comparison src/share/vm/memory/sharedHeap.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 37f87013dfd8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // A "SharedHeap" is an implementation of a java heap for HotSpot. This
26 // is an abstract class: there may be many different kinds of heaps. This
27 // class defines the functions that a heap must implement, and contains
28 // infrastructure common to all heaps.
29
30 class PermGen;
31 class Generation;
32 class BarrierSet;
33 class GenRemSet;
34 class Space;
35 class SpaceClosure;
36 class OopClosure;
37 class OopsInGenClosure;
38 class ObjectClosure;
39 class SubTasksDone;
40 class WorkGang;
41 class CollectorPolicy;
42 class KlassHandle;
43
44 class SharedHeap : public CollectedHeap {
45 friend class VMStructs;
46
47 private:
48 // For claiming strong_roots tasks.
49 SubTasksDone* _process_strong_tasks;
50
51 protected:
52 // There should be only a single instance of "SharedHeap" in a program.
53 // This is enforced with the protected constructor below, which will also
54 // set the static pointer "_sh" to that instance.
55 static SharedHeap* _sh;
56
57 // All heaps contain a "permanent generation." This is some ways
58 // similar to a generation in a generational system, in other ways not.
59 // See the "PermGen" class.
60 PermGen* _perm_gen;
61
62 // and the Gen Remembered Set, at least one good enough to scan the perm
63 // gen.
64 GenRemSet* _rem_set;
65
66 // A gc policy, controls global gc resource issues
67 CollectorPolicy *_collector_policy;
68
69 // See the discussion below, in the specification of the reader function
70 // for this variable.
71 int _strong_roots_parity;
72
73 // If we're doing parallel GC, use this gang of threads.
74 WorkGang* _workers;
75
76 // Number of parallel threads currently working on GC tasks.
77 // O indicates use sequential code; 1 means use parallel code even with
78 // only one thread, for performance testing purposes.
79 int _n_par_threads;
80
81 // Full initialization is done in a concrete subtype's "initialize"
82 // function.
83 SharedHeap(CollectorPolicy* policy_);
84
85 public:
86 static SharedHeap* heap() { return _sh; }
87
88 CollectorPolicy *collector_policy() const { return _collector_policy; }
89
90 void set_barrier_set(BarrierSet* bs);
91
92 // Does operations required after initialization has been done.
93 virtual void post_initialize();
94
95 // Initialization of ("weak") reference processing support
96 virtual void ref_processing_init();
97
98 void set_perm(PermGen* perm_gen) { _perm_gen = perm_gen; }
99
100 // A helper function that fills an allocated-but-not-yet-initialized
101 // region with a garbage object.
102 static void fill_region_with_object(MemRegion mr);
103
104 // Minimum garbage fill object size
105 static size_t min_fill_size() { return (size_t)align_object_size(oopDesc::header_size()); }
106 static size_t min_fill_size_in_bytes() { return min_fill_size() * HeapWordSize; }
107
108 // This function returns the "GenRemSet" object that allows us to scan
109 // generations; at least the perm gen, possibly more in a fully
110 // generational heap.
111 GenRemSet* rem_set() { return _rem_set; }
112
113 // These function return the "permanent" generation, in which
114 // reflective objects are allocated and stored. Two versions, the second
115 // of which returns the view of the perm gen as a generation.
116 PermGen* perm() const { return _perm_gen; }
117 Generation* perm_gen() const { return _perm_gen->as_gen(); }
118
119 // Iteration functions.
120 void oop_iterate(OopClosure* cl) = 0;
121
122 // Same as above, restricted to a memory region.
123 virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
124
125 // Iterate over all objects allocated since the last collection, calling
126 // "cl->do_object" on each. The heap must have been initialized properly
127 // to support this function, or else this call will fail.
128 virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
129
130 // Iterate over all spaces in use in the heap, in an undefined order.
131 virtual void space_iterate(SpaceClosure* cl) = 0;
132
133 // A SharedHeap will contain some number of spaces. This finds the
134 // space whose reserved area contains the given address, or else returns
135 // NULL.
136 virtual Space* space_containing(const void* addr) const = 0;
137
138 bool no_gc_in_progress() { return !is_gc_active(); }
139
140 // Some collectors will perform "process_strong_roots" in parallel.
141 // Such a call will involve claiming some fine-grained tasks, such as
142 // scanning of threads. To make this process simpler, we provide the
143 // "strong_roots_parity()" method. Collectors that start parallel tasks
144 // whose threads invoke "process_strong_roots" must
145 // call "change_strong_roots_parity" in sequential code starting such a
146 // task. (This also means that a parallel thread may only call
147 // process_strong_roots once.)
