comparison src/cpu/sparc/vm/assembler_sparc.cpp @ 7204:f0c2369fda5a

8003250: SPARC: move MacroAssembler into separate file Reviewed-by: jrose, kvn
author twisti
date Thu, 06 Dec 2012 09:57:41 -0800
parents cd3d6a6b95d9
children 291ffc492eb6
comparison
equal deleted inserted replaced
7201:c5d414e98fd4 7204:f0c2369fda5a
22 * 22 *
23 */ 23 */
24 24
25 #include "precompiled.hpp" 25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp" 26 #include "asm/assembler.hpp"
27 #include "assembler_sparc.inline.hpp" 27 #include "asm/assembler.inline.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "gc_interface/collectedHeap.inline.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "memory/cardTableModRefBS.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "prims/methodHandles.hpp"
34 #include "runtime/biasedLocking.hpp"
35 #include "runtime/interfaceSupport.hpp"
36 #include "runtime/objectMonitor.hpp"
37 #include "runtime/os.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #ifndef SERIALGC
41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
43 #include "gc_implementation/g1/heapRegion.hpp"
44 #endif
45
46 #ifdef PRODUCT
47 #define BLOCK_COMMENT(str) /* nothing */
48 #define STOP(error) stop(error)
49 #else
50 #define BLOCK_COMMENT(str) block_comment(str)
51 #define STOP(error) block_comment(error); stop(error)
52 #endif
53
54 // Convert the raw encoding form into the form expected by the
55 // constructor for Address.
56 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
57 assert(scale == 0, "not supported");
58 RelocationHolder rspec;
59 if (disp_reloc != relocInfo::none) {
60 rspec = Relocation::spec_simple(disp_reloc);
61 }
62
63 Register rindex = as_Register(index);
64 if (rindex != G0) {
65 Address madr(as_Register(base), rindex);
66 madr._rspec = rspec;
67 return madr;
68 } else {
69 Address madr(as_Register(base), disp);
70 madr._rspec = rspec;
71 return madr;
72 }
73 }
74
75 Address Argument::address_in_frame() const {
76 // Warning: In LP64 mode disp will occupy more than 10 bits, but
77 // op codes such as ld or ldx, only access disp() to get
78 // their simm13 argument.
79 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
80 if (is_in())
81 return Address(FP, disp); // In argument.
82 else
83 return Address(SP, disp); // Out argument.
84 }
85
86 static const char* argumentNames[][2] = {
87 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
88 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
89 {"A(n>9)","P(n>9)"}
90 };
91
92 const char* Argument::name() const {
93 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
94 int num = number();
95 if (num >= nofArgs) num = nofArgs - 1;
96 return argumentNames[num][is_in() ? 1 : 0];
97 }
98
99 void Assembler::print_instruction(int inst) {
100 const char* s;
101 switch (inv_op(inst)) {
102 default: s = "????"; break;
103 case call_op: s = "call"; break;
104 case branch_op:
105 switch (inv_op2(inst)) {
106 case fb_op2: s = "fb"; break;
107 case fbp_op2: s = "fbp"; break;
108 case br_op2: s = "br"; break;
109 case bp_op2: s = "bp"; break;
110 case cb_op2: s = "cb"; break;
111 case bpr_op2: {
112 if (is_cbcond(inst)) {
113 s = is_cxb(inst) ? "cxb" : "cwb";
114 } else {
115 s = "bpr";
116 }
117 break;
118 }
119 default: s = "????"; break;
120 }
121 }
122 ::tty->print("%s", s);
123 }
124
125
126 // Patch instruction inst at offset inst_pos to refer to dest_pos
127 // and return the resulting instruction.
128 // We should have pcs, not offsets, but since all is relative, it will work out
129 // OK.
130 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
131
132 int m; // mask for displacement field
133 int v; // new value for displacement field
134 const int word_aligned_ones = -4;
135 switch (inv_op(inst)) {
136 default: ShouldNotReachHere();
137 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
138 case branch_op:
139 switch (inv_op2(inst)) {
140 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
141 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
142 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
143 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
144 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
145 case bpr_op2: {
146 if (is_cbcond(inst)) {
147 m = wdisp10(word_aligned_ones, 0);
148 v = wdisp10(dest_pos, inst_pos);
149 } else {
150 m = wdisp16(word_aligned_ones, 0);
151 v = wdisp16(dest_pos, inst_pos);
152 }
153 break;
154 }
155 default: ShouldNotReachHere();
156 }
157 }
158 return inst & ~m | v;
159 }
160
161 // Return the offset of the branch destionation of instruction inst
162 // at offset pos.
163 // Should have pcs, but since all is relative, it works out.
164 int Assembler::branch_destination(int inst, int pos) {
165 int r;
166 switch (inv_op(inst)) {
167 default: ShouldNotReachHere();
168 case call_op: r = inv_wdisp(inst, pos, 30); break;
169 case branch_op:
170 switch (inv_op2(inst)) {
171 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
172 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
173 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
174 case br_op2: r = inv_wdisp( inst, pos, 22); break;
175 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
176 case bpr_op2: {
177 if (is_cbcond(inst)) {
178 r = inv_wdisp10(inst, pos);
179 } else {
180 r = inv_wdisp16(inst, pos);
181 }
182 break;
183 }
184 default: ShouldNotReachHere();
185 }
186 }
187 return r;
188 }
189 28
190 int AbstractAssembler::code_fill_byte() { 29 int AbstractAssembler::code_fill_byte() {
191 return 0x00; // illegal instruction 0x00000000 30 return 0x00; // illegal instruction 0x00000000
192 } 31 }
193
194 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
195 switch (in) {
196 case rc_z: return equal;
197 case rc_lez: return lessEqual;
198 case rc_lz: return less;
199 case rc_nz: return notEqual;
200 case rc_gz: return greater;
201 case rc_gez: return greaterEqual;
202 default:
203 ShouldNotReachHere();
204 }
205 return equal;
206 }
207
208 // Generate a bunch 'o stuff (including v9's
209 #ifndef PRODUCT
210 void Assembler::test_v9() {
211 add( G0, G1, G2 );
212 add( G3, 0, G4 );
213
214 addcc( G5, G6, G7 );
215 addcc( I0, 1, I1 );
216 addc( I2, I3, I4 );
217 addc( I5, -1, I6 );
218 addccc( I7, L0, L1 );
219 addccc( L2, (1 << 12) - 2, L3 );
220
221 Label lbl1, lbl2, lbl3;
222
223 bind(lbl1);
224
225 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
226 delayed()->nop();
227 bpr( rc_lez, false, pt, L5, lbl1);
228 delayed()->nop();
229
230 fb( f_never, true, pc() + 4, relocInfo::none);
231 delayed()->nop();
232 fb( f_notEqual, false, lbl2 );
233 delayed()->nop();
234
235 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
236 delayed()->nop();
237 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
238 delayed()->nop();
239
240 br( equal, true, pc() + 1024, relocInfo::none);
241 delayed()->nop();
242 br( lessEqual, false, lbl1 );
243 delayed()->nop();
244 br( never, false, lbl1 );
245 delayed()->nop();
246
247 bp( less, true, icc, pn, pc(), relocInfo::none);
248 delayed()->nop();
249 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
250 delayed()->nop();
251
252 call( pc(), relocInfo::none);
253 delayed()->nop();
254 call( lbl3 );
255 delayed()->nop();
256
257
258 casa( L6, L7, O0 );
259 casxa( O1, O2, O3, 0 );
260
261 udiv( O4, O5, O7 );
262 udiv( G0, (1 << 12) - 1, G1 );
263 sdiv( G1, G2, G3 );
264 sdiv( G4, -((1 << 12) - 1), G5 );
265 udivcc( G6, G7, I0 );
266 udivcc( I1, -((1 << 12) - 2), I2 );
267 sdivcc( I3, I4, I5 );
268 sdivcc( I6, -((1 << 12) - 0), I7 );
269
270 done();
271 retry();
272
273 fadd( FloatRegisterImpl::S, F0, F1, F2 );
274 fsub( FloatRegisterImpl::D, F34, F0, F62 );
275
276 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
277 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
278
279 ftox( FloatRegisterImpl::D, F2, F4 );
280 ftoi( FloatRegisterImpl::Q, F4, F8 );
281
282 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
283
284 fxtof( FloatRegisterImpl::S, F4, F5 );
285 fitof( FloatRegisterImpl::D, F6, F8 );
286
287 fmov( FloatRegisterImpl::Q, F16, F20 );
288 fneg( FloatRegisterImpl::S, F6, F7 );
289 fabs( FloatRegisterImpl::D, F10, F12 );
290
291 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
292 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
293 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
294
295 fsqrt( FloatRegisterImpl::S, F13, F14 );
296
297 flush( L0, L1 );
298 flush( L2, -1 );
299
300 flushw();
301
302 illtrap( (1 << 22) - 2);
303
304 impdep1( 17, (1 << 19) - 1 );
305 impdep2( 3, 0 );
306
307 jmpl( L3, L4, L5 );
308 delayed()->nop();
309 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
310 delayed()->nop();
311
312
313 ldf( FloatRegisterImpl::S, O0, O1, F15 );
314 ldf( FloatRegisterImpl::D, O2, -1, F14 );
315
316
317 ldfsr( O3, O4 );
318 ldfsr( O5, -1 );
319 ldxfsr( O6, O7 );
320 ldxfsr( I0, -1 );
321
322 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
323 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
324
325 ldsb( I4, I5, I6 );
326 ldsb( I7, -1, G0 );
327 ldsh( G1, G3, G4 );
328 ldsh( G5, -1, G6 );
329 ldsw( G7, L0, L1 );
330 ldsw( L2, -1, L3 );
331 ldub( L4, L5, L6 );
332 ldub( L7, -1, O0 );
333 lduh( O1, O2, O3 );
334 lduh( O4, -1, O5 );
335 lduw( O6, O7, G0 );
336 lduw( G1, -1, G2 );
337 ldx( G3, G4, G5 );
338 ldx( G6, -1, G7 );
339 ldd( I0, I1, I2 );
340 ldd( I3, -1, I4 );
341
342 ldsba( I5, I6, 2, I7 );
343 ldsba( L0, -1, L1 );
344 ldsha( L2, L3, 3, L4 );
345 ldsha( L5, -1, L6 );
346 ldswa( L7, O0, (1 << 8) - 1, O1 );
347 ldswa( O2, -1, O3 );
348 lduba( O4, O5, 0, O6 );
349 lduba( O7, -1, I0 );
350 lduha( I1, I2, 1, I3 );
351 lduha( I4, -1, I5 );
352 lduwa( I6, I7, 2, L0 );
353 lduwa( L1, -1, L2 );
354 ldxa( L3, L4, 3, L5 );
355 ldxa( L6, -1, L7 );
356 ldda( G0, G1, 4, G2 );
357 ldda( G3, -1, G4 );
358
359 ldstub( G5, G6, G7 );
360 ldstub( O0, -1, O1 );
361
362 ldstuba( O2, O3, 5, O4 );
363 ldstuba( O5, -1, O6 );
364
365 and3( I0, L0, O0 );
366 and3( G7, -1, O7 );
367 andcc( L2, I2, G2 );
368 andcc( L4, -1, G4 );
369 andn( I5, I6, I7 );
370 andn( I6, -1, I7 );
371 andncc( I5, I6, I7 );
372 andncc( I7, -1, I6 );
373 or3( I5, I6, I7 );
374 or3( I7, -1, I6 );
375 orcc( I5, I6, I7 );
376 orcc( I7, -1, I6 );
377 orn( I5, I6, I7 );
378 orn( I7, -1, I6 );
379 orncc( I5, I6, I7 );
380 orncc( I7, -1, I6 );
381 xor3( I5, I6, I7 );
382 xor3( I7, -1, I6 );
383 xorcc( I5, I6, I7 );
384 xorcc( I7, -1, I6 );
385 xnor( I5, I6, I7 );
386 xnor( I7, -1, I6 );
387 xnorcc( I5, I6, I7 );
388 xnorcc( I7, -1, I6 );
389
390 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
391 membar( StoreStore );
392 membar( LoadStore );
393 membar( StoreLoad );
394 membar( LoadLoad );
395 membar( Sync );
396 membar( MemIssue );
397 membar( Lookaside );
398
399 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
400 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
401
402 movcc( overflowClear, false, icc, I6, L4 );
403 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
404
