comparison src/cpu/ppc/vm/macroAssembler_ppc.hpp @ 14408:ec28f9c041ff

8019972: PPC64 (part 9): platform files for interpreter only VM. Summary: With this change the HotSpot core build works on Linux/PPC64. The VM succesfully executes simple test programs. Reviewed-by: kvn
author goetz
date Fri, 02 Aug 2013 16:46:45 +0200
parents
children eb178e97560c
comparison
equal deleted inserted replaced
14407:94c202aa2646 14408:ec28f9c041ff
1 /*
2 * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2013 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
28
29 #include "asm/assembler.hpp"
30
31 // MacroAssembler extends Assembler by a few frequently used macros.
32
33 class ciTypeArray;
34
35 class MacroAssembler: public Assembler {
36 public:
37 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
38
39 //
40 // Optimized instruction emitters
41 //
42
43 inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
44 inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
45
46 // load d = *[a+si31]
47 // Emits several instructions if the offset is not encodable in one instruction.
48 void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
49 void ld_largeoffset (Register d, int si31, Register a, int emit_filler_nop);
50 inline static bool is_ld_largeoffset(address a);
51 inline static int get_ld_largeoffset_offset(address a);
52
53 inline void round_to(Register r, int modulus);
54
55 // Load/store with type given by parameter.
56 void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
57 void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
58
59 // Move register if destination register and target register are different
60 inline void mr_if_needed(Register rd, Register rs);
61
62 // nop padding
63 void align(int modulus);
64
65 //
66 // Constants, loading constants, TOC support
67 //
68
69 // Address of the global TOC.
70 inline static address global_toc();
71 // Offset of given address to the global TOC.
72 inline static int offset_to_global_toc(const address addr);
73
74 // Address of TOC of the current method.
75 inline address method_toc();
76 // Offset of given address to TOC of the current method.
77 inline int offset_to_method_toc(const address addr);
78
79 // Global TOC.
80 void calculate_address_from_global_toc(Register dst, address addr,
81 bool hi16 = true, bool lo16 = true,
82 bool add_relocation = true, bool emit_dummy_addr = false);
83 inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
84 calculate_address_from_global_toc(dst, addr, true, false);
85 };
86 inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
87 calculate_address_from_global_toc(dst, addr, false, true);
88 };
89
90 inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
91 static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound);
92 static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
93
94 #ifdef _LP64
95 // Patch narrow oop constant.
96 inline static bool is_set_narrow_oop(address a, address bound);
97 static int patch_set_narrow_oop(address a, address bound, narrowOop data);
98 static narrowOop get_narrow_oop(address a, address bound);
99 #endif
100
101 inline static bool is_load_const_at(address a);
102
103 // Emits an oop const to the constant pool, loads the constant, and
104 // sets a relocation info with address current_pc.
105 void load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc);
106 void load_toc_from_toc(Register dst, AddressLiteral& a, Register toc) {
107 assert(dst == R2_TOC, "base register must be TOC");
108 load_const_from_method_toc(dst, a, toc);
109 }
110
111 static bool is_load_const_from_method_toc_at(address a);
112 static int get_offset_of_load_const_from_method_toc_at(address a);
113
114 // Get the 64 bit constant from a `load_const' sequence.
115 static long get_const(address load_const);
116
117 // Patch the 64 bit constant of a `load_const' sequence. This is a
118 // low level procedure. It neither flushes the instruction cache nor
119 // is it atomic.
120 static void patch_const(address load_const, long x);
121
122 // Metadata in code that we have to keep track of.
123 AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
124 AddressLiteral constant_metadata_address(Metadata* obj); // find_index
125 // Oops used directly in compiled code are stored in the constant pool,
126 // and loaded from there.
127 // Allocate new entry for oop in constant pool. Generate relocation.
128 AddressLiteral allocate_oop_address(jobject obj);
129 // Find oop obj in constant pool. Return relocation with it's index.
130 AddressLiteral constant_oop_address(jobject obj);
131
132 // Find oop in constant pool and emit instructions to load it.
133 // Uses constant_oop_address.
134 inline void set_oop_constant(jobject obj, Register d);
135 // Same as load_address.
136 inline void set_oop (AddressLiteral obj_addr, Register d);
137
138 // Read runtime constant: Issue load if constant not yet established,
139 // else use real constant.
140 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
141 Register tmp,
142 int offset);
143
144 //
145 // branch, jump
146 //
147
148 inline void pd_patch_instruction(address branch, address target);
149 NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
150
151 // Conditional far branch for destinations encodable in 24+2 bits.
