comparison src/cpu/ppc/vm/macroAssembler_ppc.cpp @ 14408:ec28f9c041ff

8019972: PPC64 (part 9): platform files for interpreter only VM. Summary: With this change the HotSpot core build works on Linux/PPC64. The VM succesfully executes simple test programs. Reviewed-by: kvn
author goetz
date Fri, 02 Aug 2013 16:46:45 +0200
parents
children 7687c56b6693
comparison
equal deleted inserted replaced
14407:94c202aa2646 14408:ec28f9c041ff
1 /*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2013 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "asm/assembler.hpp"
28 #include "asm/assembler.inline.hpp"
29 #include "asm/macroAssembler.inline.hpp"
30 #include "compiler/disassembler.hpp"
31 #include "gc_interface/collectedHeap.inline.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "memory/cardTableModRefBS.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "prims/methodHandles.hpp"
36 #include "runtime/biasedLocking.hpp"
37 #include "runtime/interfaceSupport.hpp"
38 #include "runtime/objectMonitor.hpp"
39 #include "runtime/os.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/stubRoutines.hpp"
42 #include "utilities/macros.hpp"
43 #if INCLUDE_ALL_GCS
44 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
45 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
46 #include "gc_implementation/g1/heapRegion.hpp"
47 #endif // INCLUDE_ALL_GCS
48
49 #ifdef PRODUCT
50 #define BLOCK_COMMENT(str) // nothing
51 #else
52 #define BLOCK_COMMENT(str) block_comment(str)
53 #endif
54
55 #ifdef ASSERT
56 // On RISC, there's no benefit to verifying instruction boundaries.
57 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
58 #endif
59
60 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
61 assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
62 if (Assembler::is_simm(si31, 16)) {
63 ld(d, si31, a);
64 if (emit_filler_nop) nop();
65 } else {
66 const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
67 const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
68 addis(d, a, hi);
69 ld(d, lo, d);
70 }
71 }
72
73 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
74 assert_different_registers(d, a);
75 ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
76 }
77
78 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
79 size_t size_in_bytes, bool is_signed) {
80 switch (size_in_bytes) {
81 case 8: ld(dst, offs, base); break;
82 case 4: is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
83 case 2: is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
84 case 1: lbz(dst, offs, base); if (is_signed) extsb(dst, dst); break; // lba doesn't exist :(
85 default: ShouldNotReachHere();
86 }
87 }
88
89 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
90 size_t size_in_bytes) {
91 switch (size_in_bytes) {
92 case 8: std(dst, offs, base); break;
93 case 4: stw(dst, offs, base); break;
94 case 2: sth(dst, offs, base); break;
95 case 1: stb(dst, offs, base); break;
96 default: ShouldNotReachHere();
97 }
98 }
99
100 void MacroAssembler::align(int modulus) {
101 while (offset() % modulus != 0) nop();
102 }
103
104 // Issue instructions that calculate given TOC from global TOC.
105 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
106 bool add_relocation, bool emit_dummy_addr) {
107 int offset = -1;
108 if (emit_dummy_addr) {
109 offset = -128; // dummy address
110 } else if (addr != (address)(intptr_t)-1) {
111 offset = MacroAssembler::offset_to_global_toc(addr);
112 }
113
114 if (hi16) {
115 addis(dst, R29, MacroAssembler::largeoffset_si16_si16_hi(offset));
116 }
117 if (lo16) {
118 if (add_relocation) {
119 // Relocate at the addi to avoid confusion with a load from the method's TOC.
120 relocate(internal_word_Relocation::spec(addr));
121 }
122 addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
123 }
124 }
125
126 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
127 const int offset = MacroAssembler::offset_to_global_toc(addr);
128
129 const address inst2_addr = a;
130 const int inst2 = *(int *)inst2_addr;
131
132 // The relocation points to the second instruction, the addi,
133 // and the addi reads and writes the same register dst.
134 const int dst = inv_rt_field(inst2);
135 assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
136
137 // Now, find the preceding addis which writes to dst.
138 int inst1 = 0;
139 address inst1_addr = inst2_addr - BytesPerInstWord;
140 while (inst1_addr >= bound) {
141 inst1 = *(int *) inst1_addr;
142 if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
143 // Stop, found the addis which writes dst.
144 break;
145 }
146 inst1_addr -= BytesPerInstWord;
147 }
148
149 assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
150 set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
151 set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
152 return (int)((intptr_t)addr - (intptr_t)inst1_addr);
153 }
154
155 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
156 const address inst2_addr = a;
157 const int inst2 = *(int *)inst2_addr;
158
159 // The relocation points to the second instruction, the addi,
160 // and the addi reads and writes the same register dst.
161 const int dst = inv_rt_field(inst2);
162 assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
163
164 // Now, find the preceding addis which writes to dst.
165 int inst1 = 0;
166 address inst1_addr = inst2_addr - BytesPerInstWord;
167 while (inst1_addr >= bound) {
168 inst1 = *(int *) inst1_addr;
169 if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
170 // stop, found the addis which writes dst
171 break;
172 }
173 inst1_addr -= BytesPerInstWord;
174 }
175
176 assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
177
178 int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
179 // -1 is a special case
180 if (offset == -1) {
181 return (address)(intptr_t)-1;
182 } else {
183 return global_toc() + offset;
184 }
185 }
186
187 #ifdef _LP64
188 // Patch compressed oops or klass constants.
189 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
190 assert(UseCompressedOops, "Should only patch compressed oops");
191
192 const address inst2_addr = a;
193 const int inst2 = *(int *)inst2_addr;
194
195 // The relocation points to the second instruction, the addi,
196 // and the addi reads and writes the same register dst.
197 const int dst = inv_rt_field(inst2);
198 assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
199 // Now, find the preceding addis which writes to dst.
200 int inst1 = 0;
201 address inst1_addr = inst2_addr - BytesPerInstWord;
202 bool inst1_found = false;
203 while (inst1_addr >= bound) {
204 inst1 = *(int *)inst1_addr;
205 if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
206 inst1_addr -= BytesPerInstWord;
207 }
208 assert(inst1_found, "inst is not lis");
209
210 int xc = (data >> 16) & 0xffff;
211 int xd = (data >> 0) & 0xffff;
212
213 set_imm((int *)inst1_addr,((short)(xc + ((xd & 0x8000) != 0 ? 1 : 0)))); // see enc_load_con_narrow1/2
214 set_imm((int *)inst2_addr, (short)(xd));
215 return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
216 }
217
218 // Get compressed oop or klass constant.
219 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
220 assert(UseCompressedOops, "Should only patch compressed oops");
221
222 const address inst2_addr = a;
223 const int inst2 = *(int *)inst2_addr;
224
225 // The relocation points to the second instruction, the addi,
226 // and the addi reads and writes the same register dst.
227 const int dst = inv_rt_field(inst2);
228 assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
229 // Now, find the preceding lis which writes to dst.
230 int inst1 = 0;
231 address inst1_addr = inst2_addr - BytesPerInstWord;
232 bool inst1_found = false;
233
234 while (inst1_addr >= bound) {
235 inst1 = *(int *) inst1_addr;
236 if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
237 inst1_addr -= BytesPerInstWord;
238 }
239 assert(inst1_found, "inst is not lis");
240
241 uint xl = ((unsigned int) (get_imm(inst2_addr,0) & 0xffff));
242 uint xh = (((((xl & 0x8000) != 0 ? -1 : 0) + get_imm(inst1_addr,0)) & 0xffff) << 16);
243 return (int) (xl | xh);
244 }
245 #endif // _LP64
246
247 void MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc) {
248 int toc_offset = 0;
249 // Use RelocationHolder::none for the constant pool entry, otherwise
250 // we will end up with a failing NativeCall::verify(x) where x is
251 // the address of the constant pool entry.
252 // FIXME: We should insert relocation information for oops at the constant
253 // pool entries instead of inserting it at the loads; patching of a constant
254 // pool entry should be less expensive.
255 Unimplemented();
256 if (false) {
257 address oop_address = address_constant((address)a.value(), RelocationHolder::none);
258 // Relocate at the pc of the load.
259 relocate(a.rspec());
260 toc_offset = (int)(oop_address - code()->consts()->start());
261 }
262 ld_largeoffset_unchecked(dst, toc_offset, toc, true);
263 }
264
265 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
266 const address inst1_addr = a;
267 const int inst1 = *(int *)inst1_addr;
268
269 // The relocation points to the ld or the addis.
270 return (is_ld(inst1)) ||
271 (is_addis(inst1) && inv_ra_field(inst1) != 0);
272 }
273
274 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
275 assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
276
277 const address inst1_addr = a;
278 const int inst1 = *(int *)inst1_addr;
279
280 if (is_ld(inst1)) {
281 return inv_d1_field(inst1);
282 } else if (is_addis(inst1)) {
283 const int dst = inv_rt_field(inst1);
284
285 // Now, find the succeeding ld which reads and writes to dst.
286 address inst2_addr = inst1_addr + BytesPerInstWord;
287 int inst2 = 0;
288 while (true) {
289 inst2 = *(int *) inst2_addr;
290 if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
291 // Stop, found the ld which reads and writes dst.
292 break;
293 }
294 inst2_addr += BytesPerInstWord;
295 }
296 return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
297 }
298 ShouldNotReachHere();
299 return 0;
300 }
301
302 // Get the constant from a `load_const' sequence.
303 long MacroAssembler::get_const(address a) {
304 assert(is_load_const_at(a), "not a load of a constant");
305 const int *p = (const int*) a;
306 unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
307 if (is_ori(*(p+1))) {
308 x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
309 x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
310 x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
311 } else if (is_lis(*(p+1))) {
312 x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
313 x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
314 x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
315 } else {
316 ShouldNotReachHere();
317 return (long) 0;
318 }
319 return (long) x;
320 }
321
322 // Patch the 64 bit constant of a `load_const' sequence. This is a low
323 // level procedure. It neither flushes the instruction cache nor is it
324 // mt safe.
325 void MacroAssembler::patch_const(address a, long x) {
326 assert(is_load_const_at(a), "not a load of a constant");
327 int *p = (int*) a;
328 if (is_ori(*(p+1))) {
329 set_imm(0 + p, (x >> 48) & 0xffff);
330 set_imm(1 + p, (x >> 32) & 0xffff);
331 set_imm(3 + p, (x >> 16) & 0xffff);
332 set_imm(4 + p, x & 0xffff);
333 } else if (is_lis(*(p+1))) {
334 set_imm(0 + p, (x >> 48) & 0xffff);
335 set_imm(2 + p, (x >> 32) & 0xffff);
336 set_imm(1 + p, (x >> 16) & 0xffff);
337 set_imm(3 + p, x & 0xffff);
338 } else {
339 ShouldNotReachHere();
340 }
341 }
342
343 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
344 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
345 int index = oop_recorder()->allocate_metadata_index(obj);
346 RelocationHolder rspec = metadata_Relocation::spec(index);
347 return AddressLiteral((address)obj, rspec);
348 }
349
350 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
351 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
352 int index = oop_recorder()->find_index(obj);
353 RelocationHolder rspec = metadata_Relocation::spec(index);
354 return AddressLiteral((address)obj, rspec);
355 }
356
357 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
358 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
359 int oop_index = oop_recorder()->allocate_oop_index(obj);
360 return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
361 }
362
363 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
364 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
365 int oop_index = oop_recorder()->find_index(obj);
366 return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
367 }
368
369 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
370 Register tmp, int offset) {
371 intptr_t value = *delayed_value_addr;
372 if (value != 0) {
373 return RegisterOrConstant(value + offset);
374 }
375
376 // Load indirectly to solve generation ordering problem.
377 // static address, no relocation
378 int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
379 ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
380
381 if (offset != 0) {
382 addi(tmp, tmp, offset);
383 }
384
385 return RegisterOrConstant(tmp);
386 }
387
388 #ifndef PRODUCT
389 void MacroAssembler::pd_print_patched_instruction(address branch) {
390 Unimplemented(); // TODO: PPC port
391 }
392 #endif // ndef PRODUCT
393
394 // Conditional far branch for destinations encodable in 24+2 bits.
395 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
396
397 // If requested by flag optimize, relocate the bc_far as a
398 // runtime_call and prepare for optimizing it when the code gets
399 // relocated.
400 if (optimize == bc_far_optimize_on_relocate) {
401 relocate(relocInfo::runtime_call_type);
402 }
403
404 // variant 2:
405 //
406 // b!cxx SKIP
407 // bxx DEST
408 // SKIP:
409 //
410
411 const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
412 opposite_bcond(inv_boint_bcond(boint)));
413
414 // We emit two branches.
415 // First, a conditional branch which jumps around the far branch.
416 const address not_taken_pc = pc() + 2 * BytesPerInstWord;
417 const address bc_pc = pc();
418 bc(opposite_boint, biint, not_taken_pc);
419
420 const int bc_instr = *(int*)bc_pc;
421 assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
422 assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
423 assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
424 opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
425 "postcondition");
426 assert(biint == inv_bi_field(bc_instr), "postcondition");
427
428 // Second, an unconditional far branch which jumps to dest.