405 movr( rc_nz, I5, I6, I7 );
406 movr( rc_gz, L1, -1, L2 );
407
408 mulx( I5, I6, I7 );
409 mulx( I7, -1, I6 );
410 sdivx( I5, I6, I7 );
411 sdivx( I7, -1, I6 );
412 udivx( I5, I6, I7 );
413 udivx( I7, -1, I6 );
414
415 umul( I5, I6, I7 );
416 umul( I7, -1, I6 );
417 smul( I5, I6, I7 );
418 smul( I7, -1, I6 );
419 umulcc( I5, I6, I7 );
420 umulcc( I7, -1, I6 );
421 smulcc( I5, I6, I7 );
422 smulcc( I7, -1, I6 );
423
424 mulscc( I5, I6, I7 );
425 mulscc( I7, -1, I6 );
426
427 nop();
428
429
430 popc( G0, G1);
431 popc( -1, G2);
432
433 prefetch( L1, L2, severalReads );
434 prefetch( L3, -1, oneRead );
435 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
436 prefetcha( G2, -1, oneWrite );
437
438 rett( I7, I7);
439 delayed()->nop();
440 rett( G0, -1, relocInfo::none);
441 delayed()->nop();
442
443 save( I5, I6, I7 );
444 save( I7, -1, I6 );
445 restore( I5, I6, I7 );
446 restore( I7, -1, I6 );
447
448 saved();
449 restored();
450
451 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
452
453 sll( I5, I6, I7 );
454 sll( I7, 31, I6 );
455 srl( I5, I6, I7 );
456 srl( I7, 0, I6 );
457 sra( I5, I6, I7 );
458 sra( I7, 30, I6 );
459 sllx( I5, I6, I7 );
460 sllx( I7, 63, I6 );
461 srlx( I5, I6, I7 );
462 srlx( I7, 0, I6 );
463 srax( I5, I6, I7 );
464 srax( I7, 62, I6 );
465
466 sir( -1 );
467
468 stbar();
469
470 stf( FloatRegisterImpl::Q, F40, G0, I7 );
471 stf( FloatRegisterImpl::S, F18, I3, -1 );
472
473 stfsr( L1, L2 );
474 stfsr( I7, -1 );
475 stxfsr( I6, I5 );
476 stxfsr( L4, -1 );
477
478 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
479 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
480
481 stb( L5, O2, I7 );
482 stb( I7, I6, -1 );
483 sth( L5, O2, I7 );
484 sth( I7, I6, -1 );
485 stw( L5, O2, I7 );
486 stw( I7, I6, -1 );
487 stx( L5, O2, I7 );
488 stx( I7, I6, -1 );
489 std( L5, O2, I7 );
490 std( I7, I6, -1 );
491
492 stba( L5, O2, I7, 8 );
493 stba( I7, I6, -1 );
494 stha( L5, O2, I7, 9 );
495 stha( I7, I6, -1 );
496 stwa( L5, O2, I7, 0 );
497 stwa( I7, I6, -1 );
498 stxa( L5, O2, I7, 11 );
499 stxa( I7, I6, -1 );
500 stda( L5, O2, I7, 12 );
501 stda( I7, I6, -1 );
502
503 sub( I5, I6, I7 );
504 sub( I7, -1, I6 );
505 subcc( I5, I6, I7 );
506 subcc( I7, -1, I6 );
507 subc( I5, I6, I7 );
508 subc( I7, -1, I6 );
509 subccc( I5, I6, I7 );
510 subccc( I7, -1, I6 );
511
512 swap( I5, I6, I7 );
513 swap( I7, -1, I6 );
514
515 swapa( G0, G1, 13, G2 );
516 swapa( I7, -1, I6 );
517
518 taddcc( I5, I6, I7 );
519 taddcc( I7, -1, I6 );
520 taddcctv( I5, I6, I7 );
521 taddcctv( I7, -1, I6 );
522
523 tsubcc( I5, I6, I7 );
524 tsubcc( I7, -1, I6 );
525 tsubcctv( I5, I6, I7 );
526 tsubcctv( I7, -1, I6 );
527
528 trap( overflowClear, xcc, G0, G1 );
529 trap( lessEqual, icc, I7, 17 );
530
531 bind(lbl2);
532 bind(lbl3);
533
534 code()->decode();
535 }
536
537 // Generate a bunch 'o stuff unique to V8
538 void Assembler::test_v8_onlys() {
539 Label lbl1;
540
541 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
542 delayed()->nop();
543 cb( cp_never, true, lbl1);
544 delayed()->nop();
545
546 cpop1(1, 2, 3, 4);
547 cpop2(5, 6, 7, 8);
548
549 ldc( I0, I1, 31);
550 ldc( I2, -1, 0);
551
552 lddc( I4, I4, 30);
553 lddc( I6, 0, 1 );
554
555 ldcsr( L0, L1, 0);
556 ldcsr( L1, (1 << 12) - 1, 17 );
557
558 stc( 31, L4, L5);
559 stc( 30, L6, -(1 << 12) );
560
561 stdc( 0, L7, G0);
562 stdc( 1, G1, 0 );
563
564 stcsr( 16, G2, G3);
565 stcsr( 17, G4, 1 );
566
567 stdcq( 4, G5, G6);
568 stdcq( 5, G7, -1 );
569
570 bind(lbl1);
571
572 code()->decode();
573 }
574 #endif
575
576 // Implementation of MacroAssembler
577
578 void MacroAssembler::null_check(Register reg, int offset) {
579 if (needs_explicit_null_check((intptr_t)offset)) {
580 // provoke OS NULL exception if reg = NULL by
581 // accessing M[reg] w/o changing any registers
582 ld_ptr(reg, 0, G0);
583 }
584 else {
585 // nothing to do, (later) access of M[reg + offset]
586 // will provoke OS NULL exception if reg = NULL
587 }
588 }
589
590 // Ring buffer jumps
591
592 #ifndef PRODUCT
593 void MacroAssembler::ret( bool trace ) { if (trace) {
594 mov(I7, O7); // traceable register
595 JMP(O7, 2 * BytesPerInstWord);
596 } else {
597 jmpl( I7, 2 * BytesPerInstWord, G0 );
598 }
599 }
600
601 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
602 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
603 #endif /* PRODUCT */
604
605
606 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
607 assert_not_delayed();
608 // This can only be traceable if r1 & r2 are visible after a window save
609 if (TraceJumps) {
610 #ifndef PRODUCT
611 save_frame(0);
612 verify_thread();
613 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
614 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
615 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
616 add(O2, O1, O1);
617
618 add(r1->after_save(), r2->after_save(), O2);
619 set((intptr_t)file, O3);
620 set(line, O4);
621 Label L;
622 // get nearby pc, store jmp target
623 call(L, relocInfo::none); // No relocation for call to pc+0x8
624 delayed()->st(O2, O1, 0);
625 bind(L);
626
627 // store nearby pc
628 st(O7, O1, sizeof(intptr_t));
629 // store file
630 st(O3, O1, 2*sizeof(intptr_t));
631 // store line
632 st(O4, O1, 3*sizeof(intptr_t));
633 add(O0, 1, O0);
634 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
635 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
636 restore();
637 #endif /* PRODUCT */
638 }
639 jmpl(r1, r2, G0);
640 }
641 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
642 assert_not_delayed();
643 // This can only be traceable if r1 is visible after a window save
644 if (TraceJumps) {
645 #ifndef PRODUCT
646 save_frame(0);
647 verify_thread();
648 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
649 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
650 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
651 add(O2, O1, O1);
652
653 add(r1->after_save(), offset, O2);
654 set((intptr_t)file, O3);
655 set(line, O4);
656 Label L;
657 // get nearby pc, store jmp target
658 call(L, relocInfo::none); // No relocation for call to pc+0x8
659 delayed()->st(O2, O1, 0);
660 bind(L);
661
662 // store nearby pc
663 st(O7, O1, sizeof(intptr_t));
664 // store file
665 st(O3, O1, 2*sizeof(intptr_t));
666 // store line
667 st(O4, O1, 3*sizeof(intptr_t));
668 add(O0, 1, O0);
669 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
670 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
671 restore();
672 #endif /* PRODUCT */
673 }
674 jmp(r1, offset);
675 }
676
677 // This code sequence is relocatable to any address, even on LP64.
678 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
679 assert_not_delayed();
680 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
681 // variable length instruction streams.
682 patchable_sethi(addrlit, temp);
683 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
684 if (TraceJumps) {
685 #ifndef PRODUCT
686 // Must do the add here so relocation can find the remainder of the
687 // value to be relocated.
688 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
689 save_frame(0);
690 verify_thread();
691 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
692 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
693 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
694 add(O2, O1, O1);
695
696 set((intptr_t)file, O3);
697 set(line, O4);
698 Label L;
699
700 // get nearby pc, store jmp target
701 call(L, relocInfo::none); // No relocation for call to pc+0x8
702 delayed()->st(a.base()->after_save(), O1, 0);
703 bind(L);
704
705 // store nearby pc
706 st(O7, O1, sizeof(intptr_t));
707 // store file
708 st(O3, O1, 2*sizeof(intptr_t));
709 // store line
710 st(O4, O1, 3*sizeof(intptr_t));
711 add(O0, 1, O0);
712 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
713 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
714 restore();
715 jmpl(a.base(), G0, d);
716 #else
717 jmpl(a.base(), a.disp(), d);
718 #endif /* PRODUCT */
719 } else {
720 jmpl(a.base(), a.disp(), d);
721 }
722 }
723
724 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
725 jumpl(addrlit, temp, G0, offset, file, line);
726 }
727
728
729 // Conditional breakpoint (for assertion checks in assembly code)
730 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
731 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
732 }
733
734 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
735 void MacroAssembler::breakpoint_trap() {
736 trap(ST_RESERVED_FOR_USER_0);
737 }
738
739 // flush windows (except current) using flushw instruction if avail.
740 void MacroAssembler::flush_windows() {
741 if (VM_Version::v9_instructions_work()) flushw();
742 else flush_windows_trap();
743 }
744
745 // Write serialization page so VM thread can do a pseudo remote membar
746 // We use the current thread pointer to calculate a thread specific
747 // offset to write to within the page. This minimizes bus traffic
748 // due to cache line collision.
749 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
750 srl(thread, os::get_serialize_page_shift_count(), tmp2);
751 if (Assembler::is_simm13(os::vm_page_size())) {
752 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
753 }
754 else {
755 set((os::vm_page_size() - sizeof(int)), tmp1);
756 and3(tmp2, tmp1, tmp2);
757 }
758 set(os::get_memory_serialize_page(), tmp1);
759 st(G0, tmp1, tmp2);
760 }
761
762
763
764 void MacroAssembler::enter() {
765 Unimplemented();
766 }
767
768 void MacroAssembler::leave() {
769 Unimplemented();
770 }
771
772 void MacroAssembler::mult(Register s1, Register s2, Register d) {
773 if(VM_Version::v9_instructions_work()) {
774 mulx (s1, s2, d);
775 } else {
776 smul (s1, s2, d);
777 }
778 }
779
780 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
781 if(VM_Version::v9_instructions_work()) {
782 mulx (s1, simm13a, d);
783 } else {
784 smul (s1, simm13a, d);
785 }
786 }
787
788
789 #ifdef ASSERT
790 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
791 const Register s1 = G3_scratch;
792 const Register s2 = G4_scratch;
793 Label get_psr_test;
794 // Get the condition codes the V8 way.
795 read_ccr_trap(s1);
796 mov(ccr_save, s2);
797 // This is a test of V8 which has icc but not xcc
798 // so mask off the xcc bits
799 and3(s2, 0xf, s2);
800 // Compare condition codes from the V8 and V9 ways.
801 subcc(s2, s1, G0);
802 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
803 delayed()->breakpoint_trap();
804 bind(get_psr_test);
805 }
806
807 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
808 const Register s1 = G3_scratch;
809 const Register s2 = G4_scratch;
810 Label set_psr_test;
811 // Write out the saved condition codes the V8 way
812 write_ccr_trap(ccr_save, s1, s2);
813 // Read back the condition codes using the V9 instruction
814 rdccr(s1);
815 mov(ccr_save, s2);
816 // This is a test of V8 which has icc but not xcc
817 // so mask off the xcc bits
818 and3(s2, 0xf, s2);
819 and3(s1, 0xf, s1);
820 // Compare the V8 way with the V9 way.
