comparison src/share/vm/opto/parse2.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_parse2.cpp.incl"
27
28 extern int explicit_null_checks_inserted,
29 explicit_null_checks_elided;
30
31 //---------------------------------array_load----------------------------------
32 void Parse::array_load(BasicType elem_type) {
33 const Type* elem = Type::TOP;
34 Node* adr = array_addressing(elem_type, 0, &elem);
35 if (stopped()) return; // guarenteed null or range check
36 _sp -= 2; // Pop array and index
37 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
38 Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
39 push(ld);
40 }
41
42
43 //--------------------------------array_store----------------------------------
44 void Parse::array_store(BasicType elem_type) {
45 Node* adr = array_addressing(elem_type, 1);
46 if (stopped()) return; // guarenteed null or range check
47 Node* val = pop();
48 _sp -= 2; // Pop array and index
49 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
50 store_to_memory(control(), adr, val, elem_type, adr_type);
51 }
52
53
54 //------------------------------array_addressing-------------------------------
55 // Pull array and index from the stack. Compute pointer-to-element.
56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
57 Node *idx = peek(0+vals); // Get from stack without popping
58 Node *ary = peek(1+vals); // in case of exception
59
60 // Null check the array base, with correct stack contents
61 ary = do_null_check(ary, T_ARRAY);
62 // Compile-time detect of null-exception?
63 if (stopped()) return top();
64
65 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
66 const TypeInt* sizetype = arytype->size();
67 const Type* elemtype = arytype->elem();
68
69 if (UseUniqueSubclasses && result2 != NULL) {
70 const TypeInstPtr* toop = elemtype->isa_instptr();
71 if (toop) {
72 if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
73 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
74 const Type* subklass = Type::get_const_type(toop->klass());
75 elemtype = subklass->join(elemtype);
76 }
77 }
78 }
79
80 // Check for big class initializers with all constant offsets
81 // feeding into a known-size array.
82 const TypeInt* idxtype = _gvn.type(idx)->is_int();
83 // See if the highest idx value is less than the lowest array bound,
84 // and if the idx value cannot be negative:
85 bool need_range_check = true;
86 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
87 need_range_check = false;
88 if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'");
89 }
90
91 if (!arytype->klass()->is_loaded()) {
92 // Only fails for some -Xcomp runs
93 // The class is unloaded. We have to run this bytecode in the interpreter.
94 uncommon_trap(Deoptimization::Reason_unloaded,
95 Deoptimization::Action_reinterpret,
96 arytype->klass(), "!loaded array");
97 return top();
98 }
99
100 // Do the range check
101 if (GenerateRangeChecks && need_range_check) {
102 // Range is constant in array-oop, so we can use the original state of mem
103 Node* len = load_array_length(ary);
104 // Test length vs index (standard trick using unsigned compare)
105 Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
106 BoolTest::mask btest = BoolTest::lt;
107 Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
108 // Branch to failure if out of bounds
109 { BuildCutout unless(this, tst, PROB_MAX);
110 if (C->allow_range_check_smearing()) {
111 // Do not use builtin_throw, since range checks are sometimes
112 // made more stringent by an optimistic transformation.
113 // This creates "tentative" range checks at this point,
114 // which are not guaranteed to throw exceptions.
115 // See IfNode::Ideal, is_range_check, adjust_check.
116 uncommon_trap(Deoptimization::Reason_range_check,
117 Deoptimization::Action_make_not_entrant,
118 NULL, "range_check");
119 } else {
120 // If we have already recompiled with the range-check-widening
121 // heroic optimization turned off, then we must really be throwing
122 // range check exceptions.
123 builtin_throw(Deoptimization::Reason_range_check, idx);
124 }
125 }
126 }
127 // Check for always knowing you are throwing a range-check exception
128 if (stopped()) return top();
129
130 Node* ptr = array_element_address( ary, idx, type, sizetype);
131
132 if (result2 != NULL) *result2 = elemtype;
133 return ptr;
134 }
135
136
137 // returns IfNode
138 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
139 Node *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
140 Node *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
141 IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
142 return iff;
143 }
144
145 // return Region node
146 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
147 Node *region = new (C, 3) RegionNode(3); // 2 results
148 record_for_igvn(region);
149 region->init_req(1, iffalse);
150 region->init_req(2, iftrue );
151 _gvn.set_type(region, Type::CONTROL);
152 region = _gvn.transform(region);
153 set_control (region);
154 return region;
155 }
156
157
158 //------------------------------helper for tableswitch-------------------------
159 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
160 // True branch, use existing map info
161 { PreserveJVMState pjvms(this);
162 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode (iff) );
163 set_control( iftrue );
164 profile_switch_case(prof_table_index);
165 merge_new_path(dest_bci_if_true);
166 }
167
168 // False branch
169 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
170 set_control( iffalse );
171 }
172
173 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
174 // True branch, use existing map info
175 { PreserveJVMState pjvms(this);
176 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode (iff) );
177 set_control( iffalse );
178 profile_switch_case(prof_table_index);
179 merge_new_path(dest_bci_if_true);
180 }
181
182 // False branch
183 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
184 set_control( iftrue );
185 }
186
187 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
188 // False branch, use existing map and control()
189 profile_switch_case(prof_table_index);
190 merge_new_path(dest_bci);
191 }
192
193
194 extern "C" {
195 static int jint_cmp(const void *i, const void *j) {
196 int a = *(jint *)i;
197 int b = *(jint *)j;
198 return a > b ? 1 : a < b ? -1 : 0;
199 }
200 }
201
202
203 // Default value for methodData switch indexing. Must be a negative value to avoid
204 // conflict with any legal switch index.
205 #define NullTableIndex -1
206
207 class SwitchRange : public StackObj {
208 // a range of integers coupled with a bci destination
209 jint _lo; // inclusive lower limit
210 jint _hi; // inclusive upper limit
211 int _dest;
212 int _table_index; // index into method data table
213
214 public:
215 jint lo() const { return _lo; }
216 jint hi() const { return _hi; }
217 int dest() const { return _dest; }
218 int table_index() const { return _table_index; }
219 bool is_singleton() const { return _lo == _hi; }
220
221 void setRange(jint lo, jint hi, int dest, int table_index) {
222 assert(lo <= hi, "must be a non-empty range");
223 _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
224 }
225 bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
226 assert(lo <= hi, "must be a non-empty range");
227 if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
228 _hi = hi;
229 return true;
230 }
231 return false;
232 }
233
234 void set (jint value, int dest, int table_index) {
235 setRange(value, value, dest, table_index);
236 }
237 bool adjoin(jint value, int dest, int table_index) {
238 return adjoinRange(value, value, dest, table_index);
239 }
240
241 void print(ciEnv* env) {
242 if (is_singleton())
243 tty->print(" {%d}=>%d", lo(), dest());
244 else if (lo() == min_jint)
245 tty->print(" {..%d}=>%d", hi(), dest());
246 else if (hi() == max_jint)
247 tty->print(" {%d..}=>%d", lo(), dest());
248 else
249 tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
250 }
251 };
252
253
254 //-------------------------------do_tableswitch--------------------------------
255 void Parse::do_tableswitch() {
256 Node* lookup = pop();
257
258 // Get information about tableswitch
259 int default_dest = iter().get_dest_table(0);
260 int lo_index = iter().get_int_table(1);
261 int hi_index = iter().get_int_table(2);
262 int len = hi_index - lo_index + 1;
263
264 if (len < 1) {
265 // If this is a backward branch, add safepoint
266 maybe_add_safepoint(default_dest);
267 merge(default_dest);
268 return;
269 }
270
271 // generate decision tree, using trichotomy when possible
272 int rnum = len+2;
273 bool makes_backward_branch = false;
274 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
275 int rp = -1;
276 if (lo_index != min_jint) {
277 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
278 }
279 for (int j = 0; j < len; j++) {
280 jint match_int = lo_index+j;
281 int dest = iter().get_dest_table(j+3);
282 makes_backward_branch |= (dest <= bci());
283 int table_index = method_data_update() ? j : NullTableIndex;
284 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
285 ranges[++rp].set(match_int, dest, table_index);
286 }
287 }
288 jint highest = lo_index+(len-1);
289 assert(ranges[rp].hi() == highest, "");
290 if (highest != max_jint
291 && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
292 ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
293 }
294 assert(rp < len+2, "not too many ranges");
295
296 // Safepoint in case if backward branch observed
297 if( makes_backward_branch && UseLoopSafepoints )
298 add_safepoint();
299
300 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
301 }
302
303
304 //------------------------------do_lookupswitch--------------------------------
305 void Parse::do_lookupswitch() {
306 Node *lookup = pop(); // lookup value
307 // Get information about lookupswitch
308 int default_dest = iter().get_dest_table(0);
309 int len = iter().get_int_table(1);
310
311 if (len < 1) { // If this is a backward branch, add safepoint
312 maybe_add_safepoint(default_dest);
313 merge(default_dest);
314 return;
315 }
316
317 // generate decision tree, using trichotomy when possible
318 jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
319 {
320 for( int j = 0; j < len; j++ ) {
321 table[j+j+0] = iter().get_int_table(2+j+j);
322 table[j+j+1] = iter().get_dest_table(2+j+j+1);
323 }
324 qsort( table, len, 2*sizeof(table[0]), jint_cmp );
325 }
326
327 int rnum = len*2+1;
328 bool makes_backward_branch = false;
329 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
330 int rp = -1;
331 for( int j = 0; j < len; j++ ) {
332 jint match_int = table[j+j+0];
333 int dest = table[j+j+1];
334 int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1;
335 int table_index = method_data_update() ? j : NullTableIndex;
336 makes_backward_branch |= (dest <= bci());
337 if( match_int != next_lo ) {
338 ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
339 }
340 if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
341 ranges[++rp].set(match_int, dest, table_index);
342 }
343 }
344 jint highest = table[2*(len-1)];
345 assert(ranges[rp].hi() == highest, "");
346 if( highest != max_jint
347 && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
348 ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
349 }
350 assert(rp < rnum, "not too many ranges");
351
352 // Safepoint in case backward branch observed
353 if( makes_backward_branch && UseLoopSafepoints )
354 add_safepoint();
355
356 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
357 }
358
359 //----------------------------create_jump_tables-------------------------------
360 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
361 // Are jumptables enabled
362 if (!UseJumpTables) return false;
363
364 // Are jumptables supported
365 if (!Matcher::has_match_rule(Op_Jump)) return false;
366
367 // Don't make jump table if profiling
368 if (method_data_update()) return false;
369
370 // Decide if a guard is needed to lop off big ranges at either (or
371 // both) end(s) of the input set. We'll call this the default target
372 // even though we can't be sure that it is the true "default".
373
374 bool needs_guard = false;
375 int default_dest;
376 int64 total_outlier_size = 0;
377 int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
378 int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
379
380 if (lo->dest() == hi->dest()) {
381 total_outlier_size = hi_size + lo_size;
382 default_dest = lo->dest();
383 } else if (lo_size > hi_size) {
384 total_outlier_size = lo_size;
385 default_dest = lo->dest();
386 } else {
387 total_outlier_size = hi_size;
388 default_dest = hi->dest();
389 }
390
391 // If a guard test will eliminate very sparse end ranges, then
392 // it is worth the cost of an extra jump.
393 if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
394 needs_guard = true;
395 if (default_dest == lo->dest()) lo++;
396 if (default_dest == hi->dest()) hi--;
397 }
398
399 // Find the total number of cases and ranges
400 int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
401 int num_range = hi - lo + 1;
402
403 // Don't create table if: too large, too small, or too sparse.
404 if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
405 return false;
406 if (num_cases > (MaxJumpTableSparseness * num_range))
407 return false;
408
409 // Normalize table lookups to zero
410 int lowval = lo->lo();
411 key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
412
413 // Generate a guard to protect against input keyvals that aren't
414 // in the switch domain.
415 if (needs_guard) {
416 Node* size = _gvn.intcon(num_cases);
417 Node* cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
418 Node* tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
419 IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
420 jump_if_true_fork(iff, default_dest, NullTableIndex);
421 }
422
423 // Create an ideal node JumpTable that has projections
424 // of all possible ranges for a switch statement
425 // The key_val input must be converted to a pointer offset and scaled.
426 // Compare Parse::array_addressing above.
427 #ifdef _LP64
428 // Clean the 32-bit int into a real 64-bit offset.
429 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
430 const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
431 key_val = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
432 #endif
433 // Shift the value by wordsize so we have an index into the table, rather
434 // than a switch value
435 Node *shiftWord = _gvn.MakeConX(wordSize);
436 key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
437
438 // Create the JumpNode
439 Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
440
441 // These are the switch destinations hanging off the jumpnode
442 int i = 0;
443 for (SwitchRange* r = lo; r <= hi; r++) {
444 for (int j = r->lo(); j <= r->hi(); j++, i++) {
445 Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
446 {
447 PreserveJVMState pjvms(this);
448 set_control(input);
449 jump_if_always_fork(r->dest(), r->table_index());
450 }
451 }
452 }
453 assert(i == num_cases, "miscount of cases");
454 stop_and_kill_map(); // no more uses for this JVMS
455 return true;
456 }
457
458 //----------------------------jump_switch_ranges-------------------------------
459 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
460 Block* switch_block = block();
461
462 if (switch_depth == 0) {
463 // Do special processing for the top-level call.
464 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
465 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
466
467 // Decrement pred-numbers for the unique set of nodes.
468 #ifdef ASSERT
469 // Ensure that the block's successors are a (duplicate-free) set.
470 int successors_counted = 0; // block occurrences in [hi..lo]
471 int unique_successors = switch_block->num_successors();
472 for (int i = 0; i < unique_successors; i++) {
473 Block* target = switch_block->successor_at(i);
474
475 // Check that the set of successors is the same in both places.
476 int successors_found = 0;
477 for (SwitchRange* p = lo; p <= hi; p++) {
478 if (p->dest() == target->start()) successors_found++;
479 }
480 assert(successors_found > 0, "successor must be known");
481 successors_counted += successors_found;
482 }
483 assert(successors_counted == (hi-lo)+1, "no unexpected successors");
484 #endif
485
486 // Maybe prune the inputs, based on the type of key_val.
487 jint min_val = min_jint;
488 jint max_val = max_jint;
489 const TypeInt* ti = key_val->bottom_type()->isa_int();
490 if (ti != NULL) {
491 min_val = ti->_lo;
492 max_val = ti->_hi;
493 assert(min_val <= max_val, "invalid int type");
494 }
495 while (lo->hi() < min_val) lo++;
496 if (lo->lo() < min_val) lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
497 while (hi->lo() > max_val) hi--;
498 if (hi->hi() > max_val) hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
499 }
500
501 #ifndef PRODUCT
502 if (switch_depth == 0) {
503 _max_switch_depth = 0;
504 _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
505 }
506 #endif
507
508 assert(lo <= hi, "must be a non-empty set of ranges");
509 if (lo == hi) {
510 jump_if_always_fork(lo->dest(), lo->table_index());
511 } else {
512 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
513 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
514
515 if (create_jump_tables(key_val, lo, hi)) return;
516
517 int nr = hi - lo + 1;
518
519 SwitchRange* mid = lo + nr/2;
520 // if there is an easy choice, pivot at a singleton:
521 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--;
522
523 assert(lo < mid && mid <= hi, "good pivot choice");
524 assert(nr != 2 || mid == hi, "should pick higher of 2");
525 assert(nr != 3 || mid == hi-1, "should pick middle of 3");
526
527 Node *test_val = _gvn.intcon(mid->lo());
528
529 if (mid->is_singleton()) {
530 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
531 jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
532
533 // Special Case: If there are exactly three ranges, and the high
534 // and low range each go to the same place, omit the "gt" test,
535 // since it will not discriminate anything.
536 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
537 if (eq_test_only) {
538 assert(mid == hi-1, "");
539 }
540
541 // if there is a higher range, test for it and process it:
542 if (mid < hi && !eq_test_only) {
543 // two comparisons of same values--should enable 1 test for 2 branches
544 // Use BoolTest::le instead of BoolTest::gt
545 IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le);
546 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
547 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
548 { PreserveJVMState pjvms(this);
549 set_control(iffalse);
550 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
551 }
552 set_control(iftrue);
553 }
554
555 } else {
556 // mid is a range, not a singleton, so treat mid..hi as a unit
557 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
558
559 // if there is a higher range, test for it and process it:
560 if (mid == hi) {
561 jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
562 } else {
563 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
564 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
565 { PreserveJVMState pjvms(this);
566 set_control(iftrue);
567 jump_switch_ranges(key_val, mid, hi, switch_depth+1);
568 }
569 set_control(iffalse);
570 }
571 }
572
573 // in any case, process the lower range
574 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
575 }
576
577 // Decrease pred_count for each successor after all is done.
578 if (switch_depth == 0) {
579 int unique_successors = switch_block->num_successors();
580 for (int i = 0; i < unique_successors; i++) {
581 Block* target = switch_block->successor_at(i);
582 // Throw away the pre-allocated path for each unique successor.
583 target->next_path_num();
584 }
585 }
586
587 #ifndef PRODUCT
588 _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
589 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
590 SwitchRange* r;
591 int nsing = 0;
592 for( r = lo; r <= hi; r++ ) {
593 if( r->is_singleton() ) nsing++;
594 }
595 tty->print(">>> ");
596 _method->print_short_name();
597 tty->print_cr(" switch decision tree");
598 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d",
599 hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
600 if (_max_switch_depth > _est_switch_depth) {
601 tty->print_cr("******** BAD SWITCH DEPTH ********");
602 }
603 tty->print(" ");
604 for( r = lo; r <= hi; r++ ) {
605 r->print(env());
606 }
607 tty->print_cr("");
608 }
609 #endif
610 }
611
612 void Parse::modf() {
613 Node *f2 = pop();
614 Node *f1 = pop();
615 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
616 CAST_FROM_FN_PTR(address, SharedRuntime::frem),
617 "frem", NULL, //no memory effects
618 f1, f2);
619 Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
620
621 push(res);
622 }
623
624 void Parse::modd() {
625 Node *d2 = pop_pair();
626 Node *d1 = pop_pair();
627 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
628 CAST_FROM_FN_PTR(address, SharedRuntime::drem),
629 "drem", NULL, //no memory effects
630 d1, top(), d2, top());
631 Node* res_d = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
632
633 #ifdef ASSERT
634 Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
635 assert(res_top == top(), "second value must be top");
636 #endif
637
638 push_pair(res_d);
639 }
640
641 void Parse::l2f() {
642 Node* f2 = pop();
643 Node* f1 = pop();
644 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
645 CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
646 "l2f", NULL, //no memory effects
647 f1, f2);
648 Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
649
650 push(res);
651 }
652
653 void Parse::do_irem() {
654 // Must keep both values on the expression-stack during null-check
655 do_null_check(peek(), T_INT);
656 // Compile-time detect of null-exception?
657 if (stopped()) return;
658
659 Node* b = pop();
660 Node* a = pop();
661
662 const Type *t = _gvn.type(b);
663 if (t != Type::TOP) {
664 const TypeInt *ti = t->is_int();
665 if (ti->is_con()) {
666 int divisor = ti->get_con();
667 // check for positive power of 2
668 if (divisor > 0 &&
669 (divisor & ~(divisor-1)) == divisor) {
670 // yes !
671 Node *mask = _gvn.intcon((divisor - 1));
672 // Sigh, must handle negative dividends
673 Node *zero = _gvn.intcon(0);
674 IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
675 Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
676 Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
677 Node *reg = jump_if_join(ift, iff);
678 Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
679 // Negative path; negate/and/negate
680 Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
681 Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
682 Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
683 phi->init_req(1, negn);
684 // Fast positive case
685 Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
686 phi->init_req(2, andx);
687 // Push the merge
688 push( _gvn.transform(phi) );
689 return;
690 }
691 }
692 }
693 // Default case
694 push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
695 }
696
697 // Handle jsr and jsr_w bytecode
698 void Parse::do_jsr() {
699 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
700
701 // Store information about current state, tagged with new _jsr_bci
702 int return_bci = iter().next_bci();
703 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
704
705 // Update method data
706 profile_taken_branch(jsr_bci);
707
708 // The way we do things now, there is only one successor block
709 // for the jsr, because the target code is cloned by ciTypeFlow.
710 Block* target = successor_for_bci(jsr_bci);
711
712 // What got pushed?
713 const Type* ret_addr = target->peek();
714 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
715
716 // Effect on jsr on stack
717 push(_gvn.makecon(ret_addr));
718
719 // Flow to the jsr.
720 merge(jsr_bci);
721 }
722
723 // Handle ret bytecode
724 void Parse::do_ret() {
725 // Find to whom we return.
726 #if 0 // %%%% MAKE THIS WORK
727 Node* con = local();
728 const TypePtr* tp = con->bottom_type()->isa_ptr();
729 assert(tp && tp->singleton(), "");
730 int return_bci = (int) tp->get_con();
731 merge(return_bci);
732 #else
733 assert(block()->num_successors() == 1, "a ret can only go one place now");
734 Block* target = block()->successor_at(0);
735 assert(!target->is_ready(), "our arrival must be expected");
736 profile_ret(target->flow()->start());
737 int pnum = target->next_path_num();
738 merge_common(target, pnum);
739 #endif
740 }
741
742 //--------------------------dynamic_branch_prediction--------------------------
743 // Try to gather dynamic branch prediction behavior. Return a probability
744 // of the branch being taken and set the "cnt" field. Returns a -1.0
745 // if we need to use static prediction for some reason.
746 float Parse::dynamic_branch_prediction(float &cnt) {
747 ResourceMark rm;
748
749 cnt = COUNT_UNKNOWN;
750
751 // Use MethodData information if it is available
752 // FIXME: free the ProfileData structure
753 ciMethodData* methodData = method()->method_data();
754 if (!methodData->is_mature()) return PROB_UNKNOWN;
755 ciProfileData* data = methodData->bci_to_data(bci());
756 if (!data->is_JumpData()) return PROB_UNKNOWN;
757
758 // get taken and not taken values
759 int taken = data->as_JumpData()->taken();
760 int not_taken = 0;
761 if (data->is_BranchData()) {
762 not_taken = data->as_BranchData()->not_taken();
763 }
764
765 // scale the counts to be commensurate with invocation counts:
766 taken = method()->scale_count(taken);
767 not_taken = method()->scale_count(not_taken);
768
769 // Give up if too few counts to be meaningful
770 if (taken + not_taken < 40) {
771 if (C->log() != NULL) {
772 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
773 }
774 return PROB_UNKNOWN;
775 }
776
777 // Compute frequency that we arrive here
778 int sum = taken + not_taken;
779 // Adjust, if this block is a cloned private block but the
780 // Jump counts are shared. Taken the private counts for
781 // just this path instead of the shared counts.
782 if( block()->count() > 0 )
783 sum = block()->count();
784 cnt = (float)sum / (float)FreqCountInvocations;
785
786 // Pin probability to sane limits
787 float prob;
788 if( !taken )
789 prob = (0+PROB_MIN) / 2;
790 else if( !not_taken )
791 prob = (1+PROB_MAX) / 2;
792 else { // Compute probability of true path
793 prob = (float)taken / (float)(taken + not_taken);
794 if (prob > PROB_MAX) prob = PROB_MAX;
795 if (prob < PROB_MIN) prob = PROB_MIN;
796 }
797
798 assert((cnt > 0.0f) && (prob > 0.0f),
799 "Bad frequency assignment in if");
800
801 if (C->log() != NULL) {
802 const char* prob_str = NULL;
803 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always";
804 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never";
805 char prob_str_buf[30];
806 if (prob_str == NULL) {
807 sprintf(prob_str_buf, "%g", prob);
808 prob_str = prob_str_buf;
809 }
810 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
811 iter().get_dest(), taken, not_taken, cnt, prob_str);
812 }
813 return prob;
814 }
815
816 //-----------------------------branch_prediction-------------------------------
817 float Parse::branch_prediction(float& cnt,
818 BoolTest::mask btest,
819 int target_bci) {
820 float prob = dynamic_branch_prediction(cnt);
821 // If prob is unknown, switch to static prediction
822 if (prob != PROB_UNKNOWN) return prob;
823
824 prob = PROB_FAIR; // Set default value
825 if (btest == BoolTest::eq) // Exactly equal test?
826 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent
827 else if (btest == BoolTest::ne)
828 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent
829
830 // If this is a conditional test guarding a backwards branch,
831 // assume its a loop-back edge. Make it a likely taken branch.
832 if (target_bci < bci()) {
833 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt
834 // Since it's an OSR, we probably have profile data, but since
835 // branch_prediction returned PROB_UNKNOWN, the counts are too small.
836 // Let's make a special check here for completely zero counts.
837 ciMethodData* methodData = method()->method_data();
838 if (!methodData->is_empty()) {
839 ciProfileData* data = methodData->bci_to_data(bci());
840 // Only stop for truly zero counts, which mean an unknown part
841 // of the OSR-ed method, and we want to deopt to gather more stats.
842 // If you have ANY counts, then this loop is simply 'cold' relative
843 // to the OSR loop.
844 if (data->as_BranchData()->taken() +
845 data->as_BranchData()->not_taken() == 0 ) {
846 // This is the only way to return PROB_UNKNOWN:
847 return PROB_UNKNOWN;
848 }
849 }
850 }
851 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch
852 }
853
854 assert(prob != PROB_UNKNOWN, "must have some guess at this point");
855 return prob;
856 }
857
858 // The magic constants are chosen so as to match the output of
859 // branch_prediction() when the profile reports a zero taken count.
860 // It is important to distinguish zero counts unambiguously, because
861 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
862 // very small but nonzero probabilities, which if confused with zero
863 // counts would keep the program recompiling indefinitely.
864 bool Parse::seems_never_taken(float prob) {
865 return prob < PROB_MIN;
866 }
867
868 inline void Parse::repush_if_args() {
869 #ifndef PRODUCT
870 if (PrintOpto && WizardMode) {
871 tty->print("defending against excessive implicit null exceptions on %s @%d in ",
872 Bytecodes::name(iter().cur_bc()), iter().cur_bci());
873 method()->print_name(); tty->cr();
874 }
875 #endif
876 int bc_depth = - Bytecodes::depth(iter().cur_bc());
877 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
878 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms
879 assert(argument(0) != NULL, "must exist");
880 assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
881 _sp += bc_depth;
882 }
883
884 //----------------------------------do_ifnull----------------------------------
885 void Parse::do_ifnull(BoolTest::mask btest) {
886 int target_bci = iter().get_dest();
887
888 float cnt;
889 float prob = branch_prediction(cnt, btest, target_bci);
890 if (prob == PROB_UNKNOWN) {
891 // (An earlier version of do_ifnull omitted this trap for OSR methods.)
892 #ifndef PRODUCT
893 if (PrintOpto && Verbose)
894 tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
895 #endif
896 repush_if_args(); // to gather stats on loop
897 // We need to mark this branch as taken so that if we recompile we will
898 // see that it is possible. In the tiered system the interpreter doesn't
899 // do profiling and by the time we get to the lower tier from the interpreter
900 // the path may be cold again. Make sure it doesn't look untaken
901 profile_taken_branch(target_bci, !ProfileInterpreter);
902 uncommon_trap(Deoptimization::Reason_unreached,
903 Deoptimization::Action_reinterpret,
904 NULL, "cold");
905 return;
906 }
907
908 // If this is a backwards branch in the bytecodes, add Safepoint
909 maybe_add_safepoint(target_bci);
910 Block* branch_block = successor_for_bci(target_bci);
911 Block* next_block = successor_for_bci(iter().next_bci());
912
913 explicit_null_checks_inserted++;
914 Node* a = null();
915 Node* b = pop();
916 Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
917
918 // Make a cast-away-nullness that is control dependent on the test
919 const Type *t = _gvn.type(b);
920 const Type *t_not_null = t->join(TypePtr::NOTNULL);
921 Node *cast = new (C, 2) CastPPNode(b,t_not_null);
922
923 // Generate real control flow
924 Node *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
925
926 // Sanity check the probability value
927 assert(prob > 0.0f,"Bad probability in Parser");
928 // Need xform to put node in hash table
929 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
930 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
931 // True branch
932 { PreserveJVMState pjvms(this);
933 Node* iftrue = _gvn.transform( new (C, 1) IfTrueNode (iff) );
934 set_control(iftrue);
935
936 if (stopped()) { // Path is dead?
937 explicit_null_checks_elided++;
938 } else { // Path is live.
939 // Update method data
940 profile_taken_branch(target_bci);
941 adjust_map_after_if(btest, c, prob, branch_block, next_block);
942 if (!stopped())
943 merge(target_bci);
944 }
945 }
946
947 // False branch
948 Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
949 set_control(iffalse);
950
951 if (stopped()) { // Path is dead?
952 explicit_null_checks_elided++;
953 } else { // Path is live.
954 // Update method data
955 profile_not_taken_branch();
956 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
957 next_block, branch_block);
958 }
959 }
960
961 //------------------------------------do_if------------------------------------
962 void Parse::do_if(BoolTest::mask btest, Node* c) {
963 int target_bci = iter().get_dest();
964
965 float cnt;
966 float prob = branch_prediction(cnt, btest, target_bci);
967 float untaken_prob = 1.0 - prob;
968
969 if (prob == PROB_UNKNOWN) {
970 #ifndef PRODUCT
971 if (PrintOpto && Verbose)
972 tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
973 #endif
974 repush_if_args(); // to gather stats on loop
975 // We need to mark this branch as taken so that if we recompile we will
976 // see that it is possible. In the tiered system the interpreter doesn't
977 // do profiling and by the time we get to the lower tier from the interpreter
978 // the path may be cold again. Make sure it doesn't look untaken
979 profile_taken_branch(target_bci, !ProfileInterpreter);
980 uncommon_trap(Deoptimization::Reason_unreached,
981 Deoptimization::Action_reinterpret,
982 NULL, "cold");
983 return;
984 }
985
986 // Sanity check the probability value
987 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
988
989 bool taken_if_true = true;
990 // Convert BoolTest to canonical form:
991 if (!BoolTest(btest).is_canonical()) {
992 btest = BoolTest(btest).negate();
993 taken_if_true = false;
994 // prob is NOT updated here; it remains the probability of the taken
995 // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
996 }
997 assert(btest != BoolTest::eq, "!= is the only canonical exact test");
998
999 Node* tst0 = new (C, 2) BoolNode(c, btest);
1000 Node* tst = _gvn.transform(tst0);
1001 BoolTest::mask taken_btest = BoolTest::illegal;
1002 BoolTest::mask untaken_btest = BoolTest::illegal;
1003 if (btest == BoolTest::ne) {
1004 // For now, these are the only cases of btest that matter. (More later.)
1005 taken_btest = taken_if_true ? btest : BoolTest::eq;
1006 untaken_btest = taken_if_true ? BoolTest::eq : btest;
1007 }
1008
1009 // Generate real control flow
1010 float true_prob = (taken_if_true ? prob : untaken_prob);
1011 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1012 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1013 Node* taken_branch = new (C, 1) IfTrueNode(iff);
1014 Node* untaken_branch = new (C, 1) IfFalseNode(iff);
1015 if (!taken_if_true) { // Finish conversion to canonical form
1016 Node* tmp = taken_branch;
1017 taken_branch = untaken_branch;
1018 untaken_branch = tmp;
1019 }
1020
1021 Block* branch_block = successor_for_bci(target_bci);
1022 Block* next_block = successor_for_bci(iter().next_bci());
1023
1024 // Branch is taken:
1025 { PreserveJVMState pjvms(this);
1026 taken_branch = _gvn.transform(taken_branch);
1027 set_control(taken_branch);
1028
1029 if (!stopped()) {
1030 // Update method data
1031 profile_taken_branch(target_bci);
1032 adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1033 if (!stopped())
1034 merge(target_bci);
1035 }
1036 }
1037
1038 untaken_branch = _gvn.transform(untaken_branch);
1039 set_control(untaken_branch);
1040
1041 // Branch not taken.
1042 if (!stopped()) {
1043 // Update method data
1044 profile_not_taken_branch();
1045 adjust_map_after_if(untaken_btest, c, untaken_prob,
1046 next_block, branch_block);
1047 }
1048 }
1049
1050 //----------------------------adjust_map_after_if------------------------------
1051 // Adjust the JVM state to reflect the result of taking this path.
1052 // Basically, it means inspecting the CmpNode controlling this
1053 // branch, seeing how it constrains a tested value, and then
1054 // deciding if it's worth our while to encode this constraint
1055 // as graph nodes in the current abstract interpretation map.
1056 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1057 Block* path, Block* other_path) {
1058 if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1059 return; // nothing to do
1060
1061 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1062
1063 int cop = c->Opcode();
1064 if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
1065 // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
1066 //
1067 // If this might possibly turn into an implicit null check,
1068 // and the null has never yet been seen, we need to generate
1069 // an uncommon trap, so as to recompile instead of suffering
1070 // with very slow branches. (We'll get the slow branches if
1071 // the program ever changes phase and starts seeing nulls here.)
1072 //
1073 // The tests we worry about are of the form (p == null).
1074 // We do not simply inspect for a null constant, since a node may
1075 // optimize to 'null' later on.
1076 repush_if_args();
1077 // We need to mark this branch as taken so that if we recompile we will
1078 // see that it is possible. In the tiered system the interpreter doesn't
1079 // do profiling and by the time we get to the lower tier from the interpreter
1080 // the path may be cold again. Make sure it doesn't look untaken
1081 if (is_fallthrough) {
1082 profile_not_taken_branch(!ProfileInterpreter);
1083 } else {
1084 profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1085 }
1086 uncommon_trap(Deoptimization::Reason_unreached,
1087 Deoptimization::Action_reinterpret,
1088 NULL,
1089 (is_fallthrough ? "taken always" : "taken never"));
1090 return;
1091 }
1092
1093 Node* val = c->in(1);
1094 Node* con = c->in(2);
1095 const Type* tcon = _gvn.type(con);
1096 const Type* tval = _gvn.type(val);
1097 bool have_con = tcon->singleton();
1098 if (tval->singleton()) {
1099 if (!have_con) {
1100 // Swap, so constant is in con.
1101 con = val;
1102 tcon = tval;
1103 val = c->in(2);
1104 tval = _gvn.type(val);
1105 btest = BoolTest(btest).commute();
1106 have_con = true;
1107 } else {
1108 // Do we have two constants? Then leave well enough alone.
1109 have_con = false;
1110 }
1111 }
1112 if (!have_con) // remaining adjustments need a con
1113 return;
1114
1115
1116 int val_in_map = map()->find_edge(val);
1117 if (val_in_map < 0) return; // replace_in_map would be useless
1118 {
1119 JVMState* jvms = this->jvms();
1120 if (!(jvms->is_loc(val_in_map) ||
1121 jvms->is_stk(val_in_map)))
1122 return; // again, it would be useless
1123 }
1124
1125 // Check for a comparison to a constant, and "know" that the compared
1126 // value is constrained on this path.
1127 assert(tcon->singleton(), "");
1128 ConstraintCastNode* ccast = NULL;
1129 Node* cast = NULL;
1130
1131 switch (btest) {
1132 case BoolTest::eq: // Constant test?
1133 {
1134 const Type* tboth = tcon->join(tval);
1135 if (tboth == tval) break; // Nothing to gain.
1136 if (tcon->isa_int()) {
1137 ccast = new (C, 2) CastIINode(val, tboth);
1138 } else if (tcon == TypePtr::NULL_PTR) {
1139 // Cast to null, but keep the pointer identity temporarily live.
1140 ccast = new (C, 2) CastPPNode(val, tboth);
1141 } else {
1142 const TypeF* tf = tcon->isa_float_constant();
1143 const TypeD* td = tcon->isa_double_constant();
1144 // Exclude tests vs float/double 0 as these could be
1145 // either +0 or -0. Just because you are equal to +0
1146 // doesn't mean you ARE +0!
1147 if ((!tf || tf->_f != 0.0) &&
1148 (!td || td->_d != 0.0))
1149 cast = con; // Replace non-constant val by con.
1150 }
1151 }
1152 break;
1153
1154 case BoolTest::ne:
1155 if (tcon == TypePtr::NULL_PTR) {
1156 cast = cast_not_null(val, false);
1157 }
1158 break;
1159
1160 default:
1161 // (At this point we could record int range types with CastII.)
1162 break;
1163 }
1164
1165 if (ccast != NULL) {
1166 const Type* tcc = ccast->as_Type()->type();
1167 assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1168 // Delay transform() call to allow recovery of pre-cast value
1169 // at the control merge.
1170 ccast->set_req(0, control());
1171 _gvn.set_type_bottom(ccast);
1172 record_for_igvn(ccast);
1173 cast = ccast;
1174 }
1175
1176 if (cast != NULL) { // Here's the payoff.
1177 replace_in_map(val, cast);
1178 }
1179 }
1180
1181
1182 //------------------------------do_one_bytecode--------------------------------
1183 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1184 void Parse::do_one_bytecode() {
1185 Node *a, *b, *c, *d; // Handy temps
1186 BoolTest::mask btest;
1187 int i;
1188
1189 assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1190
1191 if (C->check_node_count(NodeLimitFudgeFactor * 5,
1192 "out of nodes parsing method")) {
1193 return;
1194 }
1195
1196 #ifdef ASSERT
1197 // for setting breakpoints
1198 if (TraceOptoParse) {
1199 tty->print(" @");
1200 dump_bci(bci());
1201 }
1202 #endif
1203
1204 switch (bc()) {
1205 case Bytecodes::_nop:
1206 // do nothing
1207 break;
1208 case Bytecodes::_lconst_0:
1209 push_pair(longcon(0));
1210 break;
1211
1212 case Bytecodes::_lconst_1:
1213 push_pair(longcon(1));
1214 break;
1215
1216 case Bytecodes::_fconst_0:
1217 push(zerocon(T_FLOAT));
1218 break;
1219
1220 case Bytecodes::_fconst_1:
1221 push(makecon(TypeF::ONE));
1222 break;
1223
1224 case Bytecodes::_fconst_2:
1225 push(makecon(TypeF::make(2.0f)));
1226 break;
1227
1228 case Bytecodes::_dconst_0:
1229 push_pair(zerocon(T_DOUBLE));
1230 break;
1231
1232 case Bytecodes::_dconst_1:
1233 push_pair(makecon(TypeD::ONE));
1234 break;
1235
1236 case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1237 case Bytecodes::_iconst_0: push(intcon( 0)); break;
1238 case Bytecodes::_iconst_1: push(intcon( 1)); break;
1239 case Bytecodes::_iconst_2: push(intcon( 2)); break;
1240 case Bytecodes::_iconst_3: push(intcon( 3)); break;
1241 case Bytecodes::_iconst_4: push(intcon( 4)); break;
1242 case Bytecodes::_iconst_5: push(intcon( 5)); break;
1243 case Bytecodes::_bipush: push(intcon( iter().get_byte())); break;
1244 case Bytecodes::_sipush: push(intcon( iter().get_short())); break;
1245 case Bytecodes::_aconst_null: push(null()); break;
1246 case Bytecodes::_ldc:
1247 case Bytecodes::_ldc_w:
1248 case Bytecodes::_ldc2_w:
1249 // If the constant is unresolved, run this BC once in the interpreter.
1250 if (iter().is_unresolved_string()) {
1251 uncommon_trap(Deoptimization::make_trap_request
1252 (Deoptimization::Reason_unloaded,
1253 Deoptimization::Action_reinterpret,
1254 iter().get_constant_index()),
1255 NULL, "unresolved_string");
1256 break;
1257 } else {
1258 ciConstant constant = iter().get_constant();
1259 if (constant.basic_type() == T_OBJECT) {
1260 ciObject* c = constant.as_object();
1261 if (c->is_klass()) {
1262 // The constant returned for a klass is the ciKlass for the
1263 // entry. We want the java_mirror so get it.
1264 ciKlass* klass = c->as_klass();
1265 if (klass->is_loaded()) {
1266 constant = ciConstant(T_OBJECT, klass->java_mirror());
1267 } else {
1268 uncommon_trap(Deoptimization::make_trap_request
1269 (Deoptimization::Reason_unloaded,
1270 Deoptimization::Action_reinterpret,
1271 iter().get_constant_index()),
1272 NULL, "unresolved_klass");
1273 break;
1274 }
1275 }
1276 }
1277 push_constant(constant);
1278 }
1279
1280 break;
1281
1282 case Bytecodes::_aload_0:
1283 push( local(0) );
1284 break;
1285 case Bytecodes::_aload_1:
1286 push( local(1) );
1287 break;
1288 case Bytecodes::_aload_2:
1289 push( local(2) );
1290 break;
1291 case Bytecodes::_aload_3:
1292 push( local(3) );
1293 break;
1294 case Bytecodes::_aload:
1295 push( local(iter().get_index()) );
1296 break;
1297
1298 case Bytecodes::_fload_0:
1299 case Bytecodes::_iload_0:
1300 push( local(0) );
1301 break;
1302 case Bytecodes::_fload_1:
1303 case Bytecodes::_iload_1:
1304 push( local(1) );
1305 break;
1306 case Bytecodes::_fload_2:
1307 case Bytecodes::_iload_2:
1308 push( local(2) );
1309 break;
1310 case Bytecodes::_fload_3:
1311 case Bytecodes::_iload_3:
1312 push( local(3) );
1313 break;
1314 case Bytecodes::_fload:
1315 case Bytecodes::_iload:
1316 push( local(iter().get_index()) );
1317 break;
1318 case Bytecodes::_lload_0:
1319 push_pair_local( 0 );
1320 break;
1321 case Bytecodes::_lload_1:
1322 push_pair_local( 1 );
1323 break;
1324 case Bytecodes::_lload_2:
1325 push_pair_local( 2 );
1326 break;
1327 case Bytecodes::_lload_3:
1328 push_pair_local( 3 );
1329 break;
1330 case Bytecodes::_lload:
1331 push_pair_local( iter().get_index() );
1332 break;
1333
1334 case Bytecodes::_dload_0:
1335 push_pair_local(0);
1336 break;
1337 case Bytecodes::_dload_1:
1338 push_pair_local(1);
1339 break;
1340 case Bytecodes::_dload_2:
1341 push_pair_local(2);
1342 break;
1343 case Bytecodes::_dload_3:
1344 push_pair_local(3);
1345 break;
1346 case Bytecodes::_dload:
1347 push_pair_local(iter().get_index());
1348 break;
1349 case Bytecodes::_fstore_0:
1350 case Bytecodes::_istore_0:
1351 case Bytecodes::_astore_0:
1352 set_local( 0, pop() );
1353 break;
1354 case Bytecodes::_fstore_1:
1355 case Bytecodes::_istore_1:
1356 case Bytecodes::_astore_1:
1357 set_local( 1, pop() );
1358 break;
1359 case Bytecodes::_fstore_2:
1360 case Bytecodes::_istore_2:
1361 case Bytecodes::_astore_2:
1362 set_local( 2, pop() );
1363 break;
1364 case Bytecodes::_fstore_3:
1365 case Bytecodes::_istore_3:
1366 case Bytecodes::_astore_3:
1367 set_local( 3, pop() );
1368 break;
1369 case Bytecodes::_fstore:
1370 case Bytecodes::_istore:
1371 case Bytecodes::_astore:
1372 set_local( iter().get_index(), pop() );
1373 break;
1374 // long stores
1375 case Bytecodes::_lstore_0:
1376 set_pair_local( 0, pop_pair() );
1377 break;
1378 case Bytecodes::_lstore_1:
1379 set_pair_local( 1, pop_pair() );
1380 break;
1381 case Bytecodes::_lstore_2:
1382 set_pair_local( 2, pop_pair() );
1383 break;
1384 case Bytecodes::_lstore_3:
1385 set_pair_local( 3, pop_pair() );
1386 break;
1387 case Bytecodes::_lstore:
1388 set_pair_local( iter().get_index(), pop_pair() );
1389 break;
1390
1391 // double stores
1392 case Bytecodes::_dstore_0:
1393 set_pair_local( 0, dstore_rounding(pop_pair()) );
1394 break;
1395 case Bytecodes::_dstore_1:
1396 set_pair_local( 1, dstore_rounding(pop_pair()) );
1397 break;
1398 case Bytecodes::_dstore_2:
1399 set_pair_local( 2, dstore_rounding(pop_pair()) );
1400 break;
1401 case Bytecodes::_dstore_3:
1402 set_pair_local( 3, dstore_rounding(pop_pair()) );
1403 break;
1404 case Bytecodes::_dstore:
1405 set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1406 break;
1407
1408 case Bytecodes::_pop: _sp -= 1; break;
1409 case Bytecodes::_pop2: _sp -= 2; break;
1410 case Bytecodes::_swap:
1411 a = pop();
1412 b = pop();
1413 push(a);
1414 push(b);
1415 break;
1416 case Bytecodes::_dup:
1417 a = pop();
1418 push(a);
1419 push(a);
1420 break;
1421 case Bytecodes::_dup_x1:
1422 a = pop();
1423 b = pop();
1424 push( a );
1425 push( b );
1426 push( a );
1427 break;
1428 case Bytecodes::_dup_x2:
1429 a = pop();
1430 b = pop();
1431 c = pop();
1432 push( a );
1433 push( c );
1434 push( b );
1435 push( a );
1436 break;
1437 case Bytecodes::_dup2:
1438 a = pop();
1439 b = pop();
1440 push( b );
1441 push( a );
1442 push( b );
1443 push( a );
1444 break;
1445
1446 case Bytecodes::_dup2_x1:
1447 // before: .. c, b, a
1448 // after: .. b, a, c, b, a
1449 // not tested
1450 a = pop();
1451 b = pop();
1452 c = pop();
1453 push( b );
1454 push( a );
1455 push( c );
1456 push( b );
1457 push( a );
1458 break;
1459 case Bytecodes::_dup2_x2:
1460 // before: .. d, c, b, a
1461 // after: .. b, a, d, c, b, a
1462 // not tested
1463 a = pop();
1464 b = pop();
1465 c = pop();
1466 d = pop();
1467 push( b );
1468 push( a );
1469 push( d );
1470 push( c );
1471 push( b );
1472 push( a );
1473 break;
1474
1475 case Bytecodes::_arraylength: {
1476 // Must do null-check with value on expression stack
1477 Node *ary = do_null_check(peek(), T_ARRAY);
1478 // Compile-time detect of null-exception?
1479 if (stopped()) return;
1480 a = pop();
1481 push(load_array_length(a));
1482 break;
1483 }
1484
1485 case Bytecodes::_baload: array_load(T_BYTE); break;
1486 case Bytecodes::_caload: array_load(T_CHAR); break;
1487 case Bytecodes::_iaload: array_load(T_INT); break;
1488 case Bytecodes::_saload: array_load(T_SHORT); break;
1489 case Bytecodes::_faload: array_load(T_FLOAT); break;
1490 case Bytecodes::_aaload: array_load(T_OBJECT); break;
1491 case Bytecodes::_laload: {
1492 a = array_addressing(T_LONG, 0);
1493 if (stopped()) return; // guarenteed null or range check
1494 _sp -= 2; // Pop array and index
1495 push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1496 break;
1497 }
1498 case Bytecodes::_daload: {
1499 a = array_addressing(T_DOUBLE, 0);
1500 if (stopped()) return; // guarenteed null or range check
1501 _sp -= 2; // Pop array and index
1502 push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1503 break;
1504 }
1505 case Bytecodes::_bastore: array_store(T_BYTE); break;
1506 case Bytecodes::_castore: array_store(T_CHAR); break;
1507 case Bytecodes::_iastore: array_store(T_INT); break;
1508 case Bytecodes::_sastore: array_store(T_SHORT); break;
1509 case Bytecodes::_fastore: array_store(T_FLOAT); break;
1510 case Bytecodes::_aastore: {
1511 d = array_addressing(T_OBJECT, 1);
1512 if (stopped()) return; // guarenteed null or range check
1513 array_store_check();
1514 c = pop(); // Oop to store
1515 b = pop(); // index (already used)
1516 a = pop(); // the array itself
1517 const Type* elemtype = _gvn.type(a)->is_aryptr()->elem();
1518 const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1519 Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1520 break;
1521 }
1522 case Bytecodes::_lastore: {
1523 a = array_addressing(T_LONG, 2);
1524 if (stopped()) return; // guarenteed null or range check
1525 c = pop_pair();
1526 _sp -= 2; // Pop array and index
1527 store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1528 break;
1529 }
1530 case Bytecodes::_dastore: {
1531 a = array_addressing(T_DOUBLE, 2);
1532 if (stopped()) return; // guarenteed null or range check
1533 c = pop_pair();
1534 _sp -= 2; // Pop array and index
1535 c = dstore_rounding(c);
1536 store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1537 break;
1538 }
1539 case Bytecodes::_getfield:
1540 do_getfield();
1541 break;
1542
1543 case Bytecodes::_getstatic:
1544 do_getstatic();
1545 break;
1546
1547 case Bytecodes::_putfield:
1548 do_putfield();
1549 break;
1550
1551 case Bytecodes::_putstatic:
1552 do_putstatic();
1553 break;
1554
1555 case Bytecodes::_irem:
1556 do_irem();
1557 break;
1558 case Bytecodes::_idiv:
1559 // Must keep both values on the expression-stack during null-check
1560 do_null_check(peek(), T_INT);
1561 // Compile-time detect of null-exception?
1562 if (stopped()) return;
1563 b = pop();
1564 a = pop();
1565 push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
1566 break;
1567 case Bytecodes::_imul:
1568 b = pop(); a = pop();
1569 push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
1570 break;
1571 case Bytecodes::_iadd:
1572 b = pop(); a = pop();
1573 push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
1574 break;
1575 case Bytecodes::_ineg:
1576 a = pop();
1577 push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
1578 break;
1579 case Bytecodes::_isub:
1580 b = pop(); a = pop();
1581 push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
1582 break;
1583 case Bytecodes::_iand:
1584 b = pop(); a = pop();
1585 push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
1586 break;
1587 case Bytecodes::_ior:
1588 b = pop(); a = pop();
1589 push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
1590 break;
1591 case Bytecodes::_ixor:
1592 b = pop(); a = pop();
1593 push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
1594 break;
1595 case Bytecodes::_ishl:
1596 b = pop(); a = pop();
1597 push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
1598 break;
1599 case Bytecodes::_ishr:
1600 b = pop(); a = pop();
1601 push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
1602 break;
1603 case Bytecodes::_iushr:
1604 b = pop(); a = pop();
1605 push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
1606 break;
1607
1608 case Bytecodes::_fneg:
1609 a = pop();
1610 b = _gvn.transform(new (C, 2) NegFNode (a));
1611 push(b);
1612 break;
1613
1614 case Bytecodes::_fsub:
1615 b = pop();
1616 a = pop();
1617 c = _gvn.transform( new (C, 3) SubFNode(a,b) );
1618 d = precision_rounding(c);
1619 push( d );
1620 break;
1621
1622 case Bytecodes::_fadd:
1623 b = pop();
1624 a = pop();
1625 c = _gvn.transform( new (C, 3) AddFNode(a,b) );
1626 d = precision_rounding(c);
1627 push( d );
1628 break;
1629
1630 case Bytecodes::_fmul:
1631 b = pop();
1632 a = pop();
1633 c = _gvn.transform( new (C, 3) MulFNode(a,b) );
1634 d = precision_rounding(c);
1635 push( d );
1636 break;
1637
1638 case Bytecodes::_fdiv:
1639 b = pop();
1640 a = pop();
1641 c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
1642 d = precision_rounding(c);
1643 push( d );
1644 break;
1645
1646 case Bytecodes::_frem:
1647 if (Matcher::has_match_rule(Op_ModF)) {
1648 // Generate a ModF node.
1649 b = pop();
1650 a = pop();
1651 c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
1652 d = precision_rounding(c);
1653 push( d );
1654 }
1655 else {
1656 // Generate a call.
1657 modf();
1658 }
1659 break;
1660
1661 case Bytecodes::_fcmpl:
1662 b = pop();
1663 a = pop();
1664 c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
1665 push(c);
1666 break;
1667 case Bytecodes::_fcmpg:
1668 b = pop();
1669 a = pop();
1670
1671 // Same as fcmpl but need to flip the unordered case. Swap the inputs,
1672 // which negates the result sign except for unordered. Flip the unordered
1673 // as well by using CmpF3 which implements unordered-lesser instead of
1674 // unordered-greater semantics. Finally, commute the result bits. Result
1675 // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1676 c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
1677 c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1678 push(c);
1679 break;
1680
1681 case Bytecodes::_f2i:
1682 a = pop();
1683 push(_gvn.transform(new (C, 2) ConvF2INode(a)));
1684 break;
1685
1686 case Bytecodes::_d2i:
1687 a = pop_pair();
1688 b = _gvn.transform(new (C, 2) ConvD2INode(a));
1689 push( b );
1690 break;
1691
1692 case Bytecodes::_f2d:
1693 a = pop();
1694 b = _gvn.transform( new (C, 2) ConvF2DNode(a));
1695 push_pair( b );
1696 break;
1697
1698 case Bytecodes::_d2f:
1699 a = pop_pair();
1700 b = _gvn.transform( new (C, 2) ConvD2FNode(a));
1701 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1702 //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
1703 push( b );
1704 break;
1705
1706 case Bytecodes::_l2f:
1707 if (Matcher::convL2FSupported()) {
1708 a = pop_pair();
1709 b = _gvn.transform( new (C, 2) ConvL2FNode(a));
1710 // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1711 // Rather than storing the result into an FP register then pushing
1712 // out to memory to round, the machine instruction that implements
1713 // ConvL2D is responsible for rounding.
1714 // c = precision_rounding(b);
1715 c = _gvn.transform(b);
1716 push(c);
1717 } else {
1718 l2f();
1719 }
1720 break;
1721
1722 case Bytecodes::_l2d:
1723 a = pop_pair();
1724 b = _gvn.transform( new (C, 2) ConvL2DNode(a));
1725 // For i486.ad, rounding is always necessary (see _l2f above).
1726 // c = dprecision_rounding(b);
1727 c = _gvn.transform(b);
1728 push_pair(c);
1729 break;
1730
1731 case Bytecodes::_f2l:
1732 a = pop();
1733 b = _gvn.transform( new (C, 2) ConvF2LNode(a));
1734 push_pair(b);
1735 break;
1736
1737 case Bytecodes::_d2l:
1738 a = pop_pair();
1739 b = _gvn.transform( new (C, 2) ConvD2LNode(a));
1740 push_pair(b);
1741 break;
1742
1743 case Bytecodes::_dsub:
1744 b = pop_pair();
1745 a = pop_pair();
1746 c = _gvn.transform( new (C, 3) SubDNode(a,b) );
1747 d = dprecision_rounding(c);
1748 push_pair( d );
1749 break;
1750
1751 case Bytecodes::_dadd:
1752 b = pop_pair();
1753 a = pop_pair();
1754 c = _gvn.transform( new (C, 3) AddDNode(a,b) );
1755 d = dprecision_rounding(c);
1756 push_pair( d );
1757 break;
1758
1759 case Bytecodes::_dmul:
1760 b = pop_pair();
1761 a = pop_pair();
1762 c = _gvn.transform( new (C, 3) MulDNode(a,b) );
1763 d = dprecision_rounding(c);
1764 push_pair( d );
1765 break;
1766
1767 case Bytecodes::_ddiv:
1768 b = pop_pair();
1769 a = pop_pair();
1770 c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
1771 d = dprecision_rounding(c);
1772 push_pair( d );
1773 break;
1774
1775 case Bytecodes::_dneg:
1776 a = pop_pair();
1777 b = _gvn.transform(new (C, 2) NegDNode (a));
1778 push_pair(b);
1779 break;
1780
1781 case Bytecodes::_drem:
1782 if (Matcher::has_match_rule(Op_ModD)) {
1783 // Generate a ModD node.
1784 b = pop_pair();
1785 a = pop_pair();
1786 // a % b
1787
1788 c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
1789 d = dprecision_rounding(c);
1790 push_pair( d );
1791 }
1792 else {
1793 // Generate a call.
1794 modd();
1795 }
1796 break;
1797
1798 case Bytecodes::_dcmpl:
1799 b = pop_pair();
1800 a = pop_pair();
1801 c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
1802 push(c);
1803 break;
1804
1805 case Bytecodes::_dcmpg:
1806 b = pop_pair();
1807 a = pop_pair();
1808 // Same as dcmpl but need to flip the unordered case.
1809 // Commute the inputs, which negates the result sign except for unordered.
1810 // Flip the unordered as well by using CmpD3 which implements
1811 // unordered-lesser instead of unordered-greater semantics.
1812 // Finally, negate the result bits. Result is same as using a
1813 // CmpD3Greater except we did it with CmpD3 alone.
1814 c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
1815 c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1816 push(c);
1817 break;
1818
1819
1820 // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1821 case Bytecodes::_land:
1822 b = pop_pair();
1823 a = pop_pair();
1824 c = _gvn.transform( new (C, 3) AndLNode(a,b) );
1825 push_pair(c);
1826 break;
1827 case Bytecodes::_lor:
1828 b = pop_pair();
1829 a = pop_pair();
1830 c = _gvn.transform( new (C, 3) OrLNode(a,b) );
1831 push_pair(c);
1832 break;
1833 case Bytecodes::_lxor:
1834 b = pop_pair();
1835 a = pop_pair();
1836 c = _gvn.transform( new (C, 3) XorLNode(a,b) );
1837 push_pair(c);
1838 break;
1839
1840 case Bytecodes::_lshl:
1841 b = pop(); // the shift count
1842 a = pop_pair(); // value to be shifted
1843 c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
1844 push_pair(c);
1845 break;
1846 case Bytecodes::_lshr:
1847 b = pop(); // the shift count
1848 a = pop_pair(); // value to be shifted
1849 c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
1850 push_pair(c);
1851 break;
1852 case Bytecodes::_lushr:
1853 b = pop(); // the shift count
1854 a = pop_pair(); // value to be shifted
1855 c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
1856 push_pair(c);
1857 break;
1858 case Bytecodes::_lmul:
1859 b = pop_pair();
1860 a = pop_pair();
1861 c = _gvn.transform( new (C, 3) MulLNode(a,b) );
1862 push_pair(c);
1863 break;
1864
1865 case Bytecodes::_lrem:
1866 // Must keep both values on the expression-stack during null-check
1867 assert(peek(0) == top(), "long word order");
1868 do_null_check(peek(1), T_LONG);
1869 // Compile-time detect of null-exception?
1870 if (stopped()) return;
1871 b = pop_pair();
1872 a = pop_pair();
1873 c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
1874 push_pair(c);
1875 break;
1876
1877 case Bytecodes::_ldiv:
1878 // Must keep both values on the expression-stack during null-check
1879 assert(peek(0) == top(), "long word order");
1880 do_null_check(peek(1), T_LONG);
1881 // Compile-time detect of null-exception?
1882 if (stopped()) return;
1883 b = pop_pair();
1884 a = pop_pair();
1885 c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
1886 push_pair(c);
1887 break;
1888
1889 case Bytecodes::_ladd:
1890 b = pop_pair();
1891 a = pop_pair();
1892 c = _gvn.transform( new (C, 3) AddLNode(a,b) );
1893 push_pair(c);
1894 break;
1895 case Bytecodes::_lsub:
1896 b = pop_pair();
1897 a = pop_pair();
1898 c = _gvn.transform( new (C, 3) SubLNode(a,b) );
1899 push_pair(c);
1900 break;
1901 case Bytecodes::_lcmp:
1902 // Safepoints are now inserted _before_ branches. The long-compare
1903 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
1904 // slew of control flow. These are usually followed by a CmpI vs zero and
1905 // a branch; this pattern then optimizes to the obvious long-compare and
1906 // branch. However, if the branch is backwards there's a Safepoint
1907 // inserted. The inserted Safepoint captures the JVM state at the
1908 // pre-branch point, i.e. it captures the 3-way value. Thus if a
1909 // long-compare is used to control a loop the debug info will force
1910 // computation of the 3-way value, even though the generated code uses a
1911 // long-compare and branch. We try to rectify the situation by inserting
1912 // a SafePoint here and have it dominate and kill the safepoint added at a
1913 // following backwards branch. At this point the JVM state merely holds 2
1914 // longs but not the 3-way value.
1915 if( UseLoopSafepoints ) {
1916 switch( iter().next_bc() ) {
1917 case Bytecodes::_ifgt:
1918 case Bytecodes::_iflt:
1919 case Bytecodes::_ifge:
1920 case Bytecodes::_ifle:
1921 case Bytecodes::_ifne:
1922 case Bytecodes::_ifeq:
1923 // If this is a backwards branch in the bytecodes, add Safepoint
1924 maybe_add_safepoint(iter().next_get_dest());
1925 }
1926 }
1927 b = pop_pair();
1928 a = pop_pair();
1929 c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
1930 push(c);
1931 break;
1932
1933 case Bytecodes::_lneg:
1934 a = pop_pair();
1935 b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
1936 push_pair(b);
1937 break;
1938 case Bytecodes::_l2i:
1939 a = pop_pair();
1940 push( _gvn.transform( new (C, 2) ConvL2INode(a)));
1941 break;
1942 case Bytecodes::_i2l:
1943 a = pop();
1944 b = _gvn.transform( new (C, 2) ConvI2LNode(a));
1945 push_pair(b);
1946 break;
1947 case Bytecodes::_i2b:
1948 // Sign extend
1949 a = pop();
1950 a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
1951 a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
1952 push( a );
1953 break;
1954 case Bytecodes::_i2s:
1955 a = pop();
1956 a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
1957 a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
1958 push( a );
1959 break;
1960 case Bytecodes::_i2c:
1961 a = pop();
1962 push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
1963 break;
1964
1965 case Bytecodes::_i2f:
1966 a = pop();
1967 b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
1968 c = precision_rounding(b);
1969 push (b);
1970 break;
1971
1972 case Bytecodes::_i2d:
1973 a = pop();
1974 b = _gvn.transform( new (C, 2) ConvI2DNode(a));
1975 push_pair(b);
1976 break;
1977
1978 case Bytecodes::_iinc: // Increment local
1979 i = iter().get_index(); // Get local index
1980 set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
1981 break;
1982
1983 // Exit points of synchronized methods must have an unlock node
1984 case Bytecodes::_return:
1985 return_current(NULL);
1986 break;
1987
1988 case Bytecodes::_ireturn:
1989 case Bytecodes::_areturn:
1990 case Bytecodes::_freturn:
1991 return_current(pop());
1992 break;
1993 case Bytecodes::_lreturn:
1994 return_current(pop_pair());
1995 break;
1996 case Bytecodes::_dreturn:
1997 return_current(pop_pair());
1998 break;
1999
2000 case Bytecodes::_athrow:
2001 // null exception oop throws NULL pointer exception
2002 do_null_check(peek(), T_OBJECT);
2003 if (stopped()) return;
2004 if (JvmtiExport::can_post_exceptions()) {
2005 // "Full-speed throwing" is not necessary here,
2006 // since we're notifying the VM on every throw.
2007 uncommon_trap(Deoptimization::Reason_unhandled,
2008 Deoptimization::Action_none);
2009 return;
2010 }
2011 // Hook the thrown exception directly to subsequent handlers.
2012 if (BailoutToInterpreterForThrows) {
2013 // Keep method interpreted from now on.
2014 uncommon_trap(Deoptimization::Reason_unhandled,
2015 Deoptimization::Action_make_not_compilable);
2016 return;
2017 }
2018 add_exception_state(make_exception_state(peek()));
2019 break;
2020
2021 case Bytecodes::_goto: // fall through
2022 case Bytecodes::_goto_w: {
2023 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2024
2025 // If this is a backwards branch in the bytecodes, add Safepoint
2026 maybe_add_safepoint(target_bci);
2027
2028 // Update method data
2029 profile_taken_branch(target_bci);
2030
2031 // Merge the current control into the target basic block
2032 merge(target_bci);
2033
2034 // See if we can get some profile data and hand it off to the next block
2035 Block *target_block = block()->successor_for_bci(target_bci);
2036 if (target_block->pred_count() != 1) break;
2037 ciMethodData* methodData = method()->method_data();
2038 if (!methodData->is_mature()) break;
2039 ciProfileData* data = methodData->bci_to_data(bci());
2040 assert( data->is_JumpData(), "" );
2041 int taken = ((ciJumpData*)data)->taken();
2042 taken = method()->scale_count(taken);
2043 target_block->set_count(taken);
2044 break;
2045 }
2046
2047 case Bytecodes::_ifnull:
2048 do_ifnull(BoolTest::eq);
2049 break;
2050 case Bytecodes::_ifnonnull:
2051 do_ifnull(BoolTest::ne);
2052 break;
2053
2054 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2055 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2056 handle_if_acmp:
2057 // If this is a backwards branch in the bytecodes, add Safepoint
2058 maybe_add_safepoint(iter().get_dest());
2059 a = pop();
2060 b = pop();
2061 c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2062 do_if(btest, c);
2063 break;
2064
2065 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2066 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2067 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2068 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2069 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2070 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2071 handle_ifxx:
2072 // If this is a backwards branch in the bytecodes, add Safepoint
2073 maybe_add_safepoint(iter().get_dest());
2074 a = _gvn.intcon(0);
2075 b = pop();
2076 c = _gvn.transform( new (C, 3) CmpINode(b, a) );
2077 do_if(btest, c);
2078 break;
2079
2080 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2081 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2082 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2083 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2084 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2085 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2086 handle_if_icmp:
2087 // If this is a backwards branch in the bytecodes, add Safepoint
2088 maybe_add_safepoint(iter().get_dest());
2089 a = pop();
2090 b = pop();
2091 c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
2092 do_if(btest, c);
2093 break;
2094
2095 case Bytecodes::_tableswitch:
2096 do_tableswitch();
2097 break;
2098
2099 case Bytecodes::_lookupswitch:
2100 do_lookupswitch();
2101 break;
2102
2103 case Bytecodes::_invokestatic:
2104 case Bytecodes::_invokespecial:
2105 case Bytecodes::_invokevirtual:
2106 case Bytecodes::_invokeinterface:
2107 do_call();
2108 break;
2109 case Bytecodes::_checkcast:
2110 do_checkcast();
2111 break;
2112 case Bytecodes::_instanceof:
2113 do_instanceof();
2114 break;
2115 case Bytecodes::_anewarray:
2116 do_anewarray();
2117 break;
2118 case Bytecodes::_newarray:
2119 do_newarray((BasicType)iter().get_index());
2120 break;
2121 case Bytecodes::_multianewarray:
2122 do_multianewarray();
2123 break;
2124 case Bytecodes::_new:
2125 do_new();
2126 break;
2127
2128 case Bytecodes::_jsr:
2129 case Bytecodes::_jsr_w:
2130 do_jsr();
2131 break;
2132
2133 case Bytecodes::_ret:
2134 do_ret();
2135 break;
2136
2137
2138 case Bytecodes::_monitorenter:
2139 do_monitor_enter();
2140 break;
2141
2142 case Bytecodes::_monitorexit:
2143 do_monitor_exit();
2144 break;
2145
2146 case Bytecodes::_breakpoint:
2147 // Breakpoint set concurrently to compile
2148 // %%% use an uncommon trap?
2149 C->record_failure("breakpoint in method");
2150 return;
2151
2152 default:
2153 #ifndef PRODUCT
2154 map()->dump(99);
2155 #endif
2156 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2157 ShouldNotReachHere();
2158 }
2159
2160 #ifndef PRODUCT
2161 IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2162 if(printer) {
2163 char buffer[256];
2164 sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2165 bool old = printer->traverse_outs();
2166 printer->set_traverse_outs(true);
2167 printer->print_method(C, buffer, 3);
2168 printer->set_traverse_outs(old);
2169 }
2170 #endif
2171 }