148 //
149 // For calls to process_strong_roots by sequential code, the parity is
150 // updated automatically.
151 //
152 // The idea is that objects representing fine-grained tasks, such as
153 // threads, will contain a "parity" field. A task will is claimed in the
154 // current "process_strong_roots" call only if its parity field is the
155 // same as the "strong_roots_parity"; task claiming is accomplished by
156 // updating the parity field to the strong_roots_parity with a CAS.
157 //
158 // If the client meats this spec, then strong_roots_parity() will have
159 // the following properties:
160 // a) to return a different value than was returned before the last
161 // call to change_strong_roots_parity, and
162 // c) to never return a distinguished value (zero) with which such
163 // task-claiming variables may be initialized, to indicate "never
164 // claimed".
165 void change_strong_roots_parity();
166 int strong_roots_parity() { return _strong_roots_parity; }
167
168 enum ScanningOption {
169 SO_None = 0x0,
170 SO_AllClasses = 0x1,
171 SO_SystemClasses = 0x2,
172 SO_Symbols = 0x4,
173 SO_Strings = 0x8,
174 SO_CodeCache = 0x10
175 };
176
177 WorkGang* workers() const { return _workers; }
178
179 // Sets the number of parallel threads that will be doing tasks
180 // (such as process strong roots) subsequently.
181 virtual void set_par_threads(int t);
182
183 // Number of threads currently working on GC tasks.
184 int n_par_threads() { return _n_par_threads; }
185
186 // Invoke the "do_oop" method the closure "roots" on all root locations.
187 // If "collecting_perm_gen" is false, then roots that may only contain
188 // references to permGen objects are not scanned. If true, the
189 // "perm_gen" closure is applied to all older-to-younger refs in the
190 // permanent generation. The "so" argument determines which of roots
191 // the closure is applied to:
192 // "SO_None" does none;
193 // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
194 // "SO_SystemClasses" to all the "system" classes and loaders;
195 // "SO_Symbols" applies the closure to all entries in SymbolsTable;
196 // "SO_Strings" applies the closure to all entries in StringTable;
197 // "SO_CodeCache" applies the closure to all elements of the CodeCache.
198 void process_strong_roots(bool collecting_perm_gen,
199 ScanningOption so,
200 OopClosure* roots,
201 OopsInGenClosure* perm_blk);
202
203 // Apply "blk" to all the weak roots of the system. These include
204 // JNI weak roots, the code cache, system dictionary, symbol table,
205 // string table.
206 void process_weak_roots(OopClosure* root_closure,
207 OopClosure* non_root_closure);
208
209
210 // Like CollectedHeap::collect, but assume that the caller holds the Heap_lock.
211 virtual void collect_locked(GCCause::Cause cause) = 0;
212
213 // The functions below are helper functions that a subclass of
214 // "SharedHeap" can use in the implementation of its virtual
215 // functions.
216
217 protected:
218
219 // Do anything common to GC's.
220 virtual void gc_prologue(bool full) = 0;
221 virtual void gc_epilogue(bool full) = 0;
222
223 public:
224 //
225 // New methods from CollectedHeap
226 //
227
228 size_t permanent_capacity() const {
229 assert(perm_gen(), "NULL perm gen");
230 return perm_gen()->capacity();
231 }
232
233 size_t permanent_used() const {
234 assert(perm_gen(), "NULL perm gen");
235 return perm_gen()->used();
236 }
237
238 bool is_in_permanent(const void *p) const {
239 assert(perm_gen(), "NULL perm gen");
240 return perm_gen()->is_in_reserved(p);
241 }
242
243 // Different from is_in_permanent in that is_in_permanent
244 // only checks if p is in the reserved area of the heap
245 // and this checks to see if it in the commited area.
246 // This is typically used by things like the forte stackwalker
247 // during verification of suspicious frame values.
248 bool is_permanent(const void *p) const {
249 assert(perm_gen(), "NULL perm gen");
250 return perm_gen()->is_in(p);
251 }
252
253 HeapWord* permanent_mem_allocate(size_t size) {
254 assert(perm_gen(), "NULL perm gen");
255 return _perm_gen->mem_allocate(size);
256 }
257
258 void permanent_oop_iterate(OopClosure* cl) {
259 assert(perm_gen(), "NULL perm gen");
260 _perm_gen->oop_iterate(cl);
261 }
262
263 void permanent_object_iterate(ObjectClosure* cl) {
264 assert(perm_gen(), "NULL perm gen");
265 _perm_gen->object_iterate(cl);
266 }
267
268 // Some utilities.
269 void print_size_transition(size_t bytes_before,
270 size_t bytes_after,
271 size_t capacity);
272 };