429 // Note: target(dest) remembers the current pc (see CodeSection::target)
430 // and returns the current pc if the label is not bound yet; when
431 // the label gets bound, the unconditional far branch will be patched.
432 const address target_pc = target(dest);
433 const address b_pc = pc();
434 b(target_pc);
435
436 assert(not_taken_pc == pc(), "postcondition");
437 assert(dest.is_bound() || target_pc == b_pc, "postcondition");
438 }
439
440 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
441 return is_bc_far_variant1_at(instruction_addr) ||
442 is_bc_far_variant2_at(instruction_addr) ||
443 is_bc_far_variant3_at(instruction_addr);
444 }
445
446 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
447 if (is_bc_far_variant1_at(instruction_addr)) {
448 const address instruction_1_addr = instruction_addr;
449 const int instruction_1 = *(int*)instruction_1_addr;
450 return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
451 } else if (is_bc_far_variant2_at(instruction_addr)) {
452 const address instruction_2_addr = instruction_addr + 4;
453 return bxx_destination(instruction_2_addr);
454 } else if (is_bc_far_variant3_at(instruction_addr)) {
455 return instruction_addr + 8;
456 }
457 // variant 4 ???
458 ShouldNotReachHere();
459 return NULL;
460 }
461 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
462
463 if (is_bc_far_variant3_at(instruction_addr)) {
464 // variant 3, far cond branch to the next instruction, already patched to nops:
465 //
466 // nop
467 // endgroup
468 // SKIP/DEST:
469 //
470 return;
471 }
472
473 // first, extract boint and biint from the current branch
474 int boint = 0;
475 int biint = 0;
476
477 ResourceMark rm;
478 const int code_size = 2 * BytesPerInstWord;
479 CodeBuffer buf(instruction_addr, code_size);
480 MacroAssembler masm(&buf);
481 if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
482 // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
483 masm.nop();
484 masm.endgroup();
485 } else {
486 if (is_bc_far_variant1_at(instruction_addr)) {
487 // variant 1, the 1st instruction contains the destination address:
488 //
489 // bcxx DEST
490 // endgroup
491 //
492 const int instruction_1 = *(int*)(instruction_addr);
493 boint = inv_bo_field(instruction_1);
494 biint = inv_bi_field(instruction_1);
495 } else if (is_bc_far_variant2_at(instruction_addr)) {
496 // variant 2, the 2nd instruction contains the destination address:
497 //
498 // b!cxx SKIP
499 // bxx DEST
500 // SKIP:
501 //
502 const int instruction_1 = *(int*)(instruction_addr);
503 boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
504 opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
505 biint = inv_bi_field(instruction_1);
506 } else {
507 // variant 4???
508 ShouldNotReachHere();
509 }
510
511 // second, set the new branch destination and optimize the code
512 if (dest != instruction_addr + 4 && // the bc_far is still unbound!
513 masm.is_within_range_of_bcxx(dest, instruction_addr)) {
514 // variant 1:
515 //
516 // bcxx DEST
517 // endgroup
518 //
519 masm.bc(boint, biint, dest);
520 masm.endgroup();
521 } else {
522 // variant 2:
523 //
524 // b!cxx SKIP
525 // bxx DEST
526 // SKIP:
527 //
528 const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
529 opposite_bcond(inv_boint_bcond(boint)));
530 const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
531 masm.bc(opposite_boint, biint, not_taken_pc);
532 masm.b(dest);
533 }
534 }
535 ICache::invalidate_range(instruction_addr, code_size);
536 }
537
538 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
539 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
540 // get current pc
541 uint64_t start_pc = (uint64_t) pc();
542
543 const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
544 const address pc_of_b = (address) (start_pc + (0*BytesPerInstWord)); // b is first
545
546 // relocate here
547 if (rt != relocInfo::none) {
548 relocate(rt);
549 }
550
551 if ( ReoptimizeCallSequences &&
552 (( link && is_within_range_of_b(dest, pc_of_bl)) ||
553 (!link && is_within_range_of_b(dest, pc_of_b)))) {
554 // variant 2:
555 // Emit an optimized, pc-relative call/jump.
556
557 if (link) {
558 // some padding
559 nop();
560 nop();
561 nop();
562 nop();
563 nop();
564 nop();
565
566 // do the call
567 assert(pc() == pc_of_bl, "just checking");
568 bl(dest, relocInfo::none);
569 } else {
570 // do the jump
571 assert(pc() == pc_of_b, "just checking");
572 b(dest, relocInfo::none);
573
574 // some padding
575 nop();
576 nop();
577 nop();
578 nop();
579 nop();
580 nop();
581 }
582
583 // Assert that we can identify the emitted call/jump.
584 assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
585 "can't identify emitted call");
586 } else {
587 // variant 1:
588
589 mr(R0, R11); // spill R11 -> R0.
590
591 // Load the destination address into CTR,
592 // calculate destination relative to global toc.
593 calculate_address_from_global_toc(R11, dest, true, true, false);
594
595 mtctr(R11);
596 mr(R11, R0); // spill R11 <- R0.
597 nop();
598
599 // do the call/jump
600 if (link) {
601 bctrl();
602 } else{
603 bctr();
604 }
605 // Assert that we can identify the emitted call/jump.
606 assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
607 "can't identify emitted call");
608 }
609
610 // Assert that we can identify the emitted call/jump.
611 assert(is_bxx64_patchable_at((address)start_pc, link),
612 "can't identify emitted call");
613 assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
614 "wrong encoding of dest address");
615 }
616
617 // Identify a bxx64_patchable instruction.
618 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
619 return is_bxx64_patchable_variant1b_at(instruction_addr, link)
620 //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
621 || is_bxx64_patchable_variant2_at(instruction_addr, link);
622 }
623
624 // Does the call64_patchable instruction use a pc-relative encoding of
625 // the call destination?
626 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
627 // variant 2 is pc-relative
628 return is_bxx64_patchable_variant2_at(instruction_addr, link);
629 }
630
631 // Identify variant 1.
632 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
633 unsigned int* instr = (unsigned int*) instruction_addr;
634 return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
635 && is_mtctr(instr[5]) // mtctr
636 && is_load_const_at(instruction_addr);
637 }
638
639 // Identify variant 1b: load destination relative to global toc.
640 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
641 unsigned int* instr = (unsigned int*) instruction_addr;
642 return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
643 && is_mtctr(instr[3]) // mtctr
644 && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
645 }
646
647 // Identify variant 2.
648 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
649 unsigned int* instr = (unsigned int*) instruction_addr;
650 if (link) {
651 return is_bl (instr[6]) // bl dest is last
652 && is_nop(instr[0]) // nop
653 && is_nop(instr[1]) // nop
654 && is_nop(instr[2]) // nop
655 && is_nop(instr[3]) // nop
656 && is_nop(instr[4]) // nop
657 && is_nop(instr[5]); // nop
658 } else {
659 return is_b (instr[0]) // b dest is first
660 && is_nop(instr[1]) // nop
661 && is_nop(instr[2]) // nop
662 && is_nop(instr[3]) // nop
663 && is_nop(instr[4]) // nop
664 && is_nop(instr[5]) // nop
665 && is_nop(instr[6]); // nop
666 }
667 }
668
669 // Set dest address of a bxx64_patchable instruction.
670 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
671 ResourceMark rm;
672 int code_size = MacroAssembler::bxx64_patchable_size;
673 CodeBuffer buf(instruction_addr, code_size);
674 MacroAssembler masm(&buf);
675 masm.bxx64_patchable(dest, relocInfo::none, link);
676 ICache::invalidate_range(instruction_addr, code_size);
677 }
678
679 // Get dest address of a bxx64_patchable instruction.
680 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
681 if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
682 return (address) (unsigned long) get_const(instruction_addr);
683 } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
684 unsigned int* instr = (unsigned int*) instruction_addr;
685 if (link) {
686 const int instr_idx = 6; // bl is last
687 int branchoffset = branch_destination(instr[instr_idx], 0);
688 return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
689 } else {
690 const int instr_idx = 0; // b is first
691 int branchoffset = branch_destination(instr[instr_idx], 0);
692 return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
693 }
694 // Load dest relative to global toc.
695 } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
696 return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
697 instruction_addr);
698 } else {
699 ShouldNotReachHere();
700 return NULL;
701 }
702 }
703
704 // Uses ordering which corresponds to ABI:
705 // _savegpr0_14: std r14,-144(r1)
706 // _savegpr0_15: std r15,-136(r1)
707 // _savegpr0_16: std r16,-128(r1)
708 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
709 std(R14, offset, dst); offset += 8;
710 std(R15, offset, dst); offset += 8;
711 std(R16, offset, dst); offset += 8;
712 std(R17, offset, dst); offset += 8;
713 std(R18, offset, dst); offset += 8;
714 std(R19, offset, dst); offset += 8;
715 std(R20, offset, dst); offset += 8;
716 std(R21, offset, dst); offset += 8;
717 std(R22, offset, dst); offset += 8;
718 std(R23, offset, dst); offset += 8;
719 std(R24, offset, dst); offset += 8;
720 std(R25, offset, dst); offset += 8;
721 std(R26, offset, dst); offset += 8;
722 std(R27, offset, dst); offset += 8;
723 std(R28, offset, dst); offset += 8;
724 std(R29, offset, dst); offset += 8;
725 std(R30, offset, dst); offset += 8;
726 std(R31, offset, dst); offset += 8;
727
728 stfd(F14, offset, dst); offset += 8;
729 stfd(F15, offset, dst); offset += 8;
730 stfd(F16, offset, dst); offset += 8;
731 stfd(F17, offset, dst); offset += 8;
732 stfd(F18, offset, dst); offset += 8;
733 stfd(F19, offset, dst); offset += 8;
734 stfd(F20, offset, dst); offset += 8;
735 stfd(F21, offset, dst); offset += 8;
736 stfd(F22, offset, dst); offset += 8;
737 stfd(F23, offset, dst); offset += 8;
738 stfd(F24, offset, dst); offset += 8;
739 stfd(F25, offset, dst); offset += 8;
740 stfd(F26, offset, dst); offset += 8;
741 stfd(F27, offset, dst); offset += 8;
742 stfd(F28, offset, dst); offset += 8;
743 stfd(F29, offset, dst); offset += 8;
744 stfd(F30, offset, dst); offset += 8;
745 stfd(F31, offset, dst);
746 }
747
748 // Uses ordering which corresponds to ABI:
749 // _restgpr0_14: ld r14,-144(r1)
750 // _restgpr0_15: ld r15,-136(r1)
751 // _restgpr0_16: ld r16,-128(r1)
752 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
753 ld(R14, offset, src); offset += 8;
754 ld(R15, offset, src); offset += 8;
755 ld(R16, offset, src); offset += 8;
756 ld(R17, offset, src); offset += 8;
757 ld(R18, offset, src); offset += 8;
758 ld(R19, offset, src); offset += 8;
759 ld(R20, offset, src); offset += 8;
760 ld(R21, offset, src); offset += 8;
761 ld(R22, offset, src); offset += 8;
762 ld(R23, offset, src); offset += 8;
763 ld(R24, offset, src); offset += 8;
764 ld(R25, offset, src); offset += 8;
765 ld(R26, offset, src); offset += 8;
766 ld(R27, offset, src); offset += 8;
767 ld(R28, offset, src); offset += 8;
768 ld(R29, offset, src); offset += 8;
769 ld(R30, offset, src); offset += 8;
770 ld(R31, offset, src); offset += 8;
771
772 // FP registers
773 lfd(F14, offset, src); offset += 8;
774 lfd(F15, offset, src); offset += 8;
775 lfd(F16, offset, src); offset += 8;
776 lfd(F17, offset, src); offset += 8;
777 lfd(F18, offset, src); offset += 8;
778 lfd(F19, offset, src); offset += 8;
779 lfd(F20, offset, src); offset += 8;
780 lfd(F21, offset, src); offset += 8;
781 lfd(F22, offset, src); offset += 8;
782 lfd(F23, offset, src); offset += 8;
783 lfd(F24, offset, src); offset += 8;
784 lfd(F25, offset, src); offset += 8;
785 lfd(F26, offset, src); offset += 8;
786 lfd(F27, offset, src); offset += 8;
787 lfd(F28, offset, src); offset += 8;
788 lfd(F29, offset, src); offset += 8;
789 lfd(F30, offset, src); offset += 8;
790 lfd(F31, offset, src);
791 }
792
793 // For verify_oops.
794 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
795 std(R3, offset, dst); offset += 8;
796 std(R4, offset, dst); offset += 8;
797 std(R5, offset, dst); offset += 8;
798 std(R6, offset, dst); offset += 8;
799 std(R7, offset, dst); offset += 8;
800 std(R8, offset, dst); offset += 8;
801 std(R9, offset, dst); offset += 8;
802 std(R10, offset, dst); offset += 8;
803 std(R11, offset, dst); offset += 8;
804 std(R12, offset, dst);
805 }
806
807 // For verify_oops.
808 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
809 ld(R3, offset, src); offset += 8;
810 ld(R4, offset, src); offset += 8;
811 ld(R5, offset, src); offset += 8;
812 ld(R6, offset, src); offset += 8;
813 ld(R7, offset, src); offset += 8;
814 ld(R8, offset, src); offset += 8;
815 ld(R9, offset, src); offset += 8;
816 ld(R10, offset, src); offset += 8;
817 ld(R11, offset, src); offset += 8;
818 ld(R12, offset, src);
819 }
820
821 void MacroAssembler::save_LR_CR(Register tmp) {
822 mfcr(tmp);
823 std(tmp, _abi(cr), R1_SP);
824 mflr(tmp);
825 std(tmp, _abi(lr), R1_SP);
826 // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
827 }
828
829 void MacroAssembler::restore_LR_CR(Register tmp) {
830 assert(tmp != R1_SP, "must be distinct");
831 ld(tmp, _abi(lr), R1_SP);
832 mtlr(tmp);
833 ld(tmp, _abi(cr), R1_SP);
834 mtcr(tmp);
835 }
836
837 address MacroAssembler::get_PC_trash_LR(Register result) {
838 Label L;
839 bl(L);
840 bind(L);
841 address lr_pc = pc();
842 mflr(result);
843 return lr_pc;
844 }
845
846 void MacroAssembler::resize_frame(Register offset, Register tmp) {
847 #ifdef ASSERT
848 assert_different_registers(offset, tmp, R1_SP);
849 andi_(tmp, offset, frame::alignment_in_bytes-1);
850 asm_assert_eq("resize_frame: unaligned", 0x204);
851 #endif
852
853 // tmp <- *(SP)
854 ld(tmp, _abi(callers_sp), R1_SP);
855 // addr <- SP + offset;
856 // *(addr) <- tmp;
857 // SP <- addr
858 stdux(tmp, R1_SP, offset);
859 }
860
861 void MacroAssembler::resize_frame(int offset, Register tmp) {
862 assert(is_simm(offset, 16), "too big an offset");
863 assert_different_registers(tmp, R1_SP);
864 assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
865 // tmp <- *(SP)
866 ld(tmp, _abi(callers_sp), R1_SP);
867 // addr <- SP + offset;
868 // *(addr) <- tmp;
869 // SP <- addr
870 stdu(tmp, offset, R1_SP);
871 }
872
873 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
874 // (addr == tmp1) || (addr == tmp2) is allowed here!
875 assert(tmp1 != tmp2, "must be distinct");
876
877 // compute offset w.r.t. current stack pointer
878 // tmp_1 <- addr - SP (!)
879 subf(tmp1, R1_SP, addr);
880
881 // atomically update SP keeping back link.
882 resize_frame(tmp1/* offset */, tmp2/* tmp */);
883 }
884
885 void MacroAssembler::push_frame(Register bytes, Register tmp) {
886 #ifdef ASSERT
887 assert(bytes != R0, "r0 not allowed here");
888 andi_(R0, bytes, frame::alignment_in_bytes-1);
889 asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
890 #endif
891 neg(tmp, bytes);
892 stdux(R1_SP, R1_SP, tmp);
893 }
894
895 // Push a frame of size `bytes'.
896 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
897 long offset = align_addr(bytes, frame::alignment_in_bytes);
898 if (is_simm(-offset, 16)) {
899 stdu(R1_SP, -offset, R1_SP);
900 } else {
901 load_const(tmp, -offset);
902 stdux(R1_SP, R1_SP, tmp);
903 }
904 }
905
906 // Push a frame of size `bytes' plus abi112 on top.
907 void MacroAssembler::push_frame_abi112(unsigned int bytes, Register tmp) {
908 push_frame(bytes + frame::abi_112_size, tmp);
909 }
910
911 // Setup up a new C frame with a spill area for non-volatile GPRs and
912 // additional space for local variables.
913 void MacroAssembler::push_frame_abi112_nonvolatiles(unsigned int bytes,
914 Register tmp) {
915 push_frame(bytes + frame::abi_112_size + frame::spill_nonvolatiles_size, tmp);
916 }
917
918 // Pop current C frame.
919 void MacroAssembler::pop_frame() {
920 ld(R1_SP, _abi(callers_sp), R1_SP);
921 }
922
923 // Generic version of a call to C function via a function descriptor
924 // with variable support for C calling conventions (TOC, ENV, etc.).
925 // Updates and returns _last_calls_return_pc.
926 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
927 bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
928 // we emit standard ptrgl glue code here
929 assert((function_descriptor != R0), "function_descriptor cannot be R0");
930
931 // retrieve necessary entries from the function descriptor
932 ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
933 mtctr(R0);
934
935 if (load_toc_of_callee) {
936 ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
937 }
938 if (load_env_of_callee) {
939 ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
940 } else if (load_toc_of_callee) {
941 li(R11, 0);
942 }
943
944 // do a call or a branch
945 if (and_link) {
946 bctrl();
947 } else {
948 bctr();
949 }
950 _last_calls_return_pc = pc();
951
952 return _last_calls_return_pc;
953 }
954
955 // Call a C function via a function descriptor and use full C calling
956 // conventions.
957 // We don't use the TOC in generated code, so there is no need to save
958 // and restore its value.
959 address MacroAssembler::call_c(Register fd) {
960 return branch_to(fd, /*and_link=*/true,
961 /*save toc=*/false,
962 /*restore toc=*/false,
963 /*load toc=*/true,
964 /*load env=*/true);
965 }
966
967 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
968 if (rt != relocInfo::none) {
969 // this call needs to be relocatable
970 if (!ReoptimizeCallSequences
971 || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
972 || fd == NULL // support code-size estimation
973 || !fd->is_friend_function()
974 || fd->entry() == NULL) {
975 // it's not a friend function as defined by class FunctionDescriptor,
976 // so do a full call-c here.
977 load_const(R11, (address)fd, R0);
978
979 bool has_env = (fd != NULL && fd->env() != NULL);
980 return branch_to(R11, /*and_link=*/true,
981 /*save toc=*/false,
982 /*restore toc=*/false,
983 /*load toc=*/true,
984 /*load env=*/has_env);
985 } else {
986 // It's a friend function. Load the entry point and don't care about
987 // toc and env. Use an optimizable call instruction, but ensure the
988 // same code-size as in the case of a non-friend function.
989 nop();
990 nop();
991 nop();
992 bl64_patchable(fd->entry(), rt);
993 _last_calls_return_pc = pc();
994 return _last_calls_return_pc;
995 }
996 } else {
997 // This call does not need to be relocatable, do more aggressive
998 // optimizations.
999 if (!ReoptimizeCallSequences
1000 || !fd->is_friend_function()) {
1001 // It's not a friend function as defined by class FunctionDescriptor,
1002 // so do a full call-c here.
1003 load_const(R11, (address)fd, R0);
1004 return branch_to(R11, /*and_link=*/true,
1005 /*save toc=*/false,
1006 /*restore toc=*/false,
1007 /*load toc=*/true,
1008 /*load env=*/true);
1009 } else {
1010 // it's a friend function, load the entry point and don't care about
1011 // toc and env.
1012 address dest = fd->entry();
1013 if (is_within_range_of_b(dest, pc())) {
1014 bl(dest);
1015 } else {
1016 bl64_patchable(dest, rt);
1017 }
1018 _last_calls_return_pc = pc();
1019 return _last_calls_return_pc;
1020 }
1021 }
1022 }
1023
1024 // Call a C function. All constants needed reside in TOC.
1025 //
1026 // Read the address to call from the TOC.
1027 // Read env from TOC, if fd specifies an env.
1028 // Read new TOC from TOC.
1029 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1030 relocInfo::relocType rt, Register toc) {
1031 if (!ReoptimizeCallSequences
1032 || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1033 || !fd->is_friend_function()) {
1034 // It's not a friend function as defined by class FunctionDescriptor,
1035 // so do a full call-c here.
1036 assert(fd->entry() != NULL, "function must be linked");
1037
1038 AddressLiteral fd_entry(fd->entry());
1039 load_const_from_method_toc(R11, fd_entry, toc);
1040 mtctr(R11);
1041 if (fd->env() == NULL) {
1042 li(R11, 0);
1043 nop();
1044 } else {
1045 AddressLiteral fd_env(fd->env());
1046 load_const_from_method_toc(R11, fd_env, toc);
1047 }
1048 AddressLiteral fd_toc(fd->toc());
1049 load_toc_from_toc(R2_TOC, fd_toc, toc);
1050 // R2_TOC is killed.
1051 bctrl();
1052 _last_calls_return_pc = pc();
1053 } else {
1054 // It's a friend function, load the entry point and don't care about
1055 // toc and env. Use an optimizable call instruction, but ensure the
1056 // same code-size as in the case of a non-friend function.
1057 nop();
1058 bl64_patchable(fd->entry(), rt);
1059 _last_calls_return_pc = pc();
1060 }
1061 return _last_calls_return_pc;
1062 }
1063
1064 void MacroAssembler::call_VM_base(Register oop_result,
1065 Register last_java_sp,
1066 address entry_point,
1067 bool check_exceptions) {
1068 BLOCK_COMMENT("call_VM {");
1069 // Determine last_java_sp register.
1070 if (!last_java_sp->is_valid()) {
1071 last_java_sp = R1_SP;
1072 }
1073 set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1074
1075 // ARG1 must hold thread address.
1076 mr(R3_ARG1, R16_thread);
1077
1078 address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1079
1080 reset_last_Java_frame();
1081
1082 // Check for pending exceptions.
1083 if (check_exceptions) {
1084 // We don't check for exceptions here.
1085 ShouldNotReachHere();
1086 }
1087
1088 // Get oop result if there is one and reset the value in the thread.
1089 if (oop_result->is_valid()) {
1090 get_vm_result(oop_result);
1091 }
1092
1093 _last_calls_return_pc = return_pc;
1094 BLOCK_COMMENT("} call_VM");
1095 }
1096
1097 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1098 BLOCK_COMMENT("call_VM_leaf {");
1099 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1100 BLOCK_COMMENT("} call_VM_leaf");
1101 }
1102
1103 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1104 call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1105 }
1106
1107 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1108 bool check_exceptions) {
1109 // R3_ARG1 is reserved for the thread.
1110 mr_if_needed(R4_ARG2, arg_1);
1111 call_VM(oop_result, entry_point, check_exceptions);
1112 }
1113
1114 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1115 bool check_exceptions) {
1116 // R3_ARG1 is reserved for the thread
1117 mr_if_needed(R4_ARG2, arg_1);
1118 assert(arg_2 != R4_ARG2, "smashed argument");
1119 mr_if_needed(R5_ARG3, arg_2);
1120 call_VM(oop_result, entry_point, check_exceptions);
1121 }
1122
1123 void MacroAssembler::call_VM_leaf(address entry_point) {
1124 call_VM_leaf_base(entry_point);
1125 }
1126
1127 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1128 mr_if_needed(R3_ARG1, arg_1);
1129 call_VM_leaf(entry_point);
1130 }
1131
1132 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1133 mr_if_needed(R3_ARG1, arg_1);
1134 assert(arg_2 != R3_ARG1, "smashed argument");
1135 mr_if_needed(R4_ARG2, arg_2);
1136 call_VM_leaf(entry_point);
1137 }
1138
1139 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1140 mr_if_needed(R3_ARG1, arg_1);
1141 assert(arg_2 != R3_ARG1, "smashed argument");
1142 mr_if_needed(R4_ARG2, arg_2);
1143 assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1144 mr_if_needed(R5_ARG3, arg_3);
1145 call_VM_leaf(entry_point);
1146 }
1147
1148 // Check whether instruction is a read access to the polling page
1149 // which was emitted by load_from_polling_page(..).
1150 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1151 address* polling_address_ptr) {
1152 if (!is_ld(instruction))
1153 return false; // It's not a ld. Fail.
1154
1155 int rt = inv_rt_field(instruction);
1156 int ra = inv_ra_field(instruction);
1157 int ds = inv_ds_field(instruction);
1158 if (!(ds == 0 && ra != 0 && rt == 0)) {
1159 return false; // It's not a ld(r0, X, ra). Fail.
1160 }
1161
1162 if (!ucontext) {
1163 // Set polling address.
1164 if (polling_address_ptr != NULL) {
1165 *polling_address_ptr = NULL;
1166 }
1167 return true; // No ucontext given. Can't check value of ra. Assume true.
1168 }
1169
1170 #ifdef LINUX
1171 // Ucontext given. Check that register ra contains the address of
1172 // the safepoing polling page.
1173 ucontext_t* uc = (ucontext_t*) ucontext;
1174 // Set polling address.
1175 address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1176 if (polling_address_ptr != NULL) {
1177 *polling_address_ptr = addr;
1178 }
1179 return os::is_poll_address(addr);
1180 #else
1181 // Not on Linux, ucontext must be NULL.