152 // Same interface as bc, e.g. no inverse boint-field.
153 enum {
154 bc_far_optimize_not = 0,
155 bc_far_optimize_on_relocate = 1
156 };
157 // optimize: flag for telling the conditional far branch to optimize
158 // itself when relocated.
159 void bc_far(int boint, int biint, Label& dest, int optimize);
160 // Relocation of conditional far branches.
161 static bool is_bc_far_at(address instruction_addr);
162 static address get_dest_of_bc_far_at(address instruction_addr);
163 static void set_dest_of_bc_far_at(address instruction_addr, address dest);
164 private:
165 static bool inline is_bc_far_variant1_at(address instruction_addr);
166 static bool inline is_bc_far_variant2_at(address instruction_addr);
167 static bool inline is_bc_far_variant3_at(address instruction_addr);
168 public:
169
170 // Convenience bc_far versions.
171 inline void blt_far(ConditionRegister crx, Label& L, int optimize);
172 inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
173 inline void beq_far(ConditionRegister crx, Label& L, int optimize);
174 inline void bso_far(ConditionRegister crx, Label& L, int optimize);
175 inline void bge_far(ConditionRegister crx, Label& L, int optimize);
176 inline void ble_far(ConditionRegister crx, Label& L, int optimize);
177 inline void bne_far(ConditionRegister crx, Label& L, int optimize);
178 inline void bns_far(ConditionRegister crx, Label& L, int optimize);
179
180 // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
181 private:
182 enum {
183 bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
184 bxx64_patchable_size = bxx64_patchable_instruction_count * BytesPerInstWord,
185 bxx64_patchable_ret_addr_offset = bxx64_patchable_size
186 };
187 void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
188 static bool is_bxx64_patchable_at( address instruction_addr, bool link);
189 // Does the instruction use a pc-relative encoding of the destination?
190 static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
191 static bool is_bxx64_patchable_variant1_at( address instruction_addr, bool link);
192 // Load destination relative to global toc.
193 static bool is_bxx64_patchable_variant1b_at( address instruction_addr, bool link);
194 static bool is_bxx64_patchable_variant2_at( address instruction_addr, bool link);
195 static void set_dest_of_bxx64_patchable_at( address instruction_addr, address target, bool link);
196 static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
197
198 public:
199 // call
200 enum {
201 bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
202 bl64_patchable_size = bxx64_patchable_size,
203 bl64_patchable_ret_addr_offset = bxx64_patchable_ret_addr_offset
204 };
205 inline void bl64_patchable(address target, relocInfo::relocType rt) {
206 bxx64_patchable(target, rt, /*link=*/true);
207 }
208 inline static bool is_bl64_patchable_at(address instruction_addr) {
209 return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
210 }
211 inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
212 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
213 }
214 inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
215 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
216 }
217 inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
218 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
219 }
220 // jump
221 enum {
222 b64_patchable_instruction_count = bxx64_patchable_instruction_count,
223 b64_patchable_size = bxx64_patchable_size,
224 };
225 inline void b64_patchable(address target, relocInfo::relocType rt) {
226 bxx64_patchable(target, rt, /*link=*/false);
227 }
228 inline static bool is_b64_patchable_at(address instruction_addr) {
229 return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
230 }
231 inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
232 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
233 }
234 inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
235 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
236 }
237 inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
238 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
239 }
240
241 //
242 // Support for frame handling
243 //
244
245 // some ABI-related functions
246 void save_nonvolatile_gprs( Register dst_base, int offset);
247 void restore_nonvolatile_gprs(Register src_base, int offset);
248 void save_volatile_gprs( Register dst_base, int offset);
249 void restore_volatile_gprs(Register src_base, int offset);
250 void save_LR_CR( Register tmp); // tmp contains LR on return.
251 void restore_LR_CR(Register tmp);
252
253 // Get current PC using bl-next-instruction trick.
254 address get_PC_trash_LR(Register result);
255
256 // Resize current frame either relatively wrt to current SP or absolute.
257 void resize_frame(Register offset, Register tmp);
258 void resize_frame(int offset, Register tmp);
259 void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
260
261 // Push a frame of size bytes.
262 void push_frame(Register bytes, Register tmp);
263
264 // Push a frame of size `bytes'. No abi space provided.
265 void push_frame(unsigned int bytes, Register tmp);
266
267 // Push a frame of size `bytes' plus abi112 on top.