821 subcc(s2, s1, G0);
822 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
823 delayed()->breakpoint_trap();
824 bind(set_psr_test);
825 }
826 #else
827 #define read_ccr_v8_assert(x)
828 #define write_ccr_v8_assert(x)
829 #endif // ASSERT
830
831 void MacroAssembler::read_ccr(Register ccr_save) {
832 if (VM_Version::v9_instructions_work()) {
833 rdccr(ccr_save);
834 // Test code sequence used on V8. Do not move above rdccr.
835 read_ccr_v8_assert(ccr_save);
836 } else {
837 read_ccr_trap(ccr_save);
838 }
839 }
840
841 void MacroAssembler::write_ccr(Register ccr_save) {
842 if (VM_Version::v9_instructions_work()) {
843 // Test code sequence used on V8. Do not move below wrccr.
844 write_ccr_v8_assert(ccr_save);
845 wrccr(ccr_save);
846 } else {
847 const Register temp_reg1 = G3_scratch;
848 const Register temp_reg2 = G4_scratch;
849 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
850 }
851 }
852
853
854 // Calls to C land
855
856 #ifdef ASSERT
857 // a hook for debugging
858 static Thread* reinitialize_thread() {
859 return ThreadLocalStorage::thread();
860 }
861 #else
862 #define reinitialize_thread ThreadLocalStorage::thread
863 #endif
864
865 #ifdef ASSERT
866 address last_get_thread = NULL;
867 #endif
868
869 // call this when G2_thread is not known to be valid
870 void MacroAssembler::get_thread() {
871 save_frame(0); // to avoid clobbering O0
872 mov(G1, L0); // avoid clobbering G1
873 mov(G5_method, L1); // avoid clobbering G5
874 mov(G3, L2); // avoid clobbering G3 also
875 mov(G4, L5); // avoid clobbering G4
876 #ifdef ASSERT
877 AddressLiteral last_get_thread_addrlit(&last_get_thread);
878 set(last_get_thread_addrlit, L3);
879 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
880 st_ptr(L4, L3, 0);
881 #endif
882 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
883 delayed()->nop();
884 mov(L0, G1);
885 mov(L1, G5_method);
886 mov(L2, G3);
887 mov(L5, G4);
888 restore(O0, 0, G2_thread);
889 }
890
891 static Thread* verify_thread_subroutine(Thread* gthread_value) {
892 Thread* correct_value = ThreadLocalStorage::thread();
893 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
894 return correct_value;
895 }
896
897 void MacroAssembler::verify_thread() {
898 if (VerifyThread) {
899 // NOTE: this chops off the heads of the 64-bit O registers.
900 #ifdef CC_INTERP
901 save_frame(0);
902 #else
903 // make sure G2_thread contains the right value
904 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
905 mov(G1, L1); // avoid clobbering G1
906 // G2 saved below
907 mov(G3, L3); // avoid clobbering G3
908 mov(G4, L4); // avoid clobbering G4
909 mov(G5_method, L5); // avoid clobbering G5_method
910 #endif /* CC_INTERP */
911 #if defined(COMPILER2) && !defined(_LP64)
912 // Save & restore possible 64-bit Long arguments in G-regs
913 srlx(G1,32,L0);
914 srlx(G4,32,L6);
915 #endif
916 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
917 delayed()->mov(G2_thread, O0);
918
919 mov(L1, G1); // Restore G1
920 // G2 restored below
921 mov(L3, G3); // restore G3
922 mov(L4, G4); // restore G4
923 mov(L5, G5_method); // restore G5_method
924 #if defined(COMPILER2) && !defined(_LP64)
925 // Save & restore possible 64-bit Long arguments in G-regs
926 sllx(L0,32,G2); // Move old high G1 bits high in G2
927 srl(G1, 0,G1); // Clear current high G1 bits
928 or3 (G1,G2,G1); // Recover 64-bit G1
929 sllx(L6,32,G2); // Move old high G4 bits high in G2
930 srl(G4, 0,G4); // Clear current high G4 bits
931 or3 (G4,G2,G4); // Recover 64-bit G4
932 #endif
933 restore(O0, 0, G2_thread);
934 }
935 }
936
937
938 void MacroAssembler::save_thread(const Register thread_cache) {
939 verify_thread();
940 if (thread_cache->is_valid()) {
941 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
942 mov(G2_thread, thread_cache);
943 }
944 if (VerifyThread) {
945 // smash G2_thread, as if the VM were about to anyway
946 set(0x67676767, G2_thread);
947 }
948 }
949
950
951 void MacroAssembler::restore_thread(const Register thread_cache) {
952 if (thread_cache->is_valid()) {
953 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
954 mov(thread_cache, G2_thread);
955 verify_thread();
956 } else {
957 // do it the slow way
958 get_thread();
959 }
960 }
961
962
963 // %%% maybe get rid of [re]set_last_Java_frame
964 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
965 assert_not_delayed();
966 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
967 JavaFrameAnchor::flags_offset());
968 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
969
970 // Always set last_Java_pc and flags first because once last_Java_sp is visible
971 // has_last_Java_frame is true and users will look at the rest of the fields.
972 // (Note: flags should always be zero before we get here so doesn't need to be set.)
973
974 #ifdef ASSERT
975 // Verify that flags was zeroed on return to Java
976 Label PcOk;
977 save_frame(0); // to avoid clobbering O0
978 ld_ptr(pc_addr, L0);
979 br_null_short(L0, Assembler::pt, PcOk);
980 STOP("last_Java_pc not zeroed before leaving Java");
981 bind(PcOk);
982
983 // Verify that flags was zeroed on return to Java
984 Label FlagsOk;
985 ld(flags, L0);
986 tst(L0);
987 br(Assembler::zero, false, Assembler::pt, FlagsOk);
988 delayed() -> restore();
989 STOP("flags not zeroed before leaving Java");
990 bind(FlagsOk);
991 #endif /* ASSERT */
992 //
993 // When returning from calling out from Java mode the frame anchor's last_Java_pc
994 // will always be set to NULL. It is set here so that if we are doing a call to
995 // native (not VM) that we capture the known pc and don't have to rely on the
996 // native call having a standard frame linkage where we can find the pc.
997
998 if (last_Java_pc->is_valid()) {
999 st_ptr(last_Java_pc, pc_addr);
1000 }
1001
1002 #ifdef _LP64
1003 #ifdef ASSERT
1004 // Make sure that we have an odd stack
1005 Label StackOk;
1006 andcc(last_java_sp, 0x01, G0);
1007 br(Assembler::notZero, false, Assembler::pt, StackOk);
1008 delayed()->nop();
1009 STOP("Stack Not Biased in set_last_Java_frame");
1010 bind(StackOk);
1011 #endif // ASSERT
1012 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
1013 add( last_java_sp, STACK_BIAS, G4_scratch );
1014 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
1015 #else
1016 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
1017 #endif // _LP64
1018 }
1019
1020 void MacroAssembler::reset_last_Java_frame(void) {
1021 assert_not_delayed();
1022
1023 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
1024 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1025 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1026
1027 #ifdef ASSERT
1028 // check that it WAS previously set
1029 #ifdef CC_INTERP
1030 save_frame(0);
1031 #else
1032 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
1033 #endif /* CC_INTERP */
1034 ld_ptr(sp_addr, L0);
1035 tst(L0);
1036 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1037 restore();
1038 #endif // ASSERT
1039
1040 st_ptr(G0, sp_addr);
1041 // Always return last_Java_pc to zero
1042 st_ptr(G0, pc_addr);
1043 // Always null flags after return to Java
1044 st(G0, flags);
1045 }
1046
1047
1048 void MacroAssembler::call_VM_base(
1049 Register oop_result,
1050 Register thread_cache,
1051 Register last_java_sp,
1052 address entry_point,
1053 int number_of_arguments,
1054 bool check_exceptions)
1055 {
1056 assert_not_delayed();
1057
1058 // determine last_java_sp register
1059 if (!last_java_sp->is_valid()) {
1060 last_java_sp = SP;
1061 }
1062 // debugging support
1063 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
1064
1065 // 64-bit last_java_sp is biased!
1066 set_last_Java_frame(last_java_sp, noreg);
1067 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
1068 save_thread(thread_cache);
1069 // do the call
1070 call(entry_point, relocInfo::runtime_call_type);
1071 if (!VerifyThread)
1072 delayed()->mov(G2_thread, O0); // pass thread as first argument
1073 else
1074 delayed()->nop(); // (thread already passed)
1075 restore_thread(thread_cache);
1076 reset_last_Java_frame();
1077
1078 // check for pending exceptions. use Gtemp as scratch register.
1079 if (check_exceptions) {
1080 check_and_forward_exception(Gtemp);
1081 }
1082
1083 #ifdef ASSERT
1084 set(badHeapWordVal, G3);
1085 set(badHeapWordVal, G4);
1086 set(badHeapWordVal, G5);
1087 #endif
1088
1089 // get oop result if there is one and reset the value in the thread
1090 if (oop_result->is_valid()) {
1091 get_vm_result(oop_result);
1092 }
1093 }
1094
1095 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1096 {
1097 Label L;
1098
1099 check_and_handle_popframe(scratch_reg);
1100 check_and_handle_earlyret(scratch_reg);
1101
1102 Address exception_addr(G2_thread, Thread::pending_exception_offset());
1103 ld_ptr(exception_addr, scratch_reg);
1104 br_null_short(scratch_reg, pt, L);
1105 // we use O7 linkage so that forward_exception_entry has the issuing PC
1106 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1107 delayed()->nop();
1108 bind(L);
1109 }
1110
1111
1112 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1113 }
1114
1115
1116 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1117 }
1118
1119
1120 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1121 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1122 }
1123
1124
1125 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1126 // O0 is reserved for the thread
1127 mov(arg_1, O1);
1128 call_VM(oop_result, entry_point, 1, check_exceptions);
1129 }
1130
1131
1132 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1133 // O0 is reserved for the thread
1134 mov(arg_1, O1);
1135 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1136 call_VM(oop_result, entry_point, 2, check_exceptions);
1137 }
1138
1139
1140 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1141 // O0 is reserved for the thread
1142 mov(arg_1, O1);
1143 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1144 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1145 call_VM(oop_result, entry_point, 3, check_exceptions);
1146 }
1147
1148
1149
1150 // Note: The following call_VM overloadings are useful when a "save"
1151 // has already been performed by a stub, and the last Java frame is
1152 // the previous one. In that case, last_java_sp must be passed as FP
1153 // instead of SP.
1154
1155
1156 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1157 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1158 }
1159
1160
1161 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1162 // O0 is reserved for the thread
1163 mov(arg_1, O1);
1164 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1165 }
1166
1167
1168 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1169 // O0 is reserved for the thread
1170 mov(arg_1, O1);
1171 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1172 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1173 }
1174
1175
1176 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1177 // O0 is reserved for the thread
1178 mov(arg_1, O1);
1179 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1180 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1181 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1182 }
1183
1184
1185
1186 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1187 assert_not_delayed();
1188 save_thread(thread_cache);
1189 // do the call
1190 call(entry_point, relocInfo::runtime_call_type);
1191 delayed()->nop();
1192 restore_thread(thread_cache);
1193 #ifdef ASSERT
1194 set(badHeapWordVal, G3);
1195 set(badHeapWordVal, G4);
1196 set(badHeapWordVal, G5);
1197 #endif
1198 }
1199
1200
1201 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1202 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1203 }
1204
1205
1206 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1207 mov(arg_1, O0);
1208 call_VM_leaf(thread_cache, entry_point, 1);
1209 }
1210
1211
1212 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1213 mov(arg_1, O0);
1214 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1215 call_VM_leaf(thread_cache, entry_point, 2);
1216 }
1217
1218
1219 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1220 mov(arg_1, O0);
1221 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1222 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1223 call_VM_leaf(thread_cache, entry_point, 3);
1224 }
1225
1226
1227 void MacroAssembler::get_vm_result(Register oop_result) {
1228 verify_thread();
1229 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1230 ld_ptr( vm_result_addr, oop_result);
1231 st_ptr(G0, vm_result_addr);
1232 verify_oop(oop_result);
1233 }
1234
1235
1236 void MacroAssembler::get_vm_result_2(Register metadata_result) {
1237 verify_thread();
1238 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1239 ld_ptr(vm_result_addr_2, metadata_result);
1240 st_ptr(G0, vm_result_addr_2);
1241 }
1242
1243
1244 // We require that C code which does not return a value in vm_result will
1245 // leave it undisturbed.
