comparison src/share/vm/runtime/simpleThresholdPolicy.cpp @ 1783:d5d065957597

6953144: Tiered compilation Summary: Infrastructure for tiered compilation support (interpreter + c1 + c2) for 32 and 64 bit. Simple tiered policy implementation. Reviewed-by: kvn, never, phh, twisti
author iveresov
date Fri, 03 Sep 2010 17:51:07 -0700
parents
children 22ef3370343b
comparison
equal deleted inserted replaced
1782:f353275af40e 1783:d5d065957597
1 /*
2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_simpleThresholdPolicy.cpp.incl"
27
28 // Print an event.
29 void SimpleThresholdPolicy::print_event(EventType type, methodHandle mh, methodHandle imh,
30 int bci, CompLevel level) {
31 bool inlinee_event = mh() != imh();
32
33 ttyLocker tty_lock;
34 tty->print("%lf: [", os::elapsedTime());
35
36 int invocation_count = mh->invocation_count();
37 int backedge_count = mh->backedge_count();
38 switch(type) {
39 case CALL:
40 tty->print("call");
41 break;
42 case LOOP:
43 tty->print("loop");
44 break;
45 case COMPILE:
46 tty->print("compile");
47 }
48
49 tty->print(" level: %d ", level);
50
51 ResourceMark rm;
52 char *method_name = mh->name_and_sig_as_C_string();
53 tty->print("[%s", method_name);
54 // We can have an inlinee, although currently we don't generate any notifications for the inlined methods.
55 if (inlinee_event) {
56 char *inlinee_name = imh->name_and_sig_as_C_string();
57 tty->print(" [%s]] ", inlinee_name);
58 }
59 else tty->print("] ");
60 tty->print("@%d queues: %d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
61 CompileBroker::queue_size(CompLevel_full_optimization));
62
63 print_specific(type, mh, imh, bci, level);
64
65 if (type != COMPILE) {
66 methodDataHandle mdh = mh->method_data();
67 int mdo_invocations = 0, mdo_backedges = 0;
68 if (mdh() != NULL) {
69 mdo_invocations = mdh->invocation_count();
70 mdo_backedges = mdh->backedge_count();
71 }
72 tty->print(" total: %d,%d mdo: %d,%d",
73 invocation_count, backedge_count,
74 mdo_invocations, mdo_backedges);
75 tty->print(" max levels: %d,%d",
76 mh->highest_comp_level(), mh->highest_osr_comp_level());
77 if (inlinee_event) {
78 tty->print(" inlinee max levels: %d,%d", imh->highest_comp_level(), imh->highest_osr_comp_level());
79 }
80 tty->print(" compilable: ");
81 bool need_comma = false;
82 if (!mh->is_not_compilable(CompLevel_full_profile)) {
83 tty->print("c1");
84 need_comma = true;
85 }
86 if (!mh->is_not_compilable(CompLevel_full_optimization)) {
87 if (need_comma) tty->print(", ");
88 tty->print("c2");
89 need_comma = true;
90 }
91 if (!mh->is_not_osr_compilable()) {
92 if (need_comma) tty->print(", ");
93 tty->print("osr");
94 }
95 tty->print(" status:");
96 if (mh->queued_for_compilation()) {
97 tty->print(" in queue");
98 } else tty->print(" idle");
99 }
100 tty->print_cr("]");
101 }
102
103 void SimpleThresholdPolicy::initialize() {
104 if (FLAG_IS_DEFAULT(CICompilerCount)) {
105 FLAG_SET_DEFAULT(CICompilerCount, 3);
106 }
107 int count = CICompilerCount;
108 if (CICompilerCountPerCPU) {
109 count = MAX2(log2_intptr(os::active_processor_count()), 1) * 3 / 2;
110 }
111 set_c1_count(MAX2(count / 3, 1));
112 set_c2_count(MAX2(count - count / 3, 1));
113 }
114
115 void SimpleThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
116 if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
117 counter->set_carry_flag();
118 }
119 }
120
121 // Set carry flags on the counters if necessary
122 void SimpleThresholdPolicy::handle_counter_overflow(methodOop method) {
123 set_carry_if_necessary(method->invocation_counter());
124 set_carry_if_necessary(method->backedge_counter());
125 methodDataOop mdo = method->method_data();
126 if (mdo != NULL) {
127 set_carry_if_necessary(mdo->invocation_counter());
128 set_carry_if_necessary(mdo->backedge_counter());
129 }
130 }
131
132 // Called with the queue locked and with at least one element
133 CompileTask* SimpleThresholdPolicy::select_task(CompileQueue* compile_queue) {
134 return compile_queue->first();
135 }
136
137 nmethod* SimpleThresholdPolicy::event(methodHandle method, methodHandle inlinee,
138 int branch_bci, int bci, CompLevel comp_level, TRAPS) {
139 if (comp_level == CompLevel_none &&
140 JvmtiExport::can_post_interpreter_events()) {
141 assert(THREAD->is_Java_thread(), "Should be java thread");
142 if (((JavaThread*)THREAD)->is_interp_only_mode()) {
143 return NULL;
144 }
145 }
146 nmethod *osr_nm = NULL;
147
148 handle_counter_overflow(method());
149 if (method() != inlinee()) {
150 handle_counter_overflow(inlinee());
151 }
152
153 if (PrintTieredEvents) {
154 print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
155 }
156
157 if (bci == InvocationEntryBci) {
158 method_invocation_event(method, inlinee, comp_level, THREAD);
159 } else {
160 method_back_branch_event(method, inlinee, bci, comp_level, THREAD);
161 int highest_level = method->highest_osr_comp_level();
162 if (highest_level > comp_level) {
163 osr_nm = method->lookup_osr_nmethod_for(bci, highest_level, false);
164 }
165 }
166 return osr_nm;
167 }
168
169 // Check if the method can be compiled, change level if necessary
170 void SimpleThresholdPolicy::compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
171 // Take the given ceiling into the account.
172 // NOTE: You can set it to 1 to get a pure C1 version.
173 if ((CompLevel)TieredStopAtLevel < level) {
174 level = (CompLevel)TieredStopAtLevel;
175 }
176 if (level == CompLevel_none) {
177 return;
178 }
179 // Check if the method can be compiled, if not - try different levels.
180 if (!can_be_compiled(mh, level)) {
181 if (level < CompLevel_full_optimization && can_be_compiled(mh, CompLevel_full_optimization)) {
182 compile(mh, bci, CompLevel_full_optimization, THREAD);
183 }
184 if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
185 compile(mh, bci, CompLevel_simple, THREAD);
186 }
187 return;
188 }
189 if (bci != InvocationEntryBci && mh->is_not_osr_compilable()) {
190 return;
191 }
192 if (PrintTieredEvents) {
193 print_event(COMPILE, mh, mh, bci, level);
194 }
195 if (!CompileBroker::compilation_is_in_queue(mh, bci)) {
196 submit_compile(mh, bci, level, THREAD);
197 }
198 }
199
200 // Tell the broker to compile the method
201 void SimpleThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
202 int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
203 CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
204 }
205
206 // Call and loop predicates determine whether a transition to a higher
207 // compilation level should be performed (pointers to predicate functions
208 // are passed to common() transition function).
209 bool SimpleThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
210 switch(cur_level) {
211 case CompLevel_none:
212 case CompLevel_limited_profile: {
213 return loop_predicate_helper<CompLevel_none>(i, b, 1.0);
214 }
215 case CompLevel_full_profile: {
216 return loop_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
217 }
218 default:
219 return true;
220 }
221 }
222
223 bool SimpleThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
224 switch(cur_level) {
225 case CompLevel_none:
226 case CompLevel_limited_profile: {
227 return call_predicate_helper<CompLevel_none>(i, b, 1.0);
228 }
229 case CompLevel_full_profile: {
230 return call_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
231 }
232 default:
233 return true;
234 }
235 }
236
237 // Determine is a method is mature.
238 bool SimpleThresholdPolicy::is_mature(methodOop method) {
239 if (is_trivial(method)) return true;
240 methodDataOop mdo = method->method_data();
241 if (mdo != NULL) {
242 int i = mdo->invocation_count();
243 int b = mdo->backedge_count();
244 double k = ProfileMaturityPercentage / 100.0;
245 return call_predicate_helper<CompLevel_full_profile>(i, b, k) ||
246 loop_predicate_helper<CompLevel_full_profile>(i, b, k);
247 }
248 return false;
249 }
250
251 // Common transition function. Given a predicate determines if a method should transition to another level.
252 CompLevel SimpleThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
253 CompLevel next_level = cur_level;
254 int i = method->invocation_count();
255 int b = method->backedge_count();
256
257 switch(cur_level) {
258 case CompLevel_none:
259 {
260 methodDataOop mdo = method->method_data();
261 if (mdo != NULL) {
262 int mdo_i = mdo->invocation_count();
263 int mdo_b = mdo->backedge_count();
264 // If we were at full profile level, would we switch to full opt?
265 if ((this->*p)(mdo_i, mdo_b, CompLevel_full_profile)) {
266 next_level = CompLevel_full_optimization;
267 }
268 }
269 }
270 if (next_level == cur_level && (this->*p)(i, b, cur_level)) {
271 if (is_trivial(method)) {
272 next_level = CompLevel_simple;
273 } else {
274 next_level = CompLevel_full_profile;
275 }
276 }
277 break;
278 case CompLevel_limited_profile:
279 case CompLevel_full_profile:
280 if (is_trivial(method)) {
281 next_level = CompLevel_simple;
282 } else {
283 methodDataOop mdo = method->method_data();
284 guarantee(mdo != NULL, "MDO should always exist");
285 if (mdo->would_profile()) {
286 int mdo_i = mdo->invocation_count();
287 int mdo_b = mdo->backedge_count();
288 if ((this->*p)(mdo_i, mdo_b, cur_level)) {
289 next_level = CompLevel_full_optimization;
290 }
291 } else {
292 next_level = CompLevel_full_optimization;
293 }
294 }
295 break;
296 }
297 return next_level;
298 }
299
300 // Determine if a method should be compiled with a normal entry point at a different level.
301 CompLevel SimpleThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
302 CompLevel highest_level = (CompLevel)method->highest_comp_level();
303 if (cur_level == CompLevel_none && highest_level > cur_level) {
304 // TODO: We may want to try to do more extensive reprofiling in this case.
305 return highest_level;
306 }
307
308 CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
309 CompLevel next_level = common(&SimpleThresholdPolicy::call_predicate, method, cur_level);
310
311 // If OSR method level is greater than the regular method level, the levels should be
312 // equalized by raising the regular method level in order to avoid OSRs during each
313 // invocation of the method.
314 if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
315 methodDataOop mdo = method->method_data();
316 guarantee(mdo != NULL, "MDO should not be NULL");
317 if (mdo->invocation_count() >= 1) {
318 next_level = CompLevel_full_optimization;
319 }
320 } else {
321 next_level = MAX2(osr_level, next_level);
322 }
323
324 return next_level;
325 }
326
327 // Determine if we should do an OSR compilation of a given method.
328 CompLevel SimpleThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
329 if (cur_level == CompLevel_none) {
330 // If there is a live OSR method that means that we deopted to the interpreter
331 // for the transition.
332 CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
333 if (osr_level > CompLevel_none) {
334 return osr_level;
335 }
336 }
337 return common(&SimpleThresholdPolicy::loop_predicate, method, cur_level);
338 }
339
340
341 // Handle the invocation event.
342 void SimpleThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
343 CompLevel level, TRAPS) {
344 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
345 CompLevel next_level = call_event(mh(), level);
346 if (next_level != level) {
347 compile(mh, InvocationEntryBci, next_level, THREAD);
348 }
349 }
350 }
351
352 // Handle the back branch event. Notice that we can compile the method
353 // with a regular entry from here.
354 void SimpleThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
355 int bci, CompLevel level, TRAPS) {
356 // If the method is already compiling, quickly bail out.
357 if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
358 // Use loop event as an opportinity to also check there's been
359 // enough calls.
360 CompLevel cur_level = comp_level(mh());
361 CompLevel next_level = call_event(mh(), cur_level);
362 CompLevel next_osr_level = loop_event(mh(), level);
363
364 next_level = MAX2(next_level,
365 next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
366 bool is_compiling = false;
367 if (next_level != cur_level) {
368 compile(mh, InvocationEntryBci, next_level, THREAD);
369 is_compiling = true;
370 }
371
372 // Do the OSR version
373 if (!is_compiling && next_osr_level != level) {
374 compile(mh, bci, next_osr_level, THREAD);
375 }
376 }
377 }