268 void push_frame_abi112(unsigned int bytes, Register tmp);
269
270 // Setup up a new C frame with a spill area for non-volatile GPRs and additional
271 // space for local variables
272 void push_frame_abi112_nonvolatiles(unsigned int bytes, Register tmp);
273
274 // pop current C frame
275 void pop_frame();
276
277 //
278 // Calls
279 //
280
281 private:
282 address _last_calls_return_pc;
283
284 // Generic version of a call to C function via a function descriptor
285 // with variable support for C calling conventions (TOC, ENV, etc.).
286 // updates and returns _last_calls_return_pc.
287 address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
288 bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
289
290 public:
291
292 // Get the pc where the last call will return to. returns _last_calls_return_pc.
293 inline address last_calls_return_pc();
294
295 // Call a C function via a function descriptor and use full C
296 // calling conventions. Updates and returns _last_calls_return_pc.
297 address call_c(Register function_descriptor);
298 address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
299 address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
300 Register toc);
301
302 protected:
303
304 // It is imperative that all calls into the VM are handled via the
305 // call_VM macros. They make sure that the stack linkage is setup
306 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
307 // while call_VM_leaf's correspond to LEAF entry points.
308 //
309 // This is the base routine called by the different versions of
310 // call_VM. The interpreter may customize this version by overriding
311 // it for its purposes (e.g., to save/restore additional registers
312 // when doing a VM call).
313 //
314 // If no last_java_sp is specified (noreg) then SP will be used instead.
315 virtual void call_VM_base(
316 // where an oop-result ends up if any; use noreg otherwise
317 Register oop_result,
318 // to set up last_Java_frame in stubs; use noreg otherwise
319 Register last_java_sp,
320 // the entry point
321 address entry_point,
322 // flag which indicates if exception should be checked
323 bool check_exception=true
324 );
325
326 // Support for VM calls. This is the base routine called by the
327 // different versions of call_VM_leaf. The interpreter may customize
328 // this version by overriding it for its purposes (e.g., to
329 // save/restore additional registers when doing a VM call).
330 void call_VM_leaf_base(address entry_point);
331
332 public:
333 // Call into the VM.
334 // Passes the thread pointer (in R3_ARG1) as a prepended argument.
335 // Makes sure oop return values are visible to the GC.
336 void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
337 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
338 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
339 void call_VM_leaf(address entry_point);
340 void call_VM_leaf(address entry_point, Register arg_1);
341 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
342 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
343
344 // Call a stub function via a function descriptor, but don't save
345 // TOC before call, don't setup TOC and ENV for call, and don't
346 // restore TOC after call. Updates and returns _last_calls_return_pc.
347 inline address call_stub(Register function_entry);
348 inline void call_stub_and_return_to(Register function_entry, Register return_pc);
349
350 //
351 // Java utilities
352 //
353
354 // Read from the polling page, its address is already in a register.
355 inline void load_from_polling_page(Register polling_page_address, int offset = 0);
356 // Check whether instruction is a read access to the polling page
357 // which was emitted by load_from_polling_page(..).
358 static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
359 address* polling_address_ptr = NULL);
360
361 // Check whether instruction is a write access to the memory
362 // serialization page realized by one of the instructions stw, stwu,
363 // stwx, or stwux.
364 static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
365
366 // Support for NULL-checks
367 //
368 // Generates code that causes a NULL OS exception if the content of reg is NULL.
369 // If the accessed location is M[reg + offset] and the offset is known, provide the
370 // offset. No explicit code generation is needed if the offset is within a certain
371 // range (0 <= offset <= page_size).
372
373 // Stack overflow checking
374 void bang_stack_with_offset(int offset);
375
376 // If instruction is a stack bang of the form ld, stdu, or
377 // stdux, return the banged address. Otherwise, return 0.
378 static address get_stack_bang_address(int instruction, void* ucontext);
379
380 // Atomics
381 // CmpxchgX sets condition register to cmpX(current, compare).
382 // (flag == ne) => (dest_current_value != compare_value), (!swapped)
383 // (flag == eq) => (dest_current_value == compare_value), ( swapped)
384 static inline bool cmpxchgx_hint_acquire_lock() { return true; }
385 // The stxcx will probably not be succeeded by a releasing store.
