gen size is 4 Mb
138 //
139 // XXX - what about flag_parser.young_gen_size()?
140 const size_t init_young_size = align_size_up(4 * M, yg_align);
141 yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
142
143 // Split the reserved space into perm gen and the main heap (everything else).
144 // The main heap uses a different alignment.
145 ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
146 ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
147
148 // Make up the generations
149 // Calculate the maximum size that a generation can grow. This
150 // includes growth into the other generation. Note that the
151 // parameter _max_gen_size is kept as the maximum
152 // size of the generation as the boundaries currently stand.
153 // _max_gen_size is still used as that value.
154 double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
155 double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
156
157 _gens = new AdjoiningGenerations(main_rs,
158 og_cur_size,
159 og_min_size,
160 og_max_size,
161 yg_cur_size,
162 yg_min_size,
163 yg_max_size,
164 yg_align);
165
166 _old_gen = _gens->old_gen();
167 _young_gen = _gens->young_gen();
168
169 const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
170 const size_t old_capacity = _old_gen->capacity_in_bytes();
171 const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
172 _size_policy =
173 new PSAdaptiveSizePolicy(eden_capacity,
174 initial_promo_size,
175 young_gen()->to_space()->capacity_in_bytes(),
176 intra_generation_alignment(),
177 max_gc_pause_sec,
178 max_gc_minor_pause_sec,
179 GCTimeRatio
180 );
181
182 _perm_gen = new PSPermGen(perm_rs,
183 pg_align,
184 pg_cur_size,
185 pg_cur_size,
186 pg_max_size,
187 "perm", 2);
188
189 assert(!UseAdaptiveGCBoundary ||
190 (old_gen()->virtual_space()->high_boundary() ==
191 young_gen()->virtual_space()->low_boundary()),
192 "Boundaries must meet");
193 // initialize the policy counters - 2 collectors, 3 generations
194 _gc_policy_counters =
195 new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
196 _psh = this;
197
198 // Set up the GCTaskManager
199 _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
200
201 if (UseParallelOldGC && !PSParallelCompact::initialize()) {
202 return JNI_ENOMEM;
203 }
204
205 return JNI_OK;
206 }
207
208 void ParallelScavengeHeap::post_initialize() {
209 // Need to init the tenuring threshold
210 PSScavenge::initialize();
211 if (UseParallelOldGC) {
212 PSParallelCompact::post_initialize();
213 if (VerifyParallelOldWithMarkSweep) {
214 // Will be used for verification of par old.
215 PSMarkSweep::initialize();
216 }
217 } else {
218 PSMarkSweep::initialize();
219 }
220 PSPromotionManager::initialize();
221 }
222
223 void ParallelScavengeHeap::update_counters() {
224 young_gen()->update_counters();
225 old_gen()->update_counters();
226 perm_gen()->update_counters();
227 }
228
229 size_t ParallelScavengeHeap::capacity() const {
230 size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
231 return value;
232 }
233
234 size_t ParallelScavengeHeap::used() const {
235 size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
236 return value;
237 }
238
239 bool ParallelScavengeHeap::is_maximal_no_gc() const {
240 return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
241 }
242
243
244 size_t ParallelScavengeHeap::permanent_capacity() const {
245 return perm_gen()->capacity_in_bytes();
246 }
247
248 size_t ParallelScavengeHeap::permanent_used() const {
249 return perm_gen()->used_in_bytes();
250 }
251
252 size_t ParallelScavengeHeap::max_capacity() const {
253 size_t estimated = reserved_region().byte_size();
254 estimated -= perm_gen()->reserved().byte_size();
255 if (UseAdaptiveSizePolicy) {
256 estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
257 } else {
258 estimated -= young_gen()->to_space()->capacity_in_bytes();
259 }
260 return MAX2(estimated, capacity());
261 }
262
263 bool ParallelScavengeHeap::is_in(const void* p) const {
264 if (young_gen()->is_in(p)) {
265 return true;
266 }
267
268 if (old_gen()->is_in(p)) {
269 return true;
270 }
271
272 if (perm_gen()->is_in(p)) {
273 return true;
274 }
275
276 return false;
277 }
278
279 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
280 if (young_gen()->is_in_reserved(p)) {
281 return true;
282 }
283
284 if (old_gen()->is_in_reserved(p)) {
285 return true;
286 }
287
288 if (perm_gen()->is_in_reserved(p)) {
289 return true;
290 }
291
292 return false;
293 }
294
295 // Static method
296 bool ParallelScavengeHeap::is_in_young(oop* p) {
297 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
298 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
299 "Must be ParallelScavengeHeap");
300
301 PSYoungGen* young_gen = heap->young_gen();
302
303 if (young_gen->is_in_reserved(p)) {
304 return true;
305 }
306
307 return false;
308 }
309
310 // Static method
311 bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
312 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
313 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
314 "Must be ParallelScavengeHeap");
315
316 PSOldGen* old_gen = heap->old_gen();
317 PSPermGen* perm_gen = heap->perm_gen();
318
319 if (old_gen->is_in_reserved(p)) {
320 return true;
321 }
322
323 if (perm_gen->is_in_reserved(p)) {
324 return true;
325 }
326
327 return false;
328 }
329
330 // There are two levels of allocation policy here.
