comparison src/share/vm/opto/subnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3288958bf319
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 // Optimization - Graph Style
28
29 #include "incls/_precompiled.incl"
30 #include "incls/_subnode.cpp.incl"
31 #include "math.h"
32
33 //=============================================================================
34 //------------------------------Identity---------------------------------------
35 // If right input is a constant 0, return the left input.
36 Node *SubNode::Identity( PhaseTransform *phase ) {
37 assert(in(1) != this, "Must already have called Value");
38 assert(in(2) != this, "Must already have called Value");
39
40 // Remove double negation
41 const Type *zero = add_id();
42 if( phase->type( in(1) )->higher_equal( zero ) &&
43 in(2)->Opcode() == Opcode() &&
44 phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
45 return in(2)->in(2);
46 }
47
48 // Convert "(X+Y) - Y" into X
49 if( in(1)->Opcode() == Op_AddI ) {
50 if( phase->eqv(in(1)->in(2),in(2)) )
51 return in(1)->in(1);
52 // Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
53 // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
54 // are originally used, although the optimizer sometimes jiggers things).
55 // This folding through an O2 removes a loop-exit use of a loop-varying
56 // value and generally lowers register pressure in and around the loop.
57 if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
58 phase->eqv(in(1)->in(2)->in(1),in(2)) )
59 return in(1)->in(1);
60 }
61
62 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
63 }
64
65 //------------------------------Value------------------------------------------
66 // A subtract node differences it's two inputs.
67 const Type *SubNode::Value( PhaseTransform *phase ) const {
68 const Node* in1 = in(1);
69 const Node* in2 = in(2);
70 // Either input is TOP ==> the result is TOP
71 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
72 if( t1 == Type::TOP ) return Type::TOP;
73 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
74 if( t2 == Type::TOP ) return Type::TOP;
75
76 // Not correct for SubFnode and AddFNode (must check for infinity)
77 // Equal? Subtract is zero
78 if (phase->eqv_uncast(in1, in2)) return add_id();
79
80 // Either input is BOTTOM ==> the result is the local BOTTOM
81 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
82 return bottom_type();
83
84 return sub(t1,t2); // Local flavor of type subtraction
85
86 }
87
88 //=============================================================================
89
90 //------------------------------Helper function--------------------------------
91 static bool ok_to_convert(Node* inc, Node* iv) {
92 // Do not collapse (x+c0)-y if "+" is a loop increment, because the
93 // "-" is loop invariant and collapsing extends the live-range of "x"
94 // to overlap with the "+", forcing another register to be used in
95 // the loop.
96 // This test will be clearer with '&&' (apply DeMorgan's rule)
97 // but I like the early cutouts that happen here.
98 const PhiNode *phi;
99 if( ( !inc->in(1)->is_Phi() ||
100 !(phi=inc->in(1)->as_Phi()) ||
101 phi->is_copy() ||
102 !phi->region()->is_CountedLoop() ||
103 inc != phi->region()->as_CountedLoop()->incr() )
104 &&
105 // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
106 // because "x" maybe invariant.
107 ( !iv->is_loop_iv() )
108 ) {
109 return true;
110 } else {
111 return false;
112 }
113 }
114 //------------------------------Ideal------------------------------------------
115 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
116 Node *in1 = in(1);
117 Node *in2 = in(2);
118 uint op1 = in1->Opcode();
119 uint op2 = in2->Opcode();
120
121 #ifdef ASSERT
122 // Check for dead loop
123 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
124 ( op1 == Op_AddI || op1 == Op_SubI ) &&
125 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
126 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
127 assert(false, "dead loop in SubINode::Ideal");
128 #endif
129
130 const Type *t2 = phase->type( in2 );
131 if( t2 == Type::TOP ) return NULL;
132 // Convert "x-c0" into "x+ -c0".
133 if( t2->base() == Type::Int ){ // Might be bottom or top...
134 const TypeInt *i = t2->is_int();
135 if( i->is_con() )
136 return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
137 }
138
139 // Convert "(x+c0) - y" into (x-y) + c0"
140 // Do not collapse (x+c0)-y if "+" is a loop increment or
141 // if "y" is a loop induction variable.
142 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
143 const Type *tadd = phase->type( in1->in(2) );
144 if( tadd->singleton() && tadd != Type::TOP ) {
145 Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
146 return new (phase->C, 3) AddINode( sub2, in1->in(2) );
147 }
148 }
149
150
151 // Convert "x - (y+c0)" into "(x-y) - c0"
152 // Need the same check as in above optimization but reversed.