1182 ShouldNotReachHere();
1183 return false;
1184 #endif
1185 }
1186
1187 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1188 #ifdef LINUX
1189 ucontext_t* uc = (ucontext_t*) ucontext;
1190
1191 if (is_stwx(instruction) || is_stwux(instruction)) {
1192 int ra = inv_ra_field(instruction);
1193 int rb = inv_rb_field(instruction);
1194
1195 // look up content of ra and rb in ucontext
1196 address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1197 long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1198 return os::is_memory_serialize_page(thread, ra_val+rb_val);
1199 } else if (is_stw(instruction) || is_stwu(instruction)) {
1200 int ra = inv_ra_field(instruction);
1201 int d1 = inv_d1_field(instruction);
1202
1203 // look up content of ra in ucontext
1204 address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1205 return os::is_memory_serialize_page(thread, ra_val+d1);
1206 } else {
1207 return false;
1208 }
1209 #else
1210 // workaround not needed on !LINUX :-)
1211 ShouldNotCallThis();
1212 return false;
1213 #endif
1214 }
1215
1216 void MacroAssembler::bang_stack_with_offset(int offset) {
1217 // When increasing the stack, the old stack pointer will be written
1218 // to the new top of stack according to the PPC64 abi.
1219 // Therefore, stack banging is not necessary when increasing
1220 // the stack by <= os::vm_page_size() bytes.
1221 // When increasing the stack by a larger amount, this method is
1222 // called repeatedly to bang the intermediate pages.
1223
1224 // Stack grows down, caller passes positive offset.
1225 assert(offset > 0, "must bang with positive offset");
1226
1227 long stdoffset = -offset;
1228
1229 if (is_simm(stdoffset, 16)) {
1230 // Signed 16 bit offset, a simple std is ok.
1231 if (UseLoadInstructionsForStackBangingPPC64) {
1232 ld(R0, (int)(signed short)stdoffset, R1_SP);
1233 } else {
1234 std(R0,(int)(signed short)stdoffset, R1_SP);
1235 }
1236 } else if (is_simm(stdoffset, 31)) {
1237 const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1238 const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1239
1240 Register tmp = R11;
1241 addis(tmp, R1_SP, hi);
1242 if (UseLoadInstructionsForStackBangingPPC64) {
1243 ld(R0, lo, tmp);
1244 } else {
1245 std(R0, lo, tmp);
1246 }
1247 } else {
1248 ShouldNotReachHere();
1249 }
1250 }
1251
1252 // If instruction is a stack bang of the form
1253 // std R0, x(Ry), (see bang_stack_with_offset())
1254 // stdu R1_SP, x(R1_SP), (see push_frame(), resize_frame())
1255 // or stdux R1_SP, Rx, R1_SP (see push_frame(), resize_frame())
1256 // return the banged address. Otherwise, return 0.
1257 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1258 #ifdef LINUX
1259 ucontext_t* uc = (ucontext_t*) ucontext;
1260 int rs = inv_rs_field(instruction);
1261 int ra = inv_ra_field(instruction);
1262 if ( (is_ld(instruction) && rs == 0 && UseLoadInstructionsForStackBangingPPC64)
1263 || (is_std(instruction) && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1264 || (is_stdu(instruction) && rs == 1)) {
1265 int ds = inv_ds_field(instruction);
1266 // return banged address
1267 return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1268 } else if (is_stdux(instruction) && rs == 1) {
1269 int rb = inv_rb_field(instruction);
1270 address sp = (address)uc->uc_mcontext.regs->gpr[1];
1271 long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1272 return ra != 1 || rb_val >= 0 ? NULL // not a stack bang
1273 : sp + rb_val; // banged address
1274 }
1275 return NULL; // not a stack bang
1276 #else
1277 // workaround not needed on !LINUX :-)
1278 ShouldNotCallThis();
1279 return NULL;
1280 #endif
1281 }
1282
1283 // CmpxchgX sets condition register to cmpX(current, compare).
1284 void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value,
1285 Register compare_value, Register exchange_value,
1286 Register addr_base, int semantics, bool cmpxchgx_hint,
1287 Register int_flag_success, bool contention_hint) {
1288 Label retry;
1289 Label failed;
1290 Label done;
1291
1292 // Save one branch if result is returned via register and
1293 // result register is different from the other ones.
1294 bool use_result_reg = (int_flag_success != noreg);
1295 bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1296 int_flag_success != exchange_value && int_flag_success != addr_base);
1297
1298 // release/fence semantics
1299 if (semantics & MemBarRel) {
1300 release();
1301 }
1302
1303 if (use_result_reg && preset_result_reg) {
1304 li(int_flag_success, 0); // preset (assume cas failed)
1305 }
1306
1307 // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1308 if (contention_hint) { // Don't try to reserve if cmp fails.
1309 lwz(dest_current_value, 0, addr_base);
1310 cmpw(flag, dest_current_value, compare_value);
1311 bne(flag, failed);
1312 }
1313
1314 // atomic emulation loop
1315 bind(retry);
1316
1317 lwarx(dest_current_value, addr_base, cmpxchgx_hint);
1318 cmpw(flag, dest_current_value, compare_value);
1319 if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1320 bne_predict_not_taken(flag, failed);
1321 } else {
1322 bne( flag, failed);
1323 }
1324 // branch to done => (flag == ne), (dest_current_value != compare_value)
1325 // fall through => (flag == eq), (dest_current_value == compare_value)
1326
1327 stwcx_(exchange_value, addr_base);
1328 if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1329 bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1330 } else {
1331 bne( CCR0, retry); // StXcx_ sets CCR0.
1332 }
1333 // fall through => (flag == eq), (dest_current_value == compare_value), (swapped)
1334
1335 // Result in register (must do this at the end because int_flag_success can be the
1336 // same register as one above).
1337 if (use_result_reg) {
1338 li(int_flag_success, 1);
1339 }
1340
1341 if (semantics & MemBarFenceAfter) {
1342 fence();
1343 } else if (semantics & MemBarAcq) {
1344 isync();
1345 }
1346
1347 if (use_result_reg && !preset_result_reg) {
1348 b(done);
1349 }
1350
1351 bind(failed);
1352 if (use_result_reg && !preset_result_reg) {
1353 li(int_flag_success, 0);
1354 }
1355
1356 bind(done);
1357 // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1358 // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1359 }
1360
1361 // Preforms atomic compare exchange:
1362 // if (compare_value == *addr_base)
1363 // *addr_base = exchange_value
1364 // int_flag_success = 1;
1365 // else
1366 // int_flag_success = 0;
1367 //
1368 // ConditionRegister flag = cmp(compare_value, *addr_base)
1369 // Register dest_current_value = *addr_base
1370 // Register compare_value Used to compare with value in memory
1371 // Register exchange_value Written to memory if compare_value == *addr_base
1372 // Register addr_base The memory location to compareXChange
1373 // Register int_flag_success Set to 1 if exchange_value was written to *addr_base
1374 //
1375 // To avoid the costly compare exchange the value is tested beforehand.
1376 // Several special cases exist to avoid that unnecessary information is generated.
1377 //
1378 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1379 Register dest_current_value, Register compare_value, Register exchange_value,
1380 Register addr_base, int semantics, bool cmpxchgx_hint,
1381 Register int_flag_success, Label* failed_ext, bool contention_hint) {
1382 Label retry;
1383 Label failed_int;
1384 Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1385 Label done;
1386
1387 // Save one branch if result is returned via register and result register is different from the other ones.
1388 bool use_result_reg = (int_flag_success!=noreg);
1389 bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value &&
1390 int_flag_success!=exchange_value && int_flag_success!=addr_base);
1391 assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1392
1393 // release/fence semantics
1394 if (semantics & MemBarRel) {
1395 release();
1396 }
1397
1398 if (use_result_reg && preset_result_reg) {
1399 li(int_flag_success, 0); // preset (assume cas failed)
1400 }
1401
1402 // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1403 if (contention_hint) { // Don't try to reserve if cmp fails.
1404 ld(dest_current_value, 0, addr_base);
1405 cmpd(flag, dest_current_value, compare_value);
1406 bne(flag, failed);
1407 }
1408
1409 // atomic emulation loop
1410 bind(retry);
1411
1412 ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1413 cmpd(flag, dest_current_value, compare_value);
1414 if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1415 bne_predict_not_taken(flag, failed);
1416 } else {
1417 bne( flag, failed);
1418 }
1419
1420 stdcx_(exchange_value, addr_base);
1421 if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1422 bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
1423 } else {
1424 bne( CCR0, retry); // stXcx_ sets CCR0
1425 }
1426
1427 // result in register (must do this at the end because int_flag_success can be the same register as one above)
1428 if (use_result_reg) {
1429 li(int_flag_success, 1);
1430 }
1431
1432 // POWER6 doesn't need isync in CAS.
1433 // Always emit isync to be on the safe side.
1434 if (semantics & MemBarFenceAfter) {
1435 fence();
1436 } else if (semantics & MemBarAcq) {
1437 isync();
1438 }
1439
1440 if (use_result_reg && !preset_result_reg) {
1441 b(done);
1442 }
1443
1444 bind(failed_int);
1445 if (use_result_reg && !preset_result_reg) {
1446 li(int_flag_success, 0);
1447 }
1448
1449 bind(done);
1450 // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1451 // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1452 }
1453
1454 // Look up the method for a megamorphic invokeinterface call.
1455 // The target method is determined by <intf_klass, itable_index>.
1456 // The receiver klass is in recv_klass.
1457 // On success, the result will be in method_result, and execution falls through.
1458 // On failure, execution transfers to the given label.
1459 void MacroAssembler::lookup_interface_method(Register recv_klass,
1460 Register intf_klass,
1461 RegisterOrConstant itable_index,
1462 Register method_result,
1463 Register scan_temp,
1464 Register sethi_temp,
1465 Label& L_no_such_interface) {
1466 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1467 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1468 "caller must use same register for non-constant itable index as for method");
1469
1470 // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1471 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
1472 int itentry_off = itableMethodEntry::method_offset_in_bytes();
1473 int logMEsize = exact_log2(itableMethodEntry::size() * wordSize);
1474 int scan_step = itableOffsetEntry::size() * wordSize;
1475 int log_vte_size= exact_log2(vtableEntry::size() * wordSize);
1476
1477 lwz(scan_temp, InstanceKlass::vtable_length_offset() * wordSize, recv_klass);
1478 // %%% We should store the aligned, prescaled offset in the klassoop.
1479 // Then the next several instructions would fold away.
1480
1481 sldi(scan_temp, scan_temp, log_vte_size);
1482 addi(scan_temp, scan_temp, vtable_base);
1483 add(scan_temp, recv_klass, scan_temp);
1484
1485 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1486 if (itable_index.is_register()) {
1487 Register itable_offset = itable_index.as_register();
1488 sldi(itable_offset, itable_offset, logMEsize);
1489 if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
1490 add(recv_klass, itable_offset, recv_klass);
1491 } else {
1492 long itable_offset = (long)itable_index.as_constant();
1493 load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
1494 add(recv_klass, sethi_temp, recv_klass);
1495 }
1496
1497 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1498 // if (scan->interface() == intf) {
1499 // result = (klass + scan->offset() + itable_index);
1500 // }
1501 // }
1502 Label search, found_method;
1503
1504 for (int peel = 1; peel >= 0; peel--) {
1505 // %%%% Could load both offset and interface in one ldx, if they were
1506 // in the opposite order. This would save a load.
1507 ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1508
1509 // Check that this entry is non-null. A null entry means that
1510 // the receiver class doesn't implement the interface, and wasn't the
1511 // same as when the caller was compiled.
1512 cmpd(CCR0, method_result, intf_klass);
1513
1514 if (peel) {
1515 beq(CCR0, found_method);
1516 } else {
1517 bne(CCR0, search);
1518 // (invert the test to fall through to found_method...)
1519 }
1520
1521 if (!peel) break;
1522
1523 bind(search);
1524
1525 cmpdi(CCR0, method_result, 0);
1526 beq(CCR0, L_no_such_interface);
1527 addi(scan_temp, scan_temp, scan_step);
1528 }
1529
1530 bind(found_method);
1531
1532 // Got a hit.
1533 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1534 lwz(scan_temp, ito_offset, scan_temp);
1535 ldx(method_result, scan_temp, recv_klass);
1536 }
1537
1538 // virtual method calling
1539 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1540 RegisterOrConstant vtable_index,
1541 Register method_result) {
1542
1543 assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1544
1545 const int base = InstanceKlass::vtable_start_offset() * wordSize;
1546 assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1547
1548 if (vtable_index.is_register()) {
1549 sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1550 add(recv_klass, vtable_index.as_register(), recv_klass);
1551 } else {
1552 addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1553 }
1554 ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1555 }
1556
1557 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1558
1559 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1560 Register super_klass,
1561 Register temp1_reg,
1562 Register temp2_reg,
1563 Label& L_success,
1564 Label& L_failure) {
1565
1566 const Register check_cache_offset = temp1_reg;
1567 const Register cached_super = temp2_reg;
1568
1569 assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1570
1571 int sco_offset = in_bytes(Klass::super_check_offset_offset());
1572 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1573
1574 // If the pointers are equal, we are done (e.g., String[] elements).
1575 // This self-check enables sharing of secondary supertype arrays among
1576 // non-primary types such as array-of-interface. Otherwise, each such
1577 // type would need its own customized SSA.
