comparison src/share/vm/opto/matcher.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children eac007780a58
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_matcher.cpp.incl"
27
28 OptoReg::Name OptoReg::c_frame_pointer;
29
30
31
32 const int Matcher::base2reg[Type::lastype] = {
33 Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0,
34 Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
35 Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
36 0, 0/*abio*/,
37 Op_RegP /* Return address */, 0, /* the memories */
38 Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
39 0 /*bottom*/
40 };
41
42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
44 RegMask Matcher::STACK_ONLY_mask;
45 RegMask Matcher::c_frame_ptr_mask;
46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
47 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
48
49 //---------------------------Matcher-------------------------------------------
50 Matcher::Matcher( Node_List &proj_list ) :
51 PhaseTransform( Phase::Ins_Select ),
52 #ifdef ASSERT
53 _old2new_map(C->comp_arena()),
54 #endif
55 _shared_constants(C->comp_arena()),
56 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
57 _swallowed(swallowed),
58 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
59 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
60 _must_clone(must_clone), _proj_list(proj_list),
61 _register_save_policy(register_save_policy),
62 _c_reg_save_policy(c_reg_save_policy),
63 _register_save_type(register_save_type),
64 _ruleName(ruleName),
65 _allocation_started(false),
66 _states_arena(Chunk::medium_size),
67 _visited(&_states_arena),
68 _shared(&_states_arena),
69 _dontcare(&_states_arena) {
70 C->set_matcher(this);
71
72 idealreg2spillmask[Op_RegI] = NULL;
73 idealreg2spillmask[Op_RegL] = NULL;
74 idealreg2spillmask[Op_RegF] = NULL;
75 idealreg2spillmask[Op_RegD] = NULL;
76 idealreg2spillmask[Op_RegP] = NULL;
77
78 idealreg2debugmask[Op_RegI] = NULL;
79 idealreg2debugmask[Op_RegL] = NULL;
80 idealreg2debugmask[Op_RegF] = NULL;
81 idealreg2debugmask[Op_RegD] = NULL;
82 idealreg2debugmask[Op_RegP] = NULL;
83 }
84
85 //------------------------------warp_incoming_stk_arg------------------------
86 // This warps a VMReg into an OptoReg::Name
87 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
88 OptoReg::Name warped;
89 if( reg->is_stack() ) { // Stack slot argument?
90 warped = OptoReg::add(_old_SP, reg->reg2stack() );
91 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
92 if( warped >= _in_arg_limit )
93 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
94 if (!RegMask::can_represent(warped)) {
95 // the compiler cannot represent this method's calling sequence
96 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
97 return OptoReg::Bad;
98 }
99 return warped;
100 }
101 return OptoReg::as_OptoReg(reg);
102 }
103
104 //---------------------------compute_old_SP------------------------------------
105 OptoReg::Name Compile::compute_old_SP() {
106 int fixed = fixed_slots();
107 int preserve = in_preserve_stack_slots();
108 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
109 }
110
111
112
113 #ifdef ASSERT
114 void Matcher::verify_new_nodes_only(Node* xroot) {
115 // Make sure that the new graph only references new nodes
116 ResourceMark rm;
117 Unique_Node_List worklist;
118 VectorSet visited(Thread::current()->resource_area());
119 worklist.push(xroot);
120 while (worklist.size() > 0) {
121 Node* n = worklist.pop();
122 visited <<= n->_idx;
123 assert(C->node_arena()->contains(n), "dead node");
124 for (uint j = 0; j < n->req(); j++) {
125 Node* in = n->in(j);
126 if (in != NULL) {
127 assert(C->node_arena()->contains(in), "dead node");
128 if (!visited.test(in->_idx)) {
129 worklist.push(in);
130 }
131 }
132 }
133 }
134 }
135 #endif
136
137
138 //---------------------------match---------------------------------------------
139 void Matcher::match( ) {
140 // One-time initialization of some register masks.
141 init_spill_mask( C->root()->in(1) );
142 _return_addr_mask = return_addr();
143 #ifdef _LP64
144 // Pointers take 2 slots in 64-bit land
145 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
146 #endif
147
148 // Map a Java-signature return type into return register-value
149 // machine registers for 0, 1 and 2 returned values.
150 const TypeTuple *range = C->tf()->range();
151 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
152 // Get ideal-register return type
153 int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
154 // Get machine return register
155 uint sop = C->start()->Opcode();
156 OptoRegPair regs = return_value(ireg, false);
157
158 // And mask for same
159 _return_value_mask = RegMask(regs.first());
160 if( OptoReg::is_valid(regs.second()) )
161 _return_value_mask.Insert(regs.second());
162 }
163
164 // ---------------
165 // Frame Layout
166
167 // Need the method signature to determine the incoming argument types,
168 // because the types determine which registers the incoming arguments are
169 // in, and this affects the matched code.
170 const TypeTuple *domain = C->tf()->domain();
171 uint argcnt = domain->cnt() - TypeFunc::Parms;
172 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
173 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
174 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
175 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
176 uint i;
177 for( i = 0; i<argcnt; i++ ) {
178 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
179 }
180
181 // Pass array of ideal registers and length to USER code (from the AD file)
182 // that will convert this to an array of register numbers.
183 const StartNode *start = C->start();
184 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
185 #ifdef ASSERT
186 // Sanity check users' calling convention. Real handy while trying to
187 // get the initial port correct.
188 { for (uint i = 0; i<argcnt; i++) {
189 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
190 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
191 _parm_regs[i].set_bad();
192 continue;
193 }
194 VMReg parm_reg = vm_parm_regs[i].first();
195 assert(parm_reg->is_valid(), "invalid arg?");
196 if (parm_reg->is_reg()) {
197 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
198 assert(can_be_java_arg(opto_parm_reg) ||
199 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
200 opto_parm_reg == inline_cache_reg(),
201 "parameters in register must be preserved by runtime stubs");
202 }
203 for (uint j = 0; j < i; j++) {
204 assert(parm_reg != vm_parm_regs[j].first(),
205 "calling conv. must produce distinct regs");
206 }
207 }
208 }
209 #endif
210
211 // Do some initial frame layout.
212
213 // Compute the old incoming SP (may be called FP) as
214 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
215 _old_SP = C->compute_old_SP();
216 assert( is_even(_old_SP), "must be even" );
217
218 // Compute highest incoming stack argument as
219 // _old_SP + out_preserve_stack_slots + incoming argument size.
220 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
221 assert( is_even(_in_arg_limit), "out_preserve must be even" );
222 for( i = 0; i < argcnt; i++ ) {
223 // Permit args to have no register
224 _calling_convention_mask[i].Clear();
225 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
226 continue;
227 }
228 // calling_convention returns stack arguments as a count of
229 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
230 // the allocators point of view, taking into account all the
231 // preserve area, locks & pad2.
232
233 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
234 if( OptoReg::is_valid(reg1))
235 _calling_convention_mask[i].Insert(reg1);
236
237 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
238 if( OptoReg::is_valid(reg2))
239 _calling_convention_mask[i].Insert(reg2);
240
241 // Saved biased stack-slot register number
242 _parm_regs[i].set_pair(reg2, reg1);
243 }
244
245 // Finally, make sure the incoming arguments take up an even number of
246 // words, in case the arguments or locals need to contain doubleword stack
247 // slots. The rest of the system assumes that stack slot pairs (in
248 // particular, in the spill area) which look aligned will in fact be
249 // aligned relative to the stack pointer in the target machine. Double
250 // stack slots will always be allocated aligned.
251 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
252
253 // Compute highest outgoing stack argument as
254 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
255 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
256 assert( is_even(_out_arg_limit), "out_preserve must be even" );
257
258 if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
259 // the compiler cannot represent this method's calling sequence
260 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
261 }
262
263 if (C->failing()) return; // bailed out on incoming arg failure
264
265 // ---------------
266 // Collect roots of matcher trees. Every node for which
267 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
268 // can be a valid interior of some tree.
269 find_shared( C->root() );
270 find_shared( C->top() );
271
272 C->print_method("Before Matching", 2);
273
274 // Swap out to old-space; emptying new-space
275 Arena *old = C->node_arena()->move_contents(C->old_arena());
276
277 // Save debug and profile information for nodes in old space:
278 _old_node_note_array = C->node_note_array();
279 if (_old_node_note_array != NULL) {
280 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
281 (C->comp_arena(), _old_node_note_array->length(),
282 0, NULL));
283 }
284
285 // Pre-size the new_node table to avoid the need for range checks.
286 grow_new_node_array(C->unique());
287
288 // Reset node counter so MachNodes start with _idx at 0
289 int nodes = C->unique(); // save value
290 C->set_unique(0);
291
292 // Recursively match trees from old space into new space.
293 // Correct leaves of new-space Nodes; they point to old-space.
294 _visited.Clear(); // Clear visit bits for xform call
295 C->set_cached_top_node(xform( C->top(), nodes ));
296 if (!C->failing()) {
297 Node* xroot = xform( C->root(), 1 );
298 if (xroot == NULL) {
299 Matcher::soft_match_failure(); // recursive matching process failed
300 C->record_method_not_compilable("instruction match failed");
301 } else {
302 // During matching shared constants were attached to C->root()
303 // because xroot wasn't available yet, so transfer the uses to
304 // the xroot.
305 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
306 Node* n = C->root()->fast_out(j);
307 if (C->node_arena()->contains(n)) {
308 assert(n->in(0) == C->root(), "should be control user");
309 n->set_req(0, xroot);
310 --j;
311 --jmax;
312 }
313 }
314
315 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
316 #ifdef ASSERT
317 verify_new_nodes_only(xroot);
318 #endif
319 }
320 }
321 if (C->top() == NULL || C->root() == NULL) {
322 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
323 }
324 if (C->failing()) {
325 // delete old;
326 old->destruct_contents();
327 return;
328 }
329 assert( C->top(), "" );
330 assert( C->root(), "" );
331 validate_null_checks();
332
333 // Now smoke old-space
334 NOT_DEBUG( old->destruct_contents() );
335
336 // ------------------------
337 // Set up save-on-entry registers
338 Fixup_Save_On_Entry( );
339 }
340
341
342 //------------------------------Fixup_Save_On_Entry----------------------------
343 // The stated purpose of this routine is to take care of save-on-entry
344 // registers. However, the overall goal of the Match phase is to convert into
345 // machine-specific instructions which have RegMasks to guide allocation.
346 // So what this procedure really does is put a valid RegMask on each input
347 // to the machine-specific variations of all Return, TailCall and Halt
348 // instructions. It also adds edgs to define the save-on-entry values (and of
349 // course gives them a mask).
350
351 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
352 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
353 // Do all the pre-defined register masks
354 rms[TypeFunc::Control ] = RegMask::Empty;
355 rms[TypeFunc::I_O ] = RegMask::Empty;
356 rms[TypeFunc::Memory ] = RegMask::Empty;
357 rms[TypeFunc::ReturnAdr] = ret_adr;
358 rms[TypeFunc::FramePtr ] = fp;
359 return rms;
360 }
361
362 //---------------------------init_first_stack_mask-----------------------------
363 // Create the initial stack mask used by values spilling to the stack.
364 // Disallow any debug info in outgoing argument areas by setting the
365 // initial mask accordingly.
366 void Matcher::init_first_stack_mask() {
367
368 // Allocate storage for spill masks as masks for the appropriate load type.
369 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*10);
370 idealreg2spillmask[Op_RegI] = &rms[0];
371 idealreg2spillmask[Op_RegL] = &rms[1];
372 idealreg2spillmask[Op_RegF] = &rms[2];
373 idealreg2spillmask[Op_RegD] = &rms[3];
374 idealreg2spillmask[Op_RegP] = &rms[4];
375 idealreg2debugmask[Op_RegI] = &rms[5];
376 idealreg2debugmask[Op_RegL] = &rms[6];
377 idealreg2debugmask[Op_RegF] = &rms[7];
378 idealreg2debugmask[Op_RegD] = &rms[8];
379 idealreg2debugmask[Op_RegP] = &rms[9];
380
381 OptoReg::Name i;
382
383 // At first, start with the empty mask
384 C->FIRST_STACK_mask().Clear();
385
386 // Add in the incoming argument area
387 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
388 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
389 C->FIRST_STACK_mask().Insert(i);
390
391 // Add in all bits past the outgoing argument area
392 guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
393 "must be able to represent all call arguments in reg mask");
394 init = _out_arg_limit;
395 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
396 C->FIRST_STACK_mask().Insert(i);
397
398 // Finally, set the "infinite stack" bit.
399 C->FIRST_STACK_mask().set_AllStack();
400
401 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
402 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
403 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
404 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
405 idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
406 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
407 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
408 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
409 idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
410 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
411 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
412
413 // Make up debug masks. Any spill slot plus callee-save registers.
414 // Caller-save registers are assumed to be trashable by the various
415 // inline-cache fixup routines.
416 *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
417 *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
418 *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
419 *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
420 *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
421
422 // Prevent stub compilations from attempting to reference
423 // callee-saved registers from debug info
424 bool exclude_soe = !Compile::current()->is_method_compilation();
425
426 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
427 // registers the caller has to save do not work
428 if( _register_save_policy[i] == 'C' ||
429 _register_save_policy[i] == 'A' ||
430 (_register_save_policy[i] == 'E' && exclude_soe) ) {
431 idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
432 idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
433 idealreg2debugmask[Op_RegF]->Remove(i); // masks
434 idealreg2debugmask[Op_RegD]->Remove(i);
435 idealreg2debugmask[Op_RegP]->Remove(i);
436 }
437 }
438 }
439
440 //---------------------------is_save_on_entry----------------------------------
441 bool Matcher::is_save_on_entry( int reg ) {
442 return
443 _register_save_policy[reg] == 'E' ||
444 _register_save_policy[reg] == 'A' || // Save-on-entry register?
445 // Also save argument registers in the trampolining stubs
446 (C->save_argument_registers() && is_spillable_arg(reg));
447 }
448
449 //---------------------------Fixup_Save_On_Entry-------------------------------
450 void Matcher::Fixup_Save_On_Entry( ) {
451 init_first_stack_mask();
452
453 Node *root = C->root(); // Short name for root
454 // Count number of save-on-entry registers.
455 uint soe_cnt = number_of_saved_registers();
456 uint i;
457
458 // Find the procedure Start Node
459 StartNode *start = C->start();
460 assert( start, "Expect a start node" );
461
462 // Save argument registers in the trampolining stubs
463 if( C->save_argument_registers() )
464 for( i = 0; i < _last_Mach_Reg; i++ )
465 if( is_spillable_arg(i) )
466 soe_cnt++;
467
468 // Input RegMask array shared by all Returns.
469 // The type for doubles and longs has a count of 2, but
470 // there is only 1 returned value
471 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
472 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
473 // Returns have 0 or 1 returned values depending on call signature.
474 // Return register is specified by return_value in the AD file.
475 if (ret_edge_cnt > TypeFunc::Parms)
476 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
477
478 // Input RegMask array shared by all Rethrows.
479 uint reth_edge_cnt = TypeFunc::Parms+1;
480 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
481 // Rethrow takes exception oop only, but in the argument 0 slot.
482 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
483 #ifdef _LP64
484 // Need two slots for ptrs in 64-bit land
485 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
486 #endif
487
488 // Input RegMask array shared by all TailCalls
489 uint tail_call_edge_cnt = TypeFunc::Parms+2;
490 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
491
492 // Input RegMask array shared by all TailJumps
493 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
494 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
495
496 // TailCalls have 2 returned values (target & moop), whose masks come
497 // from the usual MachNode/MachOper mechanism. Find a sample
498 // TailCall to extract these masks and put the correct masks into
499 // the tail_call_rms array.
500 for( i=1; i < root->req(); i++ ) {
501 MachReturnNode *m = root->in(i)->as_MachReturn();
502 if( m->ideal_Opcode() == Op_TailCall ) {
503 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
504 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
505 break;
506 }
507 }
508
509 // TailJumps have 2 returned values (target & ex_oop), whose masks come
510 // from the usual MachNode/MachOper mechanism. Find a sample
511 // TailJump to extract these masks and put the correct masks into
512 // the tail_jump_rms array.
513 for( i=1; i < root->req(); i++ ) {
514 MachReturnNode *m = root->in(i)->as_MachReturn();
515 if( m->ideal_Opcode() == Op_TailJump ) {
516 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
517 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
518 break;
519 }
520 }
521
522 // Input RegMask array shared by all Halts
523 uint halt_edge_cnt = TypeFunc::Parms;
524 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
525
526 // Capture the return input masks into each exit flavor
527 for( i=1; i < root->req(); i++ ) {
528 MachReturnNode *exit = root->in(i)->as_MachReturn();
529 switch( exit->ideal_Opcode() ) {
530 case Op_Return : exit->_in_rms = ret_rms; break;
531 case Op_Rethrow : exit->_in_rms = reth_rms; break;
532 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
533 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
534 case Op_Halt : exit->_in_rms = halt_rms; break;
535 default : ShouldNotReachHere();
536 }
537 }
538
539 // Next unused projection number from Start.
540 int proj_cnt = C->tf()->domain()->cnt();
541
542 // Do all the save-on-entry registers. Make projections from Start for
543 // them, and give them a use at the exit points. To the allocator, they
544 // look like incoming register arguments.
545 for( i = 0; i < _last_Mach_Reg; i++ ) {
546 if( is_save_on_entry(i) ) {
547
548 // Add the save-on-entry to the mask array
549 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
550 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
551 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
552 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
553 // Halts need the SOE registers, but only in the stack as debug info.
554 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
555 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
556
557 Node *mproj;
558
559 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
560 // into a single RegD.
561 if( (i&1) == 0 &&
562 _register_save_type[i ] == Op_RegF &&
563 _register_save_type[i+1] == Op_RegF &&
564 is_save_on_entry(i+1) ) {
565 // Add other bit for double
566 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
567 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
568 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
569 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
570 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
571 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
572 proj_cnt += 2; // Skip 2 for doubles
573 }
574 else if( (i&1) == 1 && // Else check for high half of double
575 _register_save_type[i-1] == Op_RegF &&
576 _register_save_type[i ] == Op_RegF &&
577 is_save_on_entry(i-1) ) {
578 ret_rms [ ret_edge_cnt] = RegMask::Empty;
579 reth_rms [ reth_edge_cnt] = RegMask::Empty;
580 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
581 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
582 halt_rms [ halt_edge_cnt] = RegMask::Empty;
583 mproj = C->top();
584 }
585 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
586 // into a single RegL.
587 else if( (i&1) == 0 &&
588 _register_save_type[i ] == Op_RegI &&
589 _register_save_type[i+1] == Op_RegI &&
590 is_save_on_entry(i+1) ) {
591 // Add other bit for long
592 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
593 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
594 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
595 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
596 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
597 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
598 proj_cnt += 2; // Skip 2 for longs
599 }
600 else if( (i&1) == 1 && // Else check for high half of long
601 _register_save_type[i-1] == Op_RegI &&
602 _register_save_type[i ] == Op_RegI &&
603 is_save_on_entry(i-1) ) {
604 ret_rms [ ret_edge_cnt] = RegMask::Empty;
605 reth_rms [ reth_edge_cnt] = RegMask::Empty;
606 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
607 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
608 halt_rms [ halt_edge_cnt] = RegMask::Empty;
609 mproj = C->top();
610 } else {
611 // Make a projection for it off the Start
612 mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
613 }
614
615 ret_edge_cnt ++;
616 reth_edge_cnt ++;
617 tail_call_edge_cnt ++;
618 tail_jump_edge_cnt ++;
619 halt_edge_cnt ++;
620
621 // Add a use of the SOE register to all exit paths
622 for( uint j=1; j < root->req(); j++ )
623 root->in(j)->add_req(mproj);
624 } // End of if a save-on-entry register
625 } // End of for all machine registers
626 }
627
628 //------------------------------init_spill_mask--------------------------------
629 void Matcher::init_spill_mask( Node *ret ) {
630 if( idealreg2regmask[Op_RegI] ) return; // One time only init
631
632 OptoReg::c_frame_pointer = c_frame_pointer();
633 c_frame_ptr_mask = c_frame_pointer();
634 #ifdef _LP64
635 // pointers are twice as big
636 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
637 #endif
638
639 // Start at OptoReg::stack0()
640 STACK_ONLY_mask.Clear();
641 OptoReg::Name init = OptoReg::stack2reg(0);
642 // STACK_ONLY_mask is all stack bits
643 OptoReg::Name i;
644 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
645 STACK_ONLY_mask.Insert(i);
646 // Also set the "infinite stack" bit.
647 STACK_ONLY_mask.set_AllStack();
648
649 // Copy the register names over into the shared world
650 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
651 // SharedInfo::regName[i] = regName[i];
652 // Handy RegMasks per machine register
653 mreg2regmask[i].Insert(i);
654 }
655
656 // Grab the Frame Pointer
657 Node *fp = ret->in(TypeFunc::FramePtr);
658 Node *mem = ret->in(TypeFunc::Memory);
659 const TypePtr* atp = TypePtr::BOTTOM;
660 // Share frame pointer while making spill ops
661 set_shared(fp);
662
663 // Compute generic short-offset Loads
664 MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
665 MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
666 MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
667 MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
668 MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
669 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
670 spillD != NULL && spillP != NULL, "");
671
672 // Get the ADLC notion of the right regmask, for each basic type.
673 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
674 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
675 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
676 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
677 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
678 }
679
680 #ifdef ASSERT
681 static void match_alias_type(Compile* C, Node* n, Node* m) {
682 if (!VerifyAliases) return; // do not go looking for trouble by default
683 const TypePtr* nat = n->adr_type();
684 const TypePtr* mat = m->adr_type();
685 int nidx = C->get_alias_index(nat);
686 int midx = C->get_alias_index(mat);
687 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
688 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
689 for (uint i = 1; i < n->req(); i++) {
690 Node* n1 = n->in(i);
691 const TypePtr* n1at = n1->adr_type();
692 if (n1at != NULL) {
693 nat = n1at;
694 nidx = C->get_alias_index(n1at);
695 }
696 }
697 }
698 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
699 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
700 switch (n->Opcode()) {
701 case Op_PrefetchRead:
702 case Op_PrefetchWrite:
703 nidx = Compile::AliasIdxRaw;
704 nat = TypeRawPtr::BOTTOM;
705 break;
706 }
707 }
708 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
709 switch (n->Opcode()) {
710 case Op_ClearArray:
711 midx = Compile::AliasIdxRaw;
712 mat = TypeRawPtr::BOTTOM;
713 break;
714 }
715 }
716 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
717 switch (n->Opcode()) {
718 case Op_Return:
719 case Op_Rethrow:
720 case Op_Halt:
721 case Op_TailCall:
722 case Op_TailJump:
723 nidx = Compile::AliasIdxBot;
724 nat = TypePtr::BOTTOM;
725 break;
726 }
727 }
728 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
729 switch (n->Opcode()) {
730 case Op_StrComp:
731 case Op_MemBarVolatile:
732 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
733 nidx = Compile::AliasIdxTop;
734 nat = NULL;
735 break;
736 }
737 }
738 if (nidx != midx) {
739 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
740 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
741 n->dump();
742 m->dump();
743 }
744 assert(C->subsume_loads() && C->must_alias(nat, midx),
745 "must not lose alias info when matching");
746 }
747 }
748 #endif
749
750
751 //------------------------------MStack-----------------------------------------
752 // State and MStack class used in xform() and find_shared() iterative methods.
753 enum Node_State { Pre_Visit, // node has to be pre-visited
754 Visit, // visit node
755 Post_Visit, // post-visit node
756 Alt_Post_Visit // alternative post-visit path
757 };
758
759 class MStack: public Node_Stack {
760 public:
761 MStack(int size) : Node_Stack(size) { }
762
763 void push(Node *n, Node_State ns) {
764 Node_Stack::push(n, (uint)ns);
765 }
766 void push(Node *n, Node_State ns, Node *parent, int indx) {
767 ++_inode_top;
768 if ((_inode_top + 1) >= _inode_max) grow();
769 _inode_top->node = parent;
770 _inode_top->indx = (uint)indx;
771 ++_inode_top;
772 _inode_top->node = n;
773 _inode_top->indx = (uint)ns;
774 }
775 Node *parent() {
776 pop();
777 return node();
778 }
779 Node_State state() const {
780 return (Node_State)index();
781 }
782 void set_state(Node_State ns) {
783 set_index((uint)ns);
784 }
785 };
786
787
788 //------------------------------xform------------------------------------------
789 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
790 // Node in new-space. Given a new-space Node, recursively walk his children.
791 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
792 Node *Matcher::xform( Node *n, int max_stack ) {
793 // Use one stack to keep both: child's node/state and parent's node/index
794 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
795 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
796
797 while (mstack.is_nonempty()) {
798 n = mstack.node(); // Leave node on stack
799 Node_State nstate = mstack.state();
800 if (nstate == Visit) {
801 mstack.set_state(Post_Visit);
802 Node *oldn = n;
803 // Old-space or new-space check
804 if (!C->node_arena()->contains(n)) {
805 // Old space!
806 Node* m;
807 if (has_new_node(n)) { // Not yet Label/Reduced
808 m = new_node(n);
809 } else {
810 if (!is_dontcare(n)) { // Matcher can match this guy
811 // Calls match special. They match alone with no children.
812 // Their children, the incoming arguments, match normally.
813 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
814 if (C->failing()) return NULL;
815 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
816 } else { // Nothing the matcher cares about
817 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
818 // Convert to machine-dependent projection
819 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
820 if (m->in(0) != NULL) // m might be top
821 collect_null_checks(m);
822 } else { // Else just a regular 'ol guy
823 m = n->clone(); // So just clone into new-space
824 // Def-Use edges will be added incrementally as Uses
825 // of this node are matched.
826 assert(m->outcnt() == 0, "no Uses of this clone yet");
827 }
828 }
829
830 set_new_node(n, m); // Map old to new
831 if (_old_node_note_array != NULL) {
832 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
833 n->_idx);
834 C->set_node_notes_at(m->_idx, nn);
835 }
836 debug_only(match_alias_type(C, n, m));
837 }
838 n = m; // n is now a new-space node
839 mstack.set_node(n);
840 }
841
842 // New space!
843 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
844
845 int i;
846 // Put precedence edges on stack first (match them last).
847 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
848 Node *m = oldn->in(i);
849 if (m == NULL) break;
850 // set -1 to call add_prec() instead of set_req() during Step1
851 mstack.push(m, Visit, n, -1);
852 }
853
854 // For constant debug info, I'd rather have unmatched constants.
855 int cnt = n->req();
856 JVMState* jvms = n->jvms();
857 int debug_cnt = jvms ? jvms->debug_start() : cnt;
858
859 // Now do only debug info. Clone constants rather than matching.
860 // Constants are represented directly in the debug info without
861 // the need for executable machine instructions.
862 // Monitor boxes are also represented directly.
863 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
864 Node *m = n->in(i); // Get input
865 int op = m->Opcode();
866 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
867 if( op == Op_ConI || op == Op_ConP ||
868 op == Op_ConF || op == Op_ConD || op == Op_ConL
869 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
870 ) {
871 m = m->clone();
872 mstack.push(m, Post_Visit, n, i); // Don't neet to visit
873 mstack.push(m->in(0), Visit, m, 0);
874 } else {
875 mstack.push(m, Visit, n, i);
876 }
877 }
878
879 // And now walk his children, and convert his inputs to new-space.
880 for( ; i >= 0; --i ) { // For all normal inputs do
881 Node *m = n->in(i); // Get input
882 if(m != NULL)
883 mstack.push(m, Visit, n, i);
884 }
885
886 }
887 else if (nstate == Post_Visit) {
888 // Set xformed input
889 Node *p = mstack.parent();
890 if (p != NULL) { // root doesn't have parent
891 int i = (int)mstack.index();
892 if (i >= 0)
893 p->set_req(i, n); // required input
894 else if (i == -1)
895 p->add_prec(n); // precedence input
896 else
897 ShouldNotReachHere();
898 }
899 mstack.pop(); // remove processed node from stack
900 }
901 else {
902 ShouldNotReachHere();
903 }
904 } // while (mstack.is_nonempty())
905 return n; // Return new-space Node
906 }
907
908 //------------------------------warp_outgoing_stk_arg------------------------
909 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
910 // Convert outgoing argument location to a pre-biased stack offset
911 if (reg->is_stack()) {
912 OptoReg::Name warped = reg->reg2stack();
913 // Adjust the stack slot offset to be the register number used
914 // by the allocator.
915 warped = OptoReg::add(begin_out_arg_area, warped);
916 // Keep track of the largest numbered stack slot used for an arg.
917 // Largest used slot per call-site indicates the amount of stack
918 // that is killed by the call.
919 if( warped >= out_arg_limit_per_call )
920 out_arg_limit_per_call = OptoReg::add(warped,1);
921 if (!RegMask::can_represent(warped)) {
922 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
923 return OptoReg::Bad;
924 }
925 return warped;
926 }
927 return OptoReg::as_OptoReg(reg);
928 }
929
930
931 //------------------------------match_sfpt-------------------------------------
932 // Helper function to match call instructions. Calls match special.
933 // They match alone with no children. Their children, the incoming
934 // arguments, match normally.
935 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
936 MachSafePointNode *msfpt = NULL;
937 MachCallNode *mcall = NULL;
938 uint cnt;
939 // Split out case for SafePoint vs Call
940 CallNode *call;
941 const TypeTuple *domain;
942 ciMethod* method = NULL;
943 if( sfpt->is_Call() ) {
944 call = sfpt->as_Call();
945 domain = call->tf()->domain();
946 cnt = domain->cnt();
947
948 // Match just the call, nothing else
949 MachNode *m = match_tree(call);
950 if (C->failing()) return NULL;
951 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
952
953 // Copy data from the Ideal SafePoint to the machine version
954 mcall = m->as_MachCall();
955
956 mcall->set_tf( call->tf());
957 mcall->set_entry_point(call->entry_point());
958 mcall->set_cnt( call->cnt());
959
960 if( mcall->is_MachCallJava() ) {
961 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
962 const CallJavaNode *call_java = call->as_CallJava();
963 method = call_java->method();
964 mcall_java->_method = method;
965 mcall_java->_bci = call_java->_bci;
966 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
967 if( mcall_java->is_MachCallStaticJava() )
968 mcall_java->as_MachCallStaticJava()->_name =
969 call_java->as_CallStaticJava()->_name;
970 if( mcall_java->is_MachCallDynamicJava() )
971 mcall_java->as_MachCallDynamicJava()->_vtable_index =
972 call_java->as_CallDynamicJava()->_vtable_index;
973 }
974 else if( mcall->is_MachCallRuntime() ) {
975 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
976 }
977 msfpt = mcall;
978 }
979 // This is a non-call safepoint
980 else {
981 call = NULL;
982 domain = NULL;
983 MachNode *mn = match_tree(sfpt);
984 if (C->failing()) return NULL;
985 msfpt = mn->as_MachSafePoint();
986 cnt = TypeFunc::Parms;
987 }
988
989 // Advertise the correct memory effects (for anti-dependence computation).
990 msfpt->set_adr_type(sfpt->adr_type());
991
992 // Allocate a private array of RegMasks. These RegMasks are not shared.
993 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
994 // Empty them all.
995 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
996
997 // Do all the pre-defined non-Empty register masks
998 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
999 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1000
1001 // Place first outgoing argument can possibly be put.
1002 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1003 assert( is_even(begin_out_arg_area), "" );
1004 // Compute max outgoing register number per call site.
1005 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1006 // Calls to C may hammer extra stack slots above and beyond any arguments.
1007 // These are usually backing store for register arguments for varargs.
1008 if( call != NULL && call->is_CallRuntime() )
1009 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1010
1011
1012 // Do the normal argument list (parameters) register masks
1013 int argcnt = cnt - TypeFunc::Parms;
1014 if( argcnt > 0 ) { // Skip it all if we have no args
1015 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1016 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1017 int i;
1018 for( i = 0; i < argcnt; i++ ) {
1019 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1020 }
1021 // V-call to pick proper calling convention
1022 call->calling_convention( sig_bt, parm_regs, argcnt );
1023
1024 #ifdef ASSERT
1025 // Sanity check users' calling convention. Really handy during
1026 // the initial porting effort. Fairly expensive otherwise.
1027 { for (int i = 0; i<argcnt; i++) {
1028 if( !parm_regs[i].first()->is_valid() &&
1029 !parm_regs[i].second()->is_valid() ) continue;
1030 VMReg reg1 = parm_regs[i].first();
1031 VMReg reg2 = parm_regs[i].second();
1032 for (int j = 0; j < i; j++) {
1033 if( !parm_regs[j].first()->is_valid() &&
1034 !parm_regs[j].second()->is_valid() ) continue;
1035 VMReg reg3 = parm_regs[j].first();
1036 VMReg reg4 = parm_regs[j].second();
1037 if( !reg1->is_valid() ) {
1038 assert( !reg2->is_valid(), "valid halvsies" );
1039 } else if( !reg3->is_valid() ) {
1040 assert( !reg4->is_valid(), "valid halvsies" );
1041 } else {
1042 assert( reg1 != reg2, "calling conv. must produce distinct regs");
1043 assert( reg1 != reg3, "calling conv. must produce distinct regs");
1044 assert( reg1 != reg4, "calling conv. must produce distinct regs");
1045 assert( reg2 != reg3, "calling conv. must produce distinct regs");
1046 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1047 assert( reg3 != reg4, "calling conv. must produce distinct regs");
1048 }
1049 }
1050 }
1051 }
1052 #endif
1053
1054 // Visit each argument. Compute its outgoing register mask.
1055 // Return results now can have 2 bits returned.
1056 // Compute max over all outgoing arguments both per call-site
1057 // and over the entire method.
1058 for( i = 0; i < argcnt; i++ ) {
1059 // Address of incoming argument mask to fill in
1060 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1061 if( !parm_regs[i].first()->is_valid() &&
1062 !parm_regs[i].second()->is_valid() ) {
1063 continue; // Avoid Halves
1064 }
1065 // Grab first register, adjust stack slots and insert in mask.
1066 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1067 if (OptoReg::is_valid(reg1))
1068 rm->Insert( reg1 );
1069 // Grab second register (if any), adjust stack slots and insert in mask.
1070 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1071 if (OptoReg::is_valid(reg2))
1072 rm->Insert( reg2 );
1073 } // End of for all arguments
1074
1075 // Compute number of stack slots needed to restore stack in case of
1076 // Pascal-style argument popping.
1077 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1078 }
1079
1080 // Compute the max stack slot killed by any call. These will not be
1081 // available for debug info, and will be used to adjust FIRST_STACK_mask
1082 // after all call sites have been visited.
1083 if( _out_arg_limit < out_arg_limit_per_call)
1084 _out_arg_limit = out_arg_limit_per_call;
1085
1086 if (mcall) {
1087 // Kill the outgoing argument area, including any non-argument holes and
1088 // any legacy C-killed slots. Use Fat-Projections to do the killing.
1089 // Since the max-per-method covers the max-per-call-site and debug info
1090 // is excluded on the max-per-method basis, debug info cannot land in
1091 // this killed area.
1092 uint r_cnt = mcall->tf()->range()->cnt();
1093 MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1094 if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1095 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1096 } else {
1097 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1098 proj->_rout.Insert(OptoReg::Name(i));
1099 }
1100 if( proj->_rout.is_NotEmpty() )
1101 _proj_list.push(proj);
1102 }
1103 // Transfer the safepoint information from the call to the mcall
1104 // Move the JVMState list
1105 msfpt->set_jvms(sfpt->jvms());
1106 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1107 jvms->set_map(sfpt);
1108 }
1109
1110 // Debug inputs begin just after the last incoming parameter
1111 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1112 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1113
1114 // Move the OopMap
1115 msfpt->_oop_map = sfpt->_oop_map;
1116
1117 // Registers killed by the call are set in the local scheduling pass
1118 // of Global Code Motion.
1119 return msfpt;
1120 }
1121
1122 //---------------------------match_tree----------------------------------------
1123 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
1124 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
1125 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1126 // a Load's result RegMask for memoization in idealreg2regmask[]
1127 MachNode *Matcher::match_tree( const Node *n ) {
1128 assert( n->Opcode() != Op_Phi, "cannot match" );
1129 assert( !n->is_block_start(), "cannot match" );
1130 // Set the mark for all locally allocated State objects.
1131 // When this call returns, the _states_arena arena will be reset
1132 // freeing all State objects.
1133 ResourceMark rm( &_states_arena );
1134
1135 LabelRootDepth = 0;
1136
1137 // StoreNodes require their Memory input to match any LoadNodes
1138 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1139
1140 // State object for root node of match tree
1141 // Allocate it on _states_arena - stack allocation can cause stack overflow.
1142 State *s = new (&_states_arena) State;
1143 s->_kids[0] = NULL;
1144 s->_kids[1] = NULL;
1145 s->_leaf = (Node*)n;
1146 // Label the input tree, allocating labels from top-level arena
1147 Label_Root( n, s, n->in(0), mem );
1148 if (C->failing()) return NULL;
1149
1150 // The minimum cost match for the whole tree is found at the root State
1151 uint mincost = max_juint;
1152 uint cost = max_juint;
1153 uint i;
1154 for( i = 0; i < NUM_OPERANDS; i++ ) {
1155 if( s->valid(i) && // valid entry and
1156 s->_cost[i] < cost && // low cost and
1157 s->_rule[i] >= NUM_OPERANDS ) // not an operand
1158 cost = s->_cost[mincost=i];
1159 }
1160 if (mincost == max_juint) {
1161 #ifndef PRODUCT
1162 tty->print("No matching rule for:");
1163 s->dump();
1164 #endif
1165 Matcher::soft_match_failure();
1166 return NULL;
1167 }
1168 // Reduce input tree based upon the state labels to machine Nodes
1169 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1170 #ifdef ASSERT
1171 _old2new_map.map(n->_idx, m);
1172 #endif
1173
1174 // Add any Matcher-ignored edges
1175 uint cnt = n->req();
1176 uint start = 1;
1177 if( mem != (Node*)1 ) start = MemNode::Memory+1;
1178 if( n->Opcode() == Op_AddP ) {
1179 assert( mem == (Node*)1, "" );
1180 start = AddPNode::Base+1;
1181 }
1182 for( i = start; i < cnt; i++ ) {
1183 if( !n->match_edge(i) ) {
1184 if( i < m->req() )
1185 m->ins_req( i, n->in(i) );
1186 else
1187 m->add_req( n->in(i) );
1188 }
1189 }
1190
1191 return m;
1192 }
1193
1194
1195 //------------------------------match_into_reg---------------------------------
1196 // Choose to either match this Node in a register or part of the current
1197 // match tree. Return true for requiring a register and false for matching
1198 // as part of the current match tree.
1199 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1200
1201 const Type *t = m->bottom_type();
1202
1203 if( t->singleton() ) {
1204 // Never force constants into registers. Allow them to match as
1205 // constants or registers. Copies of the same value will share
1206 // the same register. See find_shared_constant.
1207 return false;
1208 } else { // Not a constant
1209 // Stop recursion if they have different Controls.
1210 // Slot 0 of constants is not really a Control.
1211 if( control && m->in(0) && control != m->in(0) ) {
1212
1213 // Actually, we can live with the most conservative control we
1214 // find, if it post-dominates the others. This allows us to
1215 // pick up load/op/store trees where the load can float a little
1216 // above the store.
1217 Node *x = control;
1218 const uint max_scan = 6; // Arbitrary scan cutoff
1219 uint j;
1220 for( j=0; j<max_scan; j++ ) {
1221 if( x->is_Region() ) // Bail out at merge points
1222 return true;
1223 x = x->in(0);
1224 if( x == m->in(0) ) // Does 'control' post-dominate
1225 break; // m->in(0)? If so, we can use it
1226 }
1227 if( j == max_scan ) // No post-domination before scan end?
1228 return true; // Then break the match tree up
1229 }
1230 }
1231
1232 // Not forceably cloning. If shared, put it into a register.
1233 return shared;
1234 }
1235
1236
1237 //------------------------------Instruction Selection--------------------------
1238 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1239 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
1240 // things the Matcher does not match (e.g., Memory), and things with different
1241 // Controls (hence forced into different blocks). We pass in the Control
1242 // selected for this entire State tree.
1243
1244 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1245 // Store and the Load must have identical Memories (as well as identical
1246 // pointers). Since the Matcher does not have anything for Memory (and
1247 // does not handle DAGs), I have to match the Memory input myself. If the
1248 // Tree root is a Store, I require all Loads to have the identical memory.
1249 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1250 // Since Label_Root is a recursive function, its possible that we might run
1251 // out of stack space. See bugs 6272980 & 6227033 for more info.
1252 LabelRootDepth++;
1253 if (LabelRootDepth > MaxLabelRootDepth) {
1254 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1255 return NULL;
1256 }
1257 uint care = 0; // Edges matcher cares about
1258 uint cnt = n->req();
1259 uint i = 0;
1260
1261 // Examine children for memory state
1262 // Can only subsume a child into your match-tree if that child's memory state
1263 // is not modified along the path to another input.
1264 // It is unsafe even if the other inputs are separate roots.
1265 Node *input_mem = NULL;
1266 for( i = 1; i < cnt; i++ ) {
1267 if( !n->match_edge(i) ) continue;
1268 Node *m = n->in(i); // Get ith input
1269 assert( m, "expect non-null children" );
1270 if( m->is_Load() ) {
1271 if( input_mem == NULL ) {
1272 input_mem = m->in(MemNode::Memory);
1273 } else if( input_mem != m->in(MemNode::Memory) ) {
1274 input_mem = NodeSentinel;
1275 }
1276 }
1277 }
1278
1279 for( i = 1; i < cnt; i++ ){// For my children
1280 if( !n->match_edge(i) ) continue;
1281 Node *m = n->in(i); // Get ith input
1282 // Allocate states out of a private arena
1283 State *s = new (&_states_arena) State;
1284 svec->_kids[care++] = s;
1285 assert( care <= 2, "binary only for now" );
1286
1287 // Recursively label the State tree.
1288 s->_kids[0] = NULL;
1289 s->_kids[1] = NULL;
1290 s->_leaf = m;
1291
1292 // Check for leaves of the State Tree; things that cannot be a part of
1293 // the current tree. If it finds any, that value is matched as a
1294 // register operand. If not, then the normal matching is used.
1295 if( match_into_reg(n, m, control, i, is_shared(m)) ||
1296 //
1297 // Stop recursion if this is LoadNode and the root of this tree is a
1298 // StoreNode and the load & store have different memories.
1299 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1300 // Can NOT include the match of a subtree when its memory state
1301 // is used by any of the other subtrees
1302 (input_mem == NodeSentinel) ) {
1303 #ifndef PRODUCT
1304 // Print when we exclude matching due to different memory states at input-loads
1305 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1306 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1307 tty->print_cr("invalid input_mem");
1308 }
1309 #endif
1310 // Switch to a register-only opcode; this value must be in a register
1311 // and cannot be subsumed as part of a larger instruction.
1312 s->DFA( m->ideal_reg(), m );
1313
1314 } else {
1315 // If match tree has no control and we do, adopt it for entire tree
1316 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1317 control = m->in(0); // Pick up control
1318 // Else match as a normal part of the match tree.
1319 control = Label_Root(m,s,control,mem);
1320 if (C->failing()) return NULL;
1321 }
1322 }
1323
1324
1325 // Call DFA to match this node, and return
1326 svec->DFA( n->Opcode(), n );
1327
1328 #ifdef ASSERT
1329 uint x;
1330 for( x = 0; x < _LAST_MACH_OPER; x++ )
1331 if( svec->valid(x) )
1332 break;
1333
1334 if (x >= _LAST_MACH_OPER) {
1335 n->dump();
1336 svec->dump();
1337 assert( false, "bad AD file" );
1338 }
1339 #endif
1340 return control;
1341 }
1342
1343
1344 // Con nodes reduced using the same rule can share their MachNode
1345 // which reduces the number of copies of a constant in the final
1346 // program. The register allocator is free to split uses later to
1347 // split live ranges.
1348 MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
1349 if (!leaf->is_Con()) return NULL;
1350
1351 // See if this Con has already been reduced using this rule.
1352 if (_shared_constants.Size() <= leaf->_idx) return NULL;
1353 MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
1354 if (last != NULL && rule == last->rule()) {
1355 // Get the new space root.
1356 Node* xroot = new_node(C->root());
1357 if (xroot == NULL) {
1358 // This shouldn't happen give the order of matching.
1359 return NULL;
1360 }
1361
1362 // Shared constants need to have their control be root so they
1363 // can be scheduled properly.
1364 Node* control = last->in(0);
1365 if (control != xroot) {
1366 if (control == NULL || control == C->root()) {
1367 last->set_req(0, xroot);
1368 } else {
1369 assert(false, "unexpected control");
1370 return NULL;
1371 }
1372 }
1373 return last;
1374 }
1375 return NULL;
1376 }
1377
1378
1379 //------------------------------ReduceInst-------------------------------------
1380 // Reduce a State tree (with given Control) into a tree of MachNodes.
1381 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1382 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
1383 // Each MachNode has a number of complicated MachOper operands; each
1384 // MachOper also covers a further tree of Ideal Nodes.
1385
1386 // The root of the Ideal match tree is always an instruction, so we enter
1387 // the recursion here. After building the MachNode, we need to recurse
1388 // the tree checking for these cases:
1389 // (1) Child is an instruction -
1390 // Build the instruction (recursively), add it as an edge.
1391 // Build a simple operand (register) to hold the result of the instruction.
1392 // (2) Child is an interior part of an instruction -
1393 // Skip over it (do nothing)
1394 // (3) Child is the start of a operand -
1395 // Build the operand, place it inside the instruction
1396 // Call ReduceOper.
1397 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1398 assert( rule >= NUM_OPERANDS, "called with operand rule" );
1399
1400 MachNode* shared_con = find_shared_constant(s->_leaf, rule);
1401 if (shared_con != NULL) {
1402 return shared_con;
1403 }
1404
1405 // Build the object to represent this state & prepare for recursive calls
1406 MachNode *mach = s->MachNodeGenerator( rule, C );
1407 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1408 assert( mach->_opnds[0] != NULL, "Missing result operand" );
1409 Node *leaf = s->_leaf;
1410 // Check for instruction or instruction chain rule
1411 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1412 // Instruction
1413 mach->add_req( leaf->in(0) ); // Set initial control
1414 // Reduce interior of complex instruction
1415 ReduceInst_Interior( s, rule, mem, mach, 1 );
1416 } else {
1417 // Instruction chain rules are data-dependent on their inputs
1418 mach->add_req(0); // Set initial control to none
1419 ReduceInst_Chain_Rule( s, rule, mem, mach );
1420 }
1421
1422 // If a Memory was used, insert a Memory edge
1423 if( mem != (Node*)1 )
1424 mach->ins_req(MemNode::Memory,mem);
1425
1426 // If the _leaf is an AddP, insert the base edge
1427 if( leaf->Opcode() == Op_AddP )
1428 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1429
1430 uint num_proj = _proj_list.size();
1431
1432 // Perform any 1-to-many expansions required
1433 MachNode *ex = mach->Expand(s,_proj_list);
1434 if( ex != mach ) {
1435 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1436 if( ex->in(1)->is_Con() )
1437 ex->in(1)->set_req(0, C->root());
1438 // Remove old node from the graph
1439 for( uint i=0; i<mach->req(); i++ ) {
1440 mach->set_req(i,NULL);
1441 }
1442 }
1443
1444 // PhaseChaitin::fixup_spills will sometimes generate spill code
1445 // via the matcher. By the time, nodes have been wired into the CFG,
1446 // and any further nodes generated by expand rules will be left hanging
1447 // in space, and will not get emitted as output code. Catch this.
1448 // Also, catch any new register allocation constraints ("projections")
1449 // generated belatedly during spill code generation.
1450 if (_allocation_started) {
1451 guarantee(ex == mach, "no expand rules during spill generation");
1452 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1453 }
1454
1455 if (leaf->is_Con()) {
1456 // Record the con for sharing
1457 _shared_constants.map(leaf->_idx, ex);
1458 }
1459
1460 return ex;
1461 }
1462
1463 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1464 // 'op' is what I am expecting to receive
1465 int op = _leftOp[rule];
1466 // Operand type to catch childs result
1467 // This is what my child will give me.
1468 int opnd_class_instance = s->_rule[op];
1469 // Choose between operand class or not.
1470 // This is what I will recieve.
1471 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1472 // New rule for child. Chase operand classes to get the actual rule.
1473 int newrule = s->_rule[catch_op];
1474
1475 if( newrule < NUM_OPERANDS ) {
1476 // Chain from operand or operand class, may be output of shared node
1477 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1478 "Bad AD file: Instruction chain rule must chain from operand");
1479 // Insert operand into array of operands for this instruction
1480 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1481
1482 ReduceOper( s, newrule, mem, mach );
1483 } else {
1484 // Chain from the result of an instruction
1485 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1486 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1487 Node *mem1 = (Node*)1;
1488 mach->add_req( ReduceInst(s, newrule, mem1) );
1489 }
1490 return;
1491 }
1492
1493
1494 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1495 if( s->_leaf->is_Load() ) {
1496 Node *mem2 = s->_leaf->in(MemNode::Memory);
1497 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1498 mem = mem2;
1499 }
1500 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1501 if( mach->in(0) == NULL )
1502 mach->set_req(0, s->_leaf->in(0));
1503 }
1504
1505 // Now recursively walk the state tree & add operand list.
1506 for( uint i=0; i<2; i++ ) { // binary tree
1507 State *newstate = s->_kids[i];
1508 if( newstate == NULL ) break; // Might only have 1 child
1509 // 'op' is what I am expecting to receive
1510 int op;
1511 if( i == 0 ) {
1512 op = _leftOp[rule];
1513 } else {
1514 op = _rightOp[rule];
1515 }
1516 // Operand type to catch childs result
1517 // This is what my child will give me.
1518 int opnd_class_instance = newstate->_rule[op];
1519 // Choose between operand class or not.
1520 // This is what I will receive.
1521 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1522 // New rule for child. Chase operand classes to get the actual rule.
1523 int newrule = newstate->_rule[catch_op];
1524
1525 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1526 // Operand/operandClass
1527 // Insert operand into array of operands for this instruction
1528 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1529 ReduceOper( newstate, newrule, mem, mach );
1530
1531 } else { // Child is internal operand or new instruction
1532 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1533 // internal operand --> call ReduceInst_Interior
1534 // Interior of complex instruction. Do nothing but recurse.
1535 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1536 } else {
1537 // instruction --> call build operand( ) to catch result
1538 // --> ReduceInst( newrule )
1539 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1540 Node *mem1 = (Node*)1;
1541 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1542 }
1543 }
1544 assert( mach->_opnds[num_opnds-1], "" );
1545 }
1546 return num_opnds;
1547 }
1548
1549 // This routine walks the interior of possible complex operands.
1550 // At each point we check our children in the match tree:
1551 // (1) No children -
1552 // We are a leaf; add _leaf field as an input to the MachNode
1553 // (2) Child is an internal operand -
1554 // Skip over it ( do nothing )
1555 // (3) Child is an instruction -
1556 // Call ReduceInst recursively and
1557 // and instruction as an input to the MachNode
1558 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1559 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1560 State *kid = s->_kids[0];
1561 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1562
1563 // Leaf? And not subsumed?
1564 if( kid == NULL && !_swallowed[rule] ) {
1565 mach->add_req( s->_leaf ); // Add leaf pointer
1566 return; // Bail out
1567 }
1568
1569 if( s->_leaf->is_Load() ) {
1570 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1571 mem = s->_leaf->in(MemNode::Memory);
1572 }
1573 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1574 if( !mach->in(0) )
1575 mach->set_req(0,s->_leaf->in(0));
1576 else {
1577 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1578 }
1579 }
1580
1581 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
1582 int newrule;
1583 if( i == 0 )
1584 newrule = kid->_rule[_leftOp[rule]];
1585 else
1586 newrule = kid->_rule[_rightOp[rule]];
1587
1588 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1589 // Internal operand; recurse but do nothing else
1590 ReduceOper( kid, newrule, mem, mach );
1591
1592 } else { // Child is a new instruction
1593 // Reduce the instruction, and add a direct pointer from this
1594 // machine instruction to the newly reduced one.
1595 Node *mem1 = (Node*)1;
1596 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1597 }
1598 }
1599 }
1600
1601
1602 // -------------------------------------------------------------------------
1603 // Java-Java calling convention
1604 // (what you use when Java calls Java)
1605
1606 //------------------------------find_receiver----------------------------------
1607 // For a given signature, return the OptoReg for parameter 0.
1608 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1609 VMRegPair regs;
1610 BasicType sig_bt = T_OBJECT;
1611 calling_convention(&sig_bt, &regs, 1, is_outgoing);
1612 // Return argument 0 register. In the LP64 build pointers
1613 // take 2 registers, but the VM wants only the 'main' name.
1614 return OptoReg::as_OptoReg(regs.first());
1615 }
1616
1617 // A method-klass-holder may be passed in the inline_cache_reg
1618 // and then expanded into the inline_cache_reg and a method_oop register
1619 // defined in ad_<arch>.cpp
1620
1621
1622 //------------------------------find_shared------------------------------------
1623 // Set bits if Node is shared or otherwise a root
1624 void Matcher::find_shared( Node *n ) {
1625 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1626 MStack mstack(C->unique() * 2);
1627 mstack.push(n, Visit); // Don't need to pre-visit root node
1628 while (mstack.is_nonempty()) {
1629 n = mstack.node(); // Leave node on stack
1630 Node_State nstate = mstack.state();
1631 if (nstate == Pre_Visit) {
1632 if (is_visited(n)) { // Visited already?
1633 // Node is shared and has no reason to clone. Flag it as shared.
1634 // This causes it to match into a register for the sharing.
1635 set_shared(n); // Flag as shared and
1636 mstack.pop(); // remove node from stack
1637 continue;
1638 }
1639 nstate = Visit; // Not already visited; so visit now
1640 }
1641 if (nstate == Visit) {
1642 mstack.set_state(Post_Visit);
1643 set_visited(n); // Flag as visited now
1644 bool mem_op = false;
1645
1646 switch( n->Opcode() ) { // Handle some opcodes special
1647 case Op_Phi: // Treat Phis as shared roots
1648 case Op_Parm:
1649 case Op_Proj: // All handled specially during matching
1650 set_shared(n);
1651 set_dontcare(n);
1652 break;
1653 case Op_If:
1654 case Op_CountedLoopEnd:
1655 mstack.set_state(Alt_Post_Visit); // Alternative way
1656 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
1657 // with matching cmp/branch in 1 instruction. The Matcher needs the
1658 // Bool and CmpX side-by-side, because it can only get at constants
1659 // that are at the leaves of Match trees, and the Bool's condition acts
1660 // as a constant here.
1661 mstack.push(n->in(1), Visit); // Clone the Bool
1662 mstack.push(n->in(0), Pre_Visit); // Visit control input
1663 continue; // while (mstack.is_nonempty())
1664 case Op_ConvI2D: // These forms efficiently match with a prior
1665 case Op_ConvI2F: // Load but not a following Store
1666 if( n->in(1)->is_Load() && // Prior load
1667 n->outcnt() == 1 && // Not already shared
1668 n->unique_out()->is_Store() ) // Following store
1669 set_shared(n); // Force it to be a root
1670 break;
1671 case Op_ReverseBytesI:
1672 case Op_ReverseBytesL:
1673 if( n->in(1)->is_Load() && // Prior load
1674 n->outcnt() == 1 ) // Not already shared
1675 set_shared(n); // Force it to be a root
1676 break;
1677 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
1678 case Op_IfFalse:
1679 case Op_IfTrue:
1680 case Op_MachProj:
1681 case Op_MergeMem:
1682 case Op_Catch:
1683 case Op_CatchProj:
1684 case Op_CProj:
1685 case Op_JumpProj:
1686 case Op_JProj:
1687 case Op_NeverBranch:
1688 set_dontcare(n);
1689 break;
1690 case Op_Jump:
1691 mstack.push(n->in(1), Visit); // Switch Value
1692 mstack.push(n->in(0), Pre_Visit); // Visit Control input
1693 continue; // while (mstack.is_nonempty())
1694 case Op_StrComp:
1695 set_shared(n); // Force result into register (it will be anyways)
1696 break;
1697 case Op_ConP: { // Convert pointers above the centerline to NUL
1698 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1699 const TypePtr* tp = tn->type()->is_ptr();
1700 if (tp->_ptr == TypePtr::AnyNull) {
1701 tn->set_type(TypePtr::NULL_PTR);
1702 }
1703 break;
1704 }
1705 case Op_Binary: // These are introduced in the Post_Visit state.
1706 ShouldNotReachHere();
1707 break;
1708 case Op_StoreB: // Do match these, despite no ideal reg
1709 case Op_StoreC:
1710 case Op_StoreCM:
1711 case Op_StoreD:
1712 case Op_StoreF:
1713 case Op_StoreI:
1714 case Op_StoreL:
1715 case Op_StoreP:
1716 case Op_Store16B:
1717 case Op_Store8B:
1718 case Op_Store4B:
1719 case Op_Store8C:
1720 case Op_Store4C:
1721 case Op_Store2C:
1722 case Op_Store4I:
1723 case Op_Store2I:
1724 case Op_Store2L:
1725 case Op_Store4F:
1726 case Op_Store2F:
1727 case Op_Store2D:
1728 case Op_ClearArray:
1729 case Op_SafePoint:
1730 mem_op = true;
1731 break;
1732 case Op_LoadB:
1733 case Op_LoadC:
1734 case Op_LoadD:
1735 case Op_LoadF:
1736 case Op_LoadI:
1737 case Op_LoadKlass:
1738 case Op_LoadL:
1739 case Op_LoadS:
1740 case Op_LoadP:
1741 case Op_LoadRange:
1742 case Op_LoadD_unaligned:
1743 case Op_LoadL_unaligned:
1744 case Op_Load16B:
1745 case Op_Load8B:
1746 case Op_Load4B:
1747 case Op_Load4C:
1748 case Op_Load2C:
1749 case Op_Load8C:
1750 case Op_Load8S:
1751 case Op_Load4S:
1752 case Op_Load2S:
1753 case Op_Load4I:
1754 case Op_Load2I:
1755 case Op_Load2L:
1756 case Op_Load4F:
1757 case Op_Load2F:
1758 case Op_Load2D:
1759 mem_op = true;
1760 // Must be root of match tree due to prior load conflict
1761 if( C->subsume_loads() == false ) {
1762 set_shared(n);
1763 }
1764 // Fall into default case
1765 default:
1766 if( !n->ideal_reg() )
1767 set_dontcare(n); // Unmatchable Nodes
1768 } // end_switch
1769
1770 for(int i = n->req() - 1; i >= 0; --i) { // For my children
1771 Node *m = n->in(i); // Get ith input
1772 if (m == NULL) continue; // Ignore NULLs
1773 uint mop = m->Opcode();
1774
1775 // Must clone all producers of flags, or we will not match correctly.
1776 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1777 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
1778 // are also there, so we may match a float-branch to int-flags and
1779 // expect the allocator to haul the flags from the int-side to the
1780 // fp-side. No can do.
1781 if( _must_clone[mop] ) {
1782 mstack.push(m, Visit);
1783 continue; // for(int i = ...)
1784 }
1785
1786 // Clone addressing expressions as they are "free" in most instructions
1787 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1788 Node *off = m->in(AddPNode::Offset);
1789 if( off->is_Con() ) {
1790 set_visited(m); // Flag as visited now
1791 Node *adr = m->in(AddPNode::Address);
1792
1793 // Intel, ARM and friends can handle 2 adds in addressing mode
1794 if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
1795 // AtomicAdd is not an addressing expression.
1796 // Cheap to find it by looking for screwy base.
1797 !adr->in(AddPNode::Base)->is_top() ) {
1798 set_visited(adr); // Flag as visited now
1799 Node *shift = adr->in(AddPNode::Offset);
1800 // Check for shift by small constant as well
1801 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1802 shift->in(2)->get_int() <= 3 ) {
1803 set_visited(shift); // Flag as visited now
1804 mstack.push(shift->in(2), Visit);
1805 #ifdef _LP64
1806 // Allow Matcher to match the rule which bypass
1807 // ConvI2L operation for an array index on LP64
1808 // if the index value is positive.
1809 if( shift->in(1)->Opcode() == Op_ConvI2L &&
1810 shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
1811 set_visited(shift->in(1)); // Flag as visited now
1812 mstack.push(shift->in(1)->in(1), Pre_Visit);
1813 } else
1814 #endif
1815 mstack.push(shift->in(1), Pre_Visit);
1816 } else {
1817 mstack.push(shift, Pre_Visit);
1818 }
1819 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1820 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1821 } else { // Sparc, Alpha, PPC and friends
1822 mstack.push(adr, Pre_Visit);
1823 }
1824
1825 // Clone X+offset as it also folds into most addressing expressions
1826 mstack.push(off, Visit);
1827 mstack.push(m->in(AddPNode::Base), Pre_Visit);
1828 continue; // for(int i = ...)
1829 } // if( off->is_Con() )
1830 } // if( mem_op &&
1831 mstack.push(m, Pre_Visit);
1832 } // for(int i = ...)
1833 }
1834 else if (nstate == Alt_Post_Visit) {
1835 mstack.pop(); // Remove node from stack
1836 // We cannot remove the Cmp input from the Bool here, as the Bool may be
1837 // shared and all users of the Bool need to move the Cmp in parallel.
1838 // This leaves both the Bool and the If pointing at the Cmp. To
1839 // prevent the Matcher from trying to Match the Cmp along both paths
1840 // BoolNode::match_edge always returns a zero.
1841
1842 // We reorder the Op_If in a pre-order manner, so we can visit without
1843 // accidently sharing the Cmp (the Bool and the If make 2 users).
1844 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
1845 }
1846 else if (nstate == Post_Visit) {
1847 mstack.pop(); // Remove node from stack
1848
1849 // Now hack a few special opcodes
1850 switch( n->Opcode() ) { // Handle some opcodes special
1851 case Op_StorePConditional:
1852 case Op_StoreLConditional:
1853 case Op_CompareAndSwapI:
1854 case Op_CompareAndSwapL:
1855 case Op_CompareAndSwapP: { // Convert trinary to binary-tree
1856 Node *newval = n->in(MemNode::ValueIn );
1857 Node *oldval = n->in(LoadStoreNode::ExpectedIn);
1858 Node *pair = new (C, 3) BinaryNode( oldval, newval );
1859 n->set_req(MemNode::ValueIn,pair);
1860 n->del_req(LoadStoreNode::ExpectedIn);
1861 break;
1862 }
1863 case Op_CMoveD: // Convert trinary to binary-tree
1864 case Op_CMoveF:
1865 case Op_CMoveI:
1866 case Op_CMoveL:
1867 case Op_CMoveP: {
1868 // Restructure into a binary tree for Matching. It's possible that
1869 // we could move this code up next to the graph reshaping for IfNodes
1870 // or vice-versa, but I do not want to debug this for Ladybird.
1871 // 10/2/2000 CNC.
1872 Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
1873 n->set_req(1,pair1);
1874 Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
1875 n->set_req(2,pair2);
1876 n->del_req(3);
1877 break;
1878 }
1879 default:
1880 break;
1881 }
1882 }
1883 else {
1884 ShouldNotReachHere();
1885 }
1886 } // end of while (mstack.is_nonempty())
1887 }
1888
1889 #ifdef ASSERT
1890 // machine-independent root to machine-dependent root
1891 void Matcher::dump_old2new_map() {
1892 _old2new_map.dump();
1893 }
1894 #endif
1895
1896 //---------------------------collect_null_checks-------------------------------
1897 // Find null checks in the ideal graph; write a machine-specific node for
1898 // it. Used by later implicit-null-check handling. Actually collects
1899 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
1900 // value being tested.
1901 void Matcher::collect_null_checks( Node *proj ) {
1902 Node *iff = proj->in(0);
1903 if( iff->Opcode() == Op_If ) {
1904 // During matching If's have Bool & Cmp side-by-side
1905 BoolNode *b = iff->in(1)->as_Bool();
1906 Node *cmp = iff->in(2);
1907 if( cmp->Opcode() == Op_CmpP ) {
1908 if( cmp->in(2)->bottom_type() == TypePtr::NULL_PTR ) {
1909
1910 if( proj->Opcode() == Op_IfTrue ) {
1911 extern int all_null_checks_found;
1912 all_null_checks_found++;
1913 if( b->_test._test == BoolTest::ne ) {
1914 _null_check_tests.push(proj);
1915 _null_check_tests.push(cmp->in(1));
1916 }
1917 } else {
1918 assert( proj->Opcode() == Op_IfFalse, "" );
1919 if( b->_test._test == BoolTest::eq ) {
1920 _null_check_tests.push(proj);
1921 _null_check_tests.push(cmp->in(1));
1922 }
1923 }
1924 }
1925 }
1926 }
1927 }
1928
1929 //---------------------------validate_null_checks------------------------------
1930 // Its possible that the value being NULL checked is not the root of a match
1931 // tree. If so, I cannot use the value in an implicit null check.
1932 void Matcher::validate_null_checks( ) {
1933 uint cnt = _null_check_tests.size();
1934 for( uint i=0; i < cnt; i+=2 ) {
1935 Node *test = _null_check_tests[i];
1936 Node *val = _null_check_tests[i+1];
1937 if (has_new_node(val)) {
1938 // Is a match-tree root, so replace with the matched value
1939 _null_check_tests.map(i+1, new_node(val));
1940 } else {
1941 // Yank from candidate list
1942 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
1943 _null_check_tests.map(i,_null_check_tests[--cnt]);
1944 _null_check_tests.pop();
1945 _null_check_tests.pop();
1946 i-=2;
1947 }
1948 }
1949 }
1950
1951
1952 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
1953 // acting as an Acquire and thus we don't need an Acquire here. We
1954 // retain the Node to act as a compiler ordering barrier.
1955 bool Matcher::prior_fast_lock( const Node *acq ) {
1956 Node *r = acq->in(0);
1957 if( !r->is_Region() || r->req() <= 1 ) return false;
1958 Node *proj = r->in(1);
1959 if( !proj->is_Proj() ) return false;
1960 Node *call = proj->in(0);
1961 if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
1962 return false;
1963
1964 return true;
1965 }
1966
1967 // Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
1968 // acting as a Release and thus we don't need a Release here. We
1969 // retain the Node to act as a compiler ordering barrier.
1970 bool Matcher::post_fast_unlock( const Node *rel ) {
1971 Compile *C = Compile::current();
1972 assert( rel->Opcode() == Op_MemBarRelease, "" );
1973 const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
1974 DUIterator_Fast imax, i = mem->fast_outs(imax);
1975 Node *ctrl = NULL;
1976 while( true ) {
1977 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
1978 assert( ctrl->is_Proj(), "only projections here" );
1979 ProjNode *proj = (ProjNode*)ctrl;
1980 if( proj->_con == TypeFunc::Control &&
1981 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
1982 break;
1983 i++;
1984 }
1985 Node *iff = NULL;
1986 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
1987 Node *x = ctrl->fast_out(j);
1988 if( x->is_If() && x->req() > 1 &&
1989 !C->node_arena()->contains(x) ) { // Unmatched old-space only
1990 iff = x;
1991 break;
1992 }
1993 }
1994 if( !iff ) return false;
1995 Node *bol = iff->in(1);
1996 // The iff might be some random subclass of If or bol might be Con-Top
1997 if (!bol->is_Bool()) return false;
1998 assert( bol->req() > 1, "" );
1999 return (bol->in(1)->Opcode() == Op_FastUnlock);
2000 }
2001
2002 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
2003 // atomic instruction acting as a store_load barrier without any
2004 // intervening volatile load, and thus we don't need a barrier here.
2005 // We retain the Node to act as a compiler ordering barrier.
2006 bool Matcher::post_store_load_barrier(const Node *vmb) {
2007 Compile *C = Compile::current();
2008 assert( vmb->is_MemBar(), "" );
2009 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2010 const MemBarNode *mem = (const MemBarNode*)vmb;
2011
2012 // Get the Proj node, ctrl, that can be used to iterate forward
2013 Node *ctrl = NULL;
2014 DUIterator_Fast imax, i = mem->fast_outs(imax);
2015 while( true ) {
2016 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
2017 assert( ctrl->is_Proj(), "only projections here" );
2018 ProjNode *proj = (ProjNode*)ctrl;
2019 if( proj->_con == TypeFunc::Control &&
2020 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2021 break;
2022 i++;
2023 }
2024
2025 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2026 Node *x = ctrl->fast_out(j);
2027 int xop = x->Opcode();
2028
2029 // We don't need current barrier if we see another or a lock
2030 // before seeing volatile load.
2031 //
2032 // Op_Fastunlock previously appeared in the Op_* list below.
2033 // With the advent of 1-0 lock operations we're no longer guaranteed
2034 // that a monitor exit operation contains a serializing instruction.
2035
2036 if (xop == Op_MemBarVolatile ||
2037 xop == Op_FastLock ||
2038 xop == Op_CompareAndSwapL ||
2039 xop == Op_CompareAndSwapP ||
2040 xop == Op_CompareAndSwapI)
2041 return true;
2042
2043 if (x->is_MemBar()) {
2044 // We must retain this membar if there is an upcoming volatile
2045 // load, which will be preceded by acquire membar.
2046 if (xop == Op_MemBarAcquire)
2047 return false;
2048 // For other kinds of barriers, check by pretending we
2049 // are them, and seeing if we can be removed.
2050 else
2051 return post_store_load_barrier((const MemBarNode*)x);
2052 }
2053
2054 // Delicate code to detect case of an upcoming fastlock block
2055 if( x->is_If() && x->req() > 1 &&
2056 !C->node_arena()->contains(x) ) { // Unmatched old-space only
2057 Node *iff = x;
2058 Node *bol = iff->in(1);
2059 // The iff might be some random subclass of If or bol might be Con-Top
2060 if (!bol->is_Bool()) return false;
2061 assert( bol->req() > 1, "" );
2062 return (bol->in(1)->Opcode() == Op_FastUnlock);
2063 }
2064 // probably not necessary to check for these
2065 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2066 return false;
2067 }
2068 return false;
2069 }
2070
2071 //=============================================================================
2072 //---------------------------State---------------------------------------------
2073 State::State(void) {
2074 #ifdef ASSERT
2075 _id = 0;
2076 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2077 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2078 //memset(_cost, -1, sizeof(_cost));
2079 //memset(_rule, -1, sizeof(_rule));
2080 #endif
2081 memset(_valid, 0, sizeof(_valid));
2082 }
2083
2084 #ifdef ASSERT
2085 State::~State() {
2086 _id = 99;
2087 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2088 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2089 memset(_cost, -3, sizeof(_cost));
2090 memset(_rule, -3, sizeof(_rule));
2091 }
2092 #endif
2093
2094 #ifndef PRODUCT
2095 //---------------------------dump----------------------------------------------
2096 void State::dump() {
2097 tty->print("\n");
2098 dump(0);
2099 }
2100
2101 void State::dump(int depth) {
2102 for( int j = 0; j < depth; j++ )
2103 tty->print(" ");
2104 tty->print("--N: ");
2105 _leaf->dump();
2106 uint i;
2107 for( i = 0; i < _LAST_MACH_OPER; i++ )
2108 // Check for valid entry
2109 if( valid(i) ) {
2110 for( int j = 0; j < depth; j++ )
2111 tty->print(" ");
2112 assert(_cost[i] != max_juint, "cost must be a valid value");
2113 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2114 tty->print_cr("%s %d %s",
2115 ruleName[i], _cost[i], ruleName[_rule[i]] );
2116 }
2117 tty->print_cr("");
2118
2119 for( i=0; i<2; i++ )
2120 if( _kids[i] )
2121 _kids[i]->dump(depth+1);
2122 }
2123 #endif