153 if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
154 Node* in21 = in2->in(1);
155 Node* in22 = in2->in(2);
156 const TypeInt* tcon = phase->type(in22)->isa_int();
157 if (tcon != NULL && tcon->is_con()) {
158 Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
159 Node* neg_c0 = phase->intcon(- tcon->get_con());
160 return new (phase->C, 3) AddINode(sub2, neg_c0);
161 }
162 }
163
164 const Type *t1 = phase->type( in1 );
165 if( t1 == Type::TOP ) return NULL;
166
167 #ifdef ASSERT
168 // Check for dead loop
169 if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
170 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
171 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
172 assert(false, "dead loop in SubINode::Ideal");
173 #endif
174
175 // Convert "x - (x+y)" into "-y"
176 if( op2 == Op_AddI &&
177 phase->eqv( in1, in2->in(1) ) )
178 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
179 // Convert "(x-y) - x" into "-y"
180 if( op1 == Op_SubI &&
181 phase->eqv( in1->in(1), in2 ) )
182 return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
183 // Convert "x - (y+x)" into "-y"
184 if( op2 == Op_AddI &&
185 phase->eqv( in1, in2->in(2) ) )
186 return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
187
188 // Convert "0 - (x-y)" into "y-x"
189 if( t1 == TypeInt::ZERO && op2 == Op_SubI )
190 return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
191
192 // Convert "0 - (x+con)" into "-con-x"
193 jint con;
194 if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
195 (con = in2->in(2)->find_int_con(0)) != 0 )
196 return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
197
198 // Convert "(X+A) - (X+B)" into "A - B"
199 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
200 return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
201
202 // Convert "(A+X) - (B+X)" into "A - B"
203 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
204 return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
205
206 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
207 // nicer to optimize than subtract.
208 if( op2 == Op_SubI && in2->outcnt() == 1) {
209 Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
210 return new (phase->C, 3) SubINode( add1, in2->in(1) );
211 }
212
213 return NULL;
214 }
215
216 //------------------------------sub--------------------------------------------
217 // A subtract node differences it's two inputs.
218 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
219 const TypeInt *r0 = t1->is_int(); // Handy access
220 const TypeInt *r1 = t2->is_int();
221 int32 lo = r0->_lo - r1->_hi;
222 int32 hi = r0->_hi - r1->_lo;
223
224 // We next check for 32-bit overflow.
225 // If that happens, we just assume all integers are possible.
226 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
227 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
228 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
229 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
230 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
231 else // Overflow; assume all integers
232 return TypeInt::INT;
233 }
234
235 //=============================================================================
236 //------------------------------Ideal------------------------------------------
237 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
238 Node *in1 = in(1);
239 Node *in2 = in(2);
240 uint op1 = in1->Opcode();
241 uint op2 = in2->Opcode();
242
243 #ifdef ASSERT
244 // Check for dead loop
245 if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
246 ( op1 == Op_AddL || op1 == Op_SubL ) &&
247 ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
248 phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
249 assert(false, "dead loop in SubLNode::Ideal");
250 #endif
251
252 if( phase->type( in2 ) == Type::TOP ) return NULL;
253 const TypeLong *i = phase->type( in2 )->isa_long();
254 // Convert "x-c0" into "x+ -c0".
255 if( i && // Might be bottom or top...
256 i->is_con() )
257 return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
258
259 // Convert "(x+c0) - y" into (x-y) + c0"
260 // Do not collapse (x+c0)-y if "+" is a loop increment or
261 // if "y" is a loop induction variable.
262 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
263 Node *in11 = in1->in(1);
264 const Type *tadd = phase->type( in1->in(2) );
265 if( tadd->singleton() && tadd != Type::TOP ) {
266 Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
267 return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
268 }
269 }
270
271 // Convert "x - (y+c0)" into "(x-y) - c0"
272 // Need the same check as in above optimization but reversed.
273 if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
274 Node* in21 = in2->in(1);
275 Node* in22 = in2->in(2);
276 const TypeLong* tcon = phase->type(in22)->isa_long();
277 if (tcon != NULL && tcon->is_con()) {
278 Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
279 Node* neg_c0 = phase->longcon(- tcon->get_con());
280 return new (phase->C, 3) AddLNode(sub2, neg_c0);
281 }
282 }
283
284 const Type *t1 = phase->type( in1 );
285 if( t1 == Type::TOP ) return NULL;
286
287 #ifdef ASSERT
288 // Check for dead loop
289 if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
290 ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
291 phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
292 assert(false, "dead loop in SubLNode::Ideal");
293 #endif
294
295 // Convert "x - (x+y)" into "-y"
296 if( op2 == Op_AddL &&
297 phase->eqv( in1, in2->in(1) ) )
298 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
299 // Convert "x - (y+x)" into "-y"
300 if( op2 == Op_AddL &&
301 phase->eqv( in1, in2->in(2) ) )
302 return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
303
304 // Convert "0 - (x-y)" into "y-x"
305 if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
306 return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
307
308 // Convert "(X+A) - (X+B)" into "A - B"
309 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
310 return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
311
312 // Convert "(A+X) - (B+X)" into "A - B"
313 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
314 return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
315
316 // Convert "A-(B-C)" into (A+C)-B"
317 if( op2 == Op_SubL && in2->outcnt() == 1) {
318 Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
319 return new (phase->C, 3) SubLNode( add1, in2->in(1) );
320 }
321
322 return NULL;
323 }
324
325 //------------------------------sub--------------------------------------------
326 // A subtract node differences it's two inputs.
327 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
328 const TypeLong *r0 = t1->is_long(); // Handy access
329 const TypeLong *r1 = t2->is_long();
330 jlong lo = r0->_lo - r1->_hi;
331 jlong hi = r0->_hi - r1->_lo;
332
333 // We next check for 32-bit overflow.
334 // If that happens, we just assume all integers are possible.
335 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
336 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
337 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
338 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
339 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
340 else // Overflow; assume all integers
341 return TypeLong::LONG;
342 }
343
344 //=============================================================================
345 //------------------------------Value------------------------------------------
346 // A subtract node differences its two inputs.