331 //
332 // When an allocation request fails, the requesting thread must invoke a VM
333 // operation, transfer control to the VM thread, and await the results of a
334 // garbage collection. That is quite expensive, and we should avoid doing it
335 // multiple times if possible.
336 //
337 // To accomplish this, we have a basic allocation policy, and also a
338 // failed allocation policy.
339 //
340 // The basic allocation policy controls how you allocate memory without
341 // attempting garbage collection. It is okay to grab locks and
342 // expand the heap, if that can be done without coming to a safepoint.
343 // It is likely that the basic allocation policy will not be very
344 // aggressive.
345 //
346 // The failed allocation policy is invoked from the VM thread after
347 // the basic allocation policy is unable to satisfy a mem_allocate
348 // request. This policy needs to cover the entire range of collection,
349 // heap expansion, and out-of-memory conditions. It should make every
350 // attempt to allocate the requested memory.
351
352 // Basic allocation policy. Should never be called at a safepoint, or
353 // from the VM thread.
354 //
355 // This method must handle cases where many mem_allocate requests fail
356 // simultaneously. When that happens, only one VM operation will succeed,
357 // and the rest will not be executed. For that reason, this method loops
358 // during failed allocation attempts. If the java heap becomes exhausted,
359 // we rely on the size_policy object to force a bail out.
360 HeapWord* ParallelScavengeHeap::mem_allocate(
361 size_t size,
362 bool is_noref,
363 bool is_tlab,
364 bool* gc_overhead_limit_was_exceeded) {
365 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
366 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
367 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
368
369 HeapWord* result = young_gen()->allocate(size, is_tlab);
370
371 uint loop_count = 0;
372 uint gc_count = 0;
373
374 while (result == NULL) {
375 // We don't want to have multiple collections for a single filled generation.
376 // To prevent this, each thread tracks the total_collections() value, and if
377 // the count has changed, does not do a new collection.
378 //
379 // The collection count must be read only while holding the heap lock. VM
380 // operations also hold the heap lock during collections. There is a lock
381 // contention case where thread A blocks waiting on the Heap_lock, while
382 // thread B is holding it doing a collection. When thread A gets the lock,
383 // the collection count has already changed. To prevent duplicate collections,
384 // The policy MUST attempt allocations during the same period it reads the
385 // total_collections() value!
386 {
387 MutexLocker ml(Heap_lock);
388 gc_count = Universe::heap()->total_collections();
389
390 result = young_gen()->allocate(size, is_tlab);
391
392 // (1) If the requested object is too large to easily fit in the
393 // young_gen, or
394 // (2) If GC is locked out via GCLocker, young gen is full and
395 // the need for a GC already signalled to GCLocker (done
396 // at a safepoint),
397 // ... then, rather than force a safepoint and (a potentially futile)
398 // collection (attempt) for each allocation, try allocation directly
399 // in old_gen. For case (2) above, we may in the future allow
400 // TLAB allocation directly in the old gen.
401 if (result != NULL) {
402 return result;
403 }
404 if (!is_tlab &&
405 size >= (young_gen()->eden_space()->capacity_in_words() / 2)) {
406 result = old_gen()->allocate(size, is_tlab);
407 if (result != NULL) {
408 return result;
409 }
410 }
411 if (GC_locker::is_active_and_needs_gc()) {
412 // GC is locked out. If this is a TLAB allocation,
413 // return NULL; the requestor will retry allocation
414 // of an idividual object at a time.
415 if (is_tlab) {
416 return NULL;
417 }
418
419 // If this thread is not in a jni critical section, we stall
420 // the requestor until the critical section has cleared and
421 // GC allowed. When the critical section clears, a GC is
422 // initiated by the last thread exiting the critical section; so
423 // we retry the allocation sequence from the beginning of the loop,
424 // rather than causing more, now probably unnecessary, GC attempts.
425 JavaThread* jthr = JavaThread::current();
426 if (!jthr->in_critical()) {
427 MutexUnlocker mul(Heap_lock);
428 GC_locker::stall_until_clear();
429 continue;
430 } else {
431 if (CheckJNICalls) {
432 fatal("Possible deadlock due to allocating while"
433 " in jni critical section");
434 }
435 return NULL;
436 }
437 }
438 }
439
440 if (result == NULL) {
441
442 // Exit the loop if if the gc time limit has been exceeded.
443 // The allocation must have failed above (result must be NULL),
444 // and the most recent collection must have exceeded the
445 // gc time limit. Exit the loop so that an out-of-memory
446 // will be thrown (returning a NULL will do that), but
447 // clear gc_time_limit_exceeded so that the next collection
448 // will succeeded if the applications decides to handle the
449 // out-of-memory and tries to go on.
450 *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
451 if (size_policy()->gc_time_limit_exceeded()) {
452 size_policy()->set_gc_time_limit_exceeded(false);
453 if (PrintGCDetails && Verbose) {
454 gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
455 "return NULL because gc_time_limit_exceeded is set");
456 }
457 return NULL;
458 }
459
460 // Generate a VM operation
461 VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
462 VMThread::execute(&op);
463
464 // Did the VM operation execute? If so, return the result directly.
465 // This prevents us from looping until time out on requests that can
466 // not be satisfied.
467 if (op.prologue_succeeded()) {
468 assert(Universe::heap()->is_in_or_null(op.result()),
469 "result not in heap");
470
471 // If GC was locked out during VM operation then retry allocation
472 // and/or stall as necessary.
473 if (op.gc_locked()) {
474 assert(op.result() == NULL, "must be NULL if gc_locked() is true");
475 continue; // retry and/or stall as necessary
476 }
477 // If a NULL result is being returned, an out-of-memory
478 // will be thrown now. Clear the gc_time_limit_exceeded
479 // flag to avoid the following situation.
480 // gc_time_limit_exceeded is set during a collection
481 // the collection fails to return enough space and an OOM is thrown
482 // the next GC is skipped because the gc_time_limit_exceeded
483 // flag is set and another OOM is thrown
484 if (op.result() == NULL) {
485 size_policy()->set_gc_time_limit_exceeded(false);
486 }
487 return op.result();
488 }
489 }
490
491 // The policy object will prevent us from looping forever. If the
492 // time spent in gc crosses a threshold, we will bail out.
493 loop_count++;
494 if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
495 (loop_count % QueuedAllocationWarningCount == 0)) {
496 warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
497 " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
498 }
499 }
500
501 return result;
502 }
503
504 // Failed allocation policy. Must be called from the VM thread, and
505 // only at a safepoint! Note that this method has policy for allocation
506 // flow, and NOT collection policy. So we do not check for gc collection
507 // time over limit here, that is the responsibility of the heap specific
508 // collection methods. This method decides where to attempt allocations,
509 // and when to attempt collections, but no collection specific policy.
510 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
511 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
512 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
513 assert(!Universe::heap()->is_gc_active(), "not reentrant");
514 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
515
516 size_t mark_sweep_invocation_count = total_invocations();
517
518 // We assume (and assert!) that an allocation at this point will fail
519 // unless we collect.
520
521 // First level allocation failure, scavenge and allocate in young gen.
522 GCCauseSetter gccs(this, GCCause::_allocation_failure);
523 PSScavenge::invoke();
524 HeapWord* result = young_gen()->allocate(size, is_tlab);
525
526 // Second level allocation failure.
527 // Mark sweep and allocate in young generation.
528 if (result == NULL) {
529 // There is some chance the scavenge method decided to invoke mark_sweep.
530 // Don't mark sweep twice if so.
531 if (mark_sweep_invocation_count == total_invocations()) {
532 invoke_full_gc(false);
533 result = young_gen()->allocate(size, is_tlab);
534 }
535 }
536
537 // Third level allocation failure.
538 // After mark sweep and young generation allocation failure,
539 // allocate in old generation.
540 if (result == NULL && !is_tlab) {
541 result = old_gen()->allocate(size, is_tlab);
542 }
543
544 // Fourth level allocation failure. We're running out of memory.
545 // More complete mark sweep and allocate in young generation.
546 if (result == NULL) {
547 invoke_full_gc(true);
548 result = young_gen()->allocate(size, is_tlab);
549 }
550
551 // Fifth level allocation failure.
552 // After more complete mark sweep, allocate in old generation.
553 if (result == NULL && !is_tlab) {
554 result = old_gen()->allocate(size, is_tlab);
555 }
556
557 return result;
558 }
559
560 //
561 // This is the policy loop for allocating in the permanent generation.
562 // If the initial allocation fails, we create a vm operation which will
563 // cause a collection.
564 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
565 assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
566 assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
567 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
568
569 HeapWord* result;
570
571 uint loop_count = 0;
572 uint gc_count = 0;
573 uint full_gc_count = 0;
574
575 do {
576 // We don't want to have multiple collections for a single filled generation.
577 // To prevent this, each thread tracks the total_collections() value, and if
578 // the count has changed, does not do a new collection.
579 //
580 // The collection count must be read only while holding the heap lock. VM
581 // operations also hold the heap lock during collections. There is a lock
582 // contention case where thread A blocks waiting on the Heap_lock, while
583 // thread B is holding it doing a collection. When thread A gets the lock,
584 // the collection count has already changed. To prevent duplicate collections,
585 // The policy MUST attempt allocations during the same period it reads the
586 // total_collections() value!
587 {
588 MutexLocker ml(Heap_lock);
589 gc_count = Universe::heap()->total_collections();
590 full_gc_count = Universe::heap()->total_full_collections();
591
592 result = perm_gen()->allocate_permanent(size);
593 }
594
595 if (result == NULL) {
596
597 // Exit the loop if the gc time limit has been exceeded.
598 // The allocation must have failed above (result must be NULL),
599 // and the most recent collection must have exceeded the
600 // gc time limit. Exit the loop so that an out-of-memory
601 // will be thrown (returning a NULL will do that), but
602 // clear gc_time_limit_exceeded so that the next collection
603 // will succeeded if the applications decides to handle the
604 // out-of-memory and tries to go on.
605 if (size_policy()->gc_time_limit_exceeded()) {
606 size_policy()->set_gc_time_limit_exceeded(false);
607 if (PrintGCDetails && Verbose) {
608 gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
609 "return NULL because gc_time_limit_exceeded is set");
610 }
611 assert(result == NULL, "Allocation did not fail");
612 return NULL;
613 }
614
615 // Generate a VM operation
616 VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
617 VMThread::execute(&op);
618
619 // Did the VM operation execute? If so, return the result directly.
620 // This prevents us from looping until time out on requests that can
621 // not be satisfied.
622 if (op.prologue_succeeded()) {
623 assert(Universe::heap()->is_in_permanent_or_null(op.result()),
624 "result not in heap");
625 // If a NULL results is being returned, an out-of-memory
626 // will be thrown now. Clear the gc_time_limit_exceeded
627 // flag to avoid the following situation.
628 // gc_time_limit_exceeded is set during a collection
629 // the collection fails to return enough space and an OOM is thrown
630 // the next GC is skipped because the gc_time_limit_exceeded
631 // flag is set and another OOM is thrown
632 if (op.result() == NULL) {
633 size_policy()->set_gc_time_limit_exceeded(false);
634 }
635 return op.result();
636 }
637 }
638
639 // The policy object will prevent us from looping forever. If the
640 // time spent in gc crosses a threshold, we will bail out.
641 loop_count++;
642 if ((QueuedAllocationWarningCount > 0) &&
643 (loop_count % QueuedAllocationWarningCount == 0)) {
644 warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
645 " size=%d", loop_count, size);
646 }
647 } while (result == NULL);
648
649 return result;
650 }
651
652 //
653 // This is the policy code for permanent allocations which have failed
654 // and require a collection. Note that just as in failed_mem_allocate,
655 // we do not set collection policy, only where & when to allocate and
656 // collect.
657 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
658 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
659 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
660 assert(!Universe::heap()->is_gc_active(), "not reentrant");
661 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
662 assert(size > perm_gen()->free_in_words(), "Allocation should fail");
663
664 // We assume (and assert!) that an allocation at this point will fail
665 // unless we collect.
666
667 // First level allocation failure. Mark-sweep and allocate in perm gen.
668 GCCauseSetter gccs(this, GCCause::_allocation_failure);
669 invoke_full_gc(false);
670 HeapWord* result = perm_gen()->allocate_permanent(size);
671
672 // Second level allocation failure. We're running out of memory.
673 if (result == NULL) {
674 invoke_full_gc(true);
675 result = perm_gen()->allocate_permanent(size);
676 }
677
678 return result;
679 }
680
681 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
682 CollectedHeap::ensure_parsability(retire_tlabs);
683 young_gen()->eden_space()->ensure_parsability();
684 }
685
686 size_t ParallelScavengeHeap::unsafe_max_alloc() {
687 return young_gen()->eden_space()->free_in_bytes();
688 }
689
690 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
691 return young_gen()->eden_space()->tlab_capacity(thr);
692 }
693
694 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
695 return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
696 }
697
698 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
699 return young_gen()->allocate(size, true);
700 }
701
702 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
703 CollectedHeap::fill_all_tlabs(retire);
704 }
705
706 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
707 CollectedHeap::accumulate_statistics_all_tlabs();
708 }
709
710 void ParallelScavengeHeap::resize_all_tlabs() {
711 CollectedHeap::resize_all_tlabs();
712 }
713
714 // This method is used by System.gc() and JVMTI.
715 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
716 assert(!Heap_lock->owned_by_self(),
717 "this thread should not own the Heap_lock");
718
719 unsigned int gc_count = 0;
720 unsigned int full_gc_count = 0;
721 {
722 MutexLocker ml(Heap_lock);
723 // This value is guarded by the Heap_lock
724 gc_count = Universe::heap()->total_collections();
725 full_gc_count = Universe::heap()->total_full_collections();
726 }
727
728 VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
729 VMThread::execute(&op);
730 }
731
732 // This interface assumes that it's being called by the
733 // vm thread. It collects the heap assuming that the
734 // heap lock is already held and that we are executing in
735 // the context of the vm thread.
736 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
737 assert(Thread::current()->is_VM_thread(), "Precondition#1");
738 assert(Heap_lock->is_locked(), "Precondition#2");
739 GCCauseSetter gcs(this, cause);
740 switch (cause) {
741 case GCCause::_heap_inspection:
742 case GCCause::_heap_dump: {
743 HandleMark hm;
744 invoke_full_gc(false);
745 break;
746 }
747 default: // XXX FIX ME
748 ShouldNotReachHere();
749 }
750 }
751
752
753 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
754 Unimplemented();
755 }
756
757 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
758 young_gen()->object_iterate(cl);
759 old_gen()->object_iterate(cl);
760 perm_gen()->object_iterate(cl);
761 }
762
763 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
764 Unimplemented();
765 }
766
767 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
768 perm_gen()->object_iterate(cl);
769 }
770
771 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
772 if (young_gen()->is_in_reserved(addr)) {
773 assert(young_gen()->is_in(addr),
774 "addr should be in allocated part of young gen");
775 Unimplemented();
776 } else if (old_gen()->is_in_reserved(addr)) {
777 assert(old_gen()->is_in(addr),
778 "addr should be in allocated part of old gen");
779 return old_gen()->start_array()->object_start((HeapWord*)addr);
780 } else if (perm_gen()->is_in_reserved(addr)) {
781 assert(perm_gen()->is_in(addr),
782 "addr should be in allocated part of perm gen");
783 return perm_gen()->start_array()->object_start((HeapWord*)addr);
784 }
785 return 0;
786 }
787
788 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
789 return oop(addr)->size();
790 }
791
792 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
793 return block_start(addr) == addr;
794 }
795
796 jlong ParallelScavengeHeap::millis_since_last_gc() {
797 return UseParallelOldGC ?
798 PSParallelCompact::millis_since_last_gc() :
799 PSMarkSweep::millis_since_last_gc();
800 }
801
802 void ParallelScavengeHeap::prepare_for_verify() {
803 ensure_parsability(false); // no need to retire TLABs for verification
804 }
805
806 void ParallelScavengeHeap::print() const { print_on(tty); }
807
808 void ParallelScavengeHeap::print_on(outputStream* st) const {
809 young_gen()->print_on(st);
810 old_gen()->print_on(st);
811 perm_gen()->print_on(st);
812 }
813
814 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
815 PSScavenge::gc_task_manager()->threads_do(tc);
816 }
817
818 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
819 PSScavenge::gc_task_manager()->print_threads_on(st);
820 }
821
822 void ParallelScavengeHeap::print_tracing_info() const {
823 if (TraceGen0Time) {
824 double time = PSScavenge::accumulated_time()->seconds();
825 tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
826 }
827 if (TraceGen1Time) {
828 double time = PSMarkSweep::accumulated_time()->seconds();
829 tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
830 }
831 }
832
833
834 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent) {
835 // Why do we need the total_collections()-filter below?
836 if (total_collections() > 0) {
837 if (!silent) {
838 gclog_or_tty->print("permanent ");
839 }
840 perm_gen()->verify(allow_dirty);
841
842 if (!silent) {
843 gclog_or_tty->print("tenured ");
844 }
845 old_gen()->verify(allow_dirty);
846
847 if (!silent) {
848 gclog_or_tty->print("eden ");
849 }
850 young_gen()->verify(allow_dirty);
851 }
852 if (!silent) {
853 gclog_or_tty->print("ref_proc ");
854 }
855 ReferenceProcessor::verify();
856 }
857
858 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
859 if (PrintGCDetails && Verbose) {
860 gclog_or_tty->print(" " SIZE_FORMAT
861 "->" SIZE_FORMAT
862 "(" SIZE_FORMAT ")",
863 prev_used, used(), capacity());
864 } else {
865 gclog_or_tty->print(" " SIZE_FORMAT "K"
866 "->" SIZE_FORMAT "K"
867 "(" SIZE_FORMAT "K)",
868 prev_used / K, used() / K, capacity() / K);
869 }
870 }
871
872 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
873 assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
874 assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
875 return _psh;
876 }
877
878 // Before delegating the resize to the young generation,
879 // the reserved space for the young and old generations
880 // may be changed to accomodate the desired resize.
881 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
882 size_t survivor_size) {
883 if (UseAdaptiveGCBoundary) {
884 if (size_policy()->bytes_absorbed_from_eden() != 0) {
885 size_policy()->reset_bytes_absorbed_from_eden();
886 return; // The generation changed size already.
887 }
888 gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
889 }
890
891 // Delegate the resize to the generation.
892 _young_gen->resize(eden_size, survivor_size);
893 }
894
895 // Before delegating the resize to the old generation,
896 // the reserved space for the young and old generations
897 // may be changed to accomodate the desired resize.
898 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
899 if (UseAdaptiveGCBoundary) {
900 if (size_policy()->bytes_absorbed_from_eden() != 0) {
901 size_policy()->reset_bytes_absorbed_from_eden();
902 return; // The generation changed size already.
903 }
904 gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
905 }
906
907 // Delegate the resize to the generation.
908 _old_gen->resize(desired_free_space);
909 }