1246 void MacroAssembler::set_vm_result(Register oop_result) {
1247 verify_thread();
1248 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1249 verify_oop(oop_result);
1250
1251 # ifdef ASSERT
1252 // Check that we are not overwriting any other oop.
1253 #ifdef CC_INTERP
1254 save_frame(0);
1255 #else
1256 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
1257 #endif /* CC_INTERP */
1258 ld_ptr(vm_result_addr, L0);
1259 tst(L0);
1260 restore();
1261 breakpoint_trap(notZero, Assembler::ptr_cc);
1262 // }
1263 # endif
1264
1265 st_ptr(oop_result, vm_result_addr);
1266 }
1267
1268
1269 void MacroAssembler::ic_call(address entry, bool emit_delay) {
1270 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
1271 patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
1272 relocate(rspec);
1273 call(entry, relocInfo::none);
1274 if (emit_delay) {
1275 delayed()->nop();
1276 }
1277 }
1278
1279
1280 void MacroAssembler::card_table_write(jbyte* byte_map_base,
1281 Register tmp, Register obj) {
1282 #ifdef _LP64
1283 srlx(obj, CardTableModRefBS::card_shift, obj);
1284 #else
1285 srl(obj, CardTableModRefBS::card_shift, obj);
1286 #endif
1287 assert(tmp != obj, "need separate temp reg");
1288 set((address) byte_map_base, tmp);
1289 stb(G0, tmp, obj);
1290 }
1291
1292
1293 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1294 address save_pc;
1295 int shiftcnt;
1296 #ifdef _LP64
1297 # ifdef CHECK_DELAY
1298 assert_not_delayed((char*) "cannot put two instructions in delay slot");
1299 # endif
1300 v9_dep();
1301 save_pc = pc();
1302
1303 int msb32 = (int) (addrlit.value() >> 32);
1304 int lsb32 = (int) (addrlit.value());
1305
1306 if (msb32 == 0 && lsb32 >= 0) {
1307 Assembler::sethi(lsb32, d, addrlit.rspec());
1308 }
1309 else if (msb32 == -1) {
1310 Assembler::sethi(~lsb32, d, addrlit.rspec());
1311 xor3(d, ~low10(~0), d);
1312 }
1313 else {
1314 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
1315 if (msb32 & 0x3ff) // Any bits?
1316 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
1317 if (lsb32 & 0xFFFFFC00) { // done?
1318 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
1319 sllx(d, 12, d); // Make room for next 12 bits
1320 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
1321 shiftcnt = 0; // We already shifted
1322 }
1323 else
1324 shiftcnt = 12;
1325 if ((lsb32 >> 10) & 0x3ff) {
1326 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
1327 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
1328 shiftcnt = 0;
1329 }
1330 else
1331 shiftcnt = 10;
1332 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
1333 }
1334 else
1335 sllx(d, 32, d);
1336 }
1337 // Pad out the instruction sequence so it can be patched later.
1338 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1339 addrlit.rtype() != relocInfo::runtime_call_type)) {
1340 while (pc() < (save_pc + (7 * BytesPerInstWord)))
1341 nop();
1342 }
1343 #else
1344 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1345 #endif
1346 }
1347
1348
1349 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1350 internal_sethi(addrlit, d, false);
1351 }
1352
1353
1354 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1355 internal_sethi(addrlit, d, true);
1356 }
1357
1358
1359 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
1360 #ifdef _LP64
1361 if (worst_case) return 7;
1362 intptr_t iaddr = (intptr_t) a;
1363 int msb32 = (int) (iaddr >> 32);
1364 int lsb32 = (int) (iaddr);
1365 int count;
1366 if (msb32 == 0 && lsb32 >= 0)
1367 count = 1;
1368 else if (msb32 == -1)
1369 count = 2;
1370 else {
1371 count = 2;
1372 if (msb32 & 0x3ff)
1373 count++;
1374 if (lsb32 & 0xFFFFFC00 ) {
1375 if ((lsb32 >> 20) & 0xfff) count += 2;
1376 if ((lsb32 >> 10) & 0x3ff) count += 2;
1377 }
1378 }
1379 return count;
1380 #else
1381 return 1;
1382 #endif
1383 }
1384
1385 int MacroAssembler::worst_case_insts_for_set() {
1386 return insts_for_sethi(NULL, true) + 1;
1387 }
1388
1389
1390 // Keep in sync with MacroAssembler::insts_for_internal_set
1391 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1392 intptr_t value = addrlit.value();
1393
1394 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1395 // can optimize
1396 if (-4096 <= value && value <= 4095) {
1397 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1398 return;
1399 }
1400 if (inv_hi22(hi22(value)) == value) {
1401 sethi(addrlit, d);
1402 return;
1403 }
1404 }
1405 assert_not_delayed((char*) "cannot put two instructions in delay slot");
1406 internal_sethi(addrlit, d, ForceRelocatable);
1407 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1408 add(d, addrlit.low10(), d, addrlit.rspec());
1409 }
1410 }
1411
1412 // Keep in sync with MacroAssembler::internal_set
1413 int MacroAssembler::insts_for_internal_set(intptr_t value) {
1414 // can optimize
1415 if (-4096 <= value && value <= 4095) {
1416 return 1;
1417 }
1418 if (inv_hi22(hi22(value)) == value) {
1419 return insts_for_sethi((address) value);
1420 }
1421 int count = insts_for_sethi((address) value);
1422 AddressLiteral al(value);
1423 if (al.low10() != 0) {
1424 count++;
1425 }
1426 return count;
1427 }
1428
1429 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1430 internal_set(al, d, false);
1431 }
1432
1433 void MacroAssembler::set(intptr_t value, Register d) {
1434 AddressLiteral al(value);
1435 internal_set(al, d, false);
1436 }
1437
1438 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1439 AddressLiteral al(addr, rspec);
1440 internal_set(al, d, false);
1441 }
1442
1443 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1444 internal_set(al, d, true);
1445 }
1446
1447 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1448 AddressLiteral al(value);
1449 internal_set(al, d, true);
1450 }
1451
1452
1453 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1454 assert_not_delayed();
1455 v9_dep();
1456
1457 int hi = (int)(value >> 32);
1458 int lo = (int)(value & ~0);
1459 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1460 if (Assembler::is_simm13(lo) && value == lo) {
1461 or3(G0, lo, d);
1462 } else if (hi == 0) {
1463 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
1464 if (low10(lo) != 0)
1465 or3(d, low10(lo), d);
1466 }
1467 else if (hi == -1) {
1468 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
1469 xor3(d, low10(lo) ^ ~low10(~0), d);
1470 }
1471 else if (lo == 0) {
1472 if (Assembler::is_simm13(hi)) {
1473 or3(G0, hi, d);
1474 } else {
1475 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
1476 if (low10(hi) != 0)
1477 or3(d, low10(hi), d);
1478 }
1479 sllx(d, 32, d);
1480 }
1481 else {
1482 Assembler::sethi(hi, tmp);
1483 Assembler::sethi(lo, d); // macro assembler version sign-extends
1484 if (low10(hi) != 0)
1485 or3 (tmp, low10(hi), tmp);
1486 if (low10(lo) != 0)
1487 or3 ( d, low10(lo), d);
1488 sllx(tmp, 32, tmp);
1489 or3 (d, tmp, d);
1490 }
1491 }
1492
1493 int MacroAssembler::insts_for_set64(jlong value) {
1494 v9_dep();
1495
1496 int hi = (int) (value >> 32);
1497 int lo = (int) (value & ~0);
1498 int count = 0;
1499
1500 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1501 if (Assembler::is_simm13(lo) && value == lo) {
1502 count++;
1503 } else if (hi == 0) {
1504 count++;
1505 if (low10(lo) != 0)
1506 count++;
1507 }
1508 else if (hi == -1) {
1509 count += 2;
1510 }
1511 else if (lo == 0) {
1512 if (Assembler::is_simm13(hi)) {
1513 count++;
1514 } else {
1515 count++;
1516 if (low10(hi) != 0)
1517 count++;
1518 }
1519 count++;
1520 }
1521 else {
1522 count += 2;
1523 if (low10(hi) != 0)
1524 count++;
1525 if (low10(lo) != 0)
1526 count++;
1527 count += 2;
1528 }
1529 return count;
1530 }
1531
1532 // compute size in bytes of sparc frame, given
1533 // number of extraWords
1534 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1535
1536 int nWords = frame::memory_parameter_word_sp_offset;
1537
1538 nWords += extraWords;
1539
1540 if (nWords & 1) ++nWords; // round up to double-word
1541
1542 return nWords * BytesPerWord;
1543 }
1544
1545
1546 // save_frame: given number of "extra" words in frame,
1547 // issue approp. save instruction (p 200, v8 manual)
1548
1549 void MacroAssembler::save_frame(int extraWords) {
1550 int delta = -total_frame_size_in_bytes(extraWords);
1551 if (is_simm13(delta)) {
1552 save(SP, delta, SP);
1553 } else {
1554 set(delta, G3_scratch);
1555 save(SP, G3_scratch, SP);
1556 }
1557 }
1558
1559
1560 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1561 if (is_simm13(-size_in_bytes)) {
1562 save(SP, -size_in_bytes, SP);
1563 } else {
1564 set(-size_in_bytes, G3_scratch);
1565 save(SP, G3_scratch, SP);
1566 }
1567 }
1568
1569
1570 void MacroAssembler::save_frame_and_mov(int extraWords,
1571 Register s1, Register d1,
1572 Register s2, Register d2) {
1573 assert_not_delayed();
1574
1575 // The trick here is to use precisely the same memory word
1576 // that trap handlers also use to save the register.
1577 // This word cannot be used for any other purpose, but
1578 // it works fine to save the register's value, whether or not
1579 // an interrupt flushes register windows at any given moment!
1580 Address s1_addr;
1581 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1582 s1_addr = s1->address_in_saved_window();
1583 st_ptr(s1, s1_addr);
1584 }
1585
1586 Address s2_addr;
1587 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1588 s2_addr = s2->address_in_saved_window();
1589 st_ptr(s2, s2_addr);
1590 }
1591
1592 save_frame(extraWords);
1593
1594 if (s1_addr.base() == SP) {
1595 ld_ptr(s1_addr.after_save(), d1);
1596 } else if (s1->is_valid()) {
1597 mov(s1->after_save(), d1);
1598 }
1599
1600 if (s2_addr.base() == SP) {
1601 ld_ptr(s2_addr.after_save(), d2);
1602 } else if (s2->is_valid()) {
1603 mov(s2->after_save(), d2);
1604 }
1605 }
1606
1607
1608 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1609 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1610 int index = oop_recorder()->allocate_metadata_index(obj);
1611 RelocationHolder rspec = metadata_Relocation::spec(index);
1612 return AddressLiteral((address)obj, rspec);
1613 }
1614
1615 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1616 assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1617 int index = oop_recorder()->find_index(obj);
1618 RelocationHolder rspec = metadata_Relocation::spec(index);
1619 return AddressLiteral((address)obj, rspec);
1620 }
1621
1622
1623 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1624 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1625 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1626 int oop_index = oop_recorder()->find_index(obj);
1627 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1628 }
1629
1630 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1631 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1632 int oop_index = oop_recorder()->find_index(obj);
1633 RelocationHolder rspec = oop_Relocation::spec(oop_index);
1634
1635 assert_not_delayed();
1636 // Relocation with special format (see relocInfo_sparc.hpp).
1637 relocate(rspec, 1);
1638 // Assembler::sethi(0x3fffff, d);
1639 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1640 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1641 add(d, 0x3ff, d);
1642
1643 }
1644
1645 void MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1646 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1647 int klass_index = oop_recorder()->find_index(k);
1648 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1649 narrowOop encoded_k = oopDesc::encode_klass(k);
1650
1651 assert_not_delayed();
1652 // Relocation with special format (see relocInfo_sparc.hpp).
1653 relocate(rspec, 1);
1654 // Assembler::sethi(encoded_k, d);
1655 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1656 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1657 add(d, low10(encoded_k), d);
1658
1659 }
1660
1661 void MacroAssembler::align(int modulus) {
1662 while (offset() % modulus != 0) nop();
1663 }
1664
1665
1666 void MacroAssembler::safepoint() {
1667 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1668 }
1669
1670
1671 void RegistersForDebugging::print(outputStream* s) {
1672 FlagSetting fs(Debugging, true);
1673 int j;
1674 for (j = 0; j < 8; ++j) {
1675 if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1676 else { s->print( "fp = " ); os::print_location(s, i[j]); }
1677 }
1678 s->cr();
1679
1680 for (j = 0; j < 8; ++j) {
1681 s->print("l%d = ", j); os::print_location(s, l[j]);
1682 }
1683 s->cr();
1684
1685 for (j = 0; j < 8; ++j) {
1686 if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1687 else { s->print( "sp = " ); os::print_location(s, o[j]); }
1688 }
1689 s->cr();
1690
1691 for (j = 0; j < 8; ++j) {
1692 s->print("g%d = ", j); os::print_location(s, g[j]);
1693 }
1694 s->cr();
1695
1696 // print out floats with compression
1697 for (j = 0; j < 32; ) {
1698 jfloat val = f[j];
1699 int last = j;
1700 for ( ; last+1 < 32; ++last ) {
1701 char b1[1024], b2[1024];
1702 sprintf(b1, "%f", val);
1703 sprintf(b2, "%f", f[last+1]);
1704 if (strcmp(b1, b2))
1705 break;
1706 }
1707 s->print("f%d", j);
1708 if ( j != last ) s->print(" - f%d", last);
1709 s->print(" = %f", val);
1710 s->fill_to(25);
1711 s->print_cr(" (0x%x)", val);
1712 j = last + 1;
1713 }
1714 s->cr();
1715
1716 // and doubles (evens only)
1717 for (j = 0; j < 32; ) {
1718 jdouble val = d[j];
1719 int last = j;
1720 for ( ; last+1 < 32; ++last ) {
1721 char b1[1024], b2[1024];
1722 sprintf(b1, "%f", val);
1723 sprintf(b2, "%f", d[last+1]);
1724 if (strcmp(b1, b2))
1725 break;
1726 }
1727 s->print("d%d", 2 * j);
1728 if ( j != last ) s->print(" - d%d", last);
1729 s->print(" = %f", val);
1730 s->fill_to(30);
1731 s->print("(0x%x)", *(int*)&val);
1732 s->fill_to(42);
1733 s->print_cr("(0x%x)", *(1 + (int*)&val));
1734 j = last + 1;
1735 }
1736 s->cr();
1737 }
1738
1739 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1740 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1741 a->flush_windows();
1742 int i;
1743 for (i = 0; i < 8; ++i) {
1744 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
1745 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
1746 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1747 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1748 }
1749 for (i = 0; i < 32; ++i) {
1750 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1751 }
1752 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1753 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1754 }
1755 }
1756
1757 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1758 for (int i = 1; i < 8; ++i) {
1759 a->ld_ptr(r, g_offset(i), as_gRegister(i));
1760 }
1761 for (int j = 0; j < 32; ++j) {
1762 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1763 }
1764 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1765 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1766 }
1767 }
1768
1769
1770 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1771 void MacroAssembler::push_fTOS() {
1772 // %%%%%% need to implement this
1773 }
1774
1775 // pops double TOS element from CPU stack and pushes on FPU stack
1776 void MacroAssembler::pop_fTOS() {
1777 // %%%%%% need to implement this
1778 }
1779
1780 void MacroAssembler::empty_FPU_stack() {
1781 // %%%%%% need to implement this
1782 }
1783
1784 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1785 // plausibility check for oops
1786 if (!VerifyOops) return;
1787
1788 if (reg == G0) return; // always NULL, which is always an oop
1789
1790 BLOCK_COMMENT("verify_oop {");
1791 char buffer[64];
1792 #ifdef COMPILER1
1793 if (CommentedAssembly) {
1794 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1795 block_comment(buffer);
1796 }
1797 #endif
1798
1799 int len = strlen(file) + strlen(msg) + 1 + 4;
1800 sprintf(buffer, "%d", line);
1801 len += strlen(buffer);
1802 sprintf(buffer, " at offset %d ", offset());
1803 len += strlen(buffer);
1804 char * real_msg = new char[len];
1805 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1806
1807 // Call indirectly to solve generation ordering problem
1808 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1809
1810 // Make some space on stack above the current register window.
1811 // Enough to hold 8 64-bit registers.
1812 add(SP,-8*8,SP);
1813
1814 // Save some 64-bit registers; a normal 'save' chops the heads off
1815 // of 64-bit longs in the 32-bit build.
1816 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1817 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1818 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1819 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1820
1821 // Size of set() should stay the same
1822 patchable_set((intptr_t)real_msg, O1);
1823 // Load address to call to into O7
1824 load_ptr_contents(a, O7);
1825 // Register call to verify_oop_subroutine
1826 callr(O7, G0);
1827 delayed()->nop();
1828 // recover frame size
1829 add(SP, 8*8,SP);
1830 BLOCK_COMMENT("} verify_oop");
1831 }
1832
1833 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1834 // plausibility check for oops
1835 if (!VerifyOops) return;
1836
1837 char buffer[64];
1838 sprintf(buffer, "%d", line);
1839 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1840 sprintf(buffer, " at SP+%d ", addr.disp());
1841 len += strlen(buffer);
1842 char * real_msg = new char[len];
1843 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1844
1845 // Call indirectly to solve generation ordering problem
1846 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1847
1848 // Make some space on stack above the current register window.
1849 // Enough to hold 8 64-bit registers.
1850 add(SP,-8*8,SP);
1851
1852 // Save some 64-bit registers; a normal 'save' chops the heads off
1853 // of 64-bit longs in the 32-bit build.
1854 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1855 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1856 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1857 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1858
1859 // Size of set() should stay the same
1860 patchable_set((intptr_t)real_msg, O1);
1861 // Load address to call to into O7
1862 load_ptr_contents(a, O7);
1863 // Register call to verify_oop_subroutine
1864 callr(O7, G0);
1865 delayed()->nop();
1866 // recover frame size
1867 add(SP, 8*8,SP);
1868 }
1869
1870 // side-door communication with signalHandler in os_solaris.cpp
1871 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1872
1873 // This macro is expanded just once; it creates shared code. Contract:
1874 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
1875 // registers, including flags. May not use a register 'save', as this blows
1876 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
1877 // call.
1878 void MacroAssembler::verify_oop_subroutine() {
1879 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1880
1881 // Leaf call; no frame.
1882 Label succeed, fail, null_or_fail;
1883
1884 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1885 // O0 is now the oop to be checked. O7 is the return address.
1886 Register O0_obj = O0;
1887
1888 // Save some more registers for temps.
1889 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1890 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1891 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1892 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1893
1894 // Save flags
1895 Register O5_save_flags = O5;
1896 rdccr( O5_save_flags );
1897
1898 { // count number of verifies
1899 Register O2_adr = O2;
1900 Register O3_accum = O3;
1901 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1902 }
1903
1904 Register O2_mask = O2;
1905 Register O3_bits = O3;
1906 Register O4_temp = O4;
1907
1908 // mark lower end of faulting range
1909 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1910 _verify_oop_implicit_branch[0] = pc();
1911
1912 // We can't check the mark oop because it could be in the process of
1913 // locking or unlocking while this is running.
1914 set(Universe::verify_oop_mask (), O2_mask);
1915 set(Universe::verify_oop_bits (), O3_bits);
1916
1917 // assert((obj & oop_mask) == oop_bits);
1918 and3(O0_obj, O2_mask, O4_temp);
1919 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1920
1921 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1922 // the null_or_fail case is useless; must test for null separately
1923 br_null_short(O0_obj, pn, succeed);
1924 }
1925
1926 // Check the Klass* of this object for being in the right area of memory.
1927 // Cannot do the load in the delay above slot in case O0 is null
1928 load_klass(O0_obj, O0_obj);
1929 // assert((klass != NULL)
1930 br_null_short(O0_obj, pn, fail);
1931 // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
1932
1933 wrccr( O5_save_flags ); // Restore CCR's
1934
1935 // mark upper end of faulting range
1936 _verify_oop_implicit_branch[1] = pc();
1937
1938 //-----------------------
1939 // all tests pass
1940 bind(succeed);
1941
1942 // Restore prior 64-bit registers
1943 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1944 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1945 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1946 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1947 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1948 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1949
1950 retl(); // Leaf return; restore prior O7 in delay slot
1951 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1952
1953 //-----------------------
1954 bind(null_or_fail); // nulls are less common but OK
1955 br_null(O0_obj, false, pt, succeed);
1956 delayed()->wrccr( O5_save_flags ); // Restore CCR's
1957
1958 //-----------------------
1959 // report failure:
1960 bind(fail);
1961 _verify_oop_implicit_branch[2] = pc();
1962
1963 wrccr( O5_save_flags ); // Restore CCR's
1964
1965 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1966
1967 // stop_subroutine expects message pointer in I1.
1968 mov(I1, O1);
1969
1970 // Restore prior 64-bit registers
1971 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1972 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1973 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1974 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1975 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1976 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1977
1978 // factor long stop-sequence into subroutine to save space
1979 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1980
1981 // call indirectly to solve generation ordering problem
1982 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1983 load_ptr_contents(al, O5);
1984 jmpl(O5, 0, O7);
1985 delayed()->nop();
1986 }
1987
1988
1989 void MacroAssembler::stop(const char* msg) {
1990 // save frame first to get O7 for return address
1991 // add one word to size in case struct is odd number of words long
1992 // It must be doubleword-aligned for storing doubles into it.
1993
1994 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1995
1996 // stop_subroutine expects message pointer in I1.
1997 // Size of set() should stay the same
1998 patchable_set((intptr_t)msg, O1);
1999
2000 // factor long stop-sequence into subroutine to save space
2001 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
2002
2003 // call indirectly to solve generation ordering problem
2004 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
2005 load_ptr_contents(a, O5);
2006 jmpl(O5, 0, O7);
2007 delayed()->nop();
2008
2009 breakpoint_trap(); // make stop actually stop rather than writing
2010 // unnoticeable results in the output files.
2011
2012 // restore(); done in callee to save space!
2013 }
2014
2015
2016 void MacroAssembler::warn(const char* msg) {
2017 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
2018 RegistersForDebugging::save_registers(this);
2019 mov(O0, L0);
2020 // Size of set() should stay the same
2021 patchable_set((intptr_t)msg, O0);
2022 call( CAST_FROM_FN_PTR(address, warning) );
2023 delayed()->nop();
2024 // ret();
2025 // delayed()->restore();
2026 RegistersForDebugging::restore_registers(this, L0);
2027 restore();
2028 }
2029
2030
2031 void MacroAssembler::untested(const char* what) {
2032 // We must be able to turn interactive prompting off
2033 // in order to run automated test scripts on the VM
2034 // Use the flag ShowMessageBoxOnError
2035
2036 char* b = new char[1024];
2037 sprintf(b, "untested: %s", what);
2038
2039 if (ShowMessageBoxOnError) { STOP(b); }
2040 else { warn(b); }
2041 }
2042
2043
2044 void MacroAssembler::stop_subroutine() {
2045 RegistersForDebugging::save_registers(this);
2046
2047 // for the sake of the debugger, stick a PC on the current frame
2048 // (this assumes that the caller has performed an extra "save")
2049 mov(I7, L7);
2050 add(O7, -7 * BytesPerInt, I7);
2051
2052 save_frame(); // one more save to free up another O7 register
2053 mov(I0, O1); // addr of reg save area
2054
2055 // We expect pointer to message in I1. Caller must set it up in O1
2056 mov(I1, O0); // get msg
2057 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
2058 delayed()->nop();
2059
2060 restore();
2061
2062 RegistersForDebugging::restore_registers(this, O0);
2063
2064 save_frame(0);
2065 call(CAST_FROM_FN_PTR(address,breakpoint));
2066 delayed()->nop();
2067 restore();
2068
2069 mov(L7, I7);
2070 retl();
2071 delayed()->restore(); // see stop above
2072 }
2073
2074
2075 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
2076 if ( ShowMessageBoxOnError ) {
2077 JavaThread* thread = JavaThread::current();
2078 JavaThreadState saved_state = thread->thread_state();
2079 thread->set_thread_state(_thread_in_vm);
2080 {
2081 // In order to get locks work, we need to fake a in_VM state
2082 ttyLocker ttyl;
2083 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
2084 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2085 BytecodeCounter::print();
2086 }
2087 if (os::message_box(msg, "Execution stopped, print registers?"))
