comparison src/share/vm/opto/memnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 // Optimization - Graph Style
28
29 #include "incls/_precompiled.incl"
30 #include "incls/_memnode.cpp.incl"
31
32 //=============================================================================
33 uint MemNode::size_of() const { return sizeof(*this); }
34
35 const TypePtr *MemNode::adr_type() const {
36 Node* adr = in(Address);
37 const TypePtr* cross_check = NULL;
38 DEBUG_ONLY(cross_check = _adr_type);
39 return calculate_adr_type(adr->bottom_type(), cross_check);
40 }
41
42 #ifndef PRODUCT
43 void MemNode::dump_spec(outputStream *st) const {
44 if (in(Address) == NULL) return; // node is dead
45 #ifndef ASSERT
46 // fake the missing field
47 const TypePtr* _adr_type = NULL;
48 if (in(Address) != NULL)
49 _adr_type = in(Address)->bottom_type()->isa_ptr();
50 #endif
51 dump_adr_type(this, _adr_type, st);
52
53 Compile* C = Compile::current();
54 if( C->alias_type(_adr_type)->is_volatile() )
55 st->print(" Volatile!");
56 }
57
58 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
59 st->print(" @");
60 if (adr_type == NULL) {
61 st->print("NULL");
62 } else {
63 adr_type->dump_on(st);
64 Compile* C = Compile::current();
65 Compile::AliasType* atp = NULL;
66 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
67 if (atp == NULL)
68 st->print(", idx=?\?;");
69 else if (atp->index() == Compile::AliasIdxBot)
70 st->print(", idx=Bot;");
71 else if (atp->index() == Compile::AliasIdxTop)
72 st->print(", idx=Top;");
73 else if (atp->index() == Compile::AliasIdxRaw)
74 st->print(", idx=Raw;");
75 else {
76 ciField* field = atp->field();
77 if (field) {
78 st->print(", name=");
79 field->print_name_on(st);
80 }
81 st->print(", idx=%d;", atp->index());
82 }
83 }
84 }
85
86 extern void print_alias_types();
87
88 #endif
89
90 //--------------------------Ideal_common---------------------------------------
91 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
92 // Unhook non-raw memories from complete (macro-expanded) initializations.
93 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
94 // If our control input is a dead region, kill all below the region
95 Node *ctl = in(MemNode::Control);
96 if (ctl && remove_dead_region(phase, can_reshape))
97 return this;
98
99 // Ignore if memory is dead, or self-loop
100 Node *mem = in(MemNode::Memory);
101 if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
102 assert( mem != this, "dead loop in MemNode::Ideal" );
103
104 Node *address = in(MemNode::Address);
105 const Type *t_adr = phase->type( address );
106 if( t_adr == Type::TOP ) return NodeSentinel; // caller will return NULL
107
108 // Avoid independent memory operations
109 Node* old_mem = mem;
110
111 if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
112 InitializeNode* init = mem->in(0)->as_Initialize();
113 if (init->is_complete()) { // i.e., after macro expansion
114 const TypePtr* tp = t_adr->is_ptr();
115 uint alias_idx = phase->C->get_alias_index(tp);
116 // Free this slice from the init. It was hooked, temporarily,
117 // by GraphKit::set_output_for_allocation.
118 if (alias_idx > Compile::AliasIdxRaw) {
119 mem = init->memory(alias_idx);
120 // ...but not with the raw-pointer slice.
121 }
122 }
123 }
124
125 if (mem->is_MergeMem()) {
126 MergeMemNode* mmem = mem->as_MergeMem();
127 const TypePtr *tp = t_adr->is_ptr();
128 uint alias_idx = phase->C->get_alias_index(tp);
129 #ifdef ASSERT
130 {
131 // Check that current type is consistent with the alias index used during graph construction
132 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
133 const TypePtr *adr_t = adr_type();
134 bool consistent = adr_t == NULL || adr_t->empty() || phase->C->must_alias(adr_t, alias_idx );
135 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
136 if( !consistent && adr_t != NULL && !adr_t->empty() &&
137 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
138 adr_t->isa_aryptr() && adr_t->offset() != Type::OffsetBot &&
139 ( adr_t->offset() == arrayOopDesc::length_offset_in_bytes() ||
140 adr_t->offset() == oopDesc::klass_offset_in_bytes() ||
141 adr_t->offset() == oopDesc::mark_offset_in_bytes() ) ) {
142 // don't assert if it is dead code.
143 consistent = true;
144 }
145 if( !consistent ) {
146 tty->print("alias_idx==%d, adr_type()==", alias_idx); if( adr_t == NULL ) { tty->print("NULL"); } else { adr_t->dump(); }
147 tty->cr();
148 print_alias_types();
149 assert(consistent, "adr_type must match alias idx");
150 }
151 }
152 #endif
153 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
154 // means an array I have not precisely typed yet. Do not do any
155 // alias stuff with it any time soon.
156 const TypeInstPtr *tinst = tp->isa_instptr();
157 if( tp->base() != Type::AnyPtr &&
158 !(tinst &&
159 tinst->klass()->is_java_lang_Object() &&
160 tinst->offset() == Type::OffsetBot) ) {
161 // compress paths and change unreachable cycles to TOP
162 // If not, we can update the input infinitely along a MergeMem cycle
163 // Equivalent code in PhiNode::Ideal
164 Node* m = phase->transform(mmem);
165 // If tranformed to a MergeMem, get the desired slice
166 // Otherwise the returned node represents memory for every slice
167 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
168 // Update input if it is progress over what we have now
169 }
170 }
171
172 if (mem != old_mem) {
173 set_req(MemNode::Memory, mem);
174 return this;
175 }
176
177 // let the subclass continue analyzing...
178 return NULL;
179 }
180
181 // Helper function for proving some simple control dominations.
182 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
183 // Already assumes that 'dom' is available at 'sub', and that 'sub'
184 // is not a constant (dominated by the method's StartNode).
185 // Used by MemNode::find_previous_store to prove that the
186 // control input of a memory operation predates (dominates)
187 // an allocation it wants to look past.
188 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
189 if (dom == NULL) return false;
190 if (dom->is_Proj()) dom = dom->in(0);
191 if (dom->is_Start()) return true; // anything inside the method
192 if (dom->is_Root()) return true; // dom 'controls' a constant
193 int cnt = 20; // detect cycle or too much effort
194 while (sub != NULL) { // walk 'sub' up the chain to 'dom'
195 if (--cnt < 0) return false; // in a cycle or too complex
196 if (sub == dom) return true;
197 if (sub->is_Start()) return false;
198 if (sub->is_Root()) return false;
199 Node* up = sub->in(0);
200 if (sub == up && sub->is_Region()) {
201 for (uint i = 1; i < sub->req(); i++) {
202 Node* in = sub->in(i);
203 if (in != NULL && !in->is_top() && in != sub) {
204 up = in; break; // take any path on the way up to 'dom'
205 }
206 }
207 }
208 if (sub == up) return false; // some kind of tight cycle
209 sub = up;
210 }
211 return false;
212 }
213
214 //---------------------detect_ptr_independence---------------------------------
215 // Used by MemNode::find_previous_store to prove that two base
216 // pointers are never equal.
217 // The pointers are accompanied by their associated allocations,
218 // if any, which have been previously discovered by the caller.
219 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
220 Node* p2, AllocateNode* a2,
221 PhaseTransform* phase) {
222 // Attempt to prove that these two pointers cannot be aliased.
223 // They may both manifestly be allocations, and they should differ.
224 // Or, if they are not both allocations, they can be distinct constants.
225 // Otherwise, one is an allocation and the other a pre-existing value.
226 if (a1 == NULL && a2 == NULL) { // neither an allocation
227 return (p1 != p2) && p1->is_Con() && p2->is_Con();
228 } else if (a1 != NULL && a2 != NULL) { // both allocations
229 return (a1 != a2);
230 } else if (a1 != NULL) { // one allocation a1
231 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
232 return detect_dominating_control(p2->in(0), a1->in(0));
233 } else { //(a2 != NULL) // one allocation a2
234 return detect_dominating_control(p1->in(0), a2->in(0));
235 }
236 return false;
237 }
238
239
240 // The logic for reordering loads and stores uses four steps:
241 // (a) Walk carefully past stores and initializations which we
242 // can prove are independent of this load.
243 // (b) Observe that the next memory state makes an exact match
244 // with self (load or store), and locate the relevant store.
245 // (c) Ensure that, if we were to wire self directly to the store,
246 // the optimizer would fold it up somehow.
247 // (d) Do the rewiring, and return, depending on some other part of
248 // the optimizer to fold up the load.
249 // This routine handles steps (a) and (b). Steps (c) and (d) are
250 // specific to loads and stores, so they are handled by the callers.
251 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
252 //
253 Node* MemNode::find_previous_store(PhaseTransform* phase) {
254 Node* ctrl = in(MemNode::Control);
255 Node* adr = in(MemNode::Address);
256 intptr_t offset = 0;
257 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
258 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
259
260 if (offset == Type::OffsetBot)
261 return NULL; // cannot unalias unless there are precise offsets
262
263 intptr_t size_in_bytes = memory_size();
264
265 Node* mem = in(MemNode::Memory); // start searching here...
266
267 int cnt = 50; // Cycle limiter
268 for (;;) { // While we can dance past unrelated stores...
269 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
270
271 if (mem->is_Store()) {
272 Node* st_adr = mem->in(MemNode::Address);
273 intptr_t st_offset = 0;
274 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
275 if (st_base == NULL)
276 break; // inscrutable pointer
277 if (st_offset != offset && st_offset != Type::OffsetBot) {
278 const int MAX_STORE = BytesPerLong;
279 if (st_offset >= offset + size_in_bytes ||
280 st_offset <= offset - MAX_STORE ||
281 st_offset <= offset - mem->as_Store()->memory_size()) {
282 // Success: The offsets are provably independent.
283 // (You may ask, why not just test st_offset != offset and be done?
284 // The answer is that stores of different sizes can co-exist
285 // in the same sequence of RawMem effects. We sometimes initialize
286 // a whole 'tile' of array elements with a single jint or jlong.)
287 mem = mem->in(MemNode::Memory);
288 continue; // (a) advance through independent store memory
289 }
290 }
291 if (st_base != base &&
292 detect_ptr_independence(base, alloc,
293 st_base,
294 AllocateNode::Ideal_allocation(st_base, phase),
295 phase)) {
296 // Success: The bases are provably independent.
297 mem = mem->in(MemNode::Memory);
298 continue; // (a) advance through independent store memory
299 }
300
301 // (b) At this point, if the bases or offsets do not agree, we lose,
302 // since we have not managed to prove 'this' and 'mem' independent.
303 if (st_base == base && st_offset == offset) {
304 return mem; // let caller handle steps (c), (d)
305 }
306
307 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
308 InitializeNode* st_init = mem->in(0)->as_Initialize();
309 AllocateNode* st_alloc = st_init->allocation();
310 if (st_alloc == NULL)
311 break; // something degenerated
312 bool known_identical = false;
313 bool known_independent = false;
314 if (alloc == st_alloc)
315 known_identical = true;
316 else if (alloc != NULL)
317 known_independent = true;
318 else if (ctrl != NULL &&
319 detect_dominating_control(ctrl, st_alloc->in(0)))
320 known_independent = true;
321
322 if (known_independent) {
323 // The bases are provably independent: Either they are
324 // manifestly distinct allocations, or else the control
325 // of this load dominates the store's allocation.
326 int alias_idx = phase->C->get_alias_index(adr_type());
327 if (alias_idx == Compile::AliasIdxRaw) {
328 mem = st_alloc->in(TypeFunc::Memory);
329 } else {
330 mem = st_init->memory(alias_idx);
331 }
332 continue; // (a) advance through independent store memory
333 }
334
335 // (b) at this point, if we are not looking at a store initializing
336 // the same allocation we are loading from, we lose.
337 if (known_identical) {
338 // From caller, can_see_stored_value will consult find_captured_store.
339 return mem; // let caller handle steps (c), (d)
340 }
341
342 }
343
344 // Unless there is an explicit 'continue', we must bail out here,
345 // because 'mem' is an inscrutable memory state (e.g., a call).
346 break;
347 }
348
349 return NULL; // bail out
350 }
351
352 //----------------------calculate_adr_type-------------------------------------
353 // Helper function. Notices when the given type of address hits top or bottom.
354 // Also, asserts a cross-check of the type against the expected address type.
355 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
356 if (t == Type::TOP) return NULL; // does not touch memory any more?
357 #ifdef PRODUCT
358 cross_check = NULL;
359 #else
360 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
361 #endif
362 const TypePtr* tp = t->isa_ptr();
363 if (tp == NULL) {
364 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
365 return TypePtr::BOTTOM; // touches lots of memory
366 } else {
367 #ifdef ASSERT
368 // %%%% [phh] We don't check the alias index if cross_check is
369 // TypeRawPtr::BOTTOM. Needs to be investigated.
370 if (cross_check != NULL &&
371 cross_check != TypePtr::BOTTOM &&
372 cross_check != TypeRawPtr::BOTTOM) {
373 // Recheck the alias index, to see if it has changed (due to a bug).
374 Compile* C = Compile::current();
375 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
376 "must stay in the original alias category");
377 // The type of the address must be contained in the adr_type,
378 // disregarding "null"-ness.
379 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
380 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
381 assert(cross_check->meet(tp_notnull) == cross_check,
382 "real address must not escape from expected memory type");
383 }
384 #endif
385 return tp;
386 }
387 }
388
389 //------------------------adr_phi_is_loop_invariant----------------------------
390 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
391 // loop is loop invariant. Make a quick traversal of Phi and associated
392 // CastPP nodes, looking to see if they are a closed group within the loop.
393 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
394 // The idea is that the phi-nest must boil down to only CastPP nodes
395 // with the same data. This implies that any path into the loop already
396 // includes such a CastPP, and so the original cast, whatever its input,
397 // must be covered by an equivalent cast, with an earlier control input.
398 ResourceMark rm;
399
400 // The loop entry input of the phi should be the unique dominating
401 // node for every Phi/CastPP in the loop.
402 Unique_Node_List closure;
403 closure.push(adr_phi->in(LoopNode::EntryControl));
404
405 // Add the phi node and the cast to the worklist.
406 Unique_Node_List worklist;
407 worklist.push(adr_phi);
408 if( cast != NULL ){
409 if( !cast->is_ConstraintCast() ) return false;
410 worklist.push(cast);
411 }
412
413 // Begin recursive walk of phi nodes.