347 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
348 const Node* in1 = in(1);
349 const Node* in2 = in(2);
350 // Either input is TOP ==> the result is TOP
351 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
352 if( t1 == Type::TOP ) return Type::TOP;
353 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
354 if( t2 == Type::TOP ) return Type::TOP;
355
356 // if both operands are infinity of same sign, the result is NaN; do
357 // not replace with zero
358 if( (t1->is_finite() && t2->is_finite()) ) {
359 if( phase->eqv(in1, in2) ) return add_id();
360 }
361
362 // Either input is BOTTOM ==> the result is the local BOTTOM
363 const Type *bot = bottom_type();
364 if( (t1 == bot) || (t2 == bot) ||
365 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
366 return bot;
367
368 return sub(t1,t2); // Local flavor of type subtraction
369 }
370
371
372 //=============================================================================
373 //------------------------------Ideal------------------------------------------
374 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
375 const Type *t2 = phase->type( in(2) );
376 // Convert "x-c0" into "x+ -c0".
377 if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
378 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
379 }
380
381 // Not associative because of boundary conditions (infinity)
382 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
383 // Convert "x - (x+y)" into "-y"
384 if( in(2)->is_Add() &&
385 phase->eqv(in(1),in(2)->in(1) ) )
386 return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
387 }
388
389 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
390 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
391 //if( phase->type(in(1)) == TypeF::ZERO )
392 //return new (phase->C, 2) NegFNode(in(2));
393
394 return NULL;
395 }
396
397 //------------------------------sub--------------------------------------------
398 // A subtract node differences its two inputs.
399 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
400 // no folding if one of operands is infinity or NaN, do not do constant folding
401 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
402 return TypeF::make( t1->getf() - t2->getf() );
403 }
404 else if( g_isnan(t1->getf()) ) {
405 return t1;
406 }
407 else if( g_isnan(t2->getf()) ) {
408 return t2;
409 }
410 else {
411 return Type::FLOAT;
412 }
413 }
414
415 //=============================================================================
416 //------------------------------Ideal------------------------------------------
417 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
418 const Type *t2 = phase->type( in(2) );
419 // Convert "x-c0" into "x+ -c0".
420 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
421 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
422 }
423
424 // Not associative because of boundary conditions (infinity)
425 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
426 // Convert "x - (x+y)" into "-y"
427 if( in(2)->is_Add() &&
428 phase->eqv(in(1),in(2)->in(1) ) )
429 return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
430 }
431
432 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
433 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
434 //if( phase->type(in(1)) == TypeD::ZERO )
435 //return new (phase->C, 2) NegDNode(in(2));
436
437 return NULL;
438 }
439
440 //------------------------------sub--------------------------------------------
441 // A subtract node differences its two inputs.
442 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
443 // no folding if one of operands is infinity or NaN, do not do constant folding
444 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
445 return TypeD::make( t1->getd() - t2->getd() );
446 }
447 else if( g_isnan(t1->getd()) ) {
448 return t1;
449 }
450 else if( g_isnan(t2->getd()) ) {
451 return t2;
452 }
453 else {
454 return Type::DOUBLE;
455 }
456 }
457
458 //=============================================================================
459 //------------------------------Idealize---------------------------------------
460 // Unlike SubNodes, compare must still flatten return value to the
461 // range -1, 0, 1.
462 // And optimizations like those for (X + Y) - X fail if overflow happens.
463 Node *CmpNode::Identity( PhaseTransform *phase ) {
464 return this;
465 }
466
467 //=============================================================================
468 //------------------------------cmp--------------------------------------------
469 // Simplify a CmpI (compare 2 integers) node, based on local information.
470 // If both inputs are constants, compare them.
471 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
472 const TypeInt *r0 = t1->is_int(); // Handy access
473 const TypeInt *r1 = t2->is_int();
474
475 if( r0->_hi < r1->_lo ) // Range is always low?
476 return TypeInt::CC_LT;
477 else if( r0->_lo > r1->_hi ) // Range is always high?
478 return TypeInt::CC_GT;
479
480 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
481 assert(r0->get_con() == r1->get_con(), "must be equal");
482 return TypeInt::CC_EQ; // Equal results.
483 } else if( r0->_hi == r1->_lo ) // Range is never high?
484 return TypeInt::CC_LE;
485 else if( r0->_lo == r1->_hi ) // Range is never low?
486 return TypeInt::CC_GE;
487 return TypeInt::CC; // else use worst case results
488 }
489
490 // Simplify a CmpU (compare 2 integers) node, based on local information.
491 // If both inputs are constants, compare them.
492 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
493 assert(!t1->isa_ptr(), "obsolete usage of CmpU");
494
495 // comparing two unsigned ints
496 const TypeInt *r0 = t1->is_int(); // Handy access
497 const TypeInt *r1 = t2->is_int();
498
499 // Current installed version
500 // Compare ranges for non-overlap
501 juint lo0 = r0->_lo;
502 juint hi0 = r0->_hi;
503 juint lo1 = r1->_lo;
504 juint hi1 = r1->_hi;
505
506 // If either one has both negative and positive values,
507 // it therefore contains both 0 and -1, and since [0..-1] is the
508 // full unsigned range, the type must act as an unsigned bottom.
