comparison src/share/vm/memory/blockOffsetTable.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 37f87013dfd8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_blockOffsetTable.cpp.incl"
27
28 //////////////////////////////////////////////////////////////////////
29 // BlockOffsetSharedArray
30 //////////////////////////////////////////////////////////////////////
31
32 BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
33 size_t init_word_size):
34 _reserved(reserved), _end(NULL)
35 {
36 size_t size = compute_size(reserved.word_size());
37 ReservedSpace rs(size);
38 if (!rs.is_reserved()) {
39 vm_exit_during_initialization("Could not reserve enough space for heap offset array");
40 }
41 if (!_vs.initialize(rs, 0)) {
42 vm_exit_during_initialization("Could not reserve enough space for heap offset array");
43 }
44 _offset_array = (u_char*)_vs.low_boundary();
45 resize(init_word_size);
46 if (TraceBlockOffsetTable) {
47 gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
48 gclog_or_tty->print_cr(" "
49 " rs.base(): " INTPTR_FORMAT
50 " rs.size(): " INTPTR_FORMAT
51 " rs end(): " INTPTR_FORMAT,
52 rs.base(), rs.size(), rs.base() + rs.size());
53 gclog_or_tty->print_cr(" "
54 " _vs.low_boundary(): " INTPTR_FORMAT
55 " _vs.high_boundary(): " INTPTR_FORMAT,
56 _vs.low_boundary(),
57 _vs.high_boundary());
58 }
59 }
60
61 void BlockOffsetSharedArray::resize(size_t new_word_size) {
62 assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
63 size_t new_size = compute_size(new_word_size);
64 size_t old_size = _vs.committed_size();
65 size_t delta;
66 char* high = _vs.high();
67 _end = _reserved.start() + new_word_size;
68 if (new_size > old_size) {
69 delta = ReservedSpace::page_align_size_up(new_size - old_size);
70 assert(delta > 0, "just checking");
71 if (!_vs.expand_by(delta)) {
72 // Do better than this for Merlin
73 vm_exit_out_of_memory(delta, "offset table expansion");
74 }
75 assert(_vs.high() == high + delta, "invalid expansion");
76 } else {
77 delta = ReservedSpace::page_align_size_down(old_size - new_size);
78 if (delta == 0) return;
79 _vs.shrink_by(delta);
80 assert(_vs.high() == high - delta, "invalid expansion");
81 }
82 }
83
84 bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
85 assert(p >= _reserved.start(), "just checking");
86 size_t delta = pointer_delta(p, _reserved.start());
87 return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
88 }
89
90
91 void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc,
92 HeapWord* start, HeapWord* end) {
93 assert(_offset_array[0] == 0, "objects can't cross covered areas");
94 assert(start <= end, "bad address range");
95 size_t start_index = index_for(start);
96 size_t end_index = index_for(end-1)+1;
97 soc->do_region(&_offset_array[start_index],
98 (end_index - start_index) * sizeof(_offset_array[0]));
99 }
100
101 //////////////////////////////////////////////////////////////////////
102 // BlockOffsetArray
103 //////////////////////////////////////////////////////////////////////
104
105 BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
106 MemRegion mr, bool init_to_zero) :
107 BlockOffsetTable(mr.start(), mr.end()),
108 _array(array),
109 _init_to_zero(init_to_zero)
110 {
111 assert(_bottom <= _end, "arguments out of order");
112 if (!_init_to_zero) {
113 // initialize cards to point back to mr.start()
114 set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
115 _array->set_offset_array(0, 0); // set first card to 0
116 }
117 }
118
119
120 // The arguments follow the normal convention of denoting
121 // a right-open interval: [start, end)
122 void
123 BlockOffsetArray::
124 set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
125
126 if (start >= end) {
127 // The start address is equal to the end address (or to
128 // the right of the end address) so there are not cards
129 // that need to be updated..
130 return;
131 }
132
133 // Write the backskip value for each region.
134 //
135 // offset
136 // card 2nd 3rd
137 // | +- 1st | |
138 // v v v v
139 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
140 // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
141 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
142 // 11 19 75
143 // 12
144 //
145 // offset card is the card that points to the start of an object
146 // x - offset value of offset card
147 // 1st - start of first logarithmic region
148 // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
149 // 2nd - start of second logarithmic region
150 // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
151 // 3rd - start of third logarithmic region
152 // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
153 //
154 // integer below the block offset entry is an example of
155 // the index of the entry
156 //
157 // Given an address,
158 // Find the index for the address
159 // Find the block offset table entry
160 // Convert the entry to a back slide
161 // (e.g., with today's, offset = 0x81 =>
162 // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
163 // Move back N (e.g., 8) entries and repeat with the
164 // value of the new entry
165 //
166 size_t start_card = _array->index_for(start);
167 size_t end_card = _array->index_for(end-1);
168 assert(start ==_array->address_for_index(start_card), "Precondition");
169 assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
170 set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
171 }
172
173
174 // Unlike the normal convention in this code, the argument here denotes
175 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
176 // above.
177 void
178 BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
179 if (start_card > end_card) {
180 return;
181 }
182 assert(start_card > _array->index_for(_bottom), "Cannot be first card");
183 assert(_array->offset_array(start_card-1) <= N_words,
184 "Offset card has an unexpected value");
185 size_t start_card_for_region = start_card;
186 u_char offset = max_jubyte;
187 for (int i = 0; i <= N_powers-1; i++) {
188 // -1 so that the the card with the actual offset is counted. Another -1
189 // so that the reach ends in this region and not at the start
190 // of the next.
191 size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
192 offset = N_words + i;
193 if (reach >= end_card) {
194 _array->set_offset_array(start_card_for_region, end_card, offset);
195 start_card_for_region = reach + 1;
196 break;
197 }
198 _array->set_offset_array(start_card_for_region, reach, offset);
199 start_card_for_region = reach + 1;
200 }
201 assert(start_card_for_region > end_card, "Sanity check");
202 DEBUG_ONLY(check_all_cards(start_card, end_card);)
203 }
204
205 // The card-interval [start_card, end_card] is a closed interval; this
206 // is an expensive check -- use with care and only under protection of
207 // suitable flag.
208 void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
209
210 if (end_card < start_card) {
211 return;
212 }
213 guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
214 for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
215 u_char entry = _array->offset_array(c);
216 if (c - start_card > power_to_cards_back(1)) {
217 guarantee(entry > N_words, "Should be in logarithmic region");
218 }
219 size_t backskip = entry_to_cards_back(entry);
220 size_t landing_card = c - backskip;
221 guarantee(landing_card >= (start_card - 1), "Inv");
222 if (landing_card >= start_card) {
223 guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
224 } else {
225 guarantee(landing_card == start_card - 1, "Tautology");
226 guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
227 }
228 }
229 }
230
231
232 void
233 BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
234 assert(blk_start != NULL && blk_end > blk_start,
235 "phantom block");
236 single_block(blk_start, blk_end);
237 }
238
239 // Action_mark - update the BOT for the block [blk_start, blk_end).
240 // Current typical use is for splitting a block.
241 // Action_single - udpate the BOT for an allocation.
242 // Action_verify - BOT verification.
243 void
244 BlockOffsetArray::do_block_internal(HeapWord* blk_start,
245 HeapWord* blk_end,
246 Action action) {
247 assert(Universe::heap()->is_in_reserved(blk_start),
248 "reference must be into the heap");
249 assert(Universe::heap()->is_in_reserved(blk_end-1),
250 "limit must be within the heap");
251 // This is optimized to make the test fast, assuming we only rarely
252 // cross boundaries.
253 uintptr_t end_ui = (uintptr_t)(blk_end - 1);
254 uintptr_t start_ui = (uintptr_t)blk_start;
255 // Calculate the last card boundary preceding end of blk
256 intptr_t boundary_before_end = (intptr_t)end_ui;
257 clear_bits(boundary_before_end, right_n_bits(LogN));
258 if (start_ui <= (uintptr_t)boundary_before_end) {
259 // blk starts at or crosses a boundary
260 // Calculate index of card on which blk begins
261 size_t start_index = _array->index_for(blk_start);
262 // Index of card on which blk ends
263 size_t end_index = _array->index_for(blk_end - 1);
264 // Start address of card on which blk begins
265 HeapWord* boundary = _array->address_for_index(start_index);
266 assert(boundary <= blk_start, "blk should start at or after boundary");
267 if (blk_start != boundary) {
268 // blk starts strictly after boundary
269 // adjust card boundary and start_index forward to next card
270 boundary += N_words;
271 start_index++;
272 }
273 assert(start_index <= end_index, "monotonicity of index_for()");
274 assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
275 switch (action) {
276 case Action_mark: {
277 if (init_to_zero()) {
278 _array->set_offset_array(start_index, boundary, blk_start);
279 break;
280 } // Else fall through to the next case
281 }
282 case Action_single: {
283 _array->set_offset_array(start_index, boundary, blk_start);
284 // We have finished marking the "offset card". We need to now
285 // mark the subsequent cards that this blk spans.
286 if (start_index < end_index) {
287 HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
288 HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
289 set_remainder_to_point_to_start(rem_st, rem_end);
290 }
291 break;
292 }
293 case Action_check: {
294 _array->check_offset_array(start_index, boundary, blk_start);
295 // We have finished checking the "offset card". We need to now
296 // check the subsequent cards that this blk spans.
297 check_all_cards(start_index + 1, end_index);
298 break;
299 }
300 default:
301 ShouldNotReachHere();
302 }
303 }
304 }
305
306 // The range [blk_start, blk_end) represents a single contiguous block
307 // of storage; modify the block offset table to represent this
308 // information; Right-open interval: [blk_start, blk_end)
309 // NOTE: this method does _not_ adjust _unallocated_block.
310 void
311 BlockOffsetArray::single_block(HeapWord* blk_start,
312 HeapWord* blk_end) {
313 do_block_internal(blk_start, blk_end, Action_single);
314 }
315
316 void BlockOffsetArray::verify() const {
317 // For each entry in the block offset table, verify that
318 // the entry correctly finds the start of an object at the
319 // first address covered by the block or to the left of that
320 // first address.
321
322 size_t next_index = 1;
323 size_t last_index = last_active_index();
324
325 // Use for debugging. Initialize to NULL to distinguish the
326 // first iteration through the while loop.
327 HeapWord* last_p = NULL;
328 HeapWord* last_start = NULL;
329 oop last_o = NULL;
330
331 while (next_index <= last_index) {
332 // Use an address past the start of the address for
333 // the entry.
334 HeapWord* p = _array->address_for_index(next_index) + 1;
335 if (p >= _end) {
336 // That's all of the allocated block table.
337 return;
338 }
339 // block_start() asserts that start <= p.
340 HeapWord* start = block_start(p);
341 // First check if the start is an allocated block and only
342 // then if it is a valid object.
343 oop o = oop(start);
344 assert(!Universe::is_fully_initialized() ||
345 _sp->is_free_block(start) ||
346 o->is_oop_or_null(), "Bad object was found");
347 next_index++;
348 last_p = p;
349 last_start = start;
350 last_o = o;
351 }
352 }
353
354 //////////////////////////////////////////////////////////////////////
355 // BlockOffsetArrayNonContigSpace
356 //////////////////////////////////////////////////////////////////////
357
358 // The block [blk_start, blk_end) has been allocated;
359 // adjust the block offset table to represent this information;
360 // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
361 // the somewhat more lightweight split_block() or
362 // (when init_to_zero()) mark_block() wherever possible.
363 // right-open interval: [blk_start, blk_end)
364 void
365 BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
366 HeapWord* blk_end) {
367 assert(blk_start != NULL && blk_end > blk_start,
368 "phantom block");
369 single_block(blk_start, blk_end);
370 allocated(blk_start, blk_end);
371 }
372
373 // Adjust BOT to show that a previously whole block has been split
374 // into two. We verify the BOT for the first part (prefix) and
375 // update the BOT for the second part (suffix).
376 // blk is the start of the block
377 // blk_size is the size of the original block
378 // left_blk_size is the size of the first part of the split
379 void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
380 size_t blk_size,
381 size_t left_blk_size) {
382 // Verify that the BOT shows [blk, blk + blk_size) to be one block.
383 verify_single_block(blk, blk_size);
384 // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
385 // is one single block.
386 assert(blk_size > 0, "Should be positive");
387 assert(left_blk_size > 0, "Should be positive");
388 assert(left_blk_size < blk_size, "Not a split");
389
390 // Start addresses of prefix block and suffix block.
391 HeapWord* pref_addr = blk;
392 HeapWord* suff_addr = blk + left_blk_size;
393 HeapWord* end_addr = blk + blk_size;
394
395 // Indices for starts of prefix block and suffix block.
396 size_t pref_index = _array->index_for(pref_addr);
397 if (_array->address_for_index(pref_index) != pref_addr) {
398 // pref_addr deos not begin pref_index
399 pref_index++;
400 }
401
402 size_t suff_index = _array->index_for(suff_addr);
403 if (_array->address_for_index(suff_index) != suff_addr) {
404 // suff_addr does not begin suff_index
405 suff_index++;
406 }
407
408 // Definition: A block B, denoted [B_start, B_end) __starts__
409 // a card C, denoted [C_start, C_end), where C_start and C_end
410 // are the heap addresses that card C covers, iff
411 // B_start <= C_start < B_end.
412 //
413 // We say that a card C "is started by" a block B, iff
414 // B "starts" C.
415 //
416 // Note that the cardinality of the set of cards {C}
417 // started by a block B can be 0, 1, or more.
418 //
419 // Below, pref_index and suff_index are, respectively, the
420 // first (least) card indices that the prefix and suffix of
421 // the split start; end_index is one more than the index of
422 // the last (greatest) card that blk starts.
423 size_t end_index = _array->index_for(end_addr - 1) + 1;
424
425 // Calculate the # cards that the prefix and suffix affect.
426 size_t num_pref_cards = suff_index - pref_index;
427
428 size_t num_suff_cards = end_index - suff_index;
429 // Change the cards that need changing
430 if (num_suff_cards > 0) {
431 HeapWord* boundary = _array->address_for_index(suff_index);
432 // Set the offset card for suffix block
433 _array->set_offset_array(suff_index, boundary, suff_addr);
434 // Change any further cards that need changing in the suffix
435 if (num_pref_cards > 0) {
436 if (num_pref_cards >= num_suff_cards) {
437 // Unilaterally fix all of the suffix cards: closed card
438 // index interval in args below.
439 set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1);
440 } else {
441 // Unilaterally fix the first (num_pref_cards - 1) following
442 // the "offset card" in the suffix block.
443 set_remainder_to_point_to_start_incl(suff_index + 1,
444 suff_index + num_pref_cards - 1);
445 // Fix the appropriate cards in the remainder of the
446 // suffix block -- these are the last num_pref_cards
447 // cards in each power block of the "new" range plumbed
448 // from suff_addr.
449 bool more = true;
450 uint i = 1;
451 while (more && (i < N_powers)) {
452 size_t back_by = power_to_cards_back(i);
453 size_t right_index = suff_index + back_by - 1;
454 size_t left_index = right_index - num_pref_cards + 1;
455 if (right_index >= end_index - 1) { // last iteration
456 right_index = end_index - 1;
457 more = false;
458 }
459 if (back_by > num_pref_cards) {
460 // Fill in the remainder of this "power block", if it
461 // is non-null.
462 if (left_index <= right_index) {
463 _array->set_offset_array(left_index, right_index,
464 N_words + i - 1);
465 } else {
466 more = false; // we are done
467 }
468 i++;
469 break;
470 }
471 i++;
472 }
473 while (more && (i < N_powers)) {
474 size_t back_by = power_to_cards_back(i);
475 size_t right_index = suff_index + back_by - 1;
476 size_t left_index = right_index - num_pref_cards + 1;
477 if (right_index >= end_index - 1) { // last iteration
478 right_index = end_index - 1;
479 if (left_index > right_index) {
480 break;
481 }
482 more = false;
483 }
484 assert(left_index <= right_index, "Error");
485 _array->set_offset_array(left_index, right_index, N_words + i - 1);
486 i++;
487 }
488 }
489 } // else no more cards to fix in suffix
490 } // else nothing needs to be done
491 // Verify that we did the right thing
492 verify_single_block(pref_addr, left_blk_size);
493 verify_single_block(suff_addr, blk_size - left_blk_size);
494 }
495
496
497 // Mark the BOT such that if [blk_start, blk_end) straddles a card
498 // boundary, the card following the first such boundary is marked
499 // with the appropriate offset.
500 // NOTE: this method does _not_ adjust _unallocated_block or
501 // any cards subsequent to the first one.
502 void
503 BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
504 HeapWord* blk_end) {
505 do_block_internal(blk_start, blk_end, Action_mark);
506 }
507
508 HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
509 const void* addr) const {
510 assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
511
512 assert(_bottom <= addr && addr < _end,
513 "addr must be covered by this Array");
514 // Must read this exactly once because it can be modified by parallel
515 // allocation.
516 HeapWord* ub = _unallocated_block;
517 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
518 assert(ub < _end, "tautology (see above)");
519 return ub;
520 }
521
522 // Otherwise, find the block start using the table.
523 size_t index = _array->index_for(addr);
524 HeapWord* q = _array->address_for_index(index);
525
526 uint offset = _array->offset_array(index); // Extend u_char to uint.
527 while (offset >= N_words) {
528 // The excess of the offset from N_words indicates a power of Base
529 // to go back by.
530 size_t n_cards_back = entry_to_cards_back(offset);
531 q -= (N_words * n_cards_back);
532 assert(q >= _sp->bottom(), "Went below bottom!");
533 index -= n_cards_back;
534 offset = _array->offset_array(index);
535 }
536 assert(offset < N_words, "offset too large");
537 index--;
538 q -= offset;
539 HeapWord* n = q;
540
541 while (n <= addr) {
542 debug_only(HeapWord* last = q); // for debugging
543 q = n;
544 n += _sp->block_size(n);
545 }
546 assert(q <= addr, "wrong order for current and arg");
547 assert(addr <= n, "wrong order for arg and next");
548 return q;
549 }
550
551 HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
552 const void* addr) const {
553 assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
554
555 assert(_bottom <= addr && addr < _end,
556 "addr must be covered by this Array");
557 // Must read this exactly once because it can be modified by parallel
558 // allocation.
559 HeapWord* ub = _unallocated_block;
560 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
561 assert(ub < _end, "tautology (see above)");
562 return ub;
563 }
564
565 // Otherwise, find the block start using the table, but taking
566 // care (cf block_start_unsafe() above) not to parse any objects/blocks
567 // on the cards themsleves.
568 size_t index = _array->index_for(addr);
569 assert(_array->address_for_index(index) == addr,
570 "arg should be start of card");
571
572 HeapWord* q = (HeapWord*)addr;
573 uint offset;
574 do {
575 offset = _array->offset_array(index);
576 if (offset < N_words) {
577 q -= offset;
578 } else {
579 size_t n_cards_back = entry_to_cards_back(offset);
580 q -= (n_cards_back * N_words);
581 index -= n_cards_back;
582 }
583 } while (offset >= N_words);
584 assert(q <= addr, "block start should be to left of arg");
585 return q;
586 }
587
588 #ifndef PRODUCT
589 // Verification & debugging - ensure that the offset table reflects the fact
590 // that the block [blk_start, blk_end) or [blk, blk + size) is a
591 // single block of storage. NOTE: can't const this because of
592 // call to non-const do_block_internal() below.
593 void BlockOffsetArrayNonContigSpace::verify_single_block(
594 HeapWord* blk_start, HeapWord* blk_end) {
595 if (VerifyBlockOffsetArray) {
596 do_block_internal(blk_start, blk_end, Action_check);
597 }
598 }
599
600 void BlockOffsetArrayNonContigSpace::verify_single_block(
601 HeapWord* blk, size_t size) {
602 verify_single_block(blk, blk + size);
603 }
604
605 // Verify that the given block is before _unallocated_block
606 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
607 HeapWord* blk_start, HeapWord* blk_end) const {
608 if (BlockOffsetArrayUseUnallocatedBlock) {
609 assert(blk_start < blk_end, "Block inconsistency?");
610 assert(blk_end <= _unallocated_block, "_unallocated_block problem");
611 }
612 }
613
614 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
615 HeapWord* blk, size_t size) const {
616 verify_not_unallocated(blk, blk + size);
617 }
618 #endif // PRODUCT
619
620 size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
621 if (_unallocated_block == _bottom) {
622 return 0;
623 } else {
624 return _array->index_for(_unallocated_block - 1);
625 }
626 }
627
628 //////////////////////////////////////////////////////////////////////
629 // BlockOffsetArrayContigSpace
630 //////////////////////////////////////////////////////////////////////
631
632 HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
633 assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
634
635 // Otherwise, find the block start using the table.
636 assert(_bottom <= addr && addr < _end,
637 "addr must be covered by this Array");
638 size_t index = _array->index_for(addr);
639 // We must make sure that the offset table entry we use is valid. If
640 // "addr" is past the end, start at the last known one and go forward.
641 index = MIN2(index, _next_offset_index-1);
642 HeapWord* q = _array->address_for_index(index);
643
644 uint offset = _array->offset_array(index); // Extend u_char to uint.
645 while (offset > N_words) {
646 // The excess of the offset from N_words indicates a power of Base
647 // to go back by.
648 size_t n_cards_back = entry_to_cards_back(offset);
649 q -= (N_words * n_cards_back);
650 assert(q >= _sp->bottom(), "Went below bottom!");
651 index -= n_cards_back;
652 offset = _array->offset_array(index);
653 }
654 while (offset == N_words) {
655 assert(q >= _sp->bottom(), "Went below bottom!");
656 q -= N_words;
657 index--;
658 offset = _array->offset_array(index);
659 }
660 assert(offset < N_words, "offset too large");
661 q -= offset;
662 HeapWord* n = q;
663
664 while (n <= addr) {
665 debug_only(HeapWord* last = q); // for debugging
666 q = n;
667 n += _sp->block_size(n);
668 }
669 assert(q <= addr, "wrong order for current and arg");
670 assert(addr <= n, "wrong order for arg and next");
671 return q;
672 }
673
674 //
675 // _next_offset_threshold
676 // | _next_offset_index
677 // v v
678 // +-------+-------+-------+-------+-------+
679 // | i-1 | i | i+1 | i+2 | i+3 |
680 // +-------+-------+-------+-------+-------+
681 // ( ^ ]
682 // block-start
683 //
684
685 void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
686 HeapWord* blk_end) {
687 assert(blk_start != NULL && blk_end > blk_start,
688 "phantom block");
689 assert(blk_end > _next_offset_threshold,
690 "should be past threshold");
691 assert(blk_start <= _next_offset_threshold,
692 "blk_start should be at or before threshold")
693 assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
694 "offset should be <= BlockOffsetSharedArray::N");
695 assert(Universe::heap()->is_in_reserved(blk_start),
696 "reference must be into the heap");
697 assert(Universe::heap()->is_in_reserved(blk_end-1),
698 "limit must be within the heap");
699 assert(_next_offset_threshold ==
700 _array->_reserved.start() + _next_offset_index*N_words,
701 "index must agree with threshold");
702
703 debug_only(size_t orig_next_offset_index = _next_offset_index;)
704
705 // Mark the card that holds the offset into the block. Note
706 // that _next_offset_index and _next_offset_threshold are not
707 // updated until the end of this method.
708 _array->set_offset_array(_next_offset_index,
709 _next_offset_threshold,
710 blk_start);
711
712 // We need to now mark the subsequent cards that this blk spans.
713
714 // Index of card on which blk ends.
715 size_t end_index = _array->index_for(blk_end - 1);
716
717 // Are there more cards left to be updated?
718 if (_next_offset_index + 1 <= end_index) {
719 HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1);
720 // Calculate rem_end this way because end_index
721 // may be the last valid index in the covered region.
722 HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
723 set_remainder_to_point_to_start(rem_st, rem_end);
724 }
725
726 // _next_offset_index and _next_offset_threshold updated here.
727 _next_offset_index = end_index + 1;
728 // Calculate _next_offset_threshold this way because end_index
729 // may be the last valid index in the covered region.
730 _next_offset_threshold = _array->address_for_index(end_index) +
731 N_words;
732 assert(_next_offset_threshold >= blk_end, "Incorrent offset threshold");
733
734 #ifdef ASSERT
735 // The offset can be 0 if the block starts on a boundary. That
736 // is checked by an assertion above.
737 size_t start_index = _array->index_for(blk_start);
738 HeapWord* boundary = _array->address_for_index(start_index);
739 assert((_array->offset_array(orig_next_offset_index) == 0 &&
740 blk_start == boundary) ||
741 (_array->offset_array(orig_next_offset_index) > 0 &&
742 _array->offset_array(orig_next_offset_index) <= N_words),
743 "offset array should have been set");
744 for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
745 assert(_array->offset_array(j) > 0 &&
746 _array->offset_array(j) <= (u_char) (N_words+N_powers-1),
747 "offset array should have been set");
748 }
749 #endif
750 }
751
752 HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
753 assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
754 "just checking");
755 _next_offset_index = _array->index_for(_bottom);
756 _next_offset_index++;
757 _next_offset_threshold =
758 _array->address_for_index(_next_offset_index);
759 return _next_offset_threshold;
760 }
761
762 void BlockOffsetArrayContigSpace::zero_bottom_entry() {
763 assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
764 "just checking");
765 size_t bottom_index = _array->index_for(_bottom);
766 _array->set_offset_array(bottom_index, 0);
767 }
768
769
770 void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) {
771 if (soc->reading()) {
772 // Null these values so that the serializer won't object to updating them.
773 _next_offset_threshold = NULL;
774 _next_offset_index = 0;
775 }
776 soc->do_ptr(&_next_offset_threshold);
777 soc->do_size_t(&_next_offset_index);
778 }
779
780 size_t BlockOffsetArrayContigSpace::last_active_index() const {
781 size_t result = _next_offset_index - 1;
782 return result >= 0 ? result : 0;
783 }