1578 // We move this check to the front of the fast path because many
1579 // type checks are in fact trivially successful in this manner,
1580 // so we get a nicely predicted branch right at the start of the check.
1581 cmpd(CCR0, sub_klass, super_klass);
1582 beq(CCR0, L_success);
1583
1584 // Check the supertype display:
1585 lwz(check_cache_offset, sco_offset, super_klass);
1586 // The loaded value is the offset from KlassOopDesc.
1587
1588 ldx(cached_super, check_cache_offset, sub_klass);
1589 cmpd(CCR0, cached_super, super_klass);
1590 beq(CCR0, L_success);
1591
1592 // This check has worked decisively for primary supers.
1593 // Secondary supers are sought in the super_cache ('super_cache_addr').
1594 // (Secondary supers are interfaces and very deeply nested subtypes.)
1595 // This works in the same check above because of a tricky aliasing
1596 // between the super_cache and the primary super display elements.
1597 // (The 'super_check_addr' can address either, as the case requires.)
1598 // Note that the cache is updated below if it does not help us find
1599 // what we need immediately.
1600 // So if it was a primary super, we can just fail immediately.
1601 // Otherwise, it's the slow path for us (no success at this point).
1602
1603 cmpwi(CCR0, check_cache_offset, sc_offset);
1604 bne(CCR0, L_failure);
1605 // bind(slow_path); // fallthru
1606 }
1607
1608 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1609 Register super_klass,
1610 Register temp1_reg,
1611 Register temp2_reg,
1612 Label* L_success,
1613 Register result_reg) {
1614 const Register array_ptr = temp1_reg; // current value from cache array
1615 const Register temp = temp2_reg;
1616
1617 assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1618
1619 int source_offset = in_bytes(Klass::secondary_supers_offset());
1620 int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1621
1622 int length_offset = Array<Klass*>::length_offset_in_bytes();
1623 int base_offset = Array<Klass*>::base_offset_in_bytes();
1624
1625 Label hit, loop, failure, fallthru;
1626
1627 ld(array_ptr, source_offset, sub_klass);
1628
1629 //assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
1630 lwz(temp, length_offset, array_ptr);
1631 cmpwi(CCR0, temp, 0);
1632 beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
1633
1634 mtctr(temp); // load ctr
1635
1636 bind(loop);
1637 // Oops in table are NO MORE compressed.
1638 ld(temp, base_offset, array_ptr);
1639 cmpd(CCR0, temp, super_klass);
1640 beq(CCR0, hit);
1641 addi(array_ptr, array_ptr, BytesPerWord);
1642 bdnz(loop);
1643
1644 bind(failure);
1645 if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
1646 b(fallthru);
1647
1648 bind(hit);
1649 std(super_klass, target_offset, sub_klass); // save result to cache
1650 if (result_reg != noreg) li(result_reg, 0); // load zero result (indicates a hit)
1651 if (L_success != NULL) b(*L_success);
1652
1653 bind(fallthru);
1654 }
1655
1656 // Try fast path, then go to slow one if not successful
1657 void MacroAssembler::check_klass_subtype(Register sub_klass,
1658 Register super_klass,
1659 Register temp1_reg,
1660 Register temp2_reg,
1661 Label& L_success) {
1662 Label L_failure;
1663 check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, L_success, L_failure);
1664 check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
1665 bind(L_failure); // Fallthru if not successful.
1666 }
1667
1668 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
1669 Register temp_reg,
1670 Label& wrong_method_type) {
1671 assert_different_registers(mtype_reg, mh_reg, temp_reg);
1672 // Compare method type against that of the receiver.
1673 load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
1674 cmpd(CCR0, temp_reg, mtype_reg);
1675 bne(CCR0, wrong_method_type);
1676 }
1677
1678 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
1679 Register temp_reg,
1680 int extra_slot_offset) {
1681 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1682 int stackElementSize = Interpreter::stackElementSize;
1683 int offset = extra_slot_offset * stackElementSize;
1684 if (arg_slot.is_constant()) {
1685 offset += arg_slot.as_constant() * stackElementSize;
1686 return offset;
1687 } else {
1688 assert(temp_reg != noreg, "must specify");
1689 sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
1690 if (offset != 0)
1691 addi(temp_reg, temp_reg, offset);
1692 return temp_reg;
1693 }
1694 }
1695
1696 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
1697 Register mark_reg, Register temp_reg,
1698 Register temp2_reg, Label& done, Label* slow_case) {
1699 assert(UseBiasedLocking, "why call this otherwise?");
1700
1701 #ifdef ASSERT
1702 assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
1703 #endif
1704
1705 Label cas_label;
1706
1707 // Branch to done if fast path fails and no slow_case provided.
1708 Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
1709
1710 // Biased locking
1711 // See whether the lock is currently biased toward our thread and
1712 // whether the epoch is still valid
1713 // Note that the runtime guarantees sufficient alignment of JavaThread
1714 // pointers to allow age to be placed into low bits
1715 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
1716 "biased locking makes assumptions about bit layout");
1717
1718 if (PrintBiasedLockingStatistics) {
1719 load_const(temp_reg, (address) BiasedLocking::total_entry_count_addr(), temp2_reg);
1720 lwz(temp2_reg, 0, temp_reg);
1721 addi(temp2_reg, temp2_reg, 1);
1722 stw(temp2_reg, 0, temp_reg);
1723 }
1724
1725 andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
1726 cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
1727 bne(cr_reg, cas_label);
1728
1729 load_klass_with_trap_null_check(temp_reg, obj_reg);
1730
1731 load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
1732 ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
1733 orr(temp_reg, R16_thread, temp_reg);
1734 xorr(temp_reg, mark_reg, temp_reg);
1735 andr(temp_reg, temp_reg, temp2_reg);
1736 cmpdi(cr_reg, temp_reg, 0);
1737 if (PrintBiasedLockingStatistics) {
1738 Label l;
1739 bne(cr_reg, l);
1740 load_const(mark_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
1741 lwz(temp2_reg, 0, mark_reg);
1742 addi(temp2_reg, temp2_reg, 1);
1743 stw(temp2_reg, 0, mark_reg);
1744 // restore mark_reg
1745 ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
1746 bind(l);
1747 }
1748 beq(cr_reg, done);
1749
1750 Label try_revoke_bias;
1751 Label try_rebias;
1752
1753 // At this point we know that the header has the bias pattern and
1754 // that we are not the bias owner in the current epoch. We need to
1755 // figure out more details about the state of the header in order to
1756 // know what operations can be legally performed on the object's
1757 // header.
1758
1759 // If the low three bits in the xor result aren't clear, that means
1760 // the prototype header is no longer biased and we have to revoke
1761 // the bias on this object.
1762 andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
1763 cmpwi(cr_reg, temp2_reg, 0);
1764 bne(cr_reg, try_revoke_bias);
1765
1766 // Biasing is still enabled for this data type. See whether the
1767 // epoch of the current bias is still valid, meaning that the epoch
1768 // bits of the mark word are equal to the epoch bits of the
1769 // prototype header. (Note that the prototype header's epoch bits
1770 // only change at a safepoint.) If not, attempt to rebias the object
1771 // toward the current thread. Note that we must be absolutely sure
1772 // that the current epoch is invalid in order to do this because
1773 // otherwise the manipulations it performs on the mark word are
1774 // illegal.
1775
1776 int shift_amount = 64 - markOopDesc::epoch_shift;
1777 // rotate epoch bits to right (little) end and set other bits to 0
1778 // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
1779 rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
1780 // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
1781 bne(CCR0, try_rebias);
1782
1783 // The epoch of the current bias is still valid but we know nothing
1784 // about the owner; it might be set or it might be clear. Try to
1785 // acquire the bias of the object using an atomic operation. If this
1786 // fails we will go in to the runtime to revoke the object's bias.
1787 // Note that we first construct the presumed unbiased header so we
1788 // don't accidentally blow away another thread's valid bias.
1789 andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
1790 markOopDesc::age_mask_in_place |
1791 markOopDesc::epoch_mask_in_place));
1792 orr(temp_reg, R16_thread, mark_reg);
1793
1794 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1795
1796 // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1797 fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1798 cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1799 /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1800 /*where=*/obj_reg,
1801 MacroAssembler::MemBarAcq,
1802 MacroAssembler::cmpxchgx_hint_acquire_lock(),
1803 noreg, slow_case_int); // bail out if failed
1804
1805 // If the biasing toward our thread failed, this means that
1806 // another thread succeeded in biasing it toward itself and we
1807 // need to revoke that bias. The revocation will occur in the
1808 // interpreter runtime in the slow case.
1809 if (PrintBiasedLockingStatistics) {
1810 load_const(temp_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp2_reg);
1811 lwz(temp2_reg, 0, temp_reg);
1812 addi(temp2_reg, temp2_reg, 1);
1813 stw(temp2_reg, 0, temp_reg);
1814 }
1815 b(done);
1816
1817 bind(try_rebias);
1818 // At this point we know the epoch has expired, meaning that the
1819 // current "bias owner", if any, is actually invalid. Under these
1820 // circumstances _only_, we are allowed to use the current header's
1821 // value as the comparison value when doing the cas to acquire the
1822 // bias in the current epoch. In other words, we allow transfer of
1823 // the bias from one thread to another directly in this situation.
1824 andi(temp_reg, mark_reg, markOopDesc::age_mask_in_place);
1825 orr(temp_reg, R16_thread, temp_reg);
1826 load_klass_with_trap_null_check(temp2_reg, obj_reg);
1827 ld(temp2_reg, in_bytes(Klass::prototype_header_offset()), temp2_reg);
1828 orr(temp_reg, temp_reg, temp2_reg);
1829
1830 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1831
1832 // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1833 fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1834 cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1835 /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1836 /*where=*/obj_reg,
1837 MacroAssembler::MemBarAcq,
1838 MacroAssembler::cmpxchgx_hint_acquire_lock(),
1839 noreg, slow_case_int); // bail out if failed
1840
1841 // If the biasing toward our thread failed, this means that
1842 // another thread succeeded in biasing it toward itself and we
1843 // need to revoke that bias. The revocation will occur in the
1844 // interpreter runtime in the slow case.
1845 if (PrintBiasedLockingStatistics) {
1846 load_const(temp_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp2_reg);
1847 lwz(temp2_reg, 0, temp_reg);
1848 addi(temp2_reg, temp2_reg, 1);
1849 stw(temp2_reg, 0, temp_reg);
1850 }
1851 b(done);
1852
1853 bind(try_revoke_bias);
1854 // The prototype mark in the klass doesn't have the bias bit set any
1855 // more, indicating that objects of this data type are not supposed
1856 // to be biased any more. We are going to try to reset the mark of
1857 // this object to the prototype value and fall through to the
1858 // CAS-based locking scheme. Note that if our CAS fails, it means
1859 // that another thread raced us for the privilege of revoking the
1860 // bias of this particular object, so it's okay to continue in the
1861 // normal locking code.
1862 load_klass_with_trap_null_check(temp_reg, obj_reg);
1863 ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
1864 andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
1865 orr(temp_reg, temp_reg, temp2_reg);
1866
1867 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1868
1869 // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
1870 fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
1871 cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
1872 /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
1873 /*where=*/obj_reg,
1874 MacroAssembler::MemBarAcq,
1875 MacroAssembler::cmpxchgx_hint_acquire_lock());
1876
1877 // reload markOop in mark_reg before continuing with lightweight locking
1878 ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
1879
1880 // Fall through to the normal CAS-based lock, because no matter what
1881 // the result of the above CAS, some thread must have succeeded in
1882 // removing the bias bit from the object's header.
1883 if (PrintBiasedLockingStatistics) {
1884 Label l;
1885 bne(cr_reg, l);
1886 load_const(temp_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp2_reg);
1887 lwz(temp2_reg, 0, temp_reg);
1888 addi(temp2_reg, temp2_reg, 1);
1889 stw(temp2_reg, 0, temp_reg);
1890 bind(l);
1891 }
1892
1893 bind(cas_label);
1894 }
1895
1896 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
1897 // Check for biased locking unlock case, which is a no-op
1898 // Note: we do not have to check the thread ID for two reasons.
1899 // First, the interpreter checks for IllegalMonitorStateException at
1900 // a higher level. Second, if the bias was revoked while we held the
1901 // lock, the object could not be rebiased toward another thread, so
1902 // the bias bit would be clear.
1903
1904 ld(temp_reg, 0, mark_addr);
1905 andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
1906
1907 cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
1908 beq(cr_reg, done);
1909 }
1910
1911 // "The box" is the space on the stack where we copy the object mark.
1912 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
1913 Register temp, Register displaced_header, Register current_header) {
1914 assert_different_registers(oop, box, temp, displaced_header, current_header);
1915 assert(flag != CCR0, "bad condition register");
1916 Label cont;
1917 Label object_has_monitor;
1918 Label cas_failed;
1919
1920 // Load markOop from object into displaced_header.
1921 ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
1922
1923
1924 // Always do locking in runtime.
1925 if (EmitSync & 0x01) {
1926 cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
1927 return;
1928 }
1929
1930 if (UseBiasedLocking) {
1931 biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
1932 }
1933
1934 // Handle existing monitor.
1935 if ((EmitSync & 0x02) == 0) {
1936 // The object has an existing monitor iff (mark & monitor_value) != 0.
1937 andi_(temp, displaced_header, markOopDesc::monitor_value);
1938 bne(CCR0, object_has_monitor);
1939 }
1940
1941 // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
1942 ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
1943
1944 // Load Compare Value application register.
1945
1946 // Initialize the box. (Must happen before we update the object mark!)
1947 std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
1948
1949 // Must fence, otherwise, preceding store(s) may float below cmpxchg.
1950 // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
1951 // CmpxchgX sets cr_reg to cmpX(current, displaced).
1952 cmpxchgd(/*flag=*/flag,
1953 /*current_value=*/current_header,
1954 /*compare_value=*/displaced_header,
1955 /*exchange_value=*/box,
1956 /*where=*/oop,
1957 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
1958 MacroAssembler::cmpxchgx_hint_acquire_lock(),
1959 noreg,
1960 &cas_failed);
1961 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1962
1963 // If the compare-and-exchange succeeded, then we found an unlocked
1964 // object and we have now locked it.
1965 b(cont);
1966
1967 bind(cas_failed);
1968 // We did not see an unlocked object so try the fast recursive case.
1969
1970 // Check if the owner is self by comparing the value in the markOop of object
1971 // (current_header) with the stack pointer.
1972 sub(current_header, current_header, R1_SP);
1973 load_const_optimized(temp, (address) (~(os::vm_page_size()-1) |
1974 markOopDesc::lock_mask_in_place));
1975
1976 and_(R0/*==0?*/, current_header, temp);
1977 // If condition is true we are cont and hence we can store 0 as the
1978 // displaced header in the box, which indicates that it is a recursive lock.
1979 mcrf(flag,CCR0);
1980 std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
1981
1982 // Handle existing monitor.
1983 if ((EmitSync & 0x02) == 0) {
1984 b(cont);
1985
1986 bind(object_has_monitor);
1987 // The object's monitor m is unlocked iff m->owner == NULL,
1988 // otherwise m->owner may contain a thread or a stack address.
1989 //
1990 // Try to CAS m->owner from NULL to current thread.
1991 addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
1992 li(displaced_header, 0);
1993 // CmpxchgX sets flag to cmpX(current, displaced).
1994 cmpxchgd(/*flag=*/flag,
1995 /*current_value=*/current_header,
1996 /*compare_value=*/displaced_header,
1997 /*exchange_value=*/R16_thread,
1998 /*where=*/temp,
1999 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2000 MacroAssembler::cmpxchgx_hint_acquire_lock());
2001
2002 // Store a non-null value into the box.
2003 std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2004
2005 # ifdef ASSERT
2006 bne(flag, cont);
2007 // We have acquired the monitor, check some invariants.
2008 addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2009 // Invariant 1: _recursions should be 0.
2010 //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2011 asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2012 "monitor->_recursions should be 0", -1);
2013 // Invariant 2: OwnerIsThread shouldn't be 0.
2014 //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
2015 //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
2016 // "monitor->OwnerIsThread shouldn't be 0", -1);
2017 # endif
2018 }
2019
2020 bind(cont);
2021 // flag == EQ indicates success
2022 // flag == NE indicates failure
2023 }
2024
2025 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2026 Register temp, Register displaced_header, Register current_header) {
2027 assert_different_registers(oop, box, temp, displaced_header, current_header);
2028 assert(flag != CCR0, "bad condition register");
2029 Label cont;
2030 Label object_has_monitor;
2031
2032 // Always do locking in runtime.
2033 if (EmitSync & 0x01) {
2034 cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2035 return;
2036 }
2037
2038 if (UseBiasedLocking) {
2039 biased_locking_exit(flag, oop, current_header, cont);
2040 }
2041
2042 // Find the lock address and load the displaced header from the stack.
2043 ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2044
2045 // If the displaced header is 0, we have a recursive unlock.
2046 cmpdi(flag, displaced_header, 0);
2047 beq(flag, cont);
2048
2049 // Handle existing monitor.
2050 if ((EmitSync & 0x02) == 0) {
2051 // The object has an existing monitor iff (mark & monitor_value) != 0.
2052 ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2053 andi(temp, current_header, markOopDesc::monitor_value);
2054 cmpdi(flag, temp, 0);
2055 bne(flag, object_has_monitor);
2056 }
2057
2058
2059 // Check if it is still a light weight lock, this is is true if we see
2060 // the stack address of the basicLock in the markOop of the object.
2061 // Cmpxchg sets flag to cmpd(current_header, box).
2062 cmpxchgd(/*flag=*/flag,
2063 /*current_value=*/current_header,
2064 /*compare_value=*/box,
2065 /*exchange_value=*/displaced_header,
2066 /*where=*/oop,
2067 MacroAssembler::MemBarRel,
2068 MacroAssembler::cmpxchgx_hint_release_lock(),
2069 noreg,
2070 &cont);
2071
2072 assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2073
2074 // Handle existing monitor.
2075 if ((EmitSync & 0x02) == 0) {
2076 b(cont);
2077
2078 bind(object_has_monitor);
2079 addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2080 ld(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2081 ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2082 xorr(temp, R16_thread, temp); // Will be 0 if we are the owner.
2083 orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2084 cmpdi(flag, temp, 0);
2085 bne(flag, cont);
2086
2087 ld(temp, ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2088 ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2089 orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2090 cmpdi(flag, temp, 0);
2091 bne(flag, cont);
2092 release();
2093 std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2094 }
2095
2096 bind(cont);
2097 // flag == EQ indicates success
2098 // flag == NE indicates failure
2099 }
2100
2101 // Write serialization page so VM thread can do a pseudo remote membar.
2102 // We use the current thread pointer to calculate a thread specific
2103 // offset to write to within the page. This minimizes bus traffic
2104 // due to cache line collision.
2105 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2106 srdi(tmp2, thread, os::get_serialize_page_shift_count());
2107
2108 int mask = os::vm_page_size() - sizeof(int);
2109 if (Assembler::is_simm(mask, 16)) {
2110 andi(tmp2, tmp2, mask);
2111 } else {
2112 lis(tmp1, (int)((signed short) (mask >> 16)));
2113 ori(tmp1, tmp1, mask & 0x0000ffff);
2114 andr(tmp2, tmp2, tmp1);
2115 }
2116
2117 load_const(tmp1, (long) os::get_memory_serialize_page());
2118 release();
2119 stwx(R0, tmp1, tmp2);
2120 }
2121
2122
2123 // GC barrier helper macros
2124
2125 // Write the card table byte if needed.
2126 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
2127 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
2128 assert(bs->kind() == BarrierSet::CardTableModRef ||
2129 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
2130 #ifdef ASSERT
2131 cmpdi(CCR0, Rnew_val, 0);
2132 asm_assert_ne("null oop not allowed", 0x321);
2133 #endif
2134 card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
2135 }
2136
2137 // Write the card table byte.
2138 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
2139 assert_different_registers(Robj, Rtmp, R0);
2140 load_const_optimized(Rtmp, (address)byte_map_base, R0);
2141 srdi(Robj, Robj, CardTableModRefBS::card_shift);
2142 li(R0, 0); // dirty
2143 if (UseConcMarkSweepGC) release();
2144 stbx(R0, Rtmp, Robj);
2145 }
2146
2147 #ifndef SERIALGC
2148
2149 // General G1 pre-barrier generator.
2150 // Goal: record the previous value if it is not null.
2151 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
2152 Register Rtmp1, Register Rtmp2, bool needs_frame) {
2153 Label runtime, filtered;
2154
2155 // Is marking active?
2156 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
2157 lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
2158 } else {
2159 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
2160 lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()), R16_thread);
2161 }
2162 cmpdi(CCR0, Rtmp1, 0);
2163 beq(CCR0, filtered);
2164
2165 // Do we need to load the previous value?
2166 if (Robj != noreg) {
2167 // Load the previous value...
2168 if (UseCompressedOops) {
2169 lwz(Rpre_val, offset, Robj);
2170 } else {
2171 ld(Rpre_val, offset, Robj);
2172 }
2173 // Previous value has been loaded into Rpre_val.
2174 }
2175 assert(Rpre_val != noreg, "must have a real register");
2176
2177 // Is the previous value null?
2178 cmpdi(CCR0, Rpre_val, 0);
2179 beq(CCR0, filtered);
2180
2181 if (Robj != noreg && UseCompressedOops) {
2182 decode_heap_oop_not_null(Rpre_val);
2183 }
2184
2185 // OK, it's not filtered, so we'll need to call enqueue. In the normal
2186 // case, pre_val will be a scratch G-reg, but there are some cases in
2187 // which it's an O-reg. In the first case, do a normal call. In the
2188 // latter, do a save here and call the frameless version.
2189
2190 // Can we store original value in the thread's buffer?
2191 // Is index == 0?
2192 // (The index field is typed as size_t.)
2193 const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
2194
2195 ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2196 cmpdi(CCR0, Rindex, 0);
2197 beq(CCR0, runtime); // If index == 0, goto runtime.
2198 ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
2199
2200 addi(Rindex, Rindex, -wordSize); // Decrement index.
2201 std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2202
2203 // Record the previous value.
2204 stdx(Rpre_val, Rbuffer, Rindex);
2205 b(filtered);
2206
2207 bind(runtime);
2208
2209 // VM call need frame to access(write) O register.
2210 if (needs_frame) {
2211 save_LR_CR(Rtmp1);
2212 push_frame_abi112(0, Rtmp2);
2213 }
2214
2215 if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
2216 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
2217 if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
2218
2219 if (needs_frame) {
2220 pop_frame();
2221 restore_LR_CR(Rtmp1);
2222 }
2223
2224 bind(filtered);
2225 }
2226
2227 // General G1 post-barrier generator
2228 // Store cross-region card.
2229 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
2230 Label runtime, filtered_int;
2231 Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
2232 assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
2233
2234 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
2235 assert(bs->kind() == BarrierSet::G1SATBCT ||
2236 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
2237
2238 // Does store cross heap regions?
2239 if (G1RSBarrierRegionFilter) {
2240 xorr(Rtmp1, Rstore_addr, Rnew_val);
2241 srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
2242 beq(CCR0, filtered);
2243 }
2244
2245 // Crosses regions, storing NULL?
2246 #ifdef ASSERT
2247 cmpdi(CCR0, Rnew_val, 0);
2248 asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
2249 //beq(CCR0, filtered);
2250 #endif
2251
2252 // Storing region crossing non-NULL, is card already dirty?
2253 assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
2254 const Register Rcard_addr = Rtmp1;
2255 Register Rbase = Rtmp2;
2256 load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
2257
2258 srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
2259
2260 // Get the address of the card.
2261 lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
2262
2263 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
2264 cmpwi(CCR0, Rtmp3 /* card value */, 0);
2265 beq(CCR0, filtered);
2266
2267 // Storing a region crossing, non-NULL oop, card is clean.
2268 // Dirty card and log.
2269 li(Rtmp3, 0); // dirty
2270 //release(); // G1: oops are allowed to get visible after dirty marking.
2271 stbx(Rtmp3, Rbase, Rcard_addr);
2272
2273 add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
2274 Rbase = noreg; // end of lifetime
2275
2276 const Register Rqueue_index = Rtmp2,
2277 Rqueue_buf = Rtmp3;
2278 ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2279 cmpdi(CCR0, Rqueue_index, 0);
2280 beq(CCR0, runtime); // index == 0 then jump to runtime
2281 ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()), R16_thread);
2282
2283 addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
2284 std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()), R16_thread);
2285
2286 stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
2287 b(filtered);
2288
2289 bind(runtime);
2290
2291 // Save the live input values.
2292 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
2293
2294 bind(filtered_int);
2295 }
2296 #endif // SERIALGC
2297
2298 // Values for last_Java_pc, and last_Java_sp must comply to the rules
2299 // in frame_ppc64.hpp.
2300 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
2301 // Always set last_Java_pc and flags first because once last_Java_sp
2302 // is visible has_last_Java_frame is true and users will look at the
2303 // rest of the fields. (Note: flags should always be zero before we
2304 // get here so doesn't need to be set.)
2305
2306 // Verify that last_Java_pc was zeroed on return to Java
2307 asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
2308 "last_Java_pc not zeroed before leaving Java", 0x200);
2309
2310 // When returning from calling out from Java mode the frame anchor's
2311 // last_Java_pc will always be set to NULL. It is set here so that
2312 // if we are doing a call to native (not VM) that we capture the
2313 // known pc and don't have to rely on the native call having a
2314 // standard frame linkage where we can find the pc.
2315 if (last_Java_pc != noreg)
2316 std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
2317
2318 // set last_Java_sp last
2319 std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
2320 }
2321
2322 void MacroAssembler::reset_last_Java_frame(void) {
2323 asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
2324 R16_thread, "SP was not set, still zero", 0x202);
2325
2326 BLOCK_COMMENT("reset_last_Java_frame {");
2327 li(R0, 0);
2328
2329 // _last_Java_sp = 0
2330 std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
2331
2332 // _last_Java_pc = 0
2333 std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
2334 BLOCK_COMMENT("} reset_last_Java_frame");
2335 }
2336
2337 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
2338 assert_different_registers(sp, tmp1);
2339
2340 // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
2341 // TOP_IJAVA_FRAME_ABI.
2342 // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
2343 #ifdef CC_INTERP
2344 ld(tmp1/*pc*/, _top_ijava_frame_abi(frame_manager_lr), sp);
2345 #else
2346 Unimplemented();
2347 #endif
2348
2349 set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
2350 }
2351
2352 void MacroAssembler::get_vm_result(Register oop_result) {
2353 // Read:
2354 // R16_thread
2355 // R16_thread->in_bytes(JavaThread::vm_result_offset())
2356 //
2357 // Updated:
2358 // oop_result
2359 // R16_thread->in_bytes(JavaThread::vm_result_offset())
2360
2361 ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2362 li(R0, 0);
2363 std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2364
2365 verify_oop(oop_result);
2366 }
2367
2368 void MacroAssembler::get_vm_result_2(Register metadata_result) {
2369 // Read:
2370 // R16_thread
2371 // R16_thread->in_bytes(JavaThread::vm_result_2_offset())
2372 //
2373 // Updated:
2374 // metadata_result
2375 // R16_thread->in_bytes(JavaThread::vm_result_2_offset())
2376
2377 ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
2378 li(R0, 0);
2379 std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
2380 }
2381
2382
2383 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
2384 if (src == noreg) src = dst;
2385 if (Universe::narrow_klass_base() != NULL) {
2386 // heapbased
2387 assert(Universe::narrow_klass_shift() != 0, "sanity");
2388 sub(dst, src, R30);
2389 srdi(dst, dst, Universe::narrow_klass_shift());
2390 } else if (Universe::narrow_klass_shift() != 0) {
2391 // zerobased
2392 srdi(dst, src, Universe::narrow_klass_shift());
2393 } else if (src != dst) {
2394 // unscaled
2395 mr(dst, src);
2396 }
2397 }
2398
2399 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
2400 if (UseCompressedKlassPointers) {
2401 encode_klass_not_null(ck, klass);
2402 stw(ck, oopDesc::klass_offset_in_bytes(), dst_oop);
2403 } else {
2404 std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
2405 }
2406 }
2407
2408 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
2409 if (src == noreg) src = dst;
2410 if (Universe::narrow_klass_base() != NULL) {
2411 // heapbased
2412 assert(Universe::narrow_klass_shift() != 0, "sanity");
2413 sldi(dst, src, Universe::narrow_klass_shift());
2414 add(dst, dst, R30);
2415 } else if (Universe::narrow_klass_shift() != 0) {
2416 // zerobased
2417 sldi(dst, src, Universe::narrow_klass_shift());
2418 } else if (src != dst) {
2419 // unscaled
2420 mr(dst, src);
2421 }
2422 }
2423
2424 void MacroAssembler::load_klass(Register dst, Register src) {
2425 if (UseCompressedKlassPointers) {
2426 lwz(dst, oopDesc::klass_offset_in_bytes(), src);
2427 // Attention: no null check here!
2428 decode_klass_not_null(dst, dst);
2429 } else {
2430 ld(dst, oopDesc::klass_offset_in_bytes(), src);
2431 }
2432 }
2433
2434 void MacroAssembler::load_klass_with_trap_null_check(Register dst, Register src) {
2435 if (false NOT_LINUX(|| true) /*!os::zero_page_read_protected()*/) {
2436 if (TrapBasedNullChecks) {
2437 trap_null_check(src);
2438 }
2439 }
2440 load_klass(dst, src);
2441 }
2442
2443 void MacroAssembler::reinit_heapbase(Register d, Register tmp) {
2444 if (UseCompressedOops || UseCompressedKlassPointers) {
2445 load_const(R30, Universe::narrow_ptrs_base_addr(), tmp);
2446 ld(R30, 0, R30);
2447 }
2448 }
2449
2450 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
2451
2452 // Search for a single jchar in an jchar[].
2453 //
2454 // Assumes that result differs from all other registers.
2455 //
2456 // Haystack, needle are the addresses of jchar-arrays.
2457 // NeedleChar is needle[0] if it is known at compile time.
2458 // Haycnt is the length of the haystack. We assume haycnt >=1.
2459 //
2460 // Preserves haystack, haycnt, kills all other registers.
2461 //
2462 // If needle == R0, we search for the constant needleChar.
2463 void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt,
2464 Register needle, jchar needleChar,
2465 Register tmp1, Register tmp2) {
2466
2467 assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2);
2468
2469 Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End;
2470 Register needle0 = needle, // Contains needle[0].
2471 addr = tmp1,
2472 ch1 = tmp2,
2473 ch2 = R0;
2474
2475 //2 (variable) or 3 (const):
2476 if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1.
2477 dcbtct(haystack, 0x00); // Indicate R/O access to haystack.
2478
2479 srwi_(tmp2, haycnt, 1); // Shift right by exact_log2(UNROLL_FACTOR).
2480 mr(addr, haystack);
2481 beq(CCR0, L_FinalCheck);
2482 mtctr(tmp2); // Move to count register.
2483 //8:
2484 bind(L_InnerLoop); // Main work horse (2x unrolled search loop).
2485 lhz(ch1, 0, addr); // Load characters from haystack.
2486 lhz(ch2, 2, addr);
2487 (needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar);
2488 (needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar);
2489 beq(CCR0, L_Found1); // Did we find the needle?
2490 beq(CCR1, L_Found2);
2491 addi(addr, addr, 4);
2492 bdnz(L_InnerLoop);
2493 //16:
2494 bind(L_FinalCheck);
2495 andi_(R0, haycnt, 1);
2496 beq(CCR0, L_NotFound);
2497 lhz(ch1, 0, addr); // One position left at which we have to compare.
2498 (needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar);
2499 beq(CCR1, L_Found3);
2500 //21:
2501 bind(L_NotFound);
2502 li(result, -1); // Not found.
2503 b(L_End);
2504
2505 bind(L_Found2);
2506 addi(addr, addr, 2);
2507 //24:
2508 bind(L_Found1);
2509 bind(L_Found3); // Return index ...
2510 subf(addr, haystack, addr); // relative to haystack,
2511 srdi(result, addr, 1); // in characters.
2512 bind(L_End);
2513 }
2514
2515
2516 // Implementation of IndexOf for jchar arrays.
2517 //
2518 // The length of haystack and needle are not constant, i.e. passed in a register.
2519 //
2520 // Preserves registers haystack, needle.
2521 // Kills registers haycnt, needlecnt.
2522 // Assumes that result differs from all other registers.
2523 // Haystack, needle are the addresses of jchar-arrays.
2524 // Haycnt, needlecnt are the lengths of them, respectively.
2525 //
2526 // Needlecntval must be zero or 15-bit unsigned immediate and > 1.
2527 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
2528 Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
2529 Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2530
2531 // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
2532 Label L_TooShort, L_Found, L_NotFound, L_End;
2533 Register last_addr = haycnt, // Kill haycnt at the beginning.
2534 addr = tmp1,
2535 n_start = tmp2,
2536 ch1 = tmp3,
2537 ch2 = R0;
2538
2539 // **************************************************************************************************
2540 // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
2541 // **************************************************************************************************
2542
2543 //1 (variable) or 3 (const):
2544 dcbtct(needle, 0x00); // Indicate R/O access to str1.
2545 dcbtct(haystack, 0x00); // Indicate R/O access to str2.
2546
2547 // Compute last haystack addr to use if no match gets found.
2548 if (needlecntval == 0) { // variable needlecnt
2549 //3:
2550 subf(ch1, needlecnt, haycnt); // Last character index to compare is haycnt-needlecnt.
2551 addi(addr, haystack, -2); // Accesses use pre-increment.
2552 cmpwi(CCR6, needlecnt, 2);
2553 blt(CCR6, L_TooShort); // Variable needlecnt: handle short needle separately.
2554 slwi(ch1, ch1, 1); // Scale to number of bytes.
2555 lwz(n_start, 0, needle); // Load first 2 characters of needle.
2556 add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
2557 addi(needlecnt, needlecnt, -2); // Rest of needle.
2558 } else { // constant needlecnt
2559 guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
2560 assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
2561 //5:
2562 addi(ch1, haycnt, -needlecntval); // Last character index to compare is haycnt-needlecnt.
2563 lwz(n_start, 0, needle); // Load first 2 characters of needle.
2564 addi(addr, haystack, -2); // Accesses use pre-increment.
2565 slwi(ch1, ch1, 1); // Scale to number of bytes.
2566 add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
2567 li(needlecnt, needlecntval-2); // Rest of needle.
2568 }
2569
2570 // Main Loop (now we have at least 3 characters).
2571 //11:
2572 Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3;
2573 bind(L_OuterLoop); // Search for 1st 2 characters.
2574 Register addr_diff = tmp4;
2575 subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check.
2576 addi(addr, addr, 2); // This is the new address we want to use for comparing.
2577 srdi_(ch2, addr_diff, 2);
2578 beq(CCR0, L_FinalCheck); // 2 characters left?
2579 mtctr(ch2); // addr_diff/4
2580 //16:
2581 bind(L_InnerLoop); // Main work horse (2x unrolled search loop)
2582 lwz(ch1, 0, addr); // Load 2 characters of haystack (ignore alignment).
2583 lwz(ch2, 2, addr);
2584 cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
2585 cmpw(CCR1, ch2, n_start);
2586 beq(CCR0, L_Comp1); // Did we find the needle start?
2587 beq(CCR1, L_Comp2);
2588 addi(addr, addr, 4);
2589 bdnz(L_InnerLoop);
2590 //24:
2591 bind(L_FinalCheck);
2592 rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1.
2593 beq(CCR0, L_NotFound);
2594 lwz(ch1, 0, addr); // One position left at which we have to compare.
2595 cmpw(CCR1, ch1, n_start);
2596 beq(CCR1, L_Comp3);
2597 //29:
2598 bind(L_NotFound);
2599 li(result, -1); // not found
2600 b(L_End);
2601
2602
2603 // **************************************************************************************************
2604 // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
2605 // **************************************************************************************************
2606 //31:
2607 if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size.
2608 int nopcnt = 5;
2609 if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below).
2610 if (needlecntval == 0) { // We have to handle these cases separately.
2611 Label L_OneCharLoop;
2612 bind(L_TooShort);
2613 mtctr(haycnt);
2614 lhz(n_start, 0, needle); // First character of needle
2615 bind(L_OneCharLoop);
2616 lhzu(ch1, 2, addr);
2617 cmpw(CCR1, ch1, n_start);
2618 beq(CCR1, L_Found); // Did we find the one character needle?
2619 bdnz(L_OneCharLoop);
2620 li(result, -1); // Not found.
2621 b(L_End);
2622 } // 8 instructions, so no impact on alignment.
2623 for (int x = 0; x < nopcnt; ++x) nop();
2624 }
2625
2626 // **************************************************************************************************
2627 // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
2628 // **************************************************************************************************
2629
2630 // Compare the rest
2631 //36 if needlecntval==0, else 37:
2632 bind(L_Comp2);
2633 addi(addr, addr, 2); // First comparison has failed, 2nd one hit.
2634 bind(L_Comp1); // Addr points to possible needle start.
2635 bind(L_Comp3); // Could have created a copy and use a different return address but saving code size here.
2636 if (needlecntval != 2) { // Const needlecnt==2?
2637 if (needlecntval != 3) {
2638 if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2?
2639 Register ind_reg = tmp4;
2640 li(ind_reg, 2*2); // First 2 characters are already compared, use index 2.
2641 mtctr(needlecnt); // Decremented by 2, still > 0.
2642 //40:
2643 Label L_CompLoop;
2644 bind(L_CompLoop);
2645 lhzx(ch2, needle, ind_reg);
2646 lhzx(ch1, addr, ind_reg);
2647 cmpw(CCR1, ch1, ch2);
2648 bne(CCR1, L_OuterLoop);
2649 addi(ind_reg, ind_reg, 2);
2650 bdnz(L_CompLoop);
2651 } else { // No loop required if there's only one needle character left.
2652 lhz(ch2, 2*2, needle);
2653 lhz(ch1, 2*2, addr);
2654 cmpw(CCR1, ch1, ch2);
2655 bne(CCR1, L_OuterLoop);
2656 }
2657 }
2658 // Return index ...
2659 //46:
2660 bind(L_Found);
2661 subf(addr, haystack, addr); // relative to haystack, ...
2662 srdi(result, addr, 1); // in characters.
2663 //48:
2664 bind(L_End);
2665 }
2666
2667 // Implementation of Compare for jchar arrays.
2668 //
2669 // Kills the registers str1, str2, cnt1, cnt2.
2670 // Kills cr0, ctr.
2671 // Assumes that result differes from the input registers.
2672 void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
2673 Register result_reg, Register tmp_reg) {
2674 assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg);
2675
2676 Label Ldone, Lslow_case, Lslow_loop, Lfast_loop;
2677 Register cnt_diff = R0,
2678 limit_reg = cnt1_reg,
2679 chr1_reg = result_reg,
2680 chr2_reg = cnt2_reg,
2681 addr_diff = str2_reg;
2682
2683 // Offset 0 should be 32 byte aligned.
2684 //-4:
2685 dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
2686 dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
2687 //-2:
2688 // Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters).
2689 subf(result_reg, cnt2_reg, cnt1_reg); // difference between cnt1/2
2690 subf_(addr_diff, str1_reg, str2_reg); // alias?
2691 beq(CCR0, Ldone); // return cnt difference if both ones are identical
2692 srawi(limit_reg, result_reg, 31); // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow)
2693 mr(cnt_diff, result_reg);
2694 andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt1<cnt2 ? cnt1-cnt2 : 0
2695 add_(limit_reg, cnt2_reg, limit_reg); // min(cnt1, cnt2)==0?
2696 beq(CCR0, Ldone); // return cnt difference if one has 0 length
2697
2698 lhz(chr1_reg, 0, str1_reg); // optional: early out if first characters mismatch
2699 lhzx(chr2_reg, str1_reg, addr_diff); // optional: early out if first characters mismatch
2700 addi(tmp_reg, limit_reg, -1); // min(cnt1, cnt2)-1
2701 subf_(result_reg, chr2_reg, chr1_reg); // optional: early out if first characters mismatch
2702 bne(CCR0, Ldone); // optional: early out if first characters mismatch
2703
2704 // Set loop counter by scaling down tmp_reg
2705 srawi_(chr2_reg, tmp_reg, exact_log2(4)); // (min(cnt1, cnt2)-1)/4
2706 ble(CCR0, Lslow_case); // need >4 characters for fast loop
2707 andi(limit_reg, tmp_reg, 4-1); // remaining characters
2708
2709 // Adapt str1_reg str2_reg for the first loop iteration
2710 mtctr(chr2_reg); // (min(cnt1, cnt2)-1)/4
2711 addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop
2712 //16:
2713 // Compare the rest of the characters
2714 bind(Lfast_loop);
2715 ld(chr1_reg, 0, str1_reg);
2716 ldx(chr2_reg, str1_reg, addr_diff);
2717 cmpd(CCR0, chr2_reg, chr1_reg);
2718 bne(CCR0, Lslow_case); // return chr1_reg
2719 addi(str1_reg, str1_reg, 4*2);
2720 bdnz(Lfast_loop);
2721 addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing
2722 //23:
2723 bind(Lslow_case);
2724 mtctr(limit_reg);
2725 //24:
2726 bind(Lslow_loop);
2727 lhz(chr1_reg, 0, str1_reg);
2728 lhzx(chr2_reg, str1_reg, addr_diff);
2729 subf_(result_reg, chr2_reg, chr1_reg);
2730 bne(CCR0, Ldone); // return chr1_reg
2731 addi(str1_reg, str1_reg, 1*2);
2732 bdnz(Lslow_loop);
2733 //30:
2734 // If strings are equal up to min length, return the length difference.
2735 mr(result_reg, cnt_diff);
2736 nop(); // alignment
2737 //32:
2738 // Otherwise, return the difference between the first mismatched chars.
2739 bind(Ldone);
2740 }
2741
2742
2743 // Compare char[] arrays.
2744 //
2745 // str1_reg USE only
2746 // str2_reg USE only
2747 // cnt_reg USE_DEF, due to tmp reg shortage
2748 // result_reg DEF only, might compromise USE only registers
2749 void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
2750 Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
2751 Register tmp5_reg) {
2752
2753 // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
2754 assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
2755 assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
2756
2757 // Offset 0 should be 32 byte aligned.
2758 Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false;
2759 Register index_reg = tmp5_reg;
2760 Register cbc_iter = tmp4_reg;
2761
2762 //-1:
2763 dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
2764 dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
2765 //1:
2766 andi(cbc_iter, cnt_reg, 4-1); // Remaining iterations after 4 java characters per iteration loop.
2767 li(index_reg, 0); // init
2768 li(result_reg, 0); // assume false
2769 srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop).
2770
2771 cmpwi(CCR1, cbc_iter, 0); // CCR1 = (cbc_iter==0)
2772 beq(CCR0, Linit_cbc); // too short
2773 mtctr(tmp2_reg);
2774 //8:
2775 bind(Lloop);
2776 ldx(tmp1_reg, str1_reg, index_reg);
2777 ldx(tmp2_reg, str2_reg, index_reg);
2778 cmpd(CCR0, tmp1_reg, tmp2_reg);
2779 bne(CCR0, Ldone_false); // Unequal char pair found -> done.
2780 addi(index_reg, index_reg, 4*sizeof(jchar));
2781 bdnz(Lloop);
2782 //14:
2783 bind(Linit_cbc);
2784 beq(CCR1, Ldone_true);
2785 mtctr(cbc_iter);
2786 //16:
2787 bind(Lcbc);
2788 lhzx(tmp1_reg, str1_reg, index_reg);
2789 lhzx(tmp2_reg, str2_reg, index_reg);
2790 cmpw(CCR0, tmp1_reg, tmp2_reg);
2791 bne(CCR0, Ldone_false); // Unequal char pair found -> done.
2792 addi(index_reg, index_reg, 1*sizeof(jchar));
2793 bdnz(Lcbc);
2794 nop();
2795 bind(Ldone_true);
2796 li(result_reg, 1);
2797 //24:
2798 bind(Ldone_false);
2799 }
2800
2801
2802 void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
2803 Register tmp1_reg, Register tmp2_reg) {
2804 // Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
2805 assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg);
2806 assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg);
2807 assert(sizeof(jchar) == 2, "must be");
2808 assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate");
2809
2810 Label Ldone_false;
2811
2812 if (cntval < 16) { // short case
2813 if (cntval != 0) li(result_reg, 0); // assume false
2814
2815 const int num_bytes = cntval*sizeof(jchar);
2816 int index = 0;
2817 for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) {
2818 ld(tmp1_reg, index, str1_reg);
2819 ld(tmp2_reg, index, str2_reg);
2820 cmpd(CCR0, tmp1_reg, tmp2_reg);
2821 bne(CCR0, Ldone_false);
2822 }
2823 if (cntval & 2) {
2824 lwz(tmp1_reg, index, str1_reg);
2825 lwz(tmp2_reg, index, str2_reg);
2826 cmpw(CCR0, tmp1_reg, tmp2_reg);
2827 bne(CCR0, Ldone_false);
2828 index += 4;
2829 }
2830 if (cntval & 1) {
2831 lhz(tmp1_reg, index, str1_reg);
2832 lhz(tmp2_reg, index, str2_reg);
2833 cmpw(CCR0, tmp1_reg, tmp2_reg);
2834 bne(CCR0, Ldone_false);
2835 }
2836 // fallthrough: true
2837 } else {
2838 Label Lloop;
2839 Register index_reg = tmp1_reg;
2840 const int loopcnt = cntval/4;
2841 assert(loopcnt > 0, "must be");
2842 // Offset 0 should be 32 byte aligned.
2843 //2:
2844 dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
2845 dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
2846 li(tmp2_reg, loopcnt);
2847 li(index_reg, 0); // init
2848 li(result_reg, 0); // assume false
2849 mtctr(tmp2_reg);
2850 //8:
2851 bind(Lloop);
2852 ldx(R0, str1_reg, index_reg);
2853 ldx(tmp2_reg, str2_reg, index_reg);
2854 cmpd(CCR0, R0, tmp2_reg);
2855 bne(CCR0, Ldone_false); // Unequal char pair found -> done.
2856 addi(index_reg, index_reg, 4*sizeof(jchar));
2857 bdnz(Lloop);
2858 //14:
2859 if (cntval & 2) {
2860 lwzx(R0, str1_reg, index_reg);
2861 lwzx(tmp2_reg, str2_reg, index_reg);
2862 cmpw(CCR0, R0, tmp2_reg);
2863 bne(CCR0, Ldone_false);
2864 if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar));
2865 }
2866 if (cntval & 1) {
2867 lhzx(R0, str1_reg, index_reg);
2868 lhzx(tmp2_reg, str2_reg, index_reg);
2869 cmpw(CCR0, R0, tmp2_reg);
2870 bne(CCR0, Ldone_false);
2871 }
2872 // fallthru: true
2873 }
2874 li(result_reg, 1);
2875 bind(Ldone_false);
2876 }
2877
2878
2879 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
2880 #ifdef ASSERT
2881 Label ok;
2882 if (check_equal) {
2883 beq(CCR0, ok);
2884 } else {
2885 bne(CCR0, ok);
2886 }
2887 stop(msg, id);
2888 bind(ok);
2889 #endif
2890 }
2891
2892 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
2893 Register mem_base, const char* msg, int id) {
2894 #ifdef ASSERT
2895 switch (size) {
2896 case 4:
2897 lwz(R0, mem_offset, mem_base);
2898 cmpwi(CCR0, R0, 0);
2899 break;
2900 case 8:
2901 ld(R0, mem_offset, mem_base);
2902 cmpdi(CCR0, R0, 0);
2903 break;
2904 default:
2905 ShouldNotReachHere();
2906 }
2907 asm_assert(check_equal, msg, id);
2908 #endif // ASSERT
2909 }
2910
2911 void MacroAssembler::verify_thread() {
2912 if (VerifyThread) {
2913 unimplemented("'VerifyThread' currently not implemented on PPC");
2914 }
2915 }
2916
2917 // READ: oop. KILL: R0. Volatile floats perhaps.
2918 void MacroAssembler::verify_oop(Register oop, const char* msg) {
2919 if (!VerifyOops) {
2920 return;
2921 }
2922 // will be preserved.
2923 Register tmp = R11;
2924 assert(oop != tmp, "precondition");
2925 unsigned int nbytes_save = 10*8; // 10 volatile gprs
2926 address/* FunctionDescriptor** */fd =
2927 StubRoutines::verify_oop_subroutine_entry_address();
2928 // save tmp
2929 mr(R0, tmp);
2930 // kill tmp
2931 save_LR_CR(tmp);
2932 push_frame_abi112(nbytes_save, tmp);
2933 // restore tmp
2934 mr(tmp, R0);
2935 save_volatile_gprs(R1_SP, 112); // except R0
2936 // load FunctionDescriptor**
2937 load_const(tmp, fd);
2938 // load FunctionDescriptor*
2939 ld(tmp, 0, tmp);
2940 mr(R4_ARG2, oop);
2941 load_const(R3_ARG1, (address)msg);
2942 // call destination for its side effect
2943 call_c(tmp);
2944 restore_volatile_gprs(R1_SP, 112); // except R0
2945 pop_frame();
2946 // save tmp
2947 mr(R0, tmp);
2948 // kill tmp
2949 restore_LR_CR(tmp);
2950 // restore tmp
2951 mr(tmp, R0);
2952 }
2953
2954 const char* stop_types[] = {
2955 "stop",
2956 "untested",
2957 "unimplemented",
2958 "shouldnotreachhere"
2959 };
2960
2961 static void stop_on_request(int tp, const char* msg) {
2962 tty->print("PPC assembly code requires stop: (%s) %s\n", (void *)stop_types[tp%/*stop_end*/4], msg);
2963 guarantee(false, err_msg("PPC assembly code requires stop: %s", msg));
2964 }
2965
2966 // Call a C-function that prints output.
2967 void MacroAssembler::stop(int type, const char* msg, int id) {
2968 #ifndef PRODUCT
2969 block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
2970 #else
2971 block_comment("stop {");
2972 #endif
2973
2974 // setup arguments
2975 load_const_optimized(R3_ARG1, type);
2976 load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
2977 call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
2978 illtrap();
2979 emit_int32(id);
2980 block_comment("} stop;");
2981 }
2982
2983 #ifndef PRODUCT
2984 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
2985 // Val, addr are temp registers.
2986 // If low == addr, addr is killed.
2987 // High is preserved.
2988 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
2989 if (!ZapMemory) return;
2990
2991 assert_different_registers(low, val);
2992
2993 BLOCK_COMMENT("zap memory region {");
2994 load_const_optimized(val, 0x0101010101010101);
2995 int size = before + after;
2996 if (low == high && size < 5 && size > 0) {
2997 int offset = -before*BytesPerWord;
2998 for (int i = 0; i < size; ++i) {
2999 std(val, offset, low);
3000 offset += (1*BytesPerWord);
3001 }
3002 } else {
3003 addi(addr, low, -before*BytesPerWord);
3004 assert_different_registers(high, val);
3005 if (after) addi(high, high, after * BytesPerWord);
3006 Label loop;
3007 bind(loop);
3008 std(val, 0, addr);
3009 addi(addr, addr, 8);
3010 cmpd(CCR6, addr, high);
3011 ble(CCR6, loop);
3012 if (after) addi(high, high, -after * BytesPerWord); // Correct back to old value.
3013 }
3014 BLOCK_COMMENT("} zap memory region");
3015 }
3016
3017 #endif // !PRODUCT