509 bool bot0 = ((jint)(lo0 ^ hi0) < 0);
510 bool bot1 = ((jint)(lo1 ^ hi1) < 0);
511
512 if (bot0 || bot1) {
513 // All unsigned values are LE -1 and GE 0.
514 if (lo0 == 0 && hi0 == 0) {
515 return TypeInt::CC_LE; // 0 <= bot
516 } else if (lo1 == 0 && hi1 == 0) {
517 return TypeInt::CC_GE; // bot >= 0
518 }
519 } else {
520 // We can use ranges of the form [lo..hi] if signs are the same.
521 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
522 // results are reversed, '-' > '+' for unsigned compare
523 if (hi0 < lo1) {
524 return TypeInt::CC_LT; // smaller
525 } else if (lo0 > hi1) {
526 return TypeInt::CC_GT; // greater
527 } else if (hi0 == lo1 && lo0 == hi1) {
528 return TypeInt::CC_EQ; // Equal results
529 } else if (lo0 >= hi1) {
530 return TypeInt::CC_GE;
531 } else if (hi0 <= lo1) {
532 // Check for special case in Hashtable::get. (See below.)
533 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
534 in(1)->Opcode() == Op_ModI &&
535 in(1)->in(2) == in(2) )
536 return TypeInt::CC_LT;
537 return TypeInt::CC_LE;
538 }
539 }
540 // Check for special case in Hashtable::get - the hash index is
541 // mod'ed to the table size so the following range check is useless.
542 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
543 // to be positive.
544 // (This is a gross hack, since the sub method never
545 // looks at the structure of the node in any other case.)
546 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
547 in(1)->Opcode() == Op_ModI &&
548 in(1)->in(2)->uncast() == in(2)->uncast())
549 return TypeInt::CC_LT;
550 return TypeInt::CC; // else use worst case results
551 }
552
553 //------------------------------Idealize---------------------------------------
554 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
555 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
556 switch (in(1)->Opcode()) {
557 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
558 return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
559 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
560 return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
561 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
562 return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
563 //case Op_SubI:
564 // If (x - y) cannot overflow, then ((x - y) <?> 0)
565 // can be turned into (x <?> y).
566 // This is handled (with more general cases) by Ideal_sub_algebra.
567 }
568 }
569 return NULL; // No change
570 }
571
572
573 //=============================================================================
574 // Simplify a CmpL (compare 2 longs ) node, based on local information.
575 // If both inputs are constants, compare them.
576 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
577 const TypeLong *r0 = t1->is_long(); // Handy access
578 const TypeLong *r1 = t2->is_long();
579
580 if( r0->_hi < r1->_lo ) // Range is always low?
581 return TypeInt::CC_LT;
582 else if( r0->_lo > r1->_hi ) // Range is always high?
583 return TypeInt::CC_GT;
584
585 else if( r0->is_con() && r1->is_con() ) { // comparing constants?
586 assert(r0->get_con() == r1->get_con(), "must be equal");
587 return TypeInt::CC_EQ; // Equal results.
588 } else if( r0->_hi == r1->_lo ) // Range is never high?
589 return TypeInt::CC_LE;
590 else if( r0->_lo == r1->_hi ) // Range is never low?
591 return TypeInt::CC_GE;
592 return TypeInt::CC; // else use worst case results
593 }
594
595 //=============================================================================
596 //------------------------------sub--------------------------------------------
597 // Simplify an CmpP (compare 2 pointers) node, based on local information.
598 // If both inputs are constants, compare them.
599 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
600 const TypePtr *r0 = t1->is_ptr(); // Handy access
601 const TypePtr *r1 = t2->is_ptr();
602
603 // Undefined inputs makes for an undefined result
604 if( TypePtr::above_centerline(r0->_ptr) ||
605 TypePtr::above_centerline(r1->_ptr) )
606 return Type::TOP;
607
608 if (r0 == r1 && r0->singleton()) {
609 // Equal pointer constants (klasses, nulls, etc.)
610 return TypeInt::CC_EQ;
611 }
612
613 // See if it is 2 unrelated classes.
614 const TypeOopPtr* p0 = r0->isa_oopptr();
615 const TypeOopPtr* p1 = r1->isa_oopptr();
616 if (p0 && p1) {
617 ciKlass* klass0 = p0->klass();
618 bool xklass0 = p0->klass_is_exact();
619 ciKlass* klass1 = p1->klass();
620 bool xklass1 = p1->klass_is_exact();
621 int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
622 if (klass0 && klass1 &&
623 kps != 1 && // both or neither are klass pointers
624 !klass0->is_interface() && // do not trust interfaces
625 !klass1->is_interface()) {
626 // See if neither subclasses the other, or if the class on top
627 // is precise. In either of these cases, the compare must fail.
628 if (klass0->equals(klass1) || // if types are unequal but klasses are
629 !klass0->is_java_klass() || // types not part of Java language?
630 !klass1->is_java_klass()) { // types not part of Java language?
631 // Do nothing; we know nothing for imprecise types
632 } else if (klass0->is_subtype_of(klass1)) {
633 // If klass1's type is PRECISE, then we can fail.
634 if (xklass1) return TypeInt::CC_GT;
635 } else if (klass1->is_subtype_of(klass0)) {
636 // If klass0's type is PRECISE, then we can fail.
637 if (xklass0) return TypeInt::CC_GT;
638 } else { // Neither subtypes the other
639 return TypeInt::CC_GT; // ...so always fail
640 }
641 }
642 }
643
644 // Known constants can be compared exactly
645 // Null can be distinguished from any NotNull pointers
646 // Unknown inputs makes an unknown result
647 if( r0->singleton() ) {
648 intptr_t bits0 = r0->get_con();
649 if( r1->singleton() )
650 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
651 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
652 } else if( r1->singleton() ) {
653 intptr_t bits1 = r1->get_con();
654 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
655 } else
656 return TypeInt::CC;
657 }
658
659 //------------------------------Ideal------------------------------------------
660 // Check for the case of comparing an unknown klass loaded from the primary
661 // super-type array vs a known klass with no subtypes. This amounts to
662 // checking to see an unknown klass subtypes a known klass with no subtypes;
663 // this only happens on an exact match. We can shorten this test by 1 load.
664 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
665 // Constant pointer on right?
666 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
667 if (t2 == NULL || !t2->klass_is_exact())
668 return NULL;
669 // Get the constant klass we are comparing to.
670 ciKlass* superklass = t2->klass();
671
672 // Now check for LoadKlass on left.
673 Node* ldk1 = in(1);
674 if (ldk1->Opcode() != Op_LoadKlass)
675 return NULL;
676 // Take apart the address of the LoadKlass:
677 Node* adr1 = ldk1->in(MemNode::Address);
678 intptr_t con2 = 0;
679 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
680 if (ldk2 == NULL)
681 return NULL;
682 if (con2 == oopDesc::klass_offset_in_bytes()) {
683 // We are inspecting an object's concrete class.
684 // Short-circuit the check if the query is abstract.
685 if (superklass->is_interface() ||
686 superklass->is_abstract()) {
687 // Make it come out always false:
688 this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
689 return this;
690 }
691 }
692
693 // Check for a LoadKlass from primary supertype array.
694 // Any nested loadklass from loadklass+con must be from the p.s. array.
695 if (ldk2->Opcode() != Op_LoadKlass)
696 return NULL;
697
698 // Verify that we understand the situation
699 if (con2 != (intptr_t) superklass->super_check_offset())
700 return NULL; // Might be element-klass loading from array klass
701
702 // If 'superklass' has no subklasses and is not an interface, then we are
703 // assured that the only input which will pass the type check is
704 // 'superklass' itself.
705 //
706 // We could be more liberal here, and allow the optimization on interfaces
707 // which have a single implementor. This would require us to increase the
708 // expressiveness of the add_dependency() mechanism.
709 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
710
711 // Object arrays must have their base element have no subtypes
712 while (superklass->is_obj_array_klass()) {
713 ciType* elem = superklass->as_obj_array_klass()->element_type();
714 superklass = elem->as_klass();
715 }
716 if (superklass->is_instance_klass()) {
717 ciInstanceKlass* ik = superklass->as_instance_klass();
718 if (ik->has_subklass() || ik->is_interface()) return NULL;
719 // Add a dependency if there is a chance that a subclass will be added later.
720 if (!ik->is_final()) {
721 phase->C->dependencies()->assert_leaf_type(ik);
722 }
723 }
724
725 // Bypass the dependent load, and compare directly
726 this->set_req(1,ldk2);
727
728 return this;
729 }
730
731 //=============================================================================
732 //------------------------------Value------------------------------------------
733 // Simplify an CmpF (compare 2 floats ) node, based on local information.
734 // If both inputs are constants, compare them.
735 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
736 const Node* in1 = in(1);
737 const Node* in2 = in(2);
738 // Either input is TOP ==> the result is TOP
739 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
740 if( t1 == Type::TOP ) return Type::TOP;
741 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
742 if( t2 == Type::TOP ) return Type::TOP;
743
744 // Not constants? Don't know squat - even if they are the same
745 // value! If they are NaN's they compare to LT instead of EQ.
746 const TypeF *tf1 = t1->isa_float_constant();
747 const TypeF *tf2 = t2->isa_float_constant();
748 if( !tf1 || !tf2 ) return TypeInt::CC;
749
750 // This implements the Java bytecode fcmpl, so unordered returns -1.
751 if( tf1->is_nan() || tf2->is_nan() )
752 return TypeInt::CC_LT;
753
754 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
755 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
756 assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
757 return TypeInt::CC_EQ;
758 }
759
760
761 //=============================================================================
762 //------------------------------Value------------------------------------------
763 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
764 // If both inputs are constants, compare them.
765 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
766 const Node* in1 = in(1);
767 const Node* in2 = in(2);
768 // Either input is TOP ==> the result is TOP
769 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
770 if( t1 == Type::TOP ) return Type::TOP;
771 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
772 if( t2 == Type::TOP ) return Type::TOP;
773
774 // Not constants? Don't know squat - even if they are the same
775 // value! If they are NaN's they compare to LT instead of EQ.
776 const TypeD *td1 = t1->isa_double_constant();
777 const TypeD *td2 = t2->isa_double_constant();
778 if( !td1 || !td2 ) return TypeInt::CC;
779
780 // This implements the Java bytecode dcmpl, so unordered returns -1.
781 if( td1->is_nan() || td2->is_nan() )
782 return TypeInt::CC_LT;
783
784 if( td1->_d < td2->_d ) return TypeInt::CC_LT;
785 if( td1->_d > td2->_d ) return TypeInt::CC_GT;
786 assert( td1->_d == td2->_d, "do not understand FP behavior" );
787 return TypeInt::CC_EQ;
788 }
789
790 //------------------------------Ideal------------------------------------------
791 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
792 // Check if we can change this to a CmpF and remove a ConvD2F operation.
793 // Change (CMPD (F2D (float)) (ConD value))
794 // To (CMPF (float) (ConF value))
795 // Valid when 'value' does not lose precision as a float.
796 // Benefits: eliminates conversion, does not require 24-bit mode
797
798 // NaNs prevent commuting operands. This transform works regardless of the
799 // order of ConD and ConvF2D inputs by preserving the original order.
800 int idx_f2d = 1; // ConvF2D on left side?
801 if( in(idx_f2d)->Opcode() != Op_ConvF2D )
802 idx_f2d = 2; // No, swap to check for reversed args
803 int idx_con = 3-idx_f2d; // Check for the constant on other input
804
805 if( ConvertCmpD2CmpF &&
806 in(idx_f2d)->Opcode() == Op_ConvF2D &&
807 in(idx_con)->Opcode() == Op_ConD ) {
808 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
809 double t2_value_as_double = t2->_d;
810 float t2_value_as_float = (float)t2_value_as_double;
811 if( t2_value_as_double == (double)t2_value_as_float ) {
812 // Test value can be represented as a float
813 // Eliminate the conversion to double and create new comparison
814 Node *new_in1 = in(idx_f2d)->in(1);
815 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
816 if( idx_f2d != 1 ) { // Must flip args to match original order
817 Node *tmp = new_in1;
818 new_in1 = new_in2;
819 new_in2 = tmp;
820 }
821 CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
822 ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
823 : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
824 return new_cmp; // Changed to CmpFNode
825 }
826 // Testing value required the precision of a double
827 }
828 return NULL; // No change
829 }
830
831
832 //=============================================================================
833 //------------------------------cc2logical-------------------------------------
834 // Convert a condition code type to a logical type
835 const Type *BoolTest::cc2logical( const Type *CC ) const {
836 if( CC == Type::TOP ) return Type::TOP;
837 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
838 const TypeInt *ti = CC->is_int();
839 if( ti->is_con() ) { // Only 1 kind of condition codes set?
840 // Match low order 2 bits
841 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
842 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
843 return TypeInt::make(tmp); // Boolean result
844 }
845
846 if( CC == TypeInt::CC_GE ) {
847 if( _test == ge ) return TypeInt::ONE;
848 if( _test == lt ) return TypeInt::ZERO;
849 }
850 if( CC == TypeInt::CC_LE ) {
851 if( _test == le ) return TypeInt::ONE;
852 if( _test == gt ) return TypeInt::ZERO;
853 }
854
855 return TypeInt::BOOL;
856 }
857
858 //------------------------------dump_spec-------------------------------------
859 // Print special per-node info
860 #ifndef PRODUCT
861 void BoolTest::dump_on(outputStream *st) const {
862 const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
863 st->print(msg[_test]);
864 }
865 #endif
866
867 //=============================================================================
868 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
869 uint BoolNode::size_of() const { return sizeof(BoolNode); }
870
871 //------------------------------operator==-------------------------------------
872 uint BoolNode::cmp( const Node &n ) const {
873 const BoolNode *b = (const BoolNode *)&n; // Cast up
874 return (_test._test == b->_test._test);
875 }
876
877 //------------------------------clone_cmp--------------------------------------
878 // Clone a compare/bool tree
879 static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
880 Node *ncmp = cmp->clone();
881 ncmp->set_req(1,cmp1);
882 ncmp->set_req(2,cmp2);
883 ncmp = gvn->transform( ncmp );
884 return new (gvn->C, 2) BoolNode( ncmp, test );
885 }
886
887 //-------------------------------make_predicate--------------------------------
888 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
889 if (test_value->is_Con()) return test_value;
890 if (test_value->is_Bool()) return test_value;
891 Compile* C = phase->C;
892 if (test_value->is_CMove() &&
893 test_value->in(CMoveNode::Condition)->is_Bool()) {
894 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
895 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
896 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
897 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
898 return bol;
899 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
900 return phase->transform( bol->negate(phase) );
901 }
902 // Else fall through. The CMove gets in the way of the test.
903 // It should be the case that make_predicate(bol->as_int_value()) == bol.
904 }
905 Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
906 cmp = phase->transform(cmp);
907 Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
908 return phase->transform(bol);
909 }
910
911 //--------------------------------as_int_value---------------------------------
912 Node* BoolNode::as_int_value(PhaseGVN* phase) {
913 // Inverse to make_predicate. The CMove probably boils down to a Conv2B.
914 Node* cmov = CMoveNode::make(phase->C, NULL, this,
915 phase->intcon(0), phase->intcon(1),
916 TypeInt::BOOL);
917 return phase->transform(cmov);
918 }
919
920 //----------------------------------negate-------------------------------------
921 BoolNode* BoolNode::negate(PhaseGVN* phase) {
922 Compile* C = phase->C;
923 return new (C, 2) BoolNode(in(1), _test.negate());
924 }
925
926
927 //------------------------------Ideal------------------------------------------
928 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
929 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
930 // This moves the constant to the right. Helps value-numbering.
931 Node *cmp = in(1);
932 if( !cmp->is_Sub() ) return NULL;
933 int cop = cmp->Opcode();
934 if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
935 Node *cmp1 = cmp->in(1);
936 Node *cmp2 = cmp->in(2);
937 if( !cmp1 ) return NULL;
938
939 // Constant on left?
940 Node *con = cmp1;
941 uint op2 = cmp2->Opcode();
942 // Move constants to the right of compare's to canonicalize.
943 // Do not muck with Opaque1 nodes, as this indicates a loop
944 // guard that cannot change shape.
945 if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
946 // Because of NaN's, CmpD and CmpF are not commutative
947 cop != Op_CmpD && cop != Op_CmpF &&
948 // Protect against swapping inputs to a compare when it is used by a
949 // counted loop exit, which requires maintaining the loop-limit as in(2)
950 !is_counted_loop_exit_test() ) {
951 // Ok, commute the constant to the right of the cmp node.
952 // Clone the Node, getting a new Node of the same class
953 cmp = cmp->clone();
954 // Swap inputs to the clone
955 cmp->swap_edges(1, 2);
956 cmp = phase->transform( cmp );
957 return new (phase->C, 2) BoolNode( cmp, _test.commute() );
958 }
959
960 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
961 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the
962 // test instead.
963 int cmp1_op = cmp1->Opcode();
964 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
965 if (cmp2_type == NULL) return NULL;
966 Node* j_xor = cmp1;
967 if( cmp2_type == TypeInt::ZERO &&
968 cmp1_op == Op_XorI &&
969 j_xor->in(1) != j_xor && // An xor of itself is dead
970 phase->type( j_xor->in(2) ) == TypeInt::ONE &&
971 (_test._test == BoolTest::eq ||
972 _test._test == BoolTest::ne) ) {
973 Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
974 return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
975 }
976
977 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
978 // This is a standard idiom for branching on a boolean value.
979 Node *c2b = cmp1;
980 if( cmp2_type == TypeInt::ZERO &&
981 cmp1_op == Op_Conv2B &&
982 (_test._test == BoolTest::eq ||
983 _test._test == BoolTest::ne) ) {
984 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
985 ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
986 : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
987 );
988 return new (phase->C, 2) BoolNode( ncmp, _test._test );
989 }
990
991 // Comparing a SubI against a zero is equal to comparing the SubI
992 // arguments directly. This only works for eq and ne comparisons
993 // due to possible integer overflow.
994 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
995 (cop == Op_CmpI) &&
996 (cmp1->Opcode() == Op_SubI) &&
997 ( cmp2_type == TypeInt::ZERO ) ) {
998 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
999 return new (phase->C, 2) BoolNode( ncmp, _test._test );
1000 }
1001
1002 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
1003 // most general case because negating 0x80000000 does nothing. Needed for
1004 // the CmpF3/SubI/CmpI idiom.
1005 if( cop == Op_CmpI &&
1006 cmp1->Opcode() == Op_SubI &&
1007 cmp2_type == TypeInt::ZERO &&
1008 phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1009 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1010 Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
1011 return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
1012 }
1013
1014 // The transformation below is not valid for either signed or unsigned
1015 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1016 // This transformation can be resurrected when we are able to
1017 // make inferences about the range of values being subtracted from
1018 // (or added to) relative to the wraparound point.
1019 //
1020 // // Remove +/-1's if possible.
1021 // // "X <= Y-1" becomes "X < Y"
1022 // // "X+1 <= Y" becomes "X < Y"
1023 // // "X < Y+1" becomes "X <= Y"
1024 // // "X-1 < Y" becomes "X <= Y"
1025 // // Do not this to compares off of the counted-loop-end. These guys are
1026 // // checking the trip counter and they want to use the post-incremented
1027 // // counter. If they use the PRE-incremented counter, then the counter has
1028 // // to be incremented in a private block on a loop backedge.
1029 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1030 // return NULL;
1031 // #ifndef PRODUCT
1032 // // Do not do this in a wash GVN pass during verification.
1033 // // Gets triggered by too many simple optimizations to be bothered with
1034 // // re-trying it again and again.
1035 // if( !phase->allow_progress() ) return NULL;
1036 // #endif
1037 // // Not valid for unsigned compare because of corner cases in involving zero.
1038 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1039 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1040 // // "0 <=u Y" is always true).
1041 // if( cmp->Opcode() == Op_CmpU ) return NULL;
1042 // int cmp2_op = cmp2->Opcode();
1043 // if( _test._test == BoolTest::le ) {
1044 // if( cmp1_op == Op_AddI &&
1045 // phase->type( cmp1->in(2) ) == TypeInt::ONE )
1046 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1047 // else if( cmp2_op == Op_AddI &&
1048 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1049 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1050 // } else if( _test._test == BoolTest::lt ) {
1051 // if( cmp1_op == Op_AddI &&
1052 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1053 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1054 // else if( cmp2_op == Op_AddI &&
1055 // phase->type( cmp2->in(2) ) == TypeInt::ONE )
1056 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1057 // }
1058
1059 return NULL;
1060 }
1061
1062 //------------------------------Value------------------------------------------
1063 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1064 // based on local information. If the input is constant, do it.