2088 regs->print(::tty);
2089 }
2090 BREAKPOINT;
2091 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
2092 }
2093 else {
2094 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
2095 }
2096 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
2097 }
2098
2099 #ifndef PRODUCT
2100 void MacroAssembler::test() {
2101 ResourceMark rm;
2102
2103 CodeBuffer cb("test", 10000, 10000);
2104 MacroAssembler* a = new MacroAssembler(&cb);
2105 VM_Version::allow_all();
2106 a->test_v9();
2107 a->test_v8_onlys();
2108 VM_Version::revert();
2109
2110 StubRoutines::Sparc::test_stop_entry()();
2111 }
2112 #endif
2113
2114
2115 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
2116 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
2117 Label no_extras;
2118 br( negative, true, pt, no_extras ); // if neg, clear reg
2119 delayed()->set(0, Rresult); // annuled, so only if taken
2120 bind( no_extras );
2121 }
2122
2123
2124 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2125 #ifdef _LP64
2126 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2127 #else
2128 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2129 #endif
2130 bclr(1, Rresult);
2131 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
2132 }
2133
2134
2135 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2136 calc_frame_size(Rextra_words, Rresult);
2137 neg(Rresult);
2138 save(SP, Rresult, SP);
2139 }
2140
2141
2142 // ---------------------------------------------------------
2143 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2144 switch (c) {
2145 /*case zero: */
2146 case Assembler::equal: return Assembler::rc_z;
2147 case Assembler::lessEqual: return Assembler::rc_lez;
2148 case Assembler::less: return Assembler::rc_lz;
2149 /*case notZero:*/
2150 case Assembler::notEqual: return Assembler::rc_nz;
2151 case Assembler::greater: return Assembler::rc_gz;
2152 case Assembler::greaterEqual: return Assembler::rc_gez;
2153 }
2154 ShouldNotReachHere();
2155 return Assembler::rc_z;
2156 }
2157
2158 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
2159 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
2160 tst(s1);
2161 br (c, a, p, L);
2162 }
2163
2164 // Compares a pointer register with zero and branches on null.
2165 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2166 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2167 assert_not_delayed();
2168 #ifdef _LP64
2169 bpr( rc_z, a, p, s1, L );
2170 #else
2171 tst(s1);
2172 br ( zero, a, p, L );
2173 #endif
2174 }
2175
2176 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2177 assert_not_delayed();
2178 #ifdef _LP64
2179 bpr( rc_nz, a, p, s1, L );
2180 #else
2181 tst(s1);
2182 br ( notZero, a, p, L );
2183 #endif
2184 }
2185
2186 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
2187
2188 // Compare integer (32 bit) values (icc only).
2189 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
2190 Predict p, Label& L) {
2191 assert_not_delayed();
2192 if (use_cbcond(L)) {
2193 Assembler::cbcond(c, icc, s1, s2, L);
2194 } else {
2195 cmp(s1, s2);
2196 br(c, false, p, L);
2197 delayed()->nop();
2198 }
2199 }
2200
2201 // Compare integer (32 bit) values (icc only).
2202 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
2203 Predict p, Label& L) {
2204 assert_not_delayed();
2205 if (is_simm(simm13a,5) && use_cbcond(L)) {
2206 Assembler::cbcond(c, icc, s1, simm13a, L);
2207 } else {
2208 cmp(s1, simm13a);
2209 br(c, false, p, L);
2210 delayed()->nop();
2211 }
2212 }
2213
2214 // Branch that tests xcc in LP64 and icc in !LP64
2215 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
2216 Predict p, Label& L) {
2217 assert_not_delayed();
2218 if (use_cbcond(L)) {
2219 Assembler::cbcond(c, ptr_cc, s1, s2, L);
2220 } else {
2221 cmp(s1, s2);
2222 brx(c, false, p, L);
2223 delayed()->nop();
2224 }
2225 }
2226
2227 // Branch that tests xcc in LP64 and icc in !LP64
2228 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
2229 Predict p, Label& L) {
2230 assert_not_delayed();
2231 if (is_simm(simm13a,5) && use_cbcond(L)) {
2232 Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
2233 } else {
2234 cmp(s1, simm13a);
2235 brx(c, false, p, L);
2236 delayed()->nop();
2237 }
2238 }
2239
2240 // Short branch version for compares a pointer with zero.
2241
2242 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
2243 assert_not_delayed();
2244 if (use_cbcond(L)) {
2245 Assembler::cbcond(zero, ptr_cc, s1, 0, L);
2246 return;
2247 }
2248 br_null(s1, false, p, L);
2249 delayed()->nop();
2250 }
2251
2252 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
2253 assert_not_delayed();
2254 if (use_cbcond(L)) {
2255 Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
2256 return;
2257 }
2258 br_notnull(s1, false, p, L);
2259 delayed()->nop();
2260 }
2261
2262 // Unconditional short branch
2263 void MacroAssembler::ba_short(Label& L) {
2264 if (use_cbcond(L)) {
2265 Assembler::cbcond(equal, icc, G0, G0, L);
2266 return;
2267 }
2268 br(always, false, pt, L);
2269 delayed()->nop();
2270 }
2271
2272 // instruction sequences factored across compiler & interpreter
2273
2274
2275 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2276 Register Rb_hi, Register Rb_low,
2277 Register Rresult) {
2278
2279 Label check_low_parts, done;
2280
2281 cmp(Ra_hi, Rb_hi ); // compare hi parts
2282 br(equal, true, pt, check_low_parts);
2283 delayed()->cmp(Ra_low, Rb_low); // test low parts
2284
2285 // And, with an unsigned comparison, it does not matter if the numbers
2286 // are negative or not.
2287 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2288 // The second one is bigger (unsignedly).
2289
2290 // Other notes: The first move in each triplet can be unconditional
2291 // (and therefore probably prefetchable).
2292 // And the equals case for the high part does not need testing,
2293 // since that triplet is reached only after finding the high halves differ.
2294
2295 if (VM_Version::v9_instructions_work()) {
2296 mov(-1, Rresult);
2297 ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult);
2298 } else {
2299 br(less, true, pt, done); delayed()-> set(-1, Rresult);
2300 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2301 }
2302
2303 bind( check_low_parts );
2304
2305 if (VM_Version::v9_instructions_work()) {
2306 mov( -1, Rresult);
2307 movcc(equal, false, icc, 0, Rresult);
2308 movcc(greaterUnsigned, false, icc, 1, Rresult);
2309 } else {
2310 set(-1, Rresult);
2311 br(equal, true, pt, done); delayed()->set( 0, Rresult);
2312 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2313 }
2314 bind( done );
2315 }
2316
2317 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2318 subcc( G0, Rlow, Rlow );
2319 subc( G0, Rhi, Rhi );
2320 }
2321
2322 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
2323 Register Rcount,
2324 Register Rout_high, Register Rout_low,
2325 Register Rtemp ) {
2326
2327
2328 Register Ralt_count = Rtemp;
2329 Register Rxfer_bits = Rtemp;
2330
2331 assert( Ralt_count != Rin_high
2332 && Ralt_count != Rin_low
2333 && Ralt_count != Rcount
2334 && Rxfer_bits != Rin_low
2335 && Rxfer_bits != Rin_high
2336 && Rxfer_bits != Rcount
2337 && Rxfer_bits != Rout_low
2338 && Rout_low != Rin_high,
2339 "register alias checks");
2340
2341 Label big_shift, done;
2342
2343 // This code can be optimized to use the 64 bit shifts in V9.
2344 // Here we use the 32 bit shifts.
2345
2346 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2347 subcc(Rcount, 31, Ralt_count);
2348 br(greater, true, pn, big_shift);
2349 delayed()->dec(Ralt_count);
2350
2351 // shift < 32 bits, Ralt_count = Rcount-31
2352
2353 // We get the transfer bits by shifting right by 32-count the low
2354 // register. This is done by shifting right by 31-count and then by one
2355 // more to take care of the special (rare) case where count is zero
2356 // (shifting by 32 would not work).
2357
2358 neg(Ralt_count);
2359
2360 // The order of the next two instructions is critical in the case where
2361 // Rin and Rout are the same and should not be reversed.
2362
2363 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
2364 if (Rcount != Rout_low) {
2365 sll(Rin_low, Rcount, Rout_low); // low half
2366 }
2367 sll(Rin_high, Rcount, Rout_high);
2368 if (Rcount == Rout_low) {
2369 sll(Rin_low, Rcount, Rout_low); // low half
2370 }
2371 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
2372 ba(done);
2373 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
2374
2375 // shift >= 32 bits, Ralt_count = Rcount-32
2376 bind(big_shift);
2377 sll(Rin_low, Ralt_count, Rout_high );
2378 clr(Rout_low);
2379
2380 bind(done);
2381 }
2382
2383
2384 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
2385 Register Rcount,
2386 Register Rout_high, Register Rout_low,
2387 Register Rtemp ) {
2388
2389 Register Ralt_count = Rtemp;
2390 Register Rxfer_bits = Rtemp;
2391
2392 assert( Ralt_count != Rin_high
2393 && Ralt_count != Rin_low
2394 && Ralt_count != Rcount
2395 && Rxfer_bits != Rin_low
2396 && Rxfer_bits != Rin_high
2397 && Rxfer_bits != Rcount
2398 && Rxfer_bits != Rout_high
2399 && Rout_high != Rin_low,
2400 "register alias checks");
2401
2402 Label big_shift, done;
2403
2404 // This code can be optimized to use the 64 bit shifts in V9.
2405 // Here we use the 32 bit shifts.
2406
2407 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2408 subcc(Rcount, 31, Ralt_count);
2409 br(greater, true, pn, big_shift);
2410 delayed()->dec(Ralt_count);
2411
2412 // shift < 32 bits, Ralt_count = Rcount-31
2413
2414 // We get the transfer bits by shifting left by 32-count the high
2415 // register. This is done by shifting left by 31-count and then by one
2416 // more to take care of the special (rare) case where count is zero
2417 // (shifting by 32 would not work).
2418
2419 neg(Ralt_count);
2420 if (Rcount != Rout_low) {
2421 srl(Rin_low, Rcount, Rout_low);
2422 }
2423
2424 // The order of the next two instructions is critical in the case where
2425 // Rin and Rout are the same and should not be reversed.
2426
2427 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2428 sra(Rin_high, Rcount, Rout_high ); // high half
2429 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
2430 if (Rcount == Rout_low) {
2431 srl(Rin_low, Rcount, Rout_low);
2432 }
2433 ba(done);
2434 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2435
2436 // shift >= 32 bits, Ralt_count = Rcount-32
2437 bind(big_shift);
2438
2439 sra(Rin_high, Ralt_count, Rout_low);
2440 sra(Rin_high, 31, Rout_high); // sign into hi
2441
2442 bind( done );
2443 }
2444
2445
2446
2447 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
2448 Register Rcount,
2449 Register Rout_high, Register Rout_low,
2450 Register Rtemp ) {
2451
2452 Register Ralt_count = Rtemp;
2453 Register Rxfer_bits = Rtemp;
2454
2455 assert( Ralt_count != Rin_high
2456 && Ralt_count != Rin_low
2457 && Ralt_count != Rcount
2458 && Rxfer_bits != Rin_low
2459 && Rxfer_bits != Rin_high
2460 && Rxfer_bits != Rcount
2461 && Rxfer_bits != Rout_high
2462 && Rout_high != Rin_low,
2463 "register alias checks");
2464
2465 Label big_shift, done;
2466
2467 // This code can be optimized to use the 64 bit shifts in V9.
2468 // Here we use the 32 bit shifts.
2469
2470 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2471 subcc(Rcount, 31, Ralt_count);
2472 br(greater, true, pn, big_shift);
2473 delayed()->dec(Ralt_count);
2474
2475 // shift < 32 bits, Ralt_count = Rcount-31
2476
2477 // We get the transfer bits by shifting left by 32-count the high
2478 // register. This is done by shifting left by 31-count and then by one
2479 // more to take care of the special (rare) case where count is zero
2480 // (shifting by 32 would not work).
2481
2482 neg(Ralt_count);
2483 if (Rcount != Rout_low) {
2484 srl(Rin_low, Rcount, Rout_low);
2485 }
2486
2487 // The order of the next two instructions is critical in the case where
2488 // Rin and Rout are the same and should not be reversed.
2489
2490 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
2491 srl(Rin_high, Rcount, Rout_high ); // high half
2492 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
2493 if (Rcount == Rout_low) {
2494 srl(Rin_low, Rcount, Rout_low);
2495 }
2496 ba(done);
2497 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
2498
2499 // shift >= 32 bits, Ralt_count = Rcount-32
2500 bind(big_shift);
2501
2502 srl(Rin_high, Ralt_count, Rout_low);
2503 clr(Rout_high);
2504
2505 bind( done );
2506 }
2507
2508 #ifdef _LP64
2509 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2510 cmp(Ra, Rb);
2511 mov(-1, Rresult);
2512 movcc(equal, false, xcc, 0, Rresult);
2513 movcc(greater, false, xcc, 1, Rresult);
2514 }
2515 #endif
2516
2517
2518 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
2519 switch (size_in_bytes) {
2520 case 8: ld_long(src, dst); break;
2521 case 4: ld( src, dst); break;
2522 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2523 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2524 default: ShouldNotReachHere();
2525 }
2526 }
2527
2528 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2529 switch (size_in_bytes) {
2530 case 8: st_long(src, dst); break;
2531 case 4: st( src, dst); break;
2532 case 2: sth( src, dst); break;
2533 case 1: stb( src, dst); break;
2534 default: ShouldNotReachHere();
2535 }
2536 }
2537
2538
2539 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2540 FloatRegister Fa, FloatRegister Fb,
2541 Register Rresult) {
2542
2543 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2544
2545 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
2546 Condition eq = f_equal;
2547 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
2548
2549 if (VM_Version::v9_instructions_work()) {
2550
2551 mov(-1, Rresult);
2552 movcc(eq, true, fcc0, 0, Rresult);
2553 movcc(gt, true, fcc0, 1, Rresult);
2554
2555 } else {
2556 Label done;
2557
2558 set( -1, Rresult );
2559 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2560 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
2561 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
2562
2563 bind (done);
2564 }
2565 }
2566
2567
2568 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2569 {
2570 if (VM_Version::v9_instructions_work()) {
2571 Assembler::fneg(w, s, d);
2572 } else {
2573 if (w == FloatRegisterImpl::S) {
2574 Assembler::fneg(w, s, d);
2575 } else if (w == FloatRegisterImpl::D) {
2576 // number() does a sanity check on the alignment.
2577 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2578 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2579
2580 Assembler::fneg(FloatRegisterImpl::S, s, d);
2581 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2582 } else {
2583 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2584
2585 // number() does a sanity check on the alignment.
2586 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2587 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2588
2589 Assembler::fneg(FloatRegisterImpl::S, s, d);
2590 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2591 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2592 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2593 }
2594 }
2595 }
2596
2597 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2598 {
2599 if (VM_Version::v9_instructions_work()) {
2600 Assembler::fmov(w, s, d);
2601 } else {
2602 if (w == FloatRegisterImpl::S) {
2603 Assembler::fmov(w, s, d);
2604 } else if (w == FloatRegisterImpl::D) {
2605 // number() does a sanity check on the alignment.
2606 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2607 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2608
2609 Assembler::fmov(FloatRegisterImpl::S, s, d);
2610 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2611 } else {
2612 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2613
2614 // number() does a sanity check on the alignment.
2615 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2616 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2617
2618 Assembler::fmov(FloatRegisterImpl::S, s, d);
2619 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2620 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2621 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2622 }
2623 }
2624 }
2625
2626 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2627 {
2628 if (VM_Version::v9_instructions_work()) {
2629 Assembler::fabs(w, s, d);
2630 } else {
2631 if (w == FloatRegisterImpl::S) {
2632 Assembler::fabs(w, s, d);
2633 } else if (w == FloatRegisterImpl::D) {
2634 // number() does a sanity check on the alignment.
2635 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2636 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2637
2638 Assembler::fabs(FloatRegisterImpl::S, s, d);
2639 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2640 } else {
2641 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2642
2643 // number() does a sanity check on the alignment.
2644 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2645 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2646
2647 Assembler::fabs(FloatRegisterImpl::S, s, d);
2648 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2649 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2650 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2651 }
2652 }
2653 }
2654
2655 void MacroAssembler::save_all_globals_into_locals() {
2656 mov(G1,L1);
2657 mov(G2,L2);
2658 mov(G3,L3);
2659 mov(G4,L4);
2660 mov(G5,L5);
2661 mov(G6,L6);
2662 mov(G7,L7);
2663 }
2664
2665 void MacroAssembler::restore_globals_from_locals() {
2666 mov(L1,G1);
2667 mov(L2,G2);
2668 mov(L3,G3);
2669 mov(L4,G4);
2670 mov(L5,G5);
2671 mov(L6,G6);
2672 mov(L7,G7);
2673 }
2674
2675 // Use for 64 bit operation.
2676 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2677 {
2678 // store ptr_reg as the new top value
2679 #ifdef _LP64
2680 casx(top_ptr_reg, top_reg, ptr_reg);
2681 #else
2682 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2683 #endif // _LP64
2684 }
2685
2686 // [RGV] This routine does not handle 64 bit operations.
2687 // use casx_under_lock() or casx directly!!!
2688 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2689 {
2690 // store ptr_reg as the new top value
2691 if (VM_Version::v9_instructions_work()) {
2692 cas(top_ptr_reg, top_reg, ptr_reg);
2693 } else {
2694
2695 // If the register is not an out nor global, it is not visible
2696 // after the save. Allocate a register for it, save its
2697 // value in the register save area (the save may not flush
2698 // registers to the save area).
2699
2700 Register top_ptr_reg_after_save;
2701 Register top_reg_after_save;
2702 Register ptr_reg_after_save;
2703
2704 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2705 top_ptr_reg_after_save = top_ptr_reg->after_save();
2706 } else {
2707 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2708 top_ptr_reg_after_save = L0;
2709 st(top_ptr_reg, reg_save_addr);
2710 }
2711
2712 if (top_reg->is_out() || top_reg->is_global()) {
2713 top_reg_after_save = top_reg->after_save();
2714 } else {
2715 Address reg_save_addr = top_reg->address_in_saved_window();
2716 top_reg_after_save = L1;
2717 st(top_reg, reg_save_addr);
2718 }
2719
2720 if (ptr_reg->is_out() || ptr_reg->is_global()) {
2721 ptr_reg_after_save = ptr_reg->after_save();
2722 } else {
2723 Address reg_save_addr = ptr_reg->address_in_saved_window();
2724 ptr_reg_after_save = L2;
2725 st(ptr_reg, reg_save_addr);
2726 }
2727
2728 const Register& lock_reg = L3;
2729 const Register& lock_ptr_reg = L4;
2730 const Register& value_reg = L5;
2731 const Register& yield_reg = L6;
2732 const Register& yieldall_reg = L7;
2733
2734 save_frame();
2735
2736 if (top_ptr_reg_after_save == L0) {
2737 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2738 }
2739
2740 if (top_reg_after_save == L1) {
2741 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2742 }
2743
2744 if (ptr_reg_after_save == L2) {
2745 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2746 }
2747
2748 Label(retry_get_lock);
2749 Label(not_same);
2750 Label(dont_yield);
2751
2752 assert(lock_addr, "lock_address should be non null for v8");
2753 set((intptr_t)lock_addr, lock_ptr_reg);
2754 // Initialize yield counter
2755 mov(G0,yield_reg);
2756 mov(G0, yieldall_reg);
2757 set(StubRoutines::Sparc::locked, lock_reg);
2758
2759 bind(retry_get_lock);
2760 cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
2761
2762 if(use_call_vm) {
2763 Untested("Need to verify global reg consistancy");
2764 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2765 } else {
2766 // Save the regs and make space for a C call
2767 save(SP, -96, SP);
2768 save_all_globals_into_locals();
2769 call(CAST_FROM_FN_PTR(address,os::yield_all));
2770 delayed()->mov(yieldall_reg, O0);
2771 restore_globals_from_locals();
2772 restore();
2773 }
2774
2775 // reset the counter
2776 mov(G0,yield_reg);
2777 add(yieldall_reg, 1, yieldall_reg);
2778
2779 bind(dont_yield);
2780 // try to get lock
2781 swap(lock_ptr_reg, 0, lock_reg);
2782
2783 // did we get the lock?
2784 cmp(lock_reg, StubRoutines::Sparc::unlocked);
2785 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2786 delayed()->add(yield_reg,1,yield_reg);
2787
2788 // yes, got lock. do we have the same top?
2789 ld(top_ptr_reg_after_save, 0, value_reg);
2790 cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
2791
2792 // yes, same top.
2793 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2794 membar(Assembler::StoreStore);
2795
2796 bind(not_same);
2797 mov(value_reg, ptr_reg_after_save);
2798 st(lock_reg, lock_ptr_reg, 0); // unlock
2799
2800 restore();
2801 }
2802 }
2803
2804 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2805 Register tmp,
2806 int offset) {
2807 intptr_t value = *delayed_value_addr;
2808 if (value != 0)
2809 return RegisterOrConstant(value + offset);
2810
2811 // load indirectly to solve generation ordering problem
2812 AddressLiteral a(delayed_value_addr);
2813 load_ptr_contents(a, tmp);
2814
2815 #ifdef ASSERT
2816 tst(tmp);
2817 breakpoint_trap(zero, xcc);
2818 #endif
2819
2820 if (offset != 0)
2821 add(tmp, offset, tmp);
2822
2823 return RegisterOrConstant(tmp);
2824 }
2825
2826
2827 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2828 assert(d.register_or_noreg() != G0, "lost side effect");
2829 if ((s2.is_constant() && s2.as_constant() == 0) ||
2830 (s2.is_register() && s2.as_register() == G0)) {
2831 // Do nothing, just move value.
2832 if (s1.is_register()) {
2833 if (d.is_constant()) d = temp;
2834 mov(s1.as_register(), d.as_register());
2835 return d;
2836 } else {
2837 return s1;
2838 }
2839 }
2840
2841 if (s1.is_register()) {
2842 assert_different_registers(s1.as_register(), temp);
2843 if (d.is_constant()) d = temp;
2844 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2845 return d;
2846 } else {
2847 if (s2.is_register()) {
2848 assert_different_registers(s2.as_register(), temp);
2849 if (d.is_constant()) d = temp;
2850 set(s1.as_constant(), temp);
2851 andn(temp, s2.as_register(), d.as_register());
2852 return d;
2853 } else {
2854 intptr_t res = s1.as_constant() & ~s2.as_constant();
2855 return res;
2856 }
2857 }
2858 }
2859
2860 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2861 assert(d.register_or_noreg() != G0, "lost side effect");
2862 if ((s2.is_constant() && s2.as_constant() == 0) ||
2863 (s2.is_register() && s2.as_register() == G0)) {
2864 // Do nothing, just move value.
2865 if (s1.is_register()) {
2866 if (d.is_constant()) d = temp;
2867 mov(s1.as_register(), d.as_register());
2868 return d;
2869 } else {
2870 return s1;
2871 }
2872 }
2873
2874 if (s1.is_register()) {
2875 assert_different_registers(s1.as_register(), temp);
2876 if (d.is_constant()) d = temp;
2877 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2878 return d;
2879 } else {
2880 if (s2.is_register()) {
2881 assert_different_registers(s2.as_register(), temp);
2882 if (d.is_constant()) d = temp;
2883 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2884 return d;
2885 } else {
2886 intptr_t res = s1.as_constant() + s2.as_constant();
2887 return res;
2888 }
2889 }
2890 }
2891
2892 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2893 assert(d.register_or_noreg() != G0, "lost side effect");
2894 if (!is_simm13(s2.constant_or_zero()))
2895 s2 = (s2.as_constant() & 0xFF);
2896 if ((s2.is_constant() && s2.as_constant() == 0) ||
2897 (s2.is_register() && s2.as_register() == G0)) {
2898 // Do nothing, just move value.
