comparison src/share/vm/opto/callnode.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3288958bf319
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 // Optimization - Graph Style
28
29 class Chaitin;
30 class NamedCounter;
31 class MultiNode;
32 class SafePointNode;
33 class CallNode;
34 class CallJavaNode;
35 class CallStaticJavaNode;
36 class CallDynamicJavaNode;
37 class CallRuntimeNode;
38 class CallLeafNode;
39 class CallLeafNoFPNode;
40 class AllocateNode;
41 class AllocateArrayNode;
42 class LockNode;
43 class UnlockNode;
44 class JVMState;
45 class OopMap;
46 class State;
47 class StartNode;
48 class MachCallNode;
49 class FastLockNode;
50
51 //------------------------------StartNode--------------------------------------
52 // The method start node
53 class StartNode : public MultiNode {
54 virtual uint cmp( const Node &n ) const;
55 virtual uint size_of() const; // Size is bigger
56 public:
57 const TypeTuple *_domain;
58 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
59 init_class_id(Class_Start);
60 init_flags(Flag_is_block_start);
61 init_req(0,this);
62 init_req(1,root);
63 }
64 virtual int Opcode() const;
65 virtual bool pinned() const { return true; };
66 virtual const Type *bottom_type() const;
67 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
68 virtual const Type *Value( PhaseTransform *phase ) const;
69 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
70 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
71 virtual const RegMask &in_RegMask(uint) const;
72 virtual Node *match( const ProjNode *proj, const Matcher *m );
73 virtual uint ideal_reg() const { return 0; }
74 #ifndef PRODUCT
75 virtual void dump_spec(outputStream *st) const;
76 #endif
77 };
78
79 //------------------------------StartOSRNode-----------------------------------
80 // The method start node for on stack replacement code
81 class StartOSRNode : public StartNode {
82 public:
83 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
84 virtual int Opcode() const;
85 static const TypeTuple *osr_domain();
86 };
87
88
89 //------------------------------ParmNode---------------------------------------
90 // Incoming parameters
91 class ParmNode : public ProjNode {
92 static const char * const names[TypeFunc::Parms+1];
93 public:
94 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {}
95 virtual int Opcode() const;
96 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
97 virtual uint ideal_reg() const;
98 #ifndef PRODUCT
99 virtual void dump_spec(outputStream *st) const;
100 #endif
101 };
102
103
104 //------------------------------ReturnNode-------------------------------------
105 // Return from subroutine node
106 class ReturnNode : public Node {
107 public:
108 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
109 virtual int Opcode() const;
110 virtual bool is_CFG() const { return true; }
111 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
112 virtual bool depends_only_on_test() const { return false; }
113 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
114 virtual const Type *Value( PhaseTransform *phase ) const;
115 virtual uint ideal_reg() const { return NotAMachineReg; }
116 virtual uint match_edge(uint idx) const;
117 #ifndef PRODUCT
118 virtual void dump_req() const;
119 #endif
120 };
121
122
123 //------------------------------RethrowNode------------------------------------
124 // Rethrow of exception at call site. Ends a procedure before rethrowing;
125 // ends the current basic block like a ReturnNode. Restores registers and
126 // unwinds stack. Rethrow happens in the caller's method.
127 class RethrowNode : public Node {
128 public:
129 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
130 virtual int Opcode() const;
131 virtual bool is_CFG() const { return true; }
132 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
133 virtual bool depends_only_on_test() const { return false; }
134 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
135 virtual const Type *Value( PhaseTransform *phase ) const;
136 virtual uint match_edge(uint idx) const;
137 virtual uint ideal_reg() const { return NotAMachineReg; }
138 #ifndef PRODUCT
139 virtual void dump_req() const;
140 #endif
141 };
142
143
144 //------------------------------TailCallNode-----------------------------------
145 // Pop stack frame and jump indirect
146 class TailCallNode : public ReturnNode {
147 public:
148 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
149 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
150 init_req(TypeFunc::Parms, target);
151 init_req(TypeFunc::Parms+1, moop);
152 }
153
154 virtual int Opcode() const;
155 virtual uint match_edge(uint idx) const;
156 };
157
158 //------------------------------TailJumpNode-----------------------------------
159 // Pop stack frame and jump indirect
160 class TailJumpNode : public ReturnNode {
161 public:
162 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
163 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
164 init_req(TypeFunc::Parms, target);
165 init_req(TypeFunc::Parms+1, ex_oop);
166 }
167
168 virtual int Opcode() const;
169 virtual uint match_edge(uint idx) const;
170 };
171
172 //-------------------------------JVMState-------------------------------------
173 // A linked list of JVMState nodes captures the whole interpreter state,
174 // plus GC roots, for all active calls at some call site in this compilation
175 // unit. (If there is no inlining, then the list has exactly one link.)
176 // This provides a way to map the optimized program back into the interpreter,
177 // or to let the GC mark the stack.
178 class JVMState : public ResourceObj {
179 private:
180 JVMState* _caller; // List pointer for forming scope chains
181 uint _depth; // One mroe than caller depth, or one.
182 uint _locoff; // Offset to locals in input edge mapping
183 uint _stkoff; // Offset to stack in input edge mapping
184 uint _monoff; // Offset to monitors in input edge mapping
185 uint _endoff; // Offset to end of input edge mapping
186 uint _sp; // Jave Expression Stack Pointer for this state
187 int _bci; // Byte Code Index of this JVM point
188 ciMethod* _method; // Method Pointer
189 SafePointNode* _map; // Map node associated with this scope
190 public:
191 friend class Compile;
192
193 // Because JVMState objects live over the entire lifetime of the
194 // Compile object, they are allocated into the comp_arena, which
195 // does not get resource marked or reset during the compile process
196 void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
197 void operator delete( void * ) { } // fast deallocation
198
199 // Create a new JVMState, ready for abstract interpretation.
200 JVMState(ciMethod* method, JVMState* caller);
201 JVMState(int stack_size); // root state; has a null method
202
203 // Access functions for the JVM
204 uint locoff() const { return _locoff; }
205 uint stkoff() const { return _stkoff; }
206 uint argoff() const { return _stkoff + _sp; }
207 uint monoff() const { return _monoff; }
208 uint endoff() const { return _endoff; }
209 uint oopoff() const { return debug_end(); }
210
211 int loc_size() const { return _stkoff - _locoff; }
212 int stk_size() const { return _monoff - _stkoff; }
213 int mon_size() const { return _endoff - _monoff; }
214
215 bool is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
216 bool is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
217 bool is_mon(uint i) const { return i >= _monoff && i < _endoff; }
218
219 uint sp() const { return _sp; }
220 int bci() const { return _bci; }
221 bool has_method() const { return _method != NULL; }
222 ciMethod* method() const { assert(has_method(), ""); return _method; }
223 JVMState* caller() const { return _caller; }
224 SafePointNode* map() const { return _map; }
225 uint depth() const { return _depth; }
226 uint debug_start() const; // returns locoff of root caller
227 uint debug_end() const; // returns endoff of self
228 uint debug_size() const { return loc_size() + sp() + mon_size(); }
229 uint debug_depth() const; // returns sum of debug_size values at all depths
230
231 // Returns the JVM state at the desired depth (1 == root).
232 JVMState* of_depth(int d) const;
233
234 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
235 bool same_calls_as(const JVMState* that) const;
236
237 // Monitors (monitors are stored as (boxNode, objNode) pairs
238 enum { logMonitorEdges = 1 };
239 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
240 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
241 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
242 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
243 bool is_monitor_box(uint off) const {
244 assert(is_mon(off), "should be called only for monitor edge");
245 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
246 }
247 bool is_monitor_use(uint off) const { return (is_mon(off)
248 && is_monitor_box(off))
249 || (caller() && caller()->is_monitor_use(off)); }
250
251 // Initialization functions for the JVM
252 void set_locoff(uint off) { _locoff = off; }
253 void set_stkoff(uint off) { _stkoff = off; }
254 void set_monoff(uint off) { _monoff = off; }
255 void set_endoff(uint off) { _endoff = off; }
256 void set_offsets(uint off) { _locoff = _stkoff = _monoff = _endoff = off; }
257 void set_map(SafePointNode *map) { _map = map; }
258 void set_sp(uint sp) { _sp = sp; }
259 void set_bci(int bci) { _bci = bci; }
260
261 // Miscellaneous utility functions
262 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
263 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
264
265 #ifndef PRODUCT
266 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
267 void dump_spec(outputStream *st) const;
268 void dump_on(outputStream* st) const;
269 void dump() const {
270 dump_on(tty);
271 }
272 #endif
273 };
274
275 //------------------------------SafePointNode----------------------------------
276 // A SafePointNode is a subclass of a MultiNode for convenience (and
277 // potential code sharing) only - conceptually it is independent of
278 // the Node semantics.
279 class SafePointNode : public MultiNode {
280 virtual uint cmp( const Node &n ) const;
281 virtual uint size_of() const; // Size is bigger
282
283 public:
284 SafePointNode(uint edges, JVMState* jvms,
285 // A plain safepoint advertises no memory effects (NULL):
286 const TypePtr* adr_type = NULL)
287 : MultiNode( edges ),
288 _jvms(jvms),
289 _oop_map(NULL),
290 _adr_type(adr_type)
291 {
292 init_class_id(Class_SafePoint);
293 }
294
295 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
296 JVMState* const _jvms; // Pointer to list of JVM State objects
297 const TypePtr* _adr_type; // What type of memory does this node produce?
298
299 // Many calls take *all* of memory as input,
300 // but some produce a limited subset of that memory as output.
301 // The adr_type reports the call's behavior as a store, not a load.
302
303 virtual JVMState* jvms() const { return _jvms; }
304 void set_jvms(JVMState* s) {
305 *(JVMState**)&_jvms = s; // override const attribute in the accessor
306 }
307 OopMap *oop_map() const { return _oop_map; }
308 void set_oop_map(OopMap *om) { _oop_map = om; }
309
310 // Functionality from old debug nodes which has changed
311 Node *local(JVMState* jvms, uint idx) const {
312 assert(verify_jvms(jvms), "jvms must match");
313 return in(jvms->locoff() + idx);
314 }
315 Node *stack(JVMState* jvms, uint idx) const {
316 assert(verify_jvms(jvms), "jvms must match");
317 return in(jvms->stkoff() + idx);
318 }
319 Node *argument(JVMState* jvms, uint idx) const {
320 assert(verify_jvms(jvms), "jvms must match");
321 return in(jvms->argoff() + idx);
322 }
323 Node *monitor_box(JVMState* jvms, uint idx) const {
324 assert(verify_jvms(jvms), "jvms must match");
325 return in(jvms->monitor_box_offset(idx));
326 }
327 Node *monitor_obj(JVMState* jvms, uint idx) const {
328 assert(verify_jvms(jvms), "jvms must match");
329 return in(jvms->monitor_obj_offset(idx));
330 }
331
332 void set_local(JVMState* jvms, uint idx, Node *c);
333
334 void set_stack(JVMState* jvms, uint idx, Node *c) {
335 assert(verify_jvms(jvms), "jvms must match");
336 set_req(jvms->stkoff() + idx, c);
337 }
338 void set_argument(JVMState* jvms, uint idx, Node *c) {
339 assert(verify_jvms(jvms), "jvms must match");
340 set_req(jvms->argoff() + idx, c);
341 }
342 void ensure_stack(JVMState* jvms, uint stk_size) {
343 assert(verify_jvms(jvms), "jvms must match");
344 int grow_by = (int)stk_size - (int)jvms->stk_size();
345 if (grow_by > 0) grow_stack(jvms, grow_by);
346 }
347 void grow_stack(JVMState* jvms, uint grow_by);
348 // Handle monitor stack
349 void push_monitor( const FastLockNode *lock );
350 void pop_monitor ();
351 Node *peek_monitor_box() const;
352 Node *peek_monitor_obj() const;
353
354 // Access functions for the JVM
355 Node *control () const { return in(TypeFunc::Control ); }
356 Node *i_o () const { return in(TypeFunc::I_O ); }
357 Node *memory () const { return in(TypeFunc::Memory ); }
358 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
359 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
360
361 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
362 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
363 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
364
365 MergeMemNode* merged_memory() const {
366 return in(TypeFunc::Memory)->as_MergeMem();
367 }
368
369 // The parser marks useless maps as dead when it's done with them:
370 bool is_killed() { return in(TypeFunc::Control) == NULL; }
371
372 // Exception states bubbling out of subgraphs such as inlined calls
373 // are recorded here. (There might be more than one, hence the "next".)
374 // This feature is used only for safepoints which serve as "maps"
375 // for JVM states during parsing, intrinsic expansion, etc.
376 SafePointNode* next_exception() const;
377 void set_next_exception(SafePointNode* n);
378 bool has_exceptions() const { return next_exception() != NULL; }
379
380 // Standard Node stuff
381 virtual int Opcode() const;
382 virtual bool pinned() const { return true; }
383 virtual const Type *Value( PhaseTransform *phase ) const;
384 virtual const Type *bottom_type() const { return Type::CONTROL; }
385 virtual const TypePtr *adr_type() const { return _adr_type; }
386 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
387 virtual Node *Identity( PhaseTransform *phase );
388 virtual uint ideal_reg() const { return 0; }
389 virtual const RegMask &in_RegMask(uint) const;
390 virtual const RegMask &out_RegMask() const;
391 virtual uint match_edge(uint idx) const;
392
393 static bool needs_polling_address_input();
394
395 #ifndef PRODUCT
396 virtual void dump_spec(outputStream *st) const;
397 #endif
398 };
399
400 //------------------------------CallNode---------------------------------------
401 // Call nodes now subsume the function of debug nodes at callsites, so they
402 // contain the functionality of a full scope chain of debug nodes.
403 class CallNode : public SafePointNode {
404 public:
405 const TypeFunc *_tf; // Function type
406 address _entry_point; // Address of method being called
407 float _cnt; // Estimate of number of times called
408 PointsToNode::EscapeState _escape_state;
409
410 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
411 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
412 _tf(tf),
413 _entry_point(addr),
414 _cnt(COUNT_UNKNOWN)
415 {
416 init_class_id(Class_Call);
417 init_flags(Flag_is_Call);
418 _escape_state = PointsToNode::UnknownEscape;
419 }
420
421 const TypeFunc* tf() const { return _tf; }
422 const address entry_point() const { return _entry_point; }
423 const float cnt() const { return _cnt; }
424
425 void set_tf(const TypeFunc* tf) { _tf = tf; }
426 void set_entry_point(address p) { _entry_point = p; }
427 void set_cnt(float c) { _cnt = c; }
428
429 virtual const Type *bottom_type() const;
430 virtual const Type *Value( PhaseTransform *phase ) const;
431 virtual Node *Identity( PhaseTransform *phase ) { return this; }
432 virtual uint cmp( const Node &n ) const;
433 virtual uint size_of() const = 0;
434 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
435 virtual Node *match( const ProjNode *proj, const Matcher *m );
436 virtual uint ideal_reg() const { return NotAMachineReg; }
437 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
438 // for some macro nodes whose expansion does not have a safepoint on the fast path.
439 virtual bool guaranteed_safepoint() { return true; }
440 // For macro nodes, the JVMState gets modified during expansion, so when cloning
441 // the node the JVMState must be cloned.
442 virtual void clone_jvms() { } // default is not to clone
443
444 virtual uint match_edge(uint idx) const;
445
446 #ifndef PRODUCT
447 virtual void dump_req() const;
448 virtual void dump_spec(outputStream *st) const;
449 #endif
450 };
451
452 //------------------------------CallJavaNode-----------------------------------
453 // Make a static or dynamic subroutine call node using Java calling
454 // convention. (The "Java" calling convention is the compiler's calling
455 // convention, as opposed to the interpreter's or that of native C.)
456 class CallJavaNode : public CallNode {
457 protected:
458 virtual uint cmp( const Node &n ) const;
459 virtual uint size_of() const; // Size is bigger
460
461 bool _optimized_virtual;
462 ciMethod* _method; // Method being direct called
463 public:
464 const int _bci; // Byte Code Index of call byte code
465 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
466 : CallNode(tf, addr, TypePtr::BOTTOM),
467 _method(method), _bci(bci), _optimized_virtual(false)
468 {
469 init_class_id(Class_CallJava);
470 }
471
472 virtual int Opcode() const;
473 ciMethod* method() const { return _method; }
474 void set_method(ciMethod *m) { _method = m; }
475 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
476 bool is_optimized_virtual() const { return _optimized_virtual; }
477
478 #ifndef PRODUCT
479 virtual void dump_spec(outputStream *st) const;
480 #endif
481 };
482
483 //------------------------------CallStaticJavaNode-----------------------------
484 // Make a direct subroutine call using Java calling convention (for static
485 // calls and optimized virtual calls, plus calls to wrappers for run-time
486 // routines); generates static stub.
487 class CallStaticJavaNode : public CallJavaNode {
488 virtual uint cmp( const Node &n ) const;
489 virtual uint size_of() const; // Size is bigger
490 public:
491 CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
492 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
493 init_class_id(Class_CallStaticJava);
494 }
495 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
496 const TypePtr* adr_type)
497 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
498 init_class_id(Class_CallStaticJava);
499 // This node calls a runtime stub, which often has narrow memory effects.
500 _adr_type = adr_type;
501 }
502 const char *_name; // Runtime wrapper name
503
504 // If this is an uncommon trap, return the request code, else zero.
505 int uncommon_trap_request() const;
506 static int extract_uncommon_trap_request(const Node* call);
507
508 virtual int Opcode() const;
509 #ifndef PRODUCT
510 virtual void dump_spec(outputStream *st) const;
511 #endif
512 };
513
514 //------------------------------CallDynamicJavaNode----------------------------
515 // Make a dispatched call using Java calling convention.
516 class CallDynamicJavaNode : public CallJavaNode {
517 virtual uint cmp( const Node &n ) const;
518 virtual uint size_of() const; // Size is bigger
519 public:
520 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
521 init_class_id(Class_CallDynamicJava);
522 }
523
524 int _vtable_index;
525 virtual int Opcode() const;
526 #ifndef PRODUCT
527 virtual void dump_spec(outputStream *st) const;
528 #endif
529 };
530
531 //------------------------------CallRuntimeNode--------------------------------
532 // Make a direct subroutine call node into compiled C++ code.
533 class CallRuntimeNode : public CallNode {
534 virtual uint cmp( const Node &n ) const;
535 virtual uint size_of() const; // Size is bigger
536 public:
537 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
538 const TypePtr* adr_type)
539 : CallNode(tf, addr, adr_type),
540 _name(name)
541 {
542 init_class_id(Class_CallRuntime);
543 }
544
545 const char *_name; // Printable name, if _method is NULL
546 virtual int Opcode() const;
547 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
548
549 #ifndef PRODUCT
550 virtual void dump_spec(outputStream *st) const;
551 #endif
552 };
553
554 //------------------------------CallLeafNode-----------------------------------
555 // Make a direct subroutine call node into compiled C++ code, without
556 // safepoints
557 class CallLeafNode : public CallRuntimeNode {
558 public:
559 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
560 const TypePtr* adr_type)
561 : CallRuntimeNode(tf, addr, name, adr_type)
562 {
563 init_class_id(Class_CallLeaf);
564 }
565 virtual int Opcode() const;
566 virtual bool guaranteed_safepoint() { return false; }
567 #ifndef PRODUCT
568 virtual void dump_spec(outputStream *st) const;
569 #endif
570 };
571
572 //------------------------------CallLeafNoFPNode-------------------------------
573 // CallLeafNode, not using floating point or using it in the same manner as
574 // the generated code
575 class CallLeafNoFPNode : public CallLeafNode {
576 public:
577 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
578 const TypePtr* adr_type)
579 : CallLeafNode(tf, addr, name, adr_type)
580 {
581 }
582 virtual int Opcode() const;
583 };
584
585
586 //------------------------------Allocate---------------------------------------
587 // High-level memory allocation
588 //
589 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
590 // get expanded into a code sequence containing a call. Unlike other CallNodes,
591 // they have 2 memory projections and 2 i_o projections (which are distinguished by
592 // the _is_io_use flag in the projection.) This is needed when expanding the node in
593 // order to differentiate the uses of the projection on the normal control path from
594 // those on the exception return path.
595 //
596 class AllocateNode : public CallNode {
597 public:
598 enum {
599 // Output:
600 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
601 // Inputs:
602 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
603 KlassNode, // type (maybe dynamic) of the obj.
604 InitialTest, // slow-path test (may be constant)
605 ALength, // array length (or TOP if none)
606 ParmLimit
607 };
608
609 static const TypeFunc* alloc_type() {
610 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
611 fields[AllocSize] = TypeInt::POS;
612 fields[KlassNode] = TypeInstPtr::NOTNULL;
613 fields[InitialTest] = TypeInt::BOOL;
614 fields[ALength] = TypeInt::INT; // length (can be a bad length)
615
616 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
617
618 // create result type (range)
619 fields = TypeTuple::fields(1);
620 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
621
622 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
623
624 return TypeFunc::make(domain, range);
625 }
626
627 virtual uint size_of() const; // Size is bigger
628 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
629 Node *size, Node *klass_node, Node *initial_test);
630 // Expansion modifies the JVMState, so we need to clone it
631 virtual void clone_jvms() {
632 set_jvms(jvms()->clone_deep(Compile::current()));
633 }
634 virtual int Opcode() const;
635 virtual uint ideal_reg() const { return Op_RegP; }
636 virtual bool guaranteed_safepoint() { return false; }
637
638 // Pattern-match a possible usage of AllocateNode.
639 // Return null if no allocation is recognized.
640 // The operand is the pointer produced by the (possible) allocation.
641 // It must be a projection of the Allocate or its subsequent CastPP.
642 // (Note: This function is defined in file graphKit.cpp, near
643 // GraphKit::new_instance/new_array, whose output it recognizes.)
644 // The 'ptr' may not have an offset unless the 'offset' argument is given.
645 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
646
647 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
648 // an offset, which is reported back to the caller.
649 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
650 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
651 intptr_t& offset);
652
653 // Dig the klass operand out of a (possible) allocation site.
654 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
655 AllocateNode* allo = Ideal_allocation(ptr, phase);
656 return (allo == NULL) ? NULL : allo->in(KlassNode);
657 }
658
659 // Conservatively small estimate of offset of first non-header byte.
660 int minimum_header_size() {
661 return is_AllocateArray() ? sizeof(arrayOopDesc) : sizeof(oopDesc);
662 }
663
664 // Return the corresponding initialization barrier (or null if none).
665 // Walks out edges to find it...
666 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
667 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
668 InitializeNode* initialization();
669
670 // Convenience for initialization->maybe_set_complete(phase)
671 bool maybe_set_complete(PhaseGVN* phase);
672 };
673
674 //------------------------------AllocateArray---------------------------------
675 //
676 // High-level array allocation
677 //
678 class AllocateArrayNode : public AllocateNode {
679 public:
680 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
681 Node* size, Node* klass_node, Node* initial_test,
682 Node* count_val
683 )
684 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
685 initial_test)
686 {
687 init_class_id(Class_AllocateArray);
688 set_req(AllocateNode::ALength, count_val);
689 }
690 virtual int Opcode() const;
691 virtual uint size_of() const; // Size is bigger
692
693 // Pattern-match a possible usage of AllocateArrayNode.
694 // Return null if no allocation is recognized.
695 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
696 AllocateNode* allo = Ideal_allocation(ptr, phase);
697 return (allo == NULL || !allo->is_AllocateArray())
698 ? NULL : allo->as_AllocateArray();
699 }
700
701 // Dig the length operand out of a (possible) array allocation site.
702 static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
703 AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
704 return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
705 }
706 };
707
708 //------------------------------AbstractLockNode-----------------------------------
709 class AbstractLockNode: public CallNode {
710 private:
711 bool _eliminate; // indicates this lock can be safely eliminated
712 #ifndef PRODUCT
713 NamedCounter* _counter;
714 #endif
715
716 protected:
717 // helper functions for lock elimination
718 //
719
720 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
721 GrowableArray<AbstractLockNode*> &lock_ops);
722 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
723 GrowableArray<AbstractLockNode*> &lock_ops);
724 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
725 GrowableArray<AbstractLockNode*> &lock_ops);
726 LockNode *find_matching_lock(UnlockNode* unlock);
727
728
729 public:
730 AbstractLockNode(const TypeFunc *tf)
731 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
732 _eliminate(false)
733 {
734 #ifndef PRODUCT
735 _counter = NULL;
736 #endif
737 }
738 virtual int Opcode() const = 0;
739 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
740 Node * box_node() const {return in(TypeFunc::Parms + 1); }
741 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
742 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
743
744 virtual uint size_of() const { return sizeof(*this); }
745
746 bool is_eliminated() {return _eliminate; }
747 // mark node as eliminated and update the counter if there is one
748 void set_eliminated();
749
750 #ifndef PRODUCT
751 void create_lock_counter(JVMState* s);
752 NamedCounter* counter() const { return _counter; }
753 #endif
754 };
755
756 //------------------------------Lock---------------------------------------
757 // High-level lock operation
758 //
759 // This is a subclass of CallNode because it is a macro node which gets expanded
760 // into a code sequence containing a call. This node takes 3 "parameters":
761 // 0 - object to lock
762 // 1 - a BoxLockNode
763 // 2 - a FastLockNode
764 //
765 class LockNode : public AbstractLockNode {
766 public:
767
768 static const TypeFunc *lock_type() {
769 // create input type (domain)
770 const Type **fields = TypeTuple::fields(3);
771 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
772 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
773 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
774 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
775
776 // create result type (range)
777 fields = TypeTuple::fields(0);
778
779 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
780
781 return TypeFunc::make(domain,range);
782 }
783
784 virtual int Opcode() const;
785 virtual uint size_of() const; // Size is bigger
786 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
787 init_class_id(Class_Lock);
788 init_flags(Flag_is_macro);
789 C->add_macro_node(this);
790 }
791 virtual bool guaranteed_safepoint() { return false; }
792
793 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
794 // Expansion modifies the JVMState, so we need to clone it
795 virtual void clone_jvms() {
796 set_jvms(jvms()->clone_deep(Compile::current()));
797 }
798 };
799
800 //------------------------------Unlock---------------------------------------
801 // High-level unlock operation
802 class UnlockNode : public AbstractLockNode {
803 public:
804 virtual int Opcode() const;
805 virtual uint size_of() const; // Size is bigger
806 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
807 init_class_id(Class_Unlock);
808 init_flags(Flag_is_macro);
809 C->add_macro_node(this);
810 }
811 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
812 // unlock is never a safepoint
813 virtual bool guaranteed_safepoint() { return false; }
814 };