1065 const Type *BoolNode::Value( PhaseTransform *phase ) const {
1066 return _test.cc2logical( phase->type( in(1) ) );
1067 }
1068
1069 //------------------------------dump_spec--------------------------------------
1070 // Dump special per-node info
1071 #ifndef PRODUCT
1072 void BoolNode::dump_spec(outputStream *st) const {
1073 st->print("[");
1074 _test.dump_on(st);
1075 st->print("]");
1076 }
1077 #endif
1078
1079 //------------------------------is_counted_loop_exit_test--------------------------------------
1080 // Returns true if node is used by a counted loop node.
1081 bool BoolNode::is_counted_loop_exit_test() {
1082 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1083 Node* use = fast_out(i);
1084 if (use->is_CountedLoopEnd()) {
1085 return true;
1086 }
1087 }
1088 return false;
1089 }
1090
1091 //=============================================================================
1092 //------------------------------NegNode----------------------------------------
1093 Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1094 if( in(1)->Opcode() == Op_SubF )
1095 return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
1096 return NULL;
1097 }
1098
1099 Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1100 if( in(1)->Opcode() == Op_SubD )
1101 return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
1102 return NULL;
1103 }
1104
1105
1106 //=============================================================================
1107 //------------------------------Value------------------------------------------
1108 // Compute sqrt
1109 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1110 const Type *t1 = phase->type( in(1) );
1111 if( t1 == Type::TOP ) return Type::TOP;
1112 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1113 double d = t1->getd();
1114 if( d < 0.0 ) return Type::DOUBLE;
1115 return TypeD::make( sqrt( d ) );
1116 }
1117
1118 //=============================================================================
1119 //------------------------------Value------------------------------------------
1120 // Compute cos
1121 const Type *CosDNode::Value( PhaseTransform *phase ) const {
1122 const Type *t1 = phase->type( in(1) );
1123 if( t1 == Type::TOP ) return Type::TOP;
1124 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1125 double d = t1->getd();
1126 if( d < 0.0 ) return Type::DOUBLE;
1127 return TypeD::make( SharedRuntime::dcos( d ) );
1128 }
1129
1130 //=============================================================================
1131 //------------------------------Value------------------------------------------
1132 // Compute sin
1133 const Type *SinDNode::Value( PhaseTransform *phase ) const {
1134 const Type *t1 = phase->type( in(1) );
1135 if( t1 == Type::TOP ) return Type::TOP;
1136 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1137 double d = t1->getd();
1138 if( d < 0.0 ) return Type::DOUBLE;
1139 return TypeD::make( SharedRuntime::dsin( d ) );
1140 }
1141
1142 //=============================================================================
1143 //------------------------------Value------------------------------------------
1144 // Compute tan
1145 const Type *TanDNode::Value( PhaseTransform *phase ) const {
1146 const Type *t1 = phase->type( in(1) );
1147 if( t1 == Type::TOP ) return Type::TOP;
1148 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1149 double d = t1->getd();
1150 if( d < 0.0 ) return Type::DOUBLE;
1151 return TypeD::make( SharedRuntime::dtan( d ) );
1152 }
1153
1154 //=============================================================================
1155 //------------------------------Value------------------------------------------
1156 // Compute log
1157 const Type *LogDNode::Value( PhaseTransform *phase ) const {
1158 const Type *t1 = phase->type( in(1) );
1159 if( t1 == Type::TOP ) return Type::TOP;
1160 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1161 double d = t1->getd();
1162 if( d < 0.0 ) return Type::DOUBLE;
1163 return TypeD::make( SharedRuntime::dlog( d ) );
1164 }
1165
1166 //=============================================================================
1167 //------------------------------Value------------------------------------------
1168 // Compute log10
1169 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1170 const Type *t1 = phase->type( in(1) );
1171 if( t1 == Type::TOP ) return Type::TOP;
1172 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1173 double d = t1->getd();
1174 if( d < 0.0 ) return Type::DOUBLE;
1175 return TypeD::make( SharedRuntime::dlog10( d ) );
1176 }
1177
1178 //=============================================================================
1179 //------------------------------Value------------------------------------------
1180 // Compute exp
1181 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1182 const Type *t1 = phase->type( in(1) );
1183 if( t1 == Type::TOP ) return Type::TOP;
1184 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1185 double d = t1->getd();
1186 if( d < 0.0 ) return Type::DOUBLE;
1187 return TypeD::make( SharedRuntime::dexp( d ) );
1188 }
1189
1190
1191 //=============================================================================
1192 //------------------------------Value------------------------------------------
1193 // Compute pow
1194 const Type *PowDNode::Value( PhaseTransform *phase ) const {
1195 const Type *t1 = phase->type( in(1) );
1196 if( t1 == Type::TOP ) return Type::TOP;
1197 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1198 const Type *t2 = phase->type( in(2) );
1199 if( t2 == Type::TOP ) return Type::TOP;
1200 if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1201 double d1 = t1->getd();
1202 double d2 = t2->getd();
1203 if( d1 < 0.0 ) return Type::DOUBLE;
1204 if( d2 < 0.0 ) return Type::DOUBLE;
1205 return TypeD::make( SharedRuntime::dpow( d1, d2 ) );
1206 }