2899 if (s1.is_register()) {
2900 if (d.is_constant()) d = temp;
2901 mov(s1.as_register(), d.as_register());
2902 return d;
2903 } else {
2904 return s1;
2905 }
2906 }
2907
2908 if (s1.is_register()) {
2909 assert_different_registers(s1.as_register(), temp);
2910 if (d.is_constant()) d = temp;
2911 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2912 return d;
2913 } else {
2914 if (s2.is_register()) {
2915 assert_different_registers(s2.as_register(), temp);
2916 if (d.is_constant()) d = temp;
2917 set(s1.as_constant(), temp);
2918 sll_ptr(temp, s2.as_register(), d.as_register());
2919 return d;
2920 } else {
2921 intptr_t res = s1.as_constant() << s2.as_constant();
2922 return res;
2923 }
2924 }
2925 }
2926
2927
2928 // Look up the method for a megamorphic invokeinterface call.
2929 // The target method is determined by <intf_klass, itable_index>.
2930 // The receiver klass is in recv_klass.
2931 // On success, the result will be in method_result, and execution falls through.
2932 // On failure, execution transfers to the given label.
2933 void MacroAssembler::lookup_interface_method(Register recv_klass,
2934 Register intf_klass,
2935 RegisterOrConstant itable_index,
2936 Register method_result,
2937 Register scan_temp,
2938 Register sethi_temp,
2939 Label& L_no_such_interface) {
2940 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2941 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2942 "caller must use same register for non-constant itable index as for method");
2943
2944 Label L_no_such_interface_restore;
2945 bool did_save = false;
2946 if (scan_temp == noreg || sethi_temp == noreg) {
2947 Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2948 Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2949 assert(method_result->is_global(), "must be able to return value");
2950 scan_temp = L2;
2951 sethi_temp = L3;
2952 save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2953 recv_klass = recv_2;
2954 intf_klass = intf_2;
2955 did_save = true;
2956 }
2957
2958 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2959 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2960 int scan_step = itableOffsetEntry::size() * wordSize;
2961 int vte_size = vtableEntry::size() * wordSize;
2962
2963 lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2964 // %%% We should store the aligned, prescaled offset in the klassoop.
2965 // Then the next several instructions would fold away.
2966
2967 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2968 int itb_offset = vtable_base;
2969 if (round_to_unit != 0) {
2970 // hoist first instruction of round_to(scan_temp, BytesPerLong):
2971 itb_offset += round_to_unit - wordSize;
2972 }
2973 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2974 sll(scan_temp, itb_scale, scan_temp);
2975 add(scan_temp, itb_offset, scan_temp);
2976 if (round_to_unit != 0) {
2977 // Round up to align_object_offset boundary
2978 // see code for InstanceKlass::start_of_itable!
2979 // Was: round_to(scan_temp, BytesPerLong);
2980 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2981 and3(scan_temp, -round_to_unit, scan_temp);
2982 }
2983 add(recv_klass, scan_temp, scan_temp);
2984
2985 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2986 RegisterOrConstant itable_offset = itable_index;
2987 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2988 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2989 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2990
2991 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2992 // if (scan->interface() == intf) {
2993 // result = (klass + scan->offset() + itable_index);
2994 // }
2995 // }
2996 Label L_search, L_found_method;
2997
2998 for (int peel = 1; peel >= 0; peel--) {
2999 // %%%% Could load both offset and interface in one ldx, if they were
3000 // in the opposite order. This would save a load.
3001 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
3002
3003 // Check that this entry is non-null. A null entry means that
3004 // the receiver class doesn't implement the interface, and wasn't the
3005 // same as when the caller was compiled.
3006 bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
3007 delayed()->cmp(method_result, intf_klass);
3008
3009 if (peel) {
3010 brx(Assembler::equal, false, Assembler::pt, L_found_method);
3011 } else {
3012 brx(Assembler::notEqual, false, Assembler::pn, L_search);
3013 // (invert the test to fall through to found_method...)
3014 }
3015 delayed()->add(scan_temp, scan_step, scan_temp);
3016
3017 if (!peel) break;
3018
3019 bind(L_search);
3020 }
3021
3022 bind(L_found_method);
3023
3024 // Got a hit.
3025 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
3026 // scan_temp[-scan_step] points to the vtable offset we need
3027 ito_offset -= scan_step;
3028 lduw(scan_temp, ito_offset, scan_temp);
3029 ld_ptr(recv_klass, scan_temp, method_result);
3030
3031 if (did_save) {
3032 Label L_done;
3033 ba(L_done);
3034 delayed()->restore();
3035
3036 bind(L_no_such_interface_restore);
3037 ba(L_no_such_interface);
3038 delayed()->restore();
3039
3040 bind(L_done);
3041 }
3042 }
3043
3044
3045 // virtual method calling
3046 void MacroAssembler::lookup_virtual_method(Register recv_klass,
3047 RegisterOrConstant vtable_index,
3048 Register method_result) {
3049 assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
3050 Register sethi_temp = method_result;
3051 const int base = (InstanceKlass::vtable_start_offset() * wordSize +
3052 // method pointer offset within the vtable entry:
3053 vtableEntry::method_offset_in_bytes());
3054 RegisterOrConstant vtable_offset = vtable_index;
3055 // Each of the following three lines potentially generates an instruction.
3056 // But the total number of address formation instructions will always be
3057 // at most two, and will often be zero. In any case, it will be optimal.
3058 // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
3059 // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
3060 vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
3061 vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
3062 Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
3063 ld_ptr(vtable_entry_addr, method_result);
3064 }
3065
3066
3067 void MacroAssembler::check_klass_subtype(Register sub_klass,
3068 Register super_klass,
3069 Register temp_reg,
3070 Register temp2_reg,
3071 Label& L_success) {
3072 Register sub_2 = sub_klass;
3073 Register sup_2 = super_klass;
3074 if (!sub_2->is_global()) sub_2 = L0;
3075 if (!sup_2->is_global()) sup_2 = L1;
3076 bool did_save = false;
3077 if (temp_reg == noreg || temp2_reg == noreg) {
3078 temp_reg = L2;
3079 temp2_reg = L3;
3080 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
3081 sub_klass = sub_2;
3082 super_klass = sup_2;
3083 did_save = true;
3084 }
3085 Label L_failure, L_pop_to_failure, L_pop_to_success;
3086 check_klass_subtype_fast_path(sub_klass, super_klass,
3087 temp_reg, temp2_reg,
3088 (did_save ? &L_pop_to_success : &L_success),
3089 (did_save ? &L_pop_to_failure : &L_failure), NULL);
3090
3091 if (!did_save)
3092 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
3093 check_klass_subtype_slow_path(sub_2, sup_2,
3094 L2, L3, L4, L5,
3095 NULL, &L_pop_to_failure);
3096
3097 // on success:
3098 bind(L_pop_to_success);
3099 restore();
3100 ba_short(L_success);
3101
3102 // on failure:
3103 bind(L_pop_to_failure);
3104 restore();
3105 bind(L_failure);
3106 }
3107
3108
3109 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
3110 Register super_klass,
3111 Register temp_reg,
3112 Register temp2_reg,
3113 Label* L_success,
3114 Label* L_failure,
3115 Label* L_slow_path,
3116 RegisterOrConstant super_check_offset) {
3117 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3118 int sco_offset = in_bytes(Klass::super_check_offset_offset());
3119
3120 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
3121 bool need_slow_path = (must_load_sco ||
3122 super_check_offset.constant_or_zero() == sco_offset);
3123
3124 assert_different_registers(sub_klass, super_klass, temp_reg);
3125 if (super_check_offset.is_register()) {
3126 assert_different_registers(sub_klass, super_klass, temp_reg,
3127 super_check_offset.as_register());
3128 } else if (must_load_sco) {
3129 assert(temp2_reg != noreg, "supply either a temp or a register offset");
3130 }
3131
3132 Label L_fallthrough;
3133 int label_nulls = 0;
3134 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3135 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3136 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
3137 assert(label_nulls <= 1 ||
3138 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
3139 "at most one NULL in the batch, usually");
3140
3141 // If the pointers are equal, we are done (e.g., String[] elements).
3142 // This self-check enables sharing of secondary supertype arrays among
3143 // non-primary types such as array-of-interface. Otherwise, each such
3144 // type would need its own customized SSA.
3145 // We move this check to the front of the fast path because many
3146 // type checks are in fact trivially successful in this manner,
3147 // so we get a nicely predicted branch right at the start of the check.
3148 cmp(super_klass, sub_klass);
3149 brx(Assembler::equal, false, Assembler::pn, *L_success);
3150 delayed()->nop();
3151
3152 // Check the supertype display:
3153 if (must_load_sco) {
3154 // The super check offset is always positive...
3155 lduw(super_klass, sco_offset, temp2_reg);
3156 super_check_offset = RegisterOrConstant(temp2_reg);
3157 // super_check_offset is register.
3158 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
3159 }
3160 ld_ptr(sub_klass, super_check_offset, temp_reg);
3161 cmp(super_klass, temp_reg);
3162
3163 // This check has worked decisively for primary supers.
3164 // Secondary supers are sought in the super_cache ('super_cache_addr').
3165 // (Secondary supers are interfaces and very deeply nested subtypes.)
3166 // This works in the same check above because of a tricky aliasing
3167 // between the super_cache and the primary super display elements.
3168 // (The 'super_check_addr' can address either, as the case requires.)
3169 // Note that the cache is updated below if it does not help us find
3170 // what we need immediately.
3171 // So if it was a primary super, we can just fail immediately.
3172 // Otherwise, it's the slow path for us (no success at this point).
3173
3174 // Hacked ba(), which may only be used just before L_fallthrough.
3175 #define FINAL_JUMP(label) \
3176 if (&(label) != &L_fallthrough) { \
3177 ba(label); delayed()->nop(); \
3178 }
3179
3180 if (super_check_offset.is_register()) {
3181 brx(Assembler::equal, false, Assembler::pn, *L_success);
3182 delayed()->cmp(super_check_offset.as_register(), sc_offset);
3183
3184 if (L_failure == &L_fallthrough) {
3185 brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
3186 delayed()->nop();
3187 } else {
3188 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3189 delayed()->nop();
3190 FINAL_JUMP(*L_slow_path);
3191 }
3192 } else if (super_check_offset.as_constant() == sc_offset) {
3193 // Need a slow path; fast failure is impossible.
3194 if (L_slow_path == &L_fallthrough) {
3195 brx(Assembler::equal, false, Assembler::pt, *L_success);
3196 delayed()->nop();
3197 } else {
3198 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
3199 delayed()->nop();
3200 FINAL_JUMP(*L_success);
3201 }
3202 } else {
3203 // No slow path; it's a fast decision.
3204 if (L_failure == &L_fallthrough) {
3205 brx(Assembler::equal, false, Assembler::pt, *L_success);
3206 delayed()->nop();
3207 } else {
3208 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
3209 delayed()->nop();
3210 FINAL_JUMP(*L_success);
3211 }
3212 }
3213
3214 bind(L_fallthrough);
3215
3216 #undef FINAL_JUMP
3217 }
3218
3219
3220 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
3221 Register super_klass,
3222 Register count_temp,
3223 Register scan_temp,
3224 Register scratch_reg,
3225 Register coop_reg,
3226 Label* L_success,
3227 Label* L_failure) {
3228 assert_different_registers(sub_klass, super_klass,
3229 count_temp, scan_temp, scratch_reg, coop_reg);
3230
3231 Label L_fallthrough, L_loop;
3232 int label_nulls = 0;
3233 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3234 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3235 assert(label_nulls <= 1, "at most one NULL in the batch");
3236
3237 // a couple of useful fields in sub_klass:
3238 int ss_offset = in_bytes(Klass::secondary_supers_offset());
3239 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3240
3241 // Do a linear scan of the secondary super-klass chain.
3242 // This code is rarely used, so simplicity is a virtue here.
3243
3244 #ifndef PRODUCT
3245 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3246 inc_counter((address) pst_counter, count_temp, scan_temp);
3247 #endif
3248
3249 // We will consult the secondary-super array.
3250 ld_ptr(sub_klass, ss_offset, scan_temp);
3251
3252 Register search_key = super_klass;
3253
3254 // Load the array length. (Positive movl does right thing on LP64.)
3255 lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
3256
3257 // Check for empty secondary super list
3258 tst(count_temp);
3259
3260 // In the array of super classes elements are pointer sized.
3261 int element_size = wordSize;
3262
3263 // Top of search loop
3264 bