comparison src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 12eea04c8b06
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_psMarkSweep.cpp.incl"
27
28 elapsedTimer PSMarkSweep::_accumulated_time;
29 unsigned int PSMarkSweep::_total_invocations = 0;
30 jlong PSMarkSweep::_time_of_last_gc = 0;
31 CollectorCounters* PSMarkSweep::_counters = NULL;
32
33 void PSMarkSweep::initialize() {
34 MemRegion mr = Universe::heap()->reserved_region();
35 _ref_processor = new ReferenceProcessor(mr,
36 true, // atomic_discovery
37 false); // mt_discovery
38 if (!UseParallelOldGC || !VerifyParallelOldWithMarkSweep) {
39 _counters = new CollectorCounters("PSMarkSweep", 1);
40 }
41 }
42
43 // This method contains all heap specific policy for invoking mark sweep.
44 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
45 // the heap. It will do nothing further. If we need to bail out for policy
46 // reasons, scavenge before full gc, or any other specialized behavior, it
47 // needs to be added here.
48 //
49 // Note that this method should only be called from the vm_thread while
50 // at a safepoint!
51 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
52 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
53 assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
54 assert(!Universe::heap()->is_gc_active(), "not reentrant");
55
56 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
57 GCCause::Cause gc_cause = heap->gc_cause();
58 PSAdaptiveSizePolicy* policy = heap->size_policy();
59
60 // Before each allocation/collection attempt, find out from the
61 // policy object if GCs are, on the whole, taking too long. If so,
62 // bail out without attempting a collection. The exceptions are
63 // for explicitly requested GC's.
64 if (!policy->gc_time_limit_exceeded() ||
65 GCCause::is_user_requested_gc(gc_cause) ||
66 GCCause::is_serviceability_requested_gc(gc_cause)) {
67 IsGCActiveMark mark;
68
69 if (ScavengeBeforeFullGC) {
70 PSScavenge::invoke_no_policy();
71 }
72
73 int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
74 IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
75 PSMarkSweep::invoke_no_policy(maximum_heap_compaction);
76 }
77 }
78
79 // This method contains no policy. You should probably
80 // be calling invoke() instead.
81 void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
82 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
83 assert(ref_processor() != NULL, "Sanity");
84
85 if (GC_locker::check_active_before_gc()) {
86 return;
87 }
88
89 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
90 GCCause::Cause gc_cause = heap->gc_cause();
91 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
92 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
93
94 PSYoungGen* young_gen = heap->young_gen();
95 PSOldGen* old_gen = heap->old_gen();
96 PSPermGen* perm_gen = heap->perm_gen();
97
98 // Increment the invocation count
99 heap->increment_total_collections(true /* full */);
100
101 // We need to track unique mark sweep invocations as well.
102 _total_invocations++;
103
104 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
105
106 if (PrintHeapAtGC) {
107 Universe::print_heap_before_gc();
108 }
109
110 // Fill in TLABs
111 heap->accumulate_statistics_all_tlabs();
112 heap->ensure_parsability(true); // retire TLABs
113
114 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
115 HandleMark hm; // Discard invalid handles created during verification
116 gclog_or_tty->print(" VerifyBeforeGC:");
117 Universe::verify(true);
118 }
119
120 // Verify object start arrays
121 if (VerifyObjectStartArray &&
122 VerifyBeforeGC) {
123 old_gen->verify_object_start_array();
124 perm_gen->verify_object_start_array();
125 }
126
127 // Filled in below to track the state of the young gen after the collection.
128 bool eden_empty;
129 bool survivors_empty;
130 bool young_gen_empty;
131
132 {
133 HandleMark hm;
134 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
135 // This is useful for debugging but don't change the output the
136 // the customer sees.
137 const char* gc_cause_str = "Full GC";
138 if (is_system_gc && PrintGCDetails) {
139 gc_cause_str = "Full GC (System)";
140 }
141 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
142 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
143 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
144 TraceCollectorStats tcs(counters());
145 TraceMemoryManagerStats tms(true /* Full GC */);
146
147 if (TraceGen1Time) accumulated_time()->start();
148
149 // Let the size policy know we're starting
150 size_policy->major_collection_begin();
151
152 // When collecting the permanent generation methodOops may be moving,
153 // so we either have to flush all bcp data or convert it into bci.
154 CodeCache::gc_prologue();
155 Threads::gc_prologue();
156 BiasedLocking::preserve_marks();
157
158 // Capture heap size before collection for printing.
159 size_t prev_used = heap->used();
160
161 // Capture perm gen size before collection for sizing.
162 size_t perm_gen_prev_used = perm_gen->used_in_bytes();
163
164 // For PrintGCDetails
165 size_t old_gen_prev_used = old_gen->used_in_bytes();
166 size_t young_gen_prev_used = young_gen->used_in_bytes();
167
168 allocate_stacks();
169
170 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
171 COMPILER2_PRESENT(DerivedPointerTable::clear());
172
173 ref_processor()->enable_discovery();
174
175 mark_sweep_phase1(clear_all_softrefs);
176
177 mark_sweep_phase2();
178
179 // Don't add any more derived pointers during phase3
180 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
181 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
182
183 mark_sweep_phase3();
184
185 mark_sweep_phase4();
186
187 restore_marks();
188
189 deallocate_stacks();
190
191 eden_empty = young_gen->eden_space()->is_empty();
192 if (!eden_empty) {
193 eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
194 }
195
196 // Update heap occupancy information which is used as
197 // input to soft ref clearing policy at the next gc.
198 Universe::update_heap_info_at_gc();
199
200 survivors_empty = young_gen->from_space()->is_empty() &&
201 young_gen->to_space()->is_empty();
202 young_gen_empty = eden_empty && survivors_empty;
203
204 BarrierSet* bs = heap->barrier_set();
205 if (bs->is_a(BarrierSet::ModRef)) {
206 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
207 MemRegion old_mr = heap->old_gen()->reserved();
208 MemRegion perm_mr = heap->perm_gen()->reserved();
209 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
210
211 if (young_gen_empty) {
212 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
213 } else {
214 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
215 }
216 }
217
218 BiasedLocking::restore_marks();
219 Threads::gc_epilogue();
220 CodeCache::gc_epilogue();
221
222 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
223
224 ref_processor()->enqueue_discovered_references(NULL);
225
226 // Update time of last GC
227 reset_millis_since_last_gc();
228
229 // Let the size policy know we're done
230 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
231
232 if (UseAdaptiveSizePolicy) {
233
234 if (PrintAdaptiveSizePolicy) {
235 gclog_or_tty->print("AdaptiveSizeStart: ");
236 gclog_or_tty->stamp();
237 gclog_or_tty->print_cr(" collection: %d ",
238 heap->total_collections());
239 if (Verbose) {
240 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
241 " perm_gen_capacity: %d ",
242 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
243 perm_gen->capacity_in_bytes());
244 }
245 }
246
247 // Don't check if the size_policy is ready here. Let
248 // the size_policy check that internally.
249 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
250 ((gc_cause != GCCause::_java_lang_system_gc) ||
251 UseAdaptiveSizePolicyWithSystemGC)) {
252 // Calculate optimal free space amounts
253 assert(young_gen->max_size() >
254 young_gen->from_space()->capacity_in_bytes() +
255 young_gen->to_space()->capacity_in_bytes(),
256 "Sizes of space in young gen are out-of-bounds");
257 size_t max_eden_size = young_gen->max_size() -
258 young_gen->from_space()->capacity_in_bytes() -
259 young_gen->to_space()->capacity_in_bytes();
260 size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
261 young_gen->eden_space()->used_in_bytes(),
262 old_gen->used_in_bytes(),
263 perm_gen->used_in_bytes(),
264 young_gen->eden_space()->capacity_in_bytes(),
265 old_gen->max_gen_size(),
266 max_eden_size,
267 true /* full gc*/,
268 gc_cause);
269
270 heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
271
272 // Don't resize the young generation at an major collection. A
273 // desired young generation size may have been calculated but
274 // resizing the young generation complicates the code because the
275 // resizing of the old generation may have moved the boundary
276 // between the young generation and the old generation. Let the
277 // young generation resizing happen at the minor collections.
278 }
279 if (PrintAdaptiveSizePolicy) {
280 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
281 heap->total_collections());
282 }
283 }
284
285 if (UsePerfData) {
286 heap->gc_policy_counters()->update_counters();
287 heap->gc_policy_counters()->update_old_capacity(
288 old_gen->capacity_in_bytes());
289 heap->gc_policy_counters()->update_young_capacity(
290 young_gen->capacity_in_bytes());
291 }
292
293 heap->resize_all_tlabs();
294
295 // We collected the perm gen, so we'll resize it here.
296 perm_gen->compute_new_size(perm_gen_prev_used);
297
298 if (TraceGen1Time) accumulated_time()->stop();
299
300 if (PrintGC) {
301 if (PrintGCDetails) {
302 // Don't print a GC timestamp here. This is after the GC so
303 // would be confusing.
304 young_gen->print_used_change(young_gen_prev_used);
305 old_gen->print_used_change(old_gen_prev_used);
306 }
307 heap->print_heap_change(prev_used);
308 // Do perm gen after heap becase prev_used does
309 // not include the perm gen (done this way in the other
310 // collectors).
311 if (PrintGCDetails) {
312 perm_gen->print_used_change(perm_gen_prev_used);
313 }
314 }
315
316 // Track memory usage and detect low memory
317 MemoryService::track_memory_usage();
318 heap->update_counters();
319
320 if (PrintGCDetails) {
321 if (size_policy->print_gc_time_limit_would_be_exceeded()) {
322 if (size_policy->gc_time_limit_exceeded()) {
323 gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
324 "of %d%%", GCTimeLimit);
325 } else {
326 gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
327 "of %d%%", GCTimeLimit);
328 }
329 }
330 size_policy->set_print_gc_time_limit_would_be_exceeded(false);
331 }
332 }
333
334 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
335 HandleMark hm; // Discard invalid handles created during verification
336 gclog_or_tty->print(" VerifyAfterGC:");
337 Universe::verify(false);
338 }
339
340 // Re-verify object start arrays
341 if (VerifyObjectStartArray &&
342 VerifyAfterGC) {
343 old_gen->verify_object_start_array();
344 perm_gen->verify_object_start_array();
345 }
346
347 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
348
349 if (PrintHeapAtGC) {
350 Universe::print_heap_after_gc();
351 }
352 }
353
354 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
355 PSYoungGen* young_gen,
356 PSOldGen* old_gen) {
357 MutableSpace* const eden_space = young_gen->eden_space();
358 assert(!eden_space->is_empty(), "eden must be non-empty");
359 assert(young_gen->virtual_space()->alignment() ==
360 old_gen->virtual_space()->alignment(), "alignments do not match");
361
362 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
363 return false;
364 }
365
366 // Both generations must be completely committed.
367 if (young_gen->virtual_space()->uncommitted_size() != 0) {
368 return false;
369 }
370 if (old_gen->virtual_space()->uncommitted_size() != 0) {
371 return false;
372 }
373
374 // Figure out how much to take from eden. Include the average amount promoted
375 // in the total; otherwise the next young gen GC will simply bail out to a
376 // full GC.
377 const size_t alignment = old_gen->virtual_space()->alignment();
378 const size_t eden_used = eden_space->used_in_bytes();
379 const size_t promoted = (size_t)(size_policy->avg_promoted()->padded_average());
380 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
381 const size_t eden_capacity = eden_space->capacity_in_bytes();
382
383 if (absorb_size >= eden_capacity) {
384 return false; // Must leave some space in eden.
385 }
386
387 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
388 if (new_young_size < young_gen->min_gen_size()) {
389 return false; // Respect young gen minimum size.
390 }
391
392 if (TraceAdaptiveGCBoundary && Verbose) {
393 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
394 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
395 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
396 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
397 absorb_size / K,
398 eden_capacity / K, (eden_capacity - absorb_size) / K,
399 young_gen->from_space()->used_in_bytes() / K,
400 young_gen->to_space()->used_in_bytes() / K,
401 young_gen->capacity_in_bytes() / K, new_young_size / K);
402 }
403
404 // Fill the unused part of the old gen.
405 MutableSpace* const old_space = old_gen->object_space();
406 MemRegion old_gen_unused(old_space->top(), old_space->end());
407
408 // If the unused part of the old gen cannot be filled, skip
409 // absorbing eden.
410 if (old_gen_unused.word_size() < SharedHeap::min_fill_size()) {
411 return false;
412 }
413
414 if (!old_gen_unused.is_empty()) {
415 SharedHeap::fill_region_with_object(old_gen_unused);
416 }
417
418 // Take the live data from eden and set both top and end in the old gen to
419 // eden top. (Need to set end because reset_after_change() mangles the region
420 // from end to virtual_space->high() in debug builds).
421 HeapWord* const new_top = eden_space->top();
422 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
423 absorb_size);
424 young_gen->reset_after_change();
425 old_space->set_top(new_top);
426 old_space->set_end(new_top);
427 old_gen->reset_after_change();
428
429 // Update the object start array for the filler object and the data from eden.
430 ObjectStartArray* const start_array = old_gen->start_array();
431 HeapWord* const start = old_gen_unused.start();
432 for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
433 start_array->allocate_block(addr);
434 }
435
436 // Could update the promoted average here, but it is not typically updated at
437 // full GCs and the value to use is unclear. Something like
438 //
439 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
440
441 size_policy->set_bytes_absorbed_from_eden(absorb_size);
442 return true;
443 }
444
445 void PSMarkSweep::allocate_stacks() {
446 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
447 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
448
449 PSYoungGen* young_gen = heap->young_gen();
450
451 MutableSpace* to_space = young_gen->to_space();
452 _preserved_marks = (PreservedMark*)to_space->top();
453 _preserved_count = 0;
454
455 // We want to calculate the size in bytes first.
456 _preserved_count_max = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
457 // Now divide by the size of a PreservedMark
458 _preserved_count_max /= sizeof(PreservedMark);
459
460 _preserved_mark_stack = NULL;
461 _preserved_oop_stack = NULL;
462
463 _marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
464
465 int size = SystemDictionary::number_of_classes() * 2;
466 _revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
467 }
468
469
470 void PSMarkSweep::deallocate_stacks() {
471 if (_preserved_oop_stack) {
472 delete _preserved_mark_stack;
473 _preserved_mark_stack = NULL;
474 delete _preserved_oop_stack;
475 _preserved_oop_stack = NULL;
476 }
477
478 delete _marking_stack;
479 delete _revisit_klass_stack;
480 }
481
482 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
483 // Recursively traverse all live objects and mark them
484 EventMark m("1 mark object");
485 TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
486 trace(" 1");
487
488 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
489 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
490
491 // General strong roots.
492 Universe::oops_do(mark_and_push_closure());
493 ReferenceProcessor::oops_do(mark_and_push_closure());
494 JNIHandles::oops_do(mark_and_push_closure()); // Global (strong) JNI handles
495 Threads::oops_do(mark_and_push_closure());
496 ObjectSynchronizer::oops_do(mark_and_push_closure());
497 FlatProfiler::oops_do(mark_and_push_closure());
498 Management::oops_do(mark_and_push_closure());
499 JvmtiExport::oops_do(mark_and_push_closure());
500 SystemDictionary::always_strong_oops_do(mark_and_push_closure());
501 vmSymbols::oops_do(mark_and_push_closure());
502
503 // Flush marking stack.
504 follow_stack();
505
506 // Process reference objects found during marking
507
508 // Skipping the reference processing for VerifyParallelOldWithMarkSweep
509 // affects the marking (makes it different).
510 {
511 ReferencePolicy *soft_ref_policy;
512 if (clear_all_softrefs) {
513 soft_ref_policy = new AlwaysClearPolicy();
514 } else {
515 #ifdef COMPILER2
516 soft_ref_policy = new LRUMaxHeapPolicy();
517 #else
518 soft_ref_policy = new LRUCurrentHeapPolicy();
519 #endif // COMPILER2
520 }
521 assert(soft_ref_policy != NULL,"No soft reference policy");
522 ref_processor()->process_discovered_references(
523 soft_ref_policy, is_alive_closure(), mark_and_push_closure(),
524 follow_stack_closure(), NULL);
525 }
526
527 // Follow system dictionary roots and unload classes
528 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
529
530 // Follow code cache roots
531 CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
532 purged_class);
533 follow_stack(); // Flush marking stack
534
535 // Update subklass/sibling/implementor links of live klasses
536 follow_weak_klass_links();
537 assert(_marking_stack->is_empty(), "just drained");
538
539 // Visit symbol and interned string tables and delete unmarked oops
540 SymbolTable::unlink(is_alive_closure());
541 StringTable::unlink(is_alive_closure());
542
543 assert(_marking_stack->is_empty(), "stack should be empty by now");
544 }
545
546
547 void PSMarkSweep::mark_sweep_phase2() {
548 EventMark m("2 compute new addresses");
549 TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
550 trace("2");
551
552 // Now all live objects are marked, compute the new object addresses.
553
554 // It is imperative that we traverse perm_gen LAST. If dead space is
555 // allowed a range of dead object may get overwritten by a dead int
556 // array. If perm_gen is not traversed last a klassOop may get
557 // overwritten. This is fine since it is dead, but if the class has dead
558 // instances we have to skip them, and in order to find their size we
559 // need the klassOop!
560 //
561 // It is not required that we traverse spaces in the same order in
562 // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
563 // tracking expects us to do so. See comment under phase4.
564
565 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
566 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
567
568 PSOldGen* old_gen = heap->old_gen();
569 PSPermGen* perm_gen = heap->perm_gen();
570
571 // Begin compacting into the old gen
572 PSMarkSweepDecorator::set_destination_decorator_tenured();
573
574 // This will also compact the young gen spaces.
575 old_gen->precompact();
576
577 // Compact the perm gen into the perm gen
578 PSMarkSweepDecorator::set_destination_decorator_perm_gen();
579
580 perm_gen->precompact();
581 }
582
583 // This should be moved to the shared markSweep code!
584 class PSAlwaysTrueClosure: public BoolObjectClosure {
585 public:
586 void do_object(oop p) { ShouldNotReachHere(); }
587 bool do_object_b(oop p) { return true; }
588 };
589 static PSAlwaysTrueClosure always_true;
590
591 void PSMarkSweep::mark_sweep_phase3() {
592 // Adjust the pointers to reflect the new locations
593 EventMark m("3 adjust pointers");
594 TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
595 trace("3");
596
597 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
598 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
599
600 PSYoungGen* young_gen = heap->young_gen();
601 PSOldGen* old_gen = heap->old_gen();
602 PSPermGen* perm_gen = heap->perm_gen();
603
604 // General strong roots.
605 Universe::oops_do(adjust_root_pointer_closure());
606 ReferenceProcessor::oops_do(adjust_root_pointer_closure());
607 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
608 Threads::oops_do(adjust_root_pointer_closure());
609 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
610 FlatProfiler::oops_do(adjust_root_pointer_closure());
611 Management::oops_do(adjust_root_pointer_closure());
612 JvmtiExport::oops_do(adjust_root_pointer_closure());
613 // SO_AllClasses
614 SystemDictionary::oops_do(adjust_root_pointer_closure());
615 vmSymbols::oops_do(adjust_root_pointer_closure());
616
617 // Now adjust pointers in remaining weak roots. (All of which should
618 // have been cleared if they pointed to non-surviving objects.)
619 // Global (weak) JNI handles
620 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
621
622 CodeCache::oops_do(adjust_pointer_closure());
623 SymbolTable::oops_do(adjust_root_pointer_closure());
624 StringTable::oops_do(adjust_root_pointer_closure());
625 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
626 PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
627
628 adjust_marks();
629
630 young_gen->adjust_pointers();
631 old_gen->adjust_pointers();
632 perm_gen->adjust_pointers();
633 }
634
635 void PSMarkSweep::mark_sweep_phase4() {
636 EventMark m("4 compact heap");
637 TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
638 trace("4");
639
640 // All pointers are now adjusted, move objects accordingly
641
642 // It is imperative that we traverse perm_gen first in phase4. All
643 // classes must be allocated earlier than their instances, and traversing
644 // perm_gen first makes sure that all klassOops have moved to their new
645 // location before any instance does a dispatch through it's klass!
646 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
647 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
648
649 PSYoungGen* young_gen = heap->young_gen();
650 PSOldGen* old_gen = heap->old_gen();
651 PSPermGen* perm_gen = heap->perm_gen();
652
653 perm_gen->compact();
654 old_gen->compact();
655 young_gen->compact();
656 }
657
658 jlong PSMarkSweep::millis_since_last_gc() {
659 jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
660 // XXX See note in genCollectedHeap::millis_since_last_gc().
661 if (ret_val < 0) {
662 NOT_PRODUCT(warning("time warp: %d", ret_val);)
663 return 0;
664 }
665 return ret_val;
666 }
667
668 void PSMarkSweep::reset_millis_since_last_gc() {
669 _time_of_last_gc = os::javaTimeMillis();
670 }