386 static inline bool cmpxchgx_hint_release_lock() { return false; }
387 static inline bool cmpxchgx_hint_atomic_update() { return false; }
388
389 // Cmpxchg semantics
390 enum {
391 MemBarNone = 0,
392 MemBarRel = 1,
393 MemBarAcq = 2,
394 MemBarFenceAfter = 4 // use powers of 2
395 };
396 void cmpxchgw(ConditionRegister flag,
397 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
398 int semantics, bool cmpxchgx_hint = false,
399 Register int_flag_success = noreg, bool contention_hint = false);
400 void cmpxchgd(ConditionRegister flag,
401 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
402 int semantics, bool cmpxchgx_hint = false,
403 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false);
404
405 // interface method calling
406 void lookup_interface_method(Register recv_klass,
407 Register intf_klass,
408 RegisterOrConstant itable_index,
409 Register method_result,
410 Register temp_reg, Register temp2_reg,
411 Label& no_such_interface);
412
413 // virtual method calling
414 void lookup_virtual_method(Register recv_klass,
415 RegisterOrConstant vtable_index,
416 Register method_result);
417
418 // Test sub_klass against super_klass, with fast and slow paths.
419
420 // The fast path produces a tri-state answer: yes / no / maybe-slow.
421 // One of the three labels can be NULL, meaning take the fall-through.
422 // If super_check_offset is -1, the value is loaded up from super_klass.
423 // No registers are killed, except temp_reg and temp2_reg.
424 // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
425 void check_klass_subtype_fast_path(Register sub_klass,
426 Register super_klass,
427 Register temp1_reg,
428 Register temp2_reg,
429 Label& L_success,
430 Label& L_failure);
431
432 // The rest of the type check; must be wired to a corresponding fast path.
433 // It does not repeat the fast path logic, so don't use it standalone.
434 // The temp_reg can be noreg, if no temps are available.
435 // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
436 // Updates the sub's secondary super cache as necessary.
437 void check_klass_subtype_slow_path(Register sub_klass,
438 Register super_klass,
439 Register temp1_reg,
440 Register temp2_reg,
441 Label* L_success = NULL,
442 Register result_reg = noreg);
443
444 // Simplified, combined version, good for typical uses.
445 // Falls through on failure.
446 void check_klass_subtype(Register sub_klass,
447 Register super_klass,
448 Register temp1_reg,
449 Register temp2_reg,
450 Label& L_success);
451
452 // Method handle support (JSR 292).
453 void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
454
455 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
456
457 // Biased locking support
458 // Upon entry,obj_reg must contain the target object, and mark_reg
459 // must contain the target object's header.
460 // Destroys mark_reg if an attempt is made to bias an anonymously
461 // biased lock. In this case a failure will go either to the slow
462 // case or fall through with the notEqual condition code set with
463 // the expectation that the slow case in the runtime will be called.
464 // In the fall-through case where the CAS-based lock is done,
465 // mark_reg is not destroyed.
466 void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
467 Register temp2_reg, Label& done, Label* slow_case = NULL);
468 // Upon entry, the base register of mark_addr must contain the oop.
469 // Destroys temp_reg.
470 // If allow_delay_slot_filling is set to true, the next instruction
471 // emitted after this one will go in an annulled delay slot if the
472 // biased locking exit case failed.
473 void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
474
475 void compiler_fast_lock_object( ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
476 void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
477
478 // Support for serializing memory accesses between threads
479 void serialize_memory(Register thread, Register tmp1, Register tmp2);
480
481 // GC barrier support.
482 void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
483 void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
484
485 #ifndef SERIALGC
486 // General G1 pre-barrier generator.
487 void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
488 Register Rtmp1, Register Rtmp2, bool needs_frame = false);
489 // General G1 post-barrier generator
490 void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
491 Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
492 #endif // SERIALGC
493
494 // Support for managing the JavaThread pointer (i.e.; the reference to
495 // thread-local information).
496
497 // Support for last Java frame (but use call_VM instead where possible):
498 // access R16_thread->last_Java_sp.
499 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
500 void reset_last_Java_frame(void);
501 void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
502
503 // Read vm result from thread: oop_result = R16_thread->result;
504 void get_vm_result (Register oop_result);
505 void get_vm_result_2(Register metadata_result);
506
507 static bool needs_explicit_null_check(intptr_t offset);
508
509 // Trap-instruction-based checks.
510 // Range checks can be distinguished from zero checks as they check 32 bit,
511 // zero checks all 64 bits (tw, td).