414 while( worklist.size() ){
415 // Take a node off the worklist
416 Node *n = worklist.pop();
417 if( !closure.member(n) ){
418 // Add it to the closure.
419 closure.push(n);
420 // Make a sanity check to ensure we don't waste too much time here.
421 if( closure.size() > 20) return false;
422 // This node is OK if:
423 // - it is a cast of an identical value
424 // - or it is a phi node (then we add its inputs to the worklist)
425 // Otherwise, the node is not OK, and we presume the cast is not invariant
426 if( n->is_ConstraintCast() ){
427 worklist.push(n->in(1));
428 } else if( n->is_Phi() ) {
429 for( uint i = 1; i < n->req(); i++ ) {
430 worklist.push(n->in(i));
431 }
432 } else {
433 return false;
434 }
435 }
436 }
437
438 // Quit when the worklist is empty, and we've found no offending nodes.
439 return true;
440 }
441
442 //------------------------------Ideal_DU_postCCP-------------------------------
443 // Find any cast-away of null-ness and keep its control. Null cast-aways are
444 // going away in this pass and we need to make this memory op depend on the
445 // gating null check.
446
447 // I tried to leave the CastPP's in. This makes the graph more accurate in
448 // some sense; we get to keep around the knowledge that an oop is not-null
449 // after some test. Alas, the CastPP's interfere with GVN (some values are
450 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
451 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
452 // some of the more trivial cases in the optimizer. Removing more useless
453 // Phi's started allowing Loads to illegally float above null checks. I gave
454 // up on this approach. CNC 10/20/2000
455 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
456 Node *ctr = in(MemNode::Control);
457 Node *mem = in(MemNode::Memory);
458 Node *adr = in(MemNode::Address);
459 Node *skipped_cast = NULL;
460 // Need a null check? Regular static accesses do not because they are
461 // from constant addresses. Array ops are gated by the range check (which
462 // always includes a NULL check). Just check field ops.
463 if( !ctr ) {
464 // Scan upwards for the highest location we can place this memory op.
465 while( true ) {
466 switch( adr->Opcode() ) {
467
468 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
469 adr = adr->in(AddPNode::Base);
470 continue;
471
472 case Op_CastPP:
473 // If the CastPP is useless, just peek on through it.
474 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
475 // Remember the cast that we've peeked though. If we peek
476 // through more than one, then we end up remembering the highest
477 // one, that is, if in a loop, the one closest to the top.
478 skipped_cast = adr;
479 adr = adr->in(1);
480 continue;
481 }
482 // CastPP is going away in this pass! We need this memory op to be
483 // control-dependent on the test that is guarding the CastPP.
484 ccp->hash_delete(this);
485 set_req(MemNode::Control, adr->in(0));
486 ccp->hash_insert(this);
487 return this;
488
489 case Op_Phi:
490 // Attempt to float above a Phi to some dominating point.
491 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
492 // If we've already peeked through a Cast (which could have set the
493 // control), we can't float above a Phi, because the skipped Cast
494 // may not be loop invariant.
495 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
496 adr = adr->in(1);
497 continue;
498 }
499 }
500
501 // Intentional fallthrough!
502
503 // No obvious dominating point. The mem op is pinned below the Phi
504 // by the Phi itself. If the Phi goes away (no true value is merged)
505 // then the mem op can float, but not indefinitely. It must be pinned
506 // behind the controls leading to the Phi.
507 case Op_CheckCastPP:
508 // These usually stick around to change address type, however a
509 // useless one can be elided and we still need to pick up a control edge
510 if (adr->in(0) == NULL) {
511 // This CheckCastPP node has NO control and is likely useless. But we
512 // need check further up the ancestor chain for a control input to keep
513 // the node in place. 4959717.
514 skipped_cast = adr;
515 adr = adr->in(1);
516 continue;
517 }
518 ccp->hash_delete(this);
519 set_req(MemNode::Control, adr->in(0));
520 ccp->hash_insert(this);
521 return this;
522
523 // List of "safe" opcodes; those that implicitly block the memory
524 // op below any null check.
525 case Op_CastX2P: // no null checks on native pointers
526 case Op_Parm: // 'this' pointer is not null
527 case Op_LoadP: // Loading from within a klass
528 case Op_LoadKlass: // Loading from within a klass
529 case Op_ConP: // Loading from a klass
530 case Op_CreateEx: // Sucking up the guts of an exception oop
531 case Op_Con: // Reading from TLS
532 case Op_CMoveP: // CMoveP is pinned
533 break; // No progress
534
535 case Op_Proj: // Direct call to an allocation routine
536 case Op_SCMemProj: // Memory state from store conditional ops
537 #ifdef ASSERT
538 {
539 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
540 const Node* call = adr->in(0);
541 if (call->is_CallStaticJava()) {
542 const CallStaticJavaNode* call_java = call->as_CallStaticJava();
543 assert(call_java && call_java->method() == NULL, "must be runtime call");
544 // We further presume that this is one of
545 // new_instance_Java, new_array_Java, or
546 // the like, but do not assert for this.
547 } else if (call->is_Allocate()) {
548 // similar case to new_instance_Java, etc.
549 } else if (!call->is_CallLeaf()) {
550 // Projections from fetch_oop (OSR) are allowed as well.
551 ShouldNotReachHere();
552 }
553 }
554 #endif
555 break;
556 default:
557 ShouldNotReachHere();
558 }
559 break;
560 }
561 }
562
563 return NULL; // No progress
564 }
565
566
567 //=============================================================================
568 uint LoadNode::size_of() const { return sizeof(*this); }
569 uint LoadNode::cmp( const Node &n ) const
570 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
571 const Type *LoadNode::bottom_type() const { return _type; }
572 uint LoadNode::ideal_reg() const {
573 return Matcher::base2reg[_type->base()];
574 }
575
576 #ifndef PRODUCT
577 void LoadNode::dump_spec(outputStream *st) const {
578 MemNode::dump_spec(st);
579 if( !Verbose && !WizardMode ) {
580 // standard dump does this in Verbose and WizardMode
581 st->print(" #"); _type->dump_on(st);
582 }
583 }
584 #endif
585
586
587 //----------------------------LoadNode::make-----------------------------------
588 // Polymorphic factory method:
589 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
590 // sanity check the alias category against the created node type
591 assert(!(adr_type->isa_oopptr() &&
592 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
593 "use LoadKlassNode instead");
594 assert(!(adr_type->isa_aryptr() &&
595 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
596 "use LoadRangeNode instead");
597 switch (bt) {
598 case T_BOOLEAN:
599 case T_BYTE: return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int() );
600 case T_INT: return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int() );
601 case T_CHAR: return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int() );
602 case T_SHORT: return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int() );
603 case T_LONG: return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long() );
604 case T_FLOAT: return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt );
605 case T_DOUBLE: return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt );
606 case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr() );
607 case T_OBJECT: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
608 }
609 ShouldNotReachHere();
610 return (LoadNode*)NULL;
611 }
612
613 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
614 bool require_atomic = true;
615 return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
616 }
617
618
619
620
621 //------------------------------hash-------------------------------------------
622 uint LoadNode::hash() const {
623 // unroll addition of interesting fields
624 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
625 }
626
627 //---------------------------can_see_stored_value------------------------------
628 // This routine exists to make sure this set of tests is done the same
629 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
630 // will change the graph shape in a way which makes memory alive twice at the
631 // same time (uses the Oracle model of aliasing), then some
632 // LoadXNode::Identity will fold things back to the equivalence-class model
633 // of aliasing.
634 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
635 Node* ld_adr = in(MemNode::Address);
636
637 // Loop around twice in the case Load -> Initialize -> Store.
638 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
639 for (int trip = 0; trip <= 1; trip++) {
640
641 if (st->is_Store()) {
642 Node* st_adr = st->in(MemNode::Address);
643 if (!phase->eqv(st_adr, ld_adr)) {
644 // Try harder before giving up... Match raw and non-raw pointers.
645 intptr_t st_off = 0;
646 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
647 if (alloc == NULL) return NULL;
648 intptr_t ld_off = 0;
649 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
650 if (alloc != allo2) return NULL;
651 if (ld_off != st_off) return NULL;
652 // At this point we have proven something like this setup:
653 // A = Allocate(...)
654 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
655 // S = StoreQ(, AddP(, A.Parm , #Off), V)
656 // (Actually, we haven't yet proven the Q's are the same.)
657 // In other words, we are loading from a casted version of
658 // the same pointer-and-offset that we stored to.
659 // Thus, we are able to replace L by V.
660 }
661 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
662 if (store_Opcode() != st->Opcode())
663 return NULL;
664 return st->in(MemNode::ValueIn);
665 }
666
667 intptr_t offset = 0; // scratch
668
669 // A load from a freshly-created object always returns zero.
670 // (This can happen after LoadNode::Ideal resets the load's memory input
671 // to find_captured_store, which returned InitializeNode::zero_memory.)
672 if (st->is_Proj() && st->in(0)->is_Allocate() &&
673 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
674 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
675 // return a zero value for the load's basic type
676 // (This is one of the few places where a generic PhaseTransform
677 // can create new nodes. Think of it as lazily manifesting
678 // virtually pre-existing constants.)
679 return phase->zerocon(memory_type());
680 }
681
682 // A load from an initialization barrier can match a captured store.
683 if (st->is_Proj() && st->in(0)->is_Initialize()) {
684 InitializeNode* init = st->in(0)->as_Initialize();
685 AllocateNode* alloc = init->allocation();
686 if (alloc != NULL &&
687 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
688 // examine a captured store value
689 st = init->find_captured_store(offset, memory_size(), phase);
690 if (st != NULL)
691 continue; // take one more trip around
692 }
693 }
694
695 break;
696 }
697
698 return NULL;
699 }
700
701 //------------------------------Identity---------------------------------------
702 // Loads are identity if previous store is to same address
703 Node *LoadNode::Identity( PhaseTransform *phase ) {
704 // If the previous store-maker is the right kind of Store, and the store is
705 // to the same address, then we are equal to the value stored.
706 Node* mem = in(MemNode::Memory);
707 Node* value = can_see_stored_value(mem, phase);
708 if( value ) {
709 // byte, short & char stores truncate naturally.
710 // A load has to load the truncated value which requires
711 // some sort of masking operation and that requires an
712 // Ideal call instead of an Identity call.
713 if (memory_size() < BytesPerInt) {
714 // If the input to the store does not fit with the load's result type,
715 // it must be truncated via an Ideal call.
716 if (!phase->type(value)->higher_equal(phase->type(this)))
717 return this;
718 }
719 // (This works even when value is a Con, but LoadNode::Value
720 // usually runs first, producing the singleton type of the Con.)
721 return value;
722 }
723 return this;
724 }
725
726 //------------------------------Ideal------------------------------------------
727 // If the load is from Field memory and the pointer is non-null, we can
728 // zero out the control input.
729 // If the offset is constant and the base is an object allocation,
730 // try to hook me up to the exact initializing store.
731 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
732 Node* p = MemNode::Ideal_common(phase, can_reshape);
733 if (p) return (p == NodeSentinel) ? NULL : p;
734
735 Node* ctrl = in(MemNode::Control);
736 Node* address = in(MemNode::Address);
737
738 // Skip up past a SafePoint control. Cannot do this for Stores because
739 // pointer stores & cardmarks must stay on the same side of a SafePoint.
740 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
741 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
742 ctrl = ctrl->in(0);
743 set_req(MemNode::Control,ctrl);
744 }
745
746 // Check for useless control edge in some common special cases
747 if (in(MemNode::Control) != NULL) {
748 intptr_t ignore = 0;
749 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
750 if (base != NULL
751 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
752 && detect_dominating_control(base->in(0), phase->C->start())) {
753 // A method-invariant, non-null address (constant or 'this' argument).
754 set_req(MemNode::Control, NULL);
755 }
756 }
757
758 // Check for prior store with a different base or offset; make Load
759 // independent. Skip through any number of them. Bail out if the stores
760 // are in an endless dead cycle and report no progress. This is a key
761 // transform for Reflection. However, if after skipping through the Stores
762 // we can't then fold up against a prior store do NOT do the transform as
763 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
764 // array memory alive twice: once for the hoisted Load and again after the
765 // bypassed Store. This situation only works if EVERYBODY who does
766 // anti-dependence work knows how to bypass. I.e. we need all
767 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
768 // the alias index stuff. So instead, peek through Stores and IFF we can
769 // fold up, do so.
770 Node* prev_mem = find_previous_store(phase);
771 // Steps (a), (b): Walk past independent stores to find an exact match.
772 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
773 // (c) See if we can fold up on the spot, but don't fold up here.
774 // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
775 // just return a prior value, which is done by Identity calls.
776 if (can_see_stored_value(prev_mem, phase)) {
777 // Make ready for step (d):
778 set_req(MemNode::Memory, prev_mem);
779 return this;
780 }
781 }
782
783 return NULL; // No further progress
784 }
785
786 // Helper to recognize certain Klass fields which are invariant across
787 // some group of array types (e.g., int[] or all T[] where T < Object).
788 const Type*
789 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
790 ciKlass* klass) const {
791 if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
792 // The field is Klass::_modifier_flags. Return its (constant) value.
793 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
794 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
795 return TypeInt::make(klass->modifier_flags());
796 }
797 if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
798 // The field is Klass::_access_flags. Return its (constant) value.
799 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
800 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
801 return TypeInt::make(klass->access_flags());
802 }
803 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
804 // The field is Klass::_layout_helper. Return its constant value if known.
805 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
806 return TypeInt::make(klass->layout_helper());
807 }
808
809 // No match.
810 return NULL;
811 }
812
813 //------------------------------Value-----------------------------------------
814 const Type *LoadNode::Value( PhaseTransform *phase ) const {
815 // Either input is TOP ==> the result is TOP
816 Node* mem = in(MemNode::Memory);
817 const Type *t1 = phase->type(mem);
818 if (t1 == Type::TOP) return Type::TOP;
819 Node* adr = in(MemNode::Address);
820 const TypePtr* tp = phase->type(adr)->isa_ptr();
821 if (tp == NULL || tp->empty()) return Type::TOP;
822 int off = tp->offset();
823 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
824
825 // Try to guess loaded type from pointer type
826 if (tp->base() == Type::AryPtr) {
827 const Type *t = tp->is_aryptr()->elem();
828 // Don't do this for integer types. There is only potential profit if
829 // the element type t is lower than _type; that is, for int types, if _type is
830 // more restrictive than t. This only happens here if one is short and the other
831 // char (both 16 bits), and in those cases we've made an intentional decision
832 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
833 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
834 //
835 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
836 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
837 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
838 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
839 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
840 // In fact, that could have been the original type of p1, and p1 could have
841 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
842 // expression (LShiftL quux 3) independently optimized to the constant 8.
843 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
844 && Opcode() != Op_LoadKlass) {
845 // t might actually be lower than _type, if _type is a unique
846 // concrete subclass of abstract class t.
847 // Make sure the reference is not into the header, by comparing
848 // the offset against the offset of the start of the array's data.
849 // Different array types begin at slightly different offsets (12 vs. 16).
850 // We choose T_BYTE as an example base type that is least restrictive
851 // as to alignment, which will therefore produce the smallest
852 // possible base offset.
853 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
854 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
855 const Type* jt = t->join(_type);
856 // In any case, do not allow the join, per se, to empty out the type.
857 if (jt->empty() && !t->empty()) {
858 // This can happen if a interface-typed array narrows to a class type.
859 jt = _type;
860 }
861 return jt;
862 }
863 }
864 } else if (tp->base() == Type::InstPtr) {
865 assert( off != Type::OffsetBot ||
866 // arrays can be cast to Objects
867 tp->is_oopptr()->klass()->is_java_lang_Object() ||
868 // unsafe field access may not have a constant offset
869 phase->C->has_unsafe_access(),
870 "Field accesses must be precise" );
871 // For oop loads, we expect the _type to be precise
872 } else if (tp->base() == Type::KlassPtr) {
873 assert( off != Type::OffsetBot ||
874 // arrays can be cast to Objects
875 tp->is_klassptr()->klass()->is_java_lang_Object() ||
876 // also allow array-loading from the primary supertype
877 // array during subtype checks
878 Opcode() == Op_LoadKlass,
879 "Field accesses must be precise" );
880 // For klass/static loads, we expect the _type to be precise
881 }
882
883 const TypeKlassPtr *tkls = tp->isa_klassptr();
884 if (tkls != NULL && !StressReflectiveCode) {
885 ciKlass* klass = tkls->klass();
886 if (klass->is_loaded() && tkls->klass_is_exact()) {
887 // We are loading a field from a Klass metaobject whose identity
888 // is known at compile time (the type is "exact" or "precise").
889 // Check for fields we know are maintained as constants by the VM.
890 if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
891 // The field is Klass::_super_check_offset. Return its (constant) value.
892 // (Folds up type checking code.)
893 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
894 return TypeInt::make(klass->super_check_offset());
895 }
896 // Compute index into primary_supers array
897 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
898 // Check for overflowing; use unsigned compare to handle the negative case.
899 if( depth < ciKlass::primary_super_limit() ) {
900 // The field is an element of Klass::_primary_supers. Return its (constant) value.
901 // (Folds up type checking code.)
902 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
903 ciKlass *ss = klass->super_of_depth(depth);
904 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
905 }
906 const Type* aift = load_array_final_field(tkls, klass);
907 if (aift != NULL) return aift;
908 if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
909 && klass->is_array_klass()) {
910 // The field is arrayKlass::_component_mirror. Return its (constant) value.
911 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
912 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
913 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
914 }
915 if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
916 // The field is Klass::_java_mirror. Return its (constant) value.
917 // (Folds up the 2nd indirection in anObjConstant.getClass().)
918 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
919 return TypeInstPtr::make(klass->java_mirror());
920 }
921 }
922
923 // We can still check if we are loading from the primary_supers array at a
924 // shallow enough depth. Even though the klass is not exact, entries less
925 // than or equal to its super depth are correct.
926 if (klass->is_loaded() ) {
927 ciType *inner = klass->klass();
928 while( inner->is_obj_array_klass() )
929 inner = inner->as_obj_array_klass()->base_element_type();
930 if( inner->is_instance_klass() &&
931 !inner->as_instance_klass()->flags().is_interface() ) {
932 // Compute index into primary_supers array
933 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
934 // Check for overflowing; use unsigned compare to handle the negative case.
935 if( depth < ciKlass::primary_super_limit() &&
936 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
937 // The field is an element of Klass::_primary_supers. Return its (constant) value.
938 // (Folds up type checking code.)
939 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
940 ciKlass *ss = klass->super_of_depth(depth);
941 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
942 }
943 }
944 }
945
946 // If the type is enough to determine that the thing is not an array,
947 // we can give the layout_helper a positive interval type.
948 // This will help short-circuit some reflective code.
949 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
950 && !klass->is_array_klass() // not directly typed as an array
951 && !klass->is_interface() // specifically not Serializable & Cloneable
952 && !klass->is_java_lang_Object() // not the supertype of all T[]
953 ) {
954 // Note: When interfaces are reliable, we can narrow the interface
955 // test to (klass != Serializable && klass != Cloneable).
956 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
957 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
958 // The key property of this type is that it folds up tests
959 // for array-ness, since it proves that the layout_helper is positive.
960 // Thus, a generic value like the basic object layout helper works fine.
961 return TypeInt::make(min_size, max_jint, Type::WidenMin);
962 }
963 }
964
965 // If we are loading from a freshly-allocated object, produce a zero,
966 // if the load is provably beyond the header of the object.
967 // (Also allow a variable load from a fresh array to produce zero.)
968 if (ReduceFieldZeroing) {
969 Node* value = can_see_stored_value(mem,phase);
970 if (value != NULL && value->is_Con())
971 return value->bottom_type();
972 }
973
974 return _type;
975 }
976
977 //------------------------------match_edge-------------------------------------
978 // Do we Match on this edge index or not? Match only the address.
979 uint LoadNode::match_edge(uint idx) const {
980 return idx == MemNode::Address;
981 }
982
983 //--------------------------LoadBNode::Ideal--------------------------------------
984 //
985 // If the previous store is to the same address as this load,
986 // and the value stored was larger than a byte, replace this load
987 // with the value stored truncated to a byte. If no truncation is
988 // needed, the replacement is done in LoadNode::Identity().
989 //
990 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
991 Node* mem = in(MemNode::Memory);
992 Node* value = can_see_stored_value(mem,phase);
993 if( value && !phase->type(value)->higher_equal( _type ) ) {
994 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
995 return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
996 }
997 // Identity call will handle the case where truncation is not needed.
998 return LoadNode::Ideal(phase, can_reshape);
999 }
1000
1001 //--------------------------LoadCNode::Ideal--------------------------------------
1002 //
1003 // If the previous store is to the same address as this load,
1004 // and the value stored was larger than a char, replace this load
1005 // with the value stored truncated to a char. If no truncation is
1006 // needed, the replacement is done in LoadNode::Identity().
1007 //
1008 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1009 Node* mem = in(MemNode::Memory);
1010 Node* value = can_see_stored_value(mem,phase);
1011 if( value && !phase->type(value)->higher_equal( _type ) )
1012 return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1013 // Identity call will handle the case where truncation is not needed.
1014 return LoadNode::Ideal(phase, can_reshape);
1015 }
1016
1017 //--------------------------LoadSNode::Ideal--------------------------------------
1018 //
1019 // If the previous store is to the same address as this load,
1020 // and the value stored was larger than a short, replace this load
1021 // with the value stored truncated to a short. If no truncation is
1022 // needed, the replacement is done in LoadNode::Identity().
1023 //
1024 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1025 Node* mem = in(MemNode::Memory);
1026 Node* value = can_see_stored_value(mem,phase);
1027 if( value && !phase->type(value)->higher_equal( _type ) ) {
1028 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1029 return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1030 }
1031 // Identity call will handle the case where truncation is not needed.
1032 return LoadNode::Ideal(phase, can_reshape);
1033 }
1034
1035 //=============================================================================
1036 //------------------------------Value------------------------------------------
1037 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1038 // Either input is TOP ==> the result is TOP
1039 const Type *t1 = phase->type( in(MemNode::Memory) );
1040 if (t1 == Type::TOP) return Type::TOP;
1041 Node *adr = in(MemNode::Address);
1042 const Type *t2 = phase->type( adr );
1043 if (t2 == Type::TOP) return Type::TOP;
1044 const TypePtr *tp = t2->is_ptr();
1045 if (TypePtr::above_centerline(tp->ptr()) ||
1046 tp->ptr() == TypePtr::Null) return Type::TOP;
1047
1048 // Return a more precise klass, if possible
1049 const TypeInstPtr *tinst = tp->isa_instptr();
1050 if (tinst != NULL) {
1051 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1052 int offset = tinst->offset();
1053 if (ik == phase->C->env()->Class_klass()
1054 && (offset == java_lang_Class::klass_offset_in_bytes() ||
1055 offset == java_lang_Class::array_klass_offset_in_bytes())) {
1056 // We are loading a special hidden field from a Class mirror object,
1057 // the field which points to the VM's Klass metaobject.
1058 ciType* t = tinst->java_mirror_type();
1059 // java_mirror_type returns non-null for compile-time Class constants.
1060 if (t != NULL) {
1061 // constant oop => constant klass
1062 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1063 return TypeKlassPtr::make(ciArrayKlass::make(t));
1064 }
1065 if (!t->is_klass()) {
1066 // a primitive Class (e.g., int.class) has NULL for a klass field
1067 return TypePtr::NULL_PTR;
1068 }
1069 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1070 return TypeKlassPtr::make(t->as_klass());
1071 }
1072 // non-constant mirror, so we can't tell what's going on
1073 }
1074 if( !ik->is_loaded() )
1075 return _type; // Bail out if not loaded
1076 if (offset == oopDesc::klass_offset_in_bytes()) {
1077 if (tinst->klass_is_exact()) {
1078 return TypeKlassPtr::make(ik);
1079 }
1080 // See if we can become precise: no subklasses and no interface
1081 // (Note: We need to support verified interfaces.)
1082 if (!ik->is_interface() && !ik->has_subklass()) {
1083 //assert(!UseExactTypes, "this code should be useless with exact types");
1084 // Add a dependence; if any subclass added we need to recompile
1085 if (!ik->is_final()) {
1086 // %%% should use stronger assert_unique_concrete_subtype instead
1087 phase->C->dependencies()->assert_leaf_type(ik);
1088 }
1089 // Return precise klass
1090 return TypeKlassPtr::make(ik);
1091 }
1092
1093 // Return root of possible klass
1094 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1095 }
1096 }
1097
1098 // Check for loading klass from an array
1099 const TypeAryPtr *tary = tp->isa_aryptr();
1100 if( tary != NULL ) {
1101 ciKlass *tary_klass = tary->klass();
1102 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
1103 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1104 if (tary->klass_is_exact()) {
1105 return TypeKlassPtr::make(tary_klass);
1106 }
1107 ciArrayKlass *ak = tary->klass()->as_array_klass();
1108 // If the klass is an object array, we defer the question to the
1109 // array component klass.
1110 if( ak->is_obj_array_klass() ) {
1111 assert( ak->is_loaded(), "" );
1112 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1113 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1114 ciInstanceKlass* ik = base_k->as_instance_klass();
1115 // See if we can become precise: no subklasses and no interface
1116 if (!ik->is_interface() && !ik->has_subklass()) {
1117 //assert(!UseExactTypes, "this code should be useless with exact types");
1118 // Add a dependence; if any subclass added we need to recompile
1119 if (!ik->is_final()) {
1120 phase->C->dependencies()->assert_leaf_type(ik);
1121 }
1122 // Return precise array klass
1123 return TypeKlassPtr::make(ak);
1124 }
1125 }
1126 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1127 } else { // Found a type-array?
1128 //assert(!UseExactTypes, "this code should be useless with exact types");
1129 assert( ak->is_type_array_klass(), "" );
1130 return TypeKlassPtr::make(ak); // These are always precise
1131 }
1132 }
1133 }
1134
1135 // Check for loading klass from an array klass
1136 const TypeKlassPtr *tkls = tp->isa_klassptr();
1137 if (tkls != NULL && !StressReflectiveCode) {
1138 ciKlass* klass = tkls->klass();
1139 if( !klass->is_loaded() )
1140 return _type; // Bail out if not loaded
1141 if( klass->is_obj_array_klass() &&
1142 (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1143 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1144 // // Always returning precise element type is incorrect,
1145 // // e.g., element type could be object and array may contain strings
1146 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1147
1148 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1149 // according to the element type's subclassing.
1150 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1151 }
1152 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1153 (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1154 ciKlass* sup = klass->as_instance_klass()->super();
1155 // The field is Klass::_super. Return its (constant) value.
1156 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1157 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1158 }
1159 }
1160
1161 // Bailout case
1162 return LoadNode::Value(phase);
1163 }
1164
1165 //------------------------------Identity---------------------------------------
1166 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1167 // Also feed through the klass in Allocate(...klass...)._klass.
1168 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1169 Node* x = LoadNode::Identity(phase);
1170 if (x != this) return x;
1171
1172 // Take apart the address into an oop and and offset.
1173 // Return 'this' if we cannot.
1174 Node* adr = in(MemNode::Address);
1175 intptr_t offset = 0;
1176 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1177 if (base == NULL) return this;
1178 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1179 if (toop == NULL) return this;
1180
1181 // We can fetch the klass directly through an AllocateNode.
1182 // This works even if the klass is not constant (clone or newArray).
1183 if (offset == oopDesc::klass_offset_in_bytes()) {
1184 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1185 if (allocated_klass != NULL) {
1186 return allocated_klass;
1187 }
1188 }
1189
1190 // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1191 // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1192 // See inline_native_Class_query for occurrences of these patterns.
1193 // Java Example: x.getClass().isAssignableFrom(y)
1194 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
1195 //
1196 // This improves reflective code, often making the Class
1197 // mirror go completely dead. (Current exception: Class
1198 // mirrors may appear in debug info, but we could clean them out by
1199 // introducing a new debug info operator for klassOop.java_mirror).
1200 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1201 && (offset == java_lang_Class::klass_offset_in_bytes() ||
1202 offset == java_lang_Class::array_klass_offset_in_bytes())) {
1203 // We are loading a special hidden field from a Class mirror,
1204 // the field which points to its Klass or arrayKlass metaobject.
1205 if (base->is_Load()) {
1206 Node* adr2 = base->in(MemNode::Address);
1207 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1208 if (tkls != NULL && !tkls->empty()
1209 && (tkls->klass()->is_instance_klass() ||
1210 tkls->klass()->is_array_klass())
1211 && adr2->is_AddP()
1212 ) {
1213 int mirror_field = Klass::java_mirror_offset_in_bytes();
1214 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1215 mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1216 }
1217 if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1218 return adr2->in(AddPNode::Base);
1219 }
1220 }
1221 }
1222 }
1223
1224 return this;
1225 }
1226
1227 //------------------------------Value-----------------------------------------
1228 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1229 // Either input is TOP ==> the result is TOP
1230 const Type *t1 = phase->type( in(MemNode::Memory) );
1231 if( t1 == Type::TOP ) return Type::TOP;
1232 Node *adr = in(MemNode::Address);
1233 const Type *t2 = phase->type( adr );
1234 if( t2 == Type::TOP ) return Type::TOP;
1235 const TypePtr *tp = t2->is_ptr();
1236 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
1237 const TypeAryPtr *tap = tp->isa_aryptr();
1238 if( !tap ) return _type;
1239 return tap->size();
1240 }
1241
1242 //------------------------------Identity---------------------------------------
1243 // Feed through the length in AllocateArray(...length...)._length.
1244 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1245 Node* x = LoadINode::Identity(phase);
1246 if (x != this) return x;
1247
1248 // Take apart the address into an oop and and offset.
1249 // Return 'this' if we cannot.
1250 Node* adr = in(MemNode::Address);
1251 intptr_t offset = 0;
1252 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1253 if (base == NULL) return this;
1254 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1255 if (tary == NULL) return this;
1256
1257 // We can fetch the length directly through an AllocateArrayNode.
1258 // This works even if the length is not constant (clone or newArray).
1259 if (offset == arrayOopDesc::length_offset_in_bytes()) {
1260 Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
1261 if (allocated_length != NULL) {
1262 return allocated_length;
1263 }
1264 }
1265
1266 return this;
1267
1268 }
1269 //=============================================================================
1270 //---------------------------StoreNode::make-----------------------------------
1271 // Polymorphic factory method:
1272 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
1273 switch (bt) {
1274 case T_BOOLEAN:
1275 case T_BYTE: return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
1276 case T_INT: return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
1277 case T_CHAR:
1278 case T_SHORT: return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
1279 case T_LONG: return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
1280 case T_FLOAT: return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
1281 case T_DOUBLE: return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
1282 case T_ADDRESS:
1283 case T_OBJECT: return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
1284 }
1285 ShouldNotReachHere();
1286 return (StoreNode*)NULL;
1287 }
1288
1289 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
1290 bool require_atomic = true;
1291 return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
1292 }
1293
1294
1295 //--------------------------bottom_type----------------------------------------
1296 const Type *StoreNode::bottom_type() const {
1297 return Type::MEMORY;
1298 }
1299
1300 //------------------------------hash-------------------------------------------
1301 uint StoreNode::hash() const {
1302 // unroll addition of interesting fields
1303 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
1304
1305 // Since they are not commoned, do not hash them:
1306 return NO_HASH;
1307 }
1308
1309 //------------------------------Ideal------------------------------------------
1310 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
1311 // When a store immediately follows a relevant allocation/initialization,
1312 // try to capture it into the initialization, or hoist it above.
1313 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1314 Node* p = MemNode::Ideal_common(phase, can_reshape);
1315 if (p) return (p == NodeSentinel) ? NULL : p;
1316
1317 Node* mem = in(MemNode::Memory);
1318 Node* address = in(MemNode::Address);
1319
1320 // Back-to-back stores to same address? Fold em up.
1321 // Generally unsafe if I have intervening uses...
1322 if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
1323 // Looking at a dead closed cycle of memory?
1324 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
1325
1326 assert(Opcode() == mem->Opcode() ||
1327 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
1328 "no mismatched stores, except on raw memory");
1329
1330 if (mem->outcnt() == 1 && // check for intervening uses
1331 mem->as_Store()->memory_size() <= this->memory_size()) {
1332 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
1333 // For example, 'mem' might be the final state at a conditional return.
1334 // Or, 'mem' might be used by some node which is live at the same time
1335 // 'this' is live, which might be unschedulable. So, require exactly
1336 // ONE user, the 'this' store, until such time as we clone 'mem' for
1337 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
1338 if (can_reshape) { // (%%% is this an anachronism?)
1339 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
1340 phase->is_IterGVN());
1341 } else {
1342 // It's OK to do this in the parser, since DU info is always accurate,
1343 // and the parser always refers to nodes via SafePointNode maps.
1344 set_req(MemNode::Memory, mem->in(MemNode::Memory));
1345 }
1346 return this;
1347 }
1348 }
1349
1350 // Capture an unaliased, unconditional, simple store into an initializer.
1351 // Or, if it is independent of the allocation, hoist it above the allocation.
1352 if (ReduceFieldZeroing && /*can_reshape &&*/
1353 mem->is_Proj() && mem->in(0)->is_Initialize()) {
1354 InitializeNode* init = mem->in(0)->as_Initialize();
1355 intptr_t offset = init->can_capture_store(this, phase);
1356 if (offset > 0) {
1357 Node* moved = init->capture_store(this, offset, phase);
1358 // If the InitializeNode captured me, it made a raw copy of me,
1359 // and I need to disappear.
1360 if (moved != NULL) {
1361 // %%% hack to ensure that Ideal returns a new node:
1362 mem = MergeMemNode::make(phase->C, mem);
1363 return mem; // fold me away
1364 }
1365 }
1366 }
1367
1368 return NULL; // No further progress
1369 }
1370
1371 //------------------------------Value-----------------------------------------
1372 const Type *StoreNode::Value( PhaseTransform *phase ) const {
1373 // Either input is TOP ==> the result is TOP
1374 const Type *t1 = phase->type( in(MemNode::Memory) );
1375 if( t1 == Type::TOP ) return Type::TOP;
1376 const Type *t2 = phase->type( in(MemNode::Address) );
1377 if( t2 == Type::TOP ) return Type::TOP;
1378 const Type *t3 = phase->type( in(MemNode::ValueIn) );
1379 if( t3 == Type::TOP ) return Type::TOP;
1380 return Type::MEMORY;
1381 }
1382
1383 //------------------------------Identity---------------------------------------
1384 // Remove redundant stores:
1385 // Store(m, p, Load(m, p)) changes to m.
1386 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
1387 Node *StoreNode::Identity( PhaseTransform *phase ) {
1388 Node* mem = in(MemNode::Memory);
1389 Node* adr = in(MemNode::Address);
1390 Node* val = in(MemNode::ValueIn);
1391
1392 // Load then Store? Then the Store is useless
1393 if (val->is_Load() &&
1394 phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
1395 phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
1396 val->as_Load()->store_Opcode() == Opcode()) {
1397 return mem;
1398 }
1399
1400 // Two stores in a row of the same value?
1401 if (mem->is_Store() &&
1402 phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
1403 phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
1404 mem->Opcode() == Opcode()) {
1405 return mem;
1406 }
1407
1408 // Store of zero anywhere into a freshly-allocated object?
1409 // Then the store is useless.
1410 // (It must already have been captured by the InitializeNode.)
1411 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
1412 // a newly allocated object is already all-zeroes everywhere
1413 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
1414 return mem;
1415 }
1416
1417 // the store may also apply to zero-bits in an earlier object
1418 Node* prev_mem = find_previous_store(phase);
1419 // Steps (a), (b): Walk past independent stores to find an exact match.
1420 if (prev_mem != NULL) {
1421 Node* prev_val = can_see_stored_value(prev_mem, phase);
1422 if (prev_val != NULL && phase->eqv(prev_val, val)) {
1423 // prev_val and val might differ by a cast; it would be good
1424 // to keep the more informative of the two.
1425 return mem;
1426 }
1427 }
1428 }
1429
1430 return this;
1431 }
1432
1433 //------------------------------match_edge-------------------------------------
1434 // Do we Match on this edge index or not? Match only memory & value
1435 uint StoreNode::match_edge(uint idx) const {
1436 return idx == MemNode::Address || idx == MemNode::ValueIn;
1437 }
1438
1439 //------------------------------cmp--------------------------------------------
1440 // Do not common stores up together. They generally have to be split
1441 // back up anyways, so do not bother.
1442 uint StoreNode::cmp( const Node &n ) const {
1443 return (&n == this); // Always fail except on self
1444 }
1445
1446 //------------------------------Ideal_masked_input-----------------------------
1447 // Check for a useless mask before a partial-word store
1448 // (StoreB ... (AndI valIn conIa) )
1449 // If (conIa & mask == mask) this simplifies to
1450 // (StoreB ... (valIn) )
1451 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
1452 Node *val = in(MemNode::ValueIn);
1453 if( val->Opcode() == Op_AndI ) {
1454 const TypeInt *t = phase->type( val->in(2) )->isa_int();
1455 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
1456 set_req(MemNode::ValueIn, val->in(1));
1457 return this;
1458 }
1459 }
1460 return NULL;
1461 }
1462
1463
1464 //------------------------------Ideal_sign_extended_input----------------------
1465 // Check for useless sign-extension before a partial-word store
1466 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
1467 // If (conIL == conIR && conIR <= num_bits) this simplifies to
1468 // (StoreB ... (valIn) )
1469 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
1470 Node *val = in(MemNode::ValueIn);
1471 if( val->Opcode() == Op_RShiftI ) {
1472 const TypeInt *t = phase->type( val->in(2) )->isa_int();
1473 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
1474 Node *shl = val->in(1);
1475 if( shl->Opcode() == Op_LShiftI ) {
1476 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
1477 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
1478 set_req(MemNode::ValueIn, shl->in(1));
1479 return this;
1480 }
1481 }
1482 }
1483 }
1484 return NULL;
1485 }
1486
1487 //------------------------------value_never_loaded-----------------------------------
1488 // Determine whether there are any possible loads of the value stored.
1489 // For simplicity, we actually check if there are any loads from the
1490 // address stored to, not just for loads of the value stored by this node.
1491 //
1492 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
1493 Node *adr = in(Address);
1494 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
1495 if (adr_oop == NULL)
1496 return false;
1497 if (!adr_oop->is_instance())
1498 return false; // if not a distinct instance, there may be aliases of the address
1499 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
1500 Node *use = adr->fast_out(i);
1501 int opc = use->Opcode();
1502 if (use->is_Load() || use->is_LoadStore()) {
1503 return false;
1504 }
1505 }
1506 return true;
1507 }
1508
1509 //=============================================================================
1510 //------------------------------Ideal------------------------------------------
1511 // If the store is from an AND mask that leaves the low bits untouched, then
1512 // we can skip the AND operation. If the store is from a sign-extension
1513 // (a left shift, then right shift) we can skip both.
1514 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
1515 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
1516 if( progress != NULL ) return progress;
1517
1518 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
1519 if( progress != NULL ) return progress;
1520
1521 // Finally check the default case
1522 return StoreNode::Ideal(phase, can_reshape);
1523 }
1524
1525 //=============================================================================
1526 //------------------------------Ideal------------------------------------------
1527 // If the store is from an AND mask that leaves the low bits untouched, then
1528 // we can skip the AND operation
1529 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
1530 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
1531 if( progress != NULL ) return progress;
1532
1533 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
1534 if( progress != NULL ) return progress;
1535
1536 // Finally check the default case
1537 return StoreNode::Ideal(phase, can_reshape);
1538 }
1539
1540 //=============================================================================
1541 //------------------------------Identity---------------------------------------
1542 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
1543 // No need to card mark when storing a null ptr
1544 Node* my_store = in(MemNode::OopStore);
1545 if (my_store->is_Store()) {
1546 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
1547 if( t1 == TypePtr::NULL_PTR ) {
1548 return in(MemNode::Memory);
1549 }
1550 }
1551 return this;
1552 }
1553
1554 //------------------------------Value-----------------------------------------
1555 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
1556 // If extra input is TOP ==> the result is TOP
1557 const Type *t1 = phase->type( in(MemNode::OopStore) );
1558 if( t1 == Type::TOP ) return Type::TOP;
1559
1560 return StoreNode::Value( phase );
1561 }
1562
1563
1564 //=============================================================================
1565 //----------------------------------SCMemProjNode------------------------------
1566 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
1567 {
1568 return bottom_type();
1569 }
1570
1571 //=============================================================================
1572 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
1573 init_req(MemNode::Control, c );
1574 init_req(MemNode::Memory , mem);
1575 init_req(MemNode::Address, adr);
1576 init_req(MemNode::ValueIn, val);
1577 init_req( ExpectedIn, ex );
1578 init_class_id(Class_LoadStore);
1579
1580 }
1581
1582 //=============================================================================
1583 //-------------------------------adr_type--------------------------------------
1584 // Do we Match on this edge index or not? Do not match memory
1585 const TypePtr* ClearArrayNode::adr_type() const {
1586 Node *adr = in(3);
1587 return MemNode::calculate_adr_type(adr->bottom_type());
1588 }
1589
1590 //------------------------------match_edge-------------------------------------
1591 // Do we Match on this edge index or not? Do not match memory
1592 uint ClearArrayNode::match_edge(uint idx) const {
1593 return idx > 1;
1594 }
1595
1596 //------------------------------Identity---------------------------------------
1597 // Clearing a zero length array does nothing
1598 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
1599 return phase->type(in(2))->higher_equal(TypeInt::ZERO) ? in(1) : this;
1600 }
1601
1602 //------------------------------Idealize---------------------------------------
1603 // Clearing a short array is faster with stores
1604 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
1605 const int unit = BytesPerLong;
1606 const TypeX* t = phase->type(in(2))->isa_intptr_t();
1607 if (!t) return NULL;
1608 if (!t->is_con()) return NULL;
1609 intptr_t raw_count = t->get_con();
1610 intptr_t size = raw_count;
1611 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
1612 // Clearing nothing uses the Identity call.
1613 // Negative clears are possible on dead ClearArrays
1614 // (see jck test stmt114.stmt11402.val).
1615 if (size <= 0 || size % unit != 0) return NULL;
1616 intptr_t count = size / unit;
1617 // Length too long; use fast hardware clear
1618 if (size > Matcher::init_array_short_size) return NULL;
1619 Node *mem = in(1);
1620 if( phase->type(mem)==Type::TOP ) return NULL;
1621 Node *adr = in(3);
1622 const Type* at = phase->type(adr);
1623 if( at==Type::TOP ) return NULL;
1624 const TypePtr* atp = at->isa_ptr();
1625 // adjust atp to be the correct array element address type
1626 if (atp == NULL) atp = TypePtr::BOTTOM;
1627 else atp = atp->add_offset(Type::OffsetBot);
1628 // Get base for derived pointer purposes
1629 if( adr->Opcode() != Op_AddP ) Unimplemented();
1630 Node *base = adr->in(1);
1631
1632 Node *zero = phase->makecon(TypeLong::ZERO);
1633 Node *off = phase->MakeConX(BytesPerLong);
1634 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
1635 count--;
1636 while( count-- ) {
1637 mem = phase->transform(mem);
1638 adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
1639 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
1640 }
1641 return mem;
1642 }
1643
1644 //----------------------------clear_memory-------------------------------------
1645 // Generate code to initialize object storage to zero.
1646 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
1647 intptr_t start_offset,
1648 Node* end_offset,
1649 PhaseGVN* phase) {
1650 Compile* C = phase->C;
1651 intptr_t offset = start_offset;
1652
1653 int unit = BytesPerLong;
1654 if ((offset % unit) != 0) {
1655 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
1656 adr = phase->transform(adr);
1657 const TypePtr* atp = TypeRawPtr::BOTTOM;
1658 mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
1659 mem = phase->transform(mem);
1660 offset += BytesPerInt;
1661 }
1662 assert((offset % unit) == 0, "");
1663
1664 // Initialize the remaining stuff, if any, with a ClearArray.
1665 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
1666 }
1667
1668 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
1669 Node* start_offset,
1670 Node* end_offset,
1671 PhaseGVN* phase) {
1672 Compile* C = phase->C;
1673 int unit = BytesPerLong;
1674 Node* zbase = start_offset;
1675 Node* zend = end_offset;
1676
1677 // Scale to the unit required by the CPU:
1678 if (!Matcher::init_array_count_is_in_bytes) {
1679 Node* shift = phase->intcon(exact_log2(unit));
1680 zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
1681 zend = phase->transform( new(C,3) URShiftXNode(zend, shift) );
1682 }
1683
1684 Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
1685 Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
1686
1687 // Bulk clear double-words
1688 Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
1689 mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
1690 return phase->transform(mem);
1691 }
1692
1693 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
1694 intptr_t start_offset,
1695 intptr_t end_offset,
1696 PhaseGVN* phase) {
1697 Compile* C = phase->C;
1698 assert((end_offset % BytesPerInt) == 0, "odd end offset");
1699 intptr_t done_offset = end_offset;
1700 if ((done_offset % BytesPerLong) != 0) {
1701 done_offset -= BytesPerInt;
1702 }
1703 if (done_offset > start_offset) {
1704 mem = clear_memory(ctl, mem, dest,
1705 start_offset, phase->MakeConX(done_offset), phase);
1706 }
1707 if (done_offset < end_offset) { // emit the final 32-bit store
1708 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
1709 adr = phase->transform(adr);
1710 const TypePtr* atp = TypeRawPtr::BOTTOM;
1711 mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
1712 mem = phase->transform(mem);
1713 done_offset += BytesPerInt;
1714 }
1715 assert(done_offset == end_offset, "");
1716 return mem;
1717 }
1718
1719 //=============================================================================
1720 // Do we match on this edge? No memory edges
1721 uint StrCompNode::match_edge(uint idx) const {
1722 return idx == 5 || idx == 6;
1723 }
1724
1725 //------------------------------Ideal------------------------------------------
1726 // Return a node which is more "ideal" than the current node. Strip out
1727 // control copies
1728 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
1729 return remove_dead_region(phase, can_reshape) ? this : NULL;
1730 }
1731
1732
1733 //=============================================================================
1734 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
1735 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
1736 _adr_type(C->get_adr_type(alias_idx))
1737 {
1738 init_class_id(Class_MemBar);
1739 Node* top = C->top();
1740 init_req(TypeFunc::I_O,top);
1741 init_req(TypeFunc::FramePtr,top);
1742 init_req(TypeFunc::ReturnAdr,top);
1743 if (precedent != NULL)
1744 init_req(TypeFunc::Parms, precedent);
1745 }
1746
1747 //------------------------------cmp--------------------------------------------
1748 uint MemBarNode::hash() const { return NO_HASH; }
1749 uint MemBarNode::cmp( const Node &n ) const {
1750 return (&n == this); // Always fail except on self
1751 }
1752
1753 //------------------------------make-------------------------------------------
1754 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
1755 int len = Precedent + (pn == NULL? 0: 1);
1756 switch (opcode) {
1757 case Op_MemBarAcquire: return new(C, len) MemBarAcquireNode(C, atp, pn);
1758 case Op_MemBarRelease: return new(C, len) MemBarReleaseNode(C, atp, pn);
1759 case Op_MemBarVolatile: return new(C, len) MemBarVolatileNode(C, atp, pn);
1760 case Op_MemBarCPUOrder: return new(C, len) MemBarCPUOrderNode(C, atp, pn);
1761 case Op_Initialize: return new(C, len) InitializeNode(C, atp, pn);
1762 default: ShouldNotReachHere(); return NULL;
1763 }
1764 }
1765
1766 //------------------------------Ideal------------------------------------------
1767 // Return a node which is more "ideal" than the current node. Strip out
1768 // control copies
1769 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1770 if (remove_dead_region(phase, can_reshape)) return this;
1771 return NULL;
1772 }
1773
1774 //------------------------------Value------------------------------------------
1775 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
1776 if( !in(0) ) return Type::TOP;
1777 if( phase->type(in(0)) == Type::TOP )
1778 return Type::TOP;
1779 return TypeTuple::MEMBAR;
1780 }
1781
1782 //------------------------------match------------------------------------------
1783 // Construct projections for memory.
1784 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
1785 switch (proj->_con) {
1786 case TypeFunc::Control:
1787 case TypeFunc::Memory:
1788 return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
1789 }
1790 ShouldNotReachHere();
1791 return NULL;
1792 }
1793
1794 //===========================InitializeNode====================================
1795 // SUMMARY:
1796 // This node acts as a memory barrier on raw memory, after some raw stores.
1797 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
1798 // The Initialize can 'capture' suitably constrained stores as raw inits.
1799 // It can coalesce related raw stores into larger units (called 'tiles').
1800 // It can avoid zeroing new storage for memory units which have raw inits.
1801 // At macro-expansion, it is marked 'complete', and does not optimize further.
1802 //
1803 // EXAMPLE:
1804 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
1805 // ctl = incoming control; mem* = incoming memory
1806 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
1807 // First allocate uninitialized memory and fill in the header:
1808 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
1809 // ctl := alloc.Control; mem* := alloc.Memory*
1810 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
1811 // Then initialize to zero the non-header parts of the raw memory block:
1812 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
1813 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
1814 // After the initialize node executes, the object is ready for service:
1815 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
1816 // Suppose its body is immediately initialized as {1,2}:
1817 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
1818 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
1819 // mem.SLICE(#short[*]) := store2
1820 //
1821 // DETAILS:
1822 // An InitializeNode collects and isolates object initialization after
1823 // an AllocateNode and before the next possible safepoint. As a
1824 // memory barrier (MemBarNode), it keeps critical stores from drifting
1825 // down past any safepoint or any publication of the allocation.
1826 // Before this barrier, a newly-allocated object may have uninitialized bits.
1827 // After this barrier, it may be treated as a real oop, and GC is allowed.
1828 //
1829 // The semantics of the InitializeNode include an implicit zeroing of
1830 // the new object from object header to the end of the object.
1831 // (The object header and end are determined by the AllocateNode.)
1832 //
1833 // Certain stores may be added as direct inputs to the InitializeNode.
1834 // These stores must update raw memory, and they must be to addresses
1835 // derived from the raw address produced by AllocateNode, and with
1836 // a constant offset. They must be ordered by increasing offset.
1837 // The first one is at in(RawStores), the last at in(req()-1).
1838 // Unlike most memory operations, they are not linked in a chain,
1839 // but are displayed in parallel as users of the rawmem output of
1840 // the allocation.
1841 //
1842 // (See comments in InitializeNode::capture_store, which continue
1843 // the example given above.)
1844 //
1845 // When the associated Allocate is macro-expanded, the InitializeNode
1846 // may be rewritten to optimize collected stores. A ClearArrayNode
1847 // may also be created at that point to represent any required zeroing.
1848 // The InitializeNode is then marked 'complete', prohibiting further
1849 // capturing of nearby memory operations.
1850 //
1851 // During macro-expansion, all captured initializations which store
1852 // constant values of 32 bits or smaller are coalesced (if advantagous)
1853 // into larger 'tiles' 32 or 64 bits. This allows an object to be
1854 // initialized in fewer memory operations. Memory words which are
1855 // covered by neither tiles nor non-constant stores are pre-zeroed
1856 // by explicit stores of zero. (The code shape happens to do all
1857 // zeroing first, then all other stores, with both sequences occurring
1858 // in order of ascending offsets.)
1859 //
1860 // Alternatively, code may be inserted between an AllocateNode and its
1861 // InitializeNode, to perform arbitrary initialization of the new object.
1862 // E.g., the object copying intrinsics insert complex data transfers here.
1863 // The initialization must then be marked as 'complete' disable the
1864 // built-in zeroing semantics and the collection of initializing stores.
1865 //
1866 // While an InitializeNode is incomplete, reads from the memory state
1867 // produced by it are optimizable if they match the control edge and
1868 // new oop address associated with the allocation/initialization.
1869 // They return a stored value (if the offset matches) or else zero.
1870 // A write to the memory state, if it matches control and address,
1871 // and if it is to a constant offset, may be 'captured' by the
1872 // InitializeNode. It is cloned as a raw memory operation and rewired
1873 // inside the initialization, to the raw oop produced by the allocation.
1874 // Operations on addresses which are provably distinct (e.g., to
1875 // other AllocateNodes) are allowed to bypass the initialization.
1876 //
1877 // The effect of all this is to consolidate object initialization
1878 // (both arrays and non-arrays, both piecewise and bulk) into a
1879 // single location, where it can be optimized as a unit.
1880 //
1881 // Only stores with an offset less than TrackedInitializationLimit words
1882 // will be considered for capture by an InitializeNode. This puts a
1883 // reasonable limit on the complexity of optimized initializations.
1884
1885 //---------------------------InitializeNode------------------------------------
1886 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
1887 : _is_complete(false),
1888 MemBarNode(C, adr_type, rawoop)
1889 {
1890 init_class_id(Class_Initialize);
1891
1892 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
1893 assert(in(RawAddress) == rawoop, "proper init");
1894 // Note: allocation() can be NULL, for secondary initialization barriers
1895 }
1896
1897 // Since this node is not matched, it will be processed by the
1898 // register allocator. Declare that there are no constraints
1899 // on the allocation of the RawAddress edge.
1900 const RegMask &InitializeNode::in_RegMask(uint idx) const {
1901 // This edge should be set to top, by the set_complete. But be conservative.
1902 if (idx == InitializeNode::RawAddress)
1903 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
1904 return RegMask::Empty;
1905 }
1906
1907 Node* InitializeNode::memory(uint alias_idx) {
1908 Node* mem = in(Memory);
1909 if (mem->is_MergeMem()) {
1910 return mem->as_MergeMem()->memory_at(alias_idx);
1911 } else {
1912 // incoming raw memory is not split
1913 return mem;
1914 }
1915 }
1916
1917 bool InitializeNode::is_non_zero() {
1918 if (is_complete()) return false;
1919 remove_extra_zeroes();
1920 return (req() > RawStores);
1921 }
1922
1923 void InitializeNode::set_complete(PhaseGVN* phase) {
1924 assert(!is_complete(), "caller responsibility");
1925 _is_complete = true;
1926
1927 // After this node is complete, it contains a bunch of
1928 // raw-memory initializations. There is no need for
1929 // it to have anything to do with non-raw memory effects.
1930 // Therefore, tell all non-raw users to re-optimize themselves,
1931 // after skipping the memory effects of this initialization.
1932 PhaseIterGVN* igvn = phase->is_IterGVN();
1933 if (igvn) igvn->add_users_to_worklist(this);
1934 }
1935
1936 // convenience function
1937 // return false if the init contains any stores already
1938 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
1939 InitializeNode* init = initialization();
1940 if (init == NULL || init->is_complete()) return false;
1941 init->remove_extra_zeroes();
1942 // for now, if this allocation has already collected any inits, bail:
1943 if (init->is_non_zero()) return false;
1944 init->set_complete(phase);
1945 return true;
1946 }
1947
1948 void InitializeNode::remove_extra_zeroes() {
1949 if (req() == RawStores) return;
1950 Node* zmem = zero_memory();
1951 uint fill = RawStores;
1952 for (uint i = fill; i < req(); i++) {
1953 Node* n = in(i);
1954 if (n->is_top() || n == zmem) continue; // skip
1955 if (fill < i) set_req(fill, n); // compact
1956 ++fill;
1957 }
1958 // delete any empty spaces created:
1959 while (fill < req()) {
1960 del_req(fill);
1961 }
1962 }
1963
1964 // Helper for remembering which stores go with which offsets.
1965 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
1966 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
1967 intptr_t offset = -1;
1968 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
1969 phase, offset);
1970 if (base == NULL) return -1; // something is dead,
1971 if (offset < 0) return -1; // dead, dead
1972 return offset;
1973 }
1974
1975 // Helper for proving that an initialization expression is
1976 // "simple enough" to be folded into an object initialization.
1977 // Attempts to prove that a store's initial value 'n' can be captured
1978 // within the initialization without creating a vicious cycle, such as:
1979 // { Foo p = new Foo(); p.next = p; }
1980 // True for constants and parameters and small combinations thereof.
1981 bool InitializeNode::detect_init_independence(Node* n,
1982 bool st_is_pinned,
1983 int& count) {
1984 if (n == NULL) return true; // (can this really happen?)
1985 if (n->is_Proj()) n = n->in(0);
1986 if (n == this) return false; // found a cycle
1987 if (n->is_Con()) return true;
1988 if (n->is_Start()) return true; // params, etc., are OK
1989 if (n->is_Root()) return true; // even better
1990
1991 Node* ctl = n->in(0);
1992 if (ctl != NULL && !ctl->is_top()) {
1993 if (ctl->is_Proj()) ctl = ctl->in(0);
1994 if (ctl == this) return false;
1995
1996 // If we already know that the enclosing memory op is pinned right after
1997 // the init, then any control flow that the store has picked up
1998 // must have preceded the init, or else be equal to the init.
1999 // Even after loop optimizations (which might change control edges)
2000 // a store is never pinned *before* the availability of its inputs.
2001 if (!MemNode::detect_dominating_control(ctl, this->in(0)))
2002 return false; // failed to prove a good control
2003
2004 }
2005
2006 // Check data edges for possible dependencies on 'this'.
2007 if ((count += 1) > 20) return false; // complexity limit
2008 for (uint i = 1; i < n->req(); i++) {
2009 Node* m = n->in(i);
2010 if (m == NULL || m == n || m->is_top()) continue;
2011 uint first_i = n->find_edge(m);
2012 if (i != first_i) continue; // process duplicate edge just once
2013 if (!detect_init_independence(m, st_is_pinned, count)) {
2014 return false;
2015 }
2016 }
2017
2018 return true;
2019 }
2020
2021 // Here are all the checks a Store must pass before it can be moved into
2022 // an initialization. Returns zero if a check fails.
2023 // On success, returns the (constant) offset to which the store applies,
2024 // within the initialized memory.
2025 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2026 const int FAIL = 0;
2027 if (st->req() != MemNode::ValueIn + 1)
2028 return FAIL; // an inscrutable StoreNode (card mark?)
2029 Node* ctl = st->in(MemNode::Control);
2030 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2031 return FAIL; // must be unconditional after the initialization
2032 Node* mem = st->in(MemNode::Memory);
2033 if (!(mem->is_Proj() && mem->in(0) == this))
2034 return FAIL; // must not be preceded by other stores
2035 Node* adr = st->in(MemNode::Address);
2036 intptr_t offset;
2037 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2038 if (alloc == NULL)
2039 return FAIL; // inscrutable address
2040 if (alloc != allocation())
2041 return FAIL; // wrong allocation! (store needs to float up)
2042 Node* val = st->in(MemNode::ValueIn);
2043 int complexity_count = 0;
2044 if (!detect_init_independence(val, true, complexity_count))
2045 return FAIL; // stored value must be 'simple enough'
2046
2047 return offset; // success
2048 }
2049
2050 // Find the captured store in(i) which corresponds to the range
2051 // [start..start+size) in the initialized object.
2052 // If there is one, return its index i. If there isn't, return the
2053 // negative of the index where it should be inserted.
2054 // Return 0 if the queried range overlaps an initialization boundary
2055 // or if dead code is encountered.
2056 // If size_in_bytes is zero, do not bother with overlap checks.
2057 int InitializeNode::captured_store_insertion_point(intptr_t start,
2058 int size_in_bytes,
2059 PhaseTransform* phase) {
2060 const int FAIL = 0, MAX_STORE = BytesPerLong;
2061
2062 if (is_complete())
2063 return FAIL; // arraycopy got here first; punt
2064
2065 assert(allocation() != NULL, "must be present");
2066
2067 // no negatives, no header fields:
2068 if (start < (intptr_t) sizeof(oopDesc)) return FAIL;
2069 if (start < (intptr_t) sizeof(arrayOopDesc) &&
2070 start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
2071
2072 // after a certain size, we bail out on tracking all the stores:
2073 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2074 if (start >= ti_limit) return FAIL;
2075
2076 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2077 if (i >= limit) return -(int)i; // not found; here is where to put it
2078
2079 Node* st = in(i);
2080 intptr_t st_off = get_store_offset(st, phase);
2081 if (st_off < 0) {
2082 if (st != zero_memory()) {
2083 return FAIL; // bail out if there is dead garbage
2084 }
2085 } else if (st_off > start) {
2086 // ...we are done, since stores are ordered
2087 if (st_off < start + size_in_bytes) {
2088 return FAIL; // the next store overlaps
2089 }
2090 return -(int)i; // not found; here is where to put it
2091 } else if (st_off < start) {
2092 if (size_in_bytes != 0 &&
2093 start < st_off + MAX_STORE &&
2094 start < st_off + st->as_Store()->memory_size()) {
2095 return FAIL; // the previous store overlaps
2096 }
2097 } else {
2098 if (size_in_bytes != 0 &&
2099 st->as_Store()->memory_size() != size_in_bytes) {
2100 return FAIL; // mismatched store size
2101 }
2102 return i;
2103 }
2104
2105 ++i;
2106 }
2107 }
2108
2109 // Look for a captured store which initializes at the offset 'start'
2110 // with the given size. If there is no such store, and no other
2111 // initialization interferes, then return zero_memory (the memory
2112 // projection of the AllocateNode).
2113 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2114 PhaseTransform* phase) {
2115 assert(stores_are_sane(phase), "");
2116 int i = captured_store_insertion_point(start, size_in_bytes, phase);
2117 if (i == 0) {
2118 return NULL; // something is dead
2119 } else if (i < 0) {
2120 return zero_memory(); // just primordial zero bits here
2121 } else {
2122 Node* st = in(i); // here is the store at this position
2123 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2124 return st;
2125 }
2126 }
2127
2128 // Create, as a raw pointer, an address within my new object at 'offset'.
2129 Node* InitializeNode::make_raw_address(intptr_t offset,
2130 PhaseTransform* phase) {
2131 Node* addr = in(RawAddress);
2132 if (offset != 0) {
2133 Compile* C = phase->C;
2134 addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2135 phase->MakeConX(offset)) );
2136 }
2137 return addr;
2138 }
2139
2140 // Clone the given store, converting it into a raw store
2141 // initializing a field or element of my new object.
2142 // Caller is responsible for retiring the original store,
2143 // with subsume_node or the like.
2144 //
2145 // From the example above InitializeNode::InitializeNode,
2146 // here are the old stores to be captured:
2147 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2148 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
2149 //
2150 // Here is the changed code; note the extra edges on init:
2151 // alloc = (Allocate ...)
2152 // rawoop = alloc.RawAddress
2153 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2154 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2155 // init = (Initialize alloc.Control alloc.Memory rawoop
2156 // rawstore1 rawstore2)
2157 //
2158 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2159 PhaseTransform* phase) {
2160 assert(stores_are_sane(phase), "");
2161
2162 if (start < 0) return NULL;
2163 assert(can_capture_store(st, phase) == start, "sanity");
2164
2165 Compile* C = phase->C;
2166 int size_in_bytes = st->memory_size();
2167 int i = captured_store_insertion_point(start, size_in_bytes, phase);
2168 if (i == 0) return NULL; // bail out
2169 Node* prev_mem = NULL; // raw memory for the captured store
2170 if (i > 0) {
2171 prev_mem = in(i); // there is a pre-existing store under this one
2172 set_req(i, C->top()); // temporarily disconnect it
2173 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2174 } else {
2175 i = -i; // no pre-existing store
2176 prev_mem = zero_memory(); // a slice of the newly allocated object
2177 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2178 set_req(--i, C->top()); // reuse this edge; it has been folded away
2179 else
2180 ins_req(i, C->top()); // build a new edge
2181 }
2182 Node* new_st = st->clone();
2183 new_st->set_req(MemNode::Control, in(Control));
2184 new_st->set_req(MemNode::Memory, prev_mem);
2185 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2186 new_st = phase->transform(new_st);
2187
2188 // At this point, new_st might have swallowed a pre-existing store
2189 // at the same offset, or perhaps new_st might have disappeared,
2190 // if it redundantly stored the same value (or zero to fresh memory).
2191
2192 // In any case, wire it in:
2193 set_req(i, new_st);
2194
2195 // The caller may now kill the old guy.
2196 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
2197 assert(check_st == new_st || check_st == NULL, "must be findable");
2198 assert(!is_complete(), "");
2199 return new_st;
2200 }
2201
2202 static bool store_constant(jlong* tiles, int num_tiles,
2203 intptr_t st_off, int st_size,
2204 jlong con) {
2205 if ((st_off & (st_size-1)) != 0)
2206 return false; // strange store offset (assume size==2**N)
2207 address addr = (address)tiles + st_off;
2208 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
2209 switch (st_size) {
2210 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
2211 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
2212 case sizeof(jint): *(jint*) addr = (jint) con; break;
2213 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
2214 default: return false; // strange store size (detect size!=2**N here)
2215 }
2216 return true; // return success to caller
2217 }
2218
2219 // Coalesce subword constants into int constants and possibly
2220 // into long constants. The goal, if the CPU permits,
2221 // is to initialize the object with a small number of 64-bit tiles.
2222 // Also, convert floating-point constants to bit patterns.
2223 // Non-constants are not relevant to this pass.
2224 //
2225 // In terms of the running example on InitializeNode::InitializeNode
2226 // and InitializeNode::capture_store, here is the transformation
2227 // of rawstore1 and rawstore2 into rawstore12:
2228 // alloc = (Allocate ...)
2229 // rawoop = alloc.RawAddress
2230 // tile12 = 0x00010002
2231 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
2232 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
2233 //
2234 void
2235 InitializeNode::coalesce_subword_stores(intptr_t header_size,
2236 Node* size_in_bytes,
2237 PhaseGVN* phase) {
2238 Compile* C = phase->C;
2239
2240 assert(stores_are_sane(phase), "");
2241 // Note: After this pass, they are not completely sane,
2242 // since there may be some overlaps.
2243
2244 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
2245
2246 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2247 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
2248 size_limit = MIN2(size_limit, ti_limit);
2249 size_limit = align_size_up(size_limit, BytesPerLong);
2250 int num_tiles = size_limit / BytesPerLong;
2251
2252 // allocate space for the tile map:
2253 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
2254 jlong tiles_buf[small_len];
2255 Node* nodes_buf[small_len];
2256 jlong inits_buf[small_len];
2257 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
2258 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2259 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
2260 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
2261 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
2262 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2263 // tiles: exact bitwise model of all primitive constants
2264 // nodes: last constant-storing node subsumed into the tiles model
2265 // inits: which bytes (in each tile) are touched by any initializations
2266
2267 //// Pass A: Fill in the tile model with any relevant stores.
2268
2269 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
2270 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
2271 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
2272 Node* zmem = zero_memory(); // initially zero memory state
2273 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
2274 Node* st = in(i);
2275 intptr_t st_off = get_store_offset(st, phase);
2276
2277 // Figure out the store's offset and constant value:
2278 if (st_off < header_size) continue; //skip (ignore header)
2279 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
2280 int st_size = st->as_Store()->memory_size();
2281 if (st_off + st_size > size_limit) break;
2282
2283 // Record which bytes are touched, whether by constant or not.
2284 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
2285 continue; // skip (strange store size)
2286
2287 const Type* val = phase->type(st->in(MemNode::ValueIn));
2288 if (!val->singleton()) continue; //skip (non-con store)
2289 BasicType type = val->basic_type();
2290
2291 jlong con = 0;
2292 switch (type) {
2293 case T_INT: con = val->is_int()->get_con(); break;
2294 case T_LONG: con = val->is_long()->get_con(); break;
2295 case T_FLOAT: con = jint_cast(val->getf()); break;
2296 case T_DOUBLE: con = jlong_cast(val->getd()); break;
2297 default: continue; //skip (odd store type)
2298 }
2299
2300 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
2301 st->Opcode() == Op_StoreL) {
2302 continue; // This StoreL is already optimal.
2303 }
2304
2305 // Store down the constant.
2306 store_constant(tiles, num_tiles, st_off, st_size, con);
2307
2308 intptr_t j = st_off >> LogBytesPerLong;
2309
2310 if (type == T_INT && st_size == BytesPerInt
2311 && (st_off & BytesPerInt) == BytesPerInt) {
2312 jlong lcon = tiles[j];
2313 if (!Matcher::isSimpleConstant64(lcon) &&
2314 st->Opcode() == Op_StoreI) {
2315 // This StoreI is already optimal by itself.
2316 jint* intcon = (jint*) &tiles[j];
2317 intcon[1] = 0; // undo the store_constant()
2318
2319 // If the previous store is also optimal by itself, back up and
2320 // undo the action of the previous loop iteration... if we can.
2321 // But if we can't, just let the previous half take care of itself.
2322 st = nodes[j];
2323 st_off -= BytesPerInt;
2324 con = intcon[0];
2325 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
2326 assert(st_off >= header_size, "still ignoring header");
2327 assert(get_store_offset(st, phase) == st_off, "must be");
2328 assert(in(i-1) == zmem, "must be");
2329 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
2330 assert(con == tcon->is_int()->get_con(), "must be");
2331 // Undo the effects of the previous loop trip, which swallowed st:
2332 intcon[0] = 0; // undo store_constant()
2333 set_req(i-1, st); // undo set_req(i, zmem)
2334 nodes[j] = NULL; // undo nodes[j] = st
2335 --old_subword; // undo ++old_subword
2336 }
2337 continue; // This StoreI is already optimal.
2338 }
2339 }
2340
2341 // This store is not needed.
2342 set_req(i, zmem);
2343 nodes[j] = st; // record for the moment
2344 if (st_size < BytesPerLong) // something has changed
2345 ++old_subword; // includes int/float, but who's counting...
2346 else ++old_long;
2347 }
2348
2349 if ((old_subword + old_long) == 0)
2350 return; // nothing more to do
2351
2352 //// Pass B: Convert any non-zero tiles into optimal constant stores.
2353 // Be sure to insert them before overlapping non-constant stores.
2354 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
2355 for (int j = 0; j < num_tiles; j++) {
2356 jlong con = tiles[j];
2357 jlong init = inits[j];
2358 if (con == 0) continue;
2359 jint con0, con1; // split the constant, address-wise
2360 jint init0, init1; // split the init map, address-wise
2361 { union { jlong con; jint intcon[2]; } u;
2362 u.con = con;
2363 con0 = u.intcon[0];
2364 con1 = u.intcon[1];
2365 u.con = init;
2366 init0 = u.intcon[0];
2367 init1 = u.intcon[1];
2368 }
2369
2370 Node* old = nodes[j];
2371 assert(old != NULL, "need the prior store");
2372 intptr_t offset = (j * BytesPerLong);
2373
2374 bool split = !Matcher::isSimpleConstant64(con);
2375
2376 if (offset < header_size) {
2377 assert(offset + BytesPerInt >= header_size, "second int counts");
2378 assert(*(jint*)&tiles[j] == 0, "junk in header");
2379 split = true; // only the second word counts
2380 // Example: int a[] = { 42 ... }
2381 } else if (con0 == 0 && init0 == -1) {
2382 split = true; // first word is covered by full inits
2383 // Example: int a[] = { ... foo(), 42 ... }
2384 } else if (con1 == 0 && init1 == -1) {
2385 split = true; // second word is covered by full inits
2386 // Example: int a[] = { ... 42, foo() ... }
2387 }
2388
2389 // Here's a case where init0 is neither 0 nor -1:
2390 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
2391 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
2392 // In this case the tile is not split; it is (jlong)42.
2393 // The big tile is stored down, and then the foo() value is inserted.
2394 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
2395
2396 Node* ctl = old->in(MemNode::Control);
2397 Node* adr = make_raw_address(offset, phase);
2398 const TypePtr* atp = TypeRawPtr::BOTTOM;
2399
2400 // One or two coalesced stores to plop down.
2401 Node* st[2];
2402 intptr_t off[2];
2403 int nst = 0;
2404 if (!split) {
2405 ++new_long;
2406 off[nst] = offset;
2407 st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
2408 phase->longcon(con), T_LONG);
2409 } else {
2410 // Omit either if it is a zero.
2411 if (con0 != 0) {
2412 ++new_int;
2413 off[nst] = offset;
2414 st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
2415 phase->intcon(con0), T_INT);
2416 }
2417 if (con1 != 0) {
2418 ++new_int;
2419 offset += BytesPerInt;
2420 adr = make_raw_address(offset, phase);
2421 off[nst] = offset;
2422 st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
2423 phase->intcon(con1), T_INT);
2424 }
2425 }
2426
2427 // Insert second store first, then the first before the second.
2428 // Insert each one just before any overlapping non-constant stores.
2429 while (nst > 0) {
2430 Node* st1 = st[--nst];
2431 C->copy_node_notes_to(st1, old);
2432 st1 = phase->transform(st1);
2433 offset = off[nst];
2434 assert(offset >= header_size, "do not smash header");
2435 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
2436 guarantee(ins_idx != 0, "must re-insert constant store");
2437 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
2438 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
2439 set_req(--ins_idx, st1);
2440 else
2441 ins_req(ins_idx, st1);
2442 }
2443 }
2444
2445 if (PrintCompilation && WizardMode)
2446 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
2447 old_subword, old_long, new_int, new_long);
2448 if (C->log() != NULL)
2449 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
2450 old_subword, old_long, new_int, new_long);
2451
2452 // Clean up any remaining occurrences of zmem:
2453 remove_extra_zeroes();
2454 }
2455
2456 // Explore forward from in(start) to find the first fully initialized
2457 // word, and return its offset. Skip groups of subword stores which
2458 // together initialize full words. If in(start) is itself part of a
2459 // fully initialized word, return the offset of in(start). If there
2460 // are no following full-word stores, or if something is fishy, return
2461 // a negative value.
2462 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
2463 int int_map = 0;
2464 intptr_t int_map_off = 0;
2465 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
2466
2467 for (uint i = start, limit = req(); i < limit; i++) {
2468 Node* st = in(i);
2469
2470 intptr_t st_off = get_store_offset(st, phase);
2471 if (st_off < 0) break; // return conservative answer
2472
2473 int st_size = st->as_Store()->memory_size();
2474 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
2475 return st_off; // we found a complete word init
2476 }
2477
2478 // update the map:
2479
2480 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
2481 if (this_int_off != int_map_off) {
2482 // reset the map:
2483 int_map = 0;
2484 int_map_off = this_int_off;
2485 }
2486
2487 int subword_off = st_off - this_int_off;
2488 int_map |= right_n_bits(st_size) << subword_off;
2489 if ((int_map & FULL_MAP) == FULL_MAP) {
2490 return this_int_off; // we found a complete word init
2491 }
2492
2493 // Did this store hit or cross the word boundary?
2494 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
2495 if (next_int_off == this_int_off + BytesPerInt) {
2496 // We passed the current int, without fully initializing it.
2497 int_map_off = next_int_off;
2498 int_map >>= BytesPerInt;
2499 } else if (next_int_off > this_int_off + BytesPerInt) {
2500 // We passed the current and next int.
2501 return this_int_off + BytesPerInt;
2502 }
2503 }
2504
2505 return -1;
2506 }
2507
2508
2509 // Called when the associated AllocateNode is expanded into CFG.
2510 // At this point, we may perform additional optimizations.
2511 // Linearize the stores by ascending offset, to make memory
2512 // activity as coherent as possible.
2513 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
2514 intptr_t header_size,
2515 Node* size_in_bytes,
2516 PhaseGVN* phase) {
2517 assert(!is_complete(), "not already complete");
2518 assert(stores_are_sane(phase), "");
2519 assert(allocation() != NULL, "must be present");
2520
2521 remove_extra_zeroes();
2522
2523 if (ReduceFieldZeroing || ReduceBulkZeroing)
2524 // reduce instruction count for common initialization patterns
2525 coalesce_subword_stores(header_size, size_in_bytes, phase);
2526
2527 Node* zmem = zero_memory(); // initially zero memory state
2528 Node* inits = zmem; // accumulating a linearized chain of inits
2529 #ifdef ASSERT
2530 intptr_t last_init_off = sizeof(oopDesc); // previous init offset
2531 intptr_t last_init_end = sizeof(oopDesc); // previous init offset+size
2532 intptr_t last_tile_end = sizeof(oopDesc); // previous tile offset+size
2533 #endif
2534 intptr_t zeroes_done = header_size;
2535
2536 bool do_zeroing = true; // we might give up if inits are very sparse
2537 int big_init_gaps = 0; // how many large gaps have we seen?
2538
2539 if (ZeroTLAB) do_zeroing = false;
2540 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
2541
2542 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
2543 Node* st = in(i);
2544 intptr_t st_off = get_store_offset(st, phase);
2545 if (st_off < 0)
2546 break; // unknown junk in the inits
2547 if (st->in(MemNode::Memory) != zmem)
2548 break; // complicated store chains somehow in list
2549
2550 int st_size = st->as_Store()->memory_size();
2551 intptr_t next_init_off = st_off + st_size;
2552
2553 if (do_zeroing && zeroes_done < next_init_off) {
2554 // See if this store needs a zero before it or under it.
2555 intptr_t zeroes_needed = st_off;
2556
2557 if (st_size < BytesPerInt) {
2558 // Look for subword stores which only partially initialize words.
2559 // If we find some, we must lay down some word-level zeroes first,
2560 // underneath the subword stores.
2561 //
2562 // Examples:
2563 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
2564 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
2565 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
2566 //
2567 // Note: coalesce_subword_stores may have already done this,
2568 // if it was prompted by constant non-zero subword initializers.
2569 // But this case can still arise with non-constant stores.
2570
2571 intptr_t next_full_store = find_next_fullword_store(i, phase);
2572
2573 // In the examples above:
2574 // in(i) p q r s x y z
2575 // st_off 12 13 14 15 12 13 14
2576 // st_size 1 1 1 1 1 1 1
2577 // next_full_s. 12 16 16 16 16 16 16
2578 // z's_done 12 16 16 16 12 16 12
2579 // z's_needed 12 16 16 16 16 16 16
2580 // zsize 0 0 0 0 4 0 4
2581 if (next_full_store < 0) {
2582 // Conservative tack: Zero to end of current word.
2583 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
2584 } else {
2585 // Zero to beginning of next fully initialized word.
2586 // Or, don't zero at all, if we are already in that word.
2587 assert(next_full_store >= zeroes_needed, "must go forward");
2588 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
2589 zeroes_needed = next_full_store;
2590 }
2591 }
2592
2593 if (zeroes_needed > zeroes_done) {
2594 intptr_t zsize = zeroes_needed - zeroes_done;
2595 // Do some incremental zeroing on rawmem, in parallel with inits.
2596 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
2597 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
2598 zeroes_done, zeroes_needed,
2599 phase);
2600 zeroes_done = zeroes_needed;
2601 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
2602 do_zeroing = false; // leave the hole, next time
2603 }
2604 }
2605
2606 // Collect the store and move on:
2607 st->set_req(MemNode::Memory, inits);
2608 inits = st; // put it on the linearized chain
2609 set_req(i, zmem); // unhook from previous position
2610
2611 if (zeroes_done == st_off)
2612 zeroes_done = next_init_off;
2613
2614 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
2615
2616 #ifdef ASSERT
2617 // Various order invariants. Weaker than stores_are_sane because
2618 // a large constant tile can be filled in by smaller non-constant stores.
2619 assert(st_off >= last_init_off, "inits do not reverse");
2620 last_init_off = st_off;
2621 const Type* val = NULL;
2622 if (st_size >= BytesPerInt &&
2623 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
2624 (int)val->basic_type() < (int)T_OBJECT) {
2625 assert(st_off >= last_tile_end, "tiles do not overlap");
2626 assert(st_off >= last_init_end, "tiles do not overwrite inits");
2627 last_tile_end = MAX2(last_tile_end, next_init_off);
2628 } else {
2629 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
2630 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
2631 assert(st_off >= last_init_end, "inits do not overlap");
2632 last_init_end = next_init_off; // it's a non-tile
2633 }
2634 #endif //ASSERT
2635 }
2636
2637 remove_extra_zeroes(); // clear out all the zmems left over
2638 add_req(inits);
2639
2640 if (!ZeroTLAB) {
2641 // If anything remains to be zeroed, zero it all now.
2642 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
2643 // if it is the last unused 4 bytes of an instance, forget about it
2644 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
2645 if (zeroes_done + BytesPerLong >= size_limit) {
2646 assert(allocation() != NULL, "");
2647 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
2648 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
2649 if (zeroes_done == k->layout_helper())
2650 zeroes_done = size_limit;
2651 }
2652 if (zeroes_done < size_limit) {
2653 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
2654 zeroes_done, size_in_bytes, phase);
2655 }
2656 }
2657
2658 set_complete(phase);
2659 return rawmem;
2660 }
2661
2662
2663 #ifdef ASSERT
2664 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
2665 if (is_complete())
2666 return true; // stores could be anything at this point
2667 intptr_t last_off = sizeof(oopDesc);
2668 for (uint i = InitializeNode::RawStores; i < req(); i++) {
2669 Node* st = in(i);
2670 intptr_t st_off = get_store_offset(st, phase);
2671 if (st_off < 0) continue; // ignore dead garbage
2672 if (last_off > st_off) {
2673 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
2674 this->dump(2);
2675 assert(false, "ascending store offsets");
2676 return false;
2677 }
2678 last_off = st_off + st->as_Store()->memory_size();
2679 }
2680 return true;
2681 }
2682 #endif //ASSERT
2683
2684
2685
2686
2687 //============================MergeMemNode=====================================
2688 //
2689 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
2690 // contributing store or call operations. Each contributor provides the memory
2691 // state for a particular "alias type" (see Compile::alias_type). For example,
2692 // if a MergeMem has an input X for alias category #6, then any memory reference
2693 // to alias category #6 may use X as its memory state input, as an exact equivalent
2694 // to using the MergeMem as a whole.
2695 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
2696 //
2697 // (Here, the <N> notation gives the index of the relevant adr_type.)
2698 //
2699 // In one special case (and more cases in the future), alias categories overlap.
2700 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
2701 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
2702 // it is exactly equivalent to that state W:
2703 // MergeMem(<Bot>: W) <==> W
2704 //
2705 // Usually, the merge has more than one input. In that case, where inputs
2706 // overlap (i.e., one is Bot), the narrower alias type determines the memory
2707 // state for that type, and the wider alias type (Bot) fills in everywhere else:
2708 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
2709 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
2710 //
2711 // A merge can take a "wide" memory state as one of its narrow inputs.
2712 // This simply means that the merge observes out only the relevant parts of
2713 // the wide input. That is, wide memory states arriving at narrow merge inputs
2714 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
2715 //
2716 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
2717 // and that memory slices "leak through":
2718 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
2719 //
2720 // But, in such a cascade, repeated memory slices can "block the leak":
2721 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
2722 //
2723 // In the last example, Y is not part of the combined memory state of the
2724 // outermost MergeMem. The system must, of course, prevent unschedulable
2725 // memory states from arising, so you can be sure that the state Y is somehow
2726 // a precursor to state Y'.
2727 //
2728 //
2729 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
2730 // of each MergeMemNode array are exactly the numerical alias indexes, including
2731 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
2732 // Compile::alias_type (and kin) produce and manage these indexes.
2733 //
2734 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
2735 // (Note that this provides quick access to the top node inside MergeMem methods,
2736 // without the need to reach out via TLS to Compile::current.)
2737 //
2738 // As a consequence of what was just described, a MergeMem that represents a full
2739 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
2740 // containing all alias categories.
2741 //
2742 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
2743 //
2744 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
2745 // a memory state for the alias type <N>, or else the top node, meaning that
2746 // there is no particular input for that alias type. Note that the length of
2747 // a MergeMem is variable, and may be extended at any time to accommodate new
2748 // memory states at larger alias indexes. When merges grow, they are of course
2749 // filled with "top" in the unused in() positions.
2750 //
2751 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
2752 // (Top was chosen because it works smoothly with passes like GCM.)
2753 //
2754 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
2755 // the type of random VM bits like TLS references.) Since it is always the
2756 // first non-Bot memory slice, some low-level loops use it to initialize an
2757 // index variable: for (i = AliasIdxRaw; i < req(); i++).
2758 //
2759 //
2760 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
2761 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
2762 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
2763 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
2764 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
2765 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
2766 //
2767 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
2768 // really that different from the other memory inputs. An abbreviation called
2769 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
2770 //
2771 //
2772 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
2773 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
2774 // that "emerges though" the base memory will be marked as excluding the alias types
2775 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
2776 //
2777 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
2778 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
2779 //
2780 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
2781 // (It is currently unimplemented.) As you can see, the resulting merge is
2782 // actually a disjoint union of memory states, rather than an overlay.
2783 //
2784
2785 //------------------------------MergeMemNode-----------------------------------
2786 Node* MergeMemNode::make_empty_memory() {
2787 Node* empty_memory = (Node*) Compile::current()->top();
2788 assert(empty_memory->is_top(), "correct sentinel identity");
2789 return empty_memory;
2790 }
2791
2792 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
2793 init_class_id(Class_MergeMem);
2794 // all inputs are nullified in Node::Node(int)
2795 // set_input(0, NULL); // no control input
2796
2797 // Initialize the edges uniformly to top, for starters.
2798 Node* empty_mem = make_empty_memory();
2799 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
2800 init_req(i,empty_mem);
2801 }
2802 assert(empty_memory() == empty_mem, "");
2803
2804 if( new_base != NULL && new_base->is_MergeMem() ) {
2805 MergeMemNode* mdef = new_base->as_MergeMem();
2806 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
2807 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
2808 mms.set_memory(mms.memory2());
2809 }
2810 assert(base_memory() == mdef->base_memory(), "");
2811 } else {
2812 set_base_memory(new_base);
2813 }
2814 }
2815
2816 // Make a new, untransformed MergeMem with the same base as 'mem'.
2817 // If mem is itself a MergeMem, populate the result with the same edges.
2818 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
2819 return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
2820 }
2821
2822 //------------------------------cmp--------------------------------------------
2823 uint MergeMemNode::hash() const { return NO_HASH; }
2824 uint MergeMemNode::cmp( const Node &n ) const {
2825 return (&n == this); // Always fail except on self
2826 }
2827
2828 //------------------------------Identity---------------------------------------
2829 Node* MergeMemNode::Identity(PhaseTransform *phase) {
2830 // Identity if this merge point does not record any interesting memory
2831 // disambiguations.
2832 Node* base_mem = base_memory();
2833 Node* empty_mem = empty_memory();
2834 if (base_mem != empty_mem) { // Memory path is not dead?
2835 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
2836 Node* mem = in(i);
2837 if (mem != empty_mem && mem != base_mem) {
2838 return this; // Many memory splits; no change
2839 }
2840 }
2841 }
2842 return base_mem; // No memory splits; ID on the one true input
2843 }
2844
2845 //------------------------------Ideal------------------------------------------
2846 // This method is invoked recursively on chains of MergeMem nodes
2847 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2848 // Remove chain'd MergeMems
2849 //
2850 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
2851 // relative to the "in(Bot)". Since we are patching both at the same time,
2852 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
2853 // but rewrite each "in(i)" relative to the new "in(Bot)".
2854 Node *progress = NULL;
2855
2856
2857 Node* old_base = base_memory();
2858 Node* empty_mem = empty_memory();
2859 if (old_base == empty_mem)
2860 return NULL; // Dead memory path.
2861
2862 MergeMemNode* old_mbase;
2863 if (old_base != NULL && old_base->is_MergeMem())
2864 old_mbase = old_base->as_MergeMem();
2865 else
2866 old_mbase = NULL;
2867 Node* new_base = old_base;
2868
2869 // simplify stacked MergeMems in base memory
2870 if (old_mbase) new_base = old_mbase->base_memory();
2871
2872 // the base memory might contribute new slices beyond my req()
2873 if (old_mbase) grow_to_match(old_mbase);
2874
2875 // Look carefully at the base node if it is a phi.
2876 PhiNode* phi_base;
2877 if (new_base != NULL && new_base->is_Phi())
2878 phi_base = new_base->as_Phi();
2879 else
2880 phi_base = NULL;
2881
2882 Node* phi_reg = NULL;
2883 uint phi_len = (uint)-1;
2884 if (phi_base != NULL && !phi_base->is_copy()) {
2885 // do not examine phi if degraded to a copy
2886 phi_reg = phi_base->region();
2887 phi_len = phi_base->req();
2888 // see if the phi is unfinished
2889 for (uint i = 1; i < phi_len; i++) {
2890 if (phi_base->in(i) == NULL) {
2891 // incomplete phi; do not look at it yet!
2892 phi_reg = NULL;
2893 phi_len = (uint)-1;
2894 break;
2895 }
2896 }
2897 }
2898
2899 // Note: We do not call verify_sparse on entry, because inputs
2900 // can normalize to the base_memory via subsume_node or similar
2901 // mechanisms. This method repairs that damage.
2902
2903 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
2904
2905 // Look at each slice.
2906 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
2907 Node* old_in = in(i);
2908 // calculate the old memory value
2909 Node* old_mem = old_in;
2910 if (old_mem == empty_mem) old_mem = old_base;
2911 assert(old_mem == memory_at(i), "");
2912
2913 // maybe update (reslice) the old memory value
2914
2915 // simplify stacked MergeMems
2916 Node* new_mem = old_mem;
2917 MergeMemNode* old_mmem;
2918 if (old_mem != NULL && old_mem->is_MergeMem())
2919 old_mmem = old_mem->as_MergeMem();
2920 else
2921 old_mmem = NULL;
2922 if (old_mmem == this) {
2923 // This can happen if loops break up and safepoints disappear.
2924 // A merge of BotPtr (default) with a RawPtr memory derived from a
2925 // safepoint can be rewritten to a merge of the same BotPtr with
2926 // the BotPtr phi coming into the loop. If that phi disappears
2927 // also, we can end up with a self-loop of the mergemem.
2928 // In general, if loops degenerate and memory effects disappear,
2929 // a mergemem can be left looking at itself. This simply means
2930 // that the mergemem's default should be used, since there is
2931 // no longer any apparent effect on this slice.
2932 // Note: If a memory slice is a MergeMem cycle, it is unreachable
2933 // from start. Update the input to TOP.
2934 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
2935 }
2936 else if (old_mmem != NULL) {
2937 new_mem = old_mmem->memory_at(i);
2938 }
2939 // else preceeding memory was not a MergeMem
2940
2941 // replace equivalent phis (unfortunately, they do not GVN together)
2942 if (new_mem != NULL && new_mem != new_base &&
2943 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
2944 if (new_mem->is_Phi()) {
2945 PhiNode* phi_mem = new_mem->as_Phi();
2946 for (uint i = 1; i < phi_len; i++) {
2947 if (phi_base->in(i) != phi_mem->in(i)) {
2948 phi_mem = NULL;
2949 break;
2950 }
2951 }
2952 if (phi_mem != NULL) {
2953 // equivalent phi nodes; revert to the def
2954 new_mem = new_base;
2955 }
2956 }
2957 }
2958
2959 // maybe store down a new value
2960 Node* new_in = new_mem;
2961 if (new_in == new_base) new_in = empty_mem;
2962
2963 if (new_in != old_in) {
2964 // Warning: Do not combine this "if" with the previous "if"
2965 // A memory slice might have be be rewritten even if it is semantically
2966 // unchanged, if the base_memory value has changed.
2967 set_req(i, new_in);
2968 progress = this; // Report progress
2969 }
2970 }
2971
2972 if (new_base != old_base) {
2973 set_req(Compile::AliasIdxBot, new_base);
2974 // Don't use set_base_memory(new_base), because we need to update du.
2975 assert(base_memory() == new_base, "");
2976 progress = this;
2977 }
2978
2979 if( base_memory() == this ) {
2980 // a self cycle indicates this memory path is dead
2981 set_req(Compile::AliasIdxBot, empty_mem);
2982 }
2983
2984 // Resolve external cycles by calling Ideal on a MergeMem base_memory
2985 // Recursion must occur after the self cycle check above
2986 if( base_memory()->is_MergeMem() ) {
2987 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
2988 Node *m = phase->transform(new_mbase); // Rollup any cycles
2989 if( m != NULL && (m->is_top() ||
2990 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
2991 // propagate rollup of dead cycle to self
2992 set_req(Compile::AliasIdxBot, empty_mem);
2993 }
2994 }
2995
2996 if( base_memory() == empty_mem ) {
2997 progress = this;
2998 // Cut inputs during Parse phase only.
2999 // During Optimize phase a dead MergeMem node will be subsumed by Top.
3000 if( !can_reshape ) {
3001 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3002 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3003 }
3004 }
3005 }
3006
3007 if( !progress && base_memory()->is_Phi() && can_reshape ) {
3008 // Check if PhiNode::Ideal's "Split phis through memory merges"
3009 // transform should be attempted. Look for this->phi->this cycle.
3010 uint merge_width = req();
3011 if (merge_width > Compile::AliasIdxRaw) {
3012 PhiNode* phi = base_memory()->as_Phi();
3013 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3014 if (phi->in(i) == this) {
3015 phase->is_IterGVN()->_worklist.push(phi);
3016 break;
3017 }
3018 }
3019 }
3020 }
3021
3022 assert(verify_sparse(), "please, no dups of base");
3023 return progress;
3024 }
3025
3026 //-------------------------set_base_memory-------------------------------------
3027 void MergeMemNode::set_base_memory(Node *new_base) {
3028 Node* empty_mem = empty_memory();
3029 set_req(Compile::AliasIdxBot, new_base);
3030 assert(memory_at(req()) == new_base, "must set default memory");
3031 // Clear out other occurrences of new_base:
3032 if (new_base != empty_mem) {
3033 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3034 if (in(i) == new_base) set_req(i, empty_mem);
3035 }
3036 }
3037 }
3038
3039 //------------------------------out_RegMask------------------------------------
3040 const RegMask &MergeMemNode::out_RegMask() const {
3041 return RegMask::Empty;
3042 }
3043
3044 //------------------------------dump_spec--------------------------------------
3045 #ifndef PRODUCT
3046 void MergeMemNode::dump_spec(outputStream *st) const {
3047 st->print(" {");
3048 Node* base_mem = base_memory();
3049 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3050 Node* mem = memory_at(i);
3051 if (mem == base_mem) { st->print(" -"); continue; }
3052 st->print( " N%d:", mem->_idx );
3053 Compile::current()->get_adr_type(i)->dump_on(st);
3054 }
3055 st->print(" }");
3056 }
3057 #endif // !PRODUCT
3058
3059
3060 #ifdef ASSERT
3061 static bool might_be_same(Node* a, Node* b) {
3062 if (a == b) return true;
3063 if (!(a->is_Phi() || b->is_Phi())) return false;
3064 // phis shift around during optimization
3065 return true; // pretty stupid...
3066 }
3067
3068 // verify a narrow slice (either incoming or outgoing)
3069 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3070 if (!VerifyAliases) return; // don't bother to verify unless requested
3071 if (is_error_reported()) return; // muzzle asserts when debugging an error
3072 if (Node::in_dump()) return; // muzzle asserts when printing
3073 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3074 assert(n != NULL, "");
3075 // Elide intervening MergeMem's
3076 while (n->is_MergeMem()) {
3077 n = n->as_MergeMem()->memory_at(alias_idx);
3078 }
3079 Compile* C = Compile::current();
3080 const TypePtr* n_adr_type = n->adr_type();
3081 if (n == m->empty_memory()) {
3082 // Implicit copy of base_memory()
3083 } else if (n_adr_type != TypePtr::BOTTOM) {
3084 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3085 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3086 } else {
3087 // A few places like make_runtime_call "know" that VM calls are narrow,
3088 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3089 bool expected_wide_mem = false;
3090 if (n == m->base_memory()) {
3091 expected_wide_mem = true;
3092 } else if (alias_idx == Compile::AliasIdxRaw ||
3093 n == m->memory_at(Compile::AliasIdxRaw)) {
3094 expected_wide_mem = true;
3095 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3096 // memory can "leak through" calls on channels that
3097 // are write-once. Allow this also.
3098 expected_wide_mem = true;
3099 }
3100 assert(expected_wide_mem, "expected narrow slice replacement");
3101 }
3102 }
3103 #else // !ASSERT
3104 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
3105 #endif
3106
3107
3108 //-----------------------------memory_at---------------------------------------
3109 Node* MergeMemNode::memory_at(uint alias_idx) const {
3110 assert(alias_idx >= Compile::AliasIdxRaw ||
3111 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3112 "must avoid base_memory and AliasIdxTop");
3113
3114 // Otherwise, it is a narrow slice.
3115 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3116 Compile *C = Compile::current();
3117 if (is_empty_memory(n)) {
3118 // the array is sparse; empty slots are the "top" node
3119 n = base_memory();
3120 assert(Node::in_dump()
3121 || n == NULL || n->bottom_type() == Type::TOP
3122 || n->adr_type() == TypePtr::BOTTOM
3123 || n->adr_type() == TypeRawPtr::BOTTOM
3124 || Compile::current()->AliasLevel() == 0,
3125 "must be a wide memory");
3126 // AliasLevel == 0 if we are organizing the memory states manually.
3127 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3128 } else {
3129 // make sure the stored slice is sane
3130 #ifdef ASSERT
3131 if (is_error_reported() || Node::in_dump()) {
3132 } else if (might_be_same(n, base_memory())) {
3133 // Give it a pass: It is a mostly harmless repetition of the base.
3134 // This can arise normally from node subsumption during optimization.
3135 } else {
3136 verify_memory_slice(this, alias_idx, n);
3137 }
3138 #endif
3139 }
3140 return n;
3141 }
3142
3143 //---------------------------set_memory_at-------------------------------------
3144 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3145 verify_memory_slice(this, alias_idx, n);
3146 Node* empty_mem = empty_memory();
3147 if (n == base_memory()) n = empty_mem; // collapse default
3148 uint need_req = alias_idx+1;
3149 if (req() < need_req) {
3150 if (n == empty_mem) return; // already the default, so do not grow me
3151 // grow the sparse array
3152 do {
3153 add_req(empty_mem);
3154 } while (req() < need_req);
3155 }
3156 set_req( alias_idx, n );
3157 }
3158
3159
3160
3161 //--------------------------iteration_setup------------------------------------
3162 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3163 if (other != NULL) {
3164 grow_to_match(other);
3165 // invariant: the finite support of mm2 is within mm->req()
3166 #ifdef ASSERT
3167 for (uint i = req(); i < other->req(); i++) {
3168 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3169 }
3170 #endif
3171 }
3172 // Replace spurious copies of base_memory by top.
3173 Node* base_mem = base_memory();
3174 if (base_mem != NULL && !base_mem->is_top()) {
3175 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3176 if (in(i) == base_mem)
3177 set_req(i, empty_memory());
3178 }
3179 }
3180 }
3181
3182 //---------------------------grow_to_match-------------------------------------
3183 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3184 Node* empty_mem = empty_memory();
3185 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3186 // look for the finite support of the other memory
3187 for (uint i = other->req(); --i >= req(); ) {
3188 if (other->in(i) != empty_mem) {
3189 uint new_len = i+1;
3190 while (req() < new_len) add_req(empty_mem);
3191 break;
3192 }
3193 }
3194 }
3195
3196 //---------------------------verify_sparse-------------------------------------
3197 #ifndef PRODUCT
3198 bool MergeMemNode::verify_sparse() const {
3199 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
3200 Node* base_mem = base_memory();
3201 // The following can happen in degenerate cases, since empty==top.
3202 if (is_empty_memory(base_mem)) return true;
3203 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3204 assert(in(i) != NULL, "sane slice");
3205 if (in(i) == base_mem) return false; // should have been the sentinel value!
3206 }
3207 return true;
3208 }
3209
3210 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
3211 Node* n;
3212 n = mm->in(idx);
3213 if (mem == n) return true; // might be empty_memory()
3214 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
3215 if (mem == n) return true;
3216 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
3217 if (mem == n) return true;
3218 if (n == NULL) break;
3219 }
3220 return false;
3221 }
3222 #endif // !PRODUCT