512 inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
513 static bool is_trap_null_check(int x) {
514 return is_tdi(x, traptoEqual, -1/*any reg*/, 0) ||
515 is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
516 }
517
518 inline void trap_zombie_not_entrant();
519 static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
520
521 inline void trap_should_not_reach_here();
522 static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
523
524 inline void trap_ic_miss_check(Register a, Register b);
525 static bool is_trap_ic_miss_check(int x) {
526 return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
527 }
528
529 // Implicit or explicit null check, jumps to static address exception_entry.
530 inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
531
532 // Check accessed object for null. Use SIGTRAP-based null checks on AIX.
533 inline void ld_with_trap_null_check(Register d, int si16, Register s1);
534 // Variant for heap OOPs including decompression of compressed OOPs.
535 inline void load_heap_oop_with_trap_null_check(Register d, RegisterOrConstant offs, Register s1);
536
537 // Load heap oop and decompress. Loaded oop may not be null.
538 inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg);
539
540 // Null allowed.
541 inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg);
542
543 // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
544 inline void encode_heap_oop_not_null(Register d);
545 inline void decode_heap_oop_not_null(Register d);
546
547 // Null allowed.
548 inline void decode_heap_oop(Register d);
549
550 // Load/Store klass oop from klass field. Compress.
551 void load_klass(Register dst, Register src);
552 void load_klass_with_trap_null_check(Register dst, Register src);
553 void store_klass(Register dst_oop, Register klass, Register tmp = R0);
554 void decode_klass_not_null(Register dst, Register src = noreg);
555 void encode_klass_not_null(Register dst, Register src = noreg);
556
557 // Load common heap base into register.
558 void reinit_heapbase(Register d, Register tmp = noreg);
559
560 // SIGTRAP-based range checks for arrays.
561 inline void trap_range_check_l(Register a, Register b);
562 inline void trap_range_check_l(Register a, int si16);
563 static bool is_trap_range_check_l(int x) {
564 return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
565 is_twi(x, traptoLessThanUnsigned, -1/*any reg*/) );
566 }
567 inline void trap_range_check_le(Register a, int si16);
568 static bool is_trap_range_check_le(int x) {
569 return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
570 }
571 inline void trap_range_check_g(Register a, int si16);
572 static bool is_trap_range_check_g(int x) {
573 return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
574 }
575 inline void trap_range_check_ge(Register a, Register b);
576 inline void trap_range_check_ge(Register a, int si16);
577 static bool is_trap_range_check_ge(int x) {
578 return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
579 is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/) );
580 }
581 static bool is_trap_range_check(int x) {
582 return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
583 is_trap_range_check_g(x) || is_trap_range_check_ge(x);
584 }
585
586 // Needle of length 1.
587 void string_indexof_1(Register result, Register haystack, Register haycnt,
588 Register needle, jchar needleChar,
589 Register tmp1, Register tmp2);
590 // General indexof, eventually with constant needle length.
591 void string_indexof(Register result, Register haystack, Register haycnt,
592 Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
593 Register tmp1, Register tmp2, Register tmp3, Register tmp4);
594 void string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
595 Register result_reg, Register tmp_reg);
596 void char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
597 Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
598 Register tmp5_reg);
599 void char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
600 Register tmp1_reg, Register tmp2_reg);
601
602 //
603 // Debugging
604 //
605
606 // assert on cr0
607 void asm_assert(bool check_equal, const char* msg, int id);
608 void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
609 void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
610
611 private:
612 void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
613 const char* msg, int id);
614
615 public:
616
617 void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
618 asm_assert_mems_zero(true, 8, mem_offset, mem_base, msg, id);
619 }
620 void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
621 asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
622 }
623
624 // Verify R16_thread contents.
625 void verify_thread();
626
627 // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
628 void verify_oop(Register reg, const char* s = "broken oop");
629
630 // TODO: verify method and klass metadata (compare against vptr?)
631 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
632 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
633
634 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
635 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
636
637 private:
638
639 enum {
640 stop_stop = 0,
641 stop_untested = 1,
642 stop_unimplemented = 2,
643 stop_shouldnotreachhere = 3,
644 stop_end = 4
645 };
646 void stop(int type, const char* msg, int id);
647
648 public:
649 // Prints msg, dumps registers and stops execution.
650 void stop (const char* msg = "", int id = 0) { stop(stop_stop, msg, id); }
651 void untested (const char* msg = "", int id = 0) { stop(stop_untested, msg, id); }
652 void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented, msg, id); }
653 void should_not_reach_here() { stop(stop_shouldnotreachhere, "", -1); }
654
655 void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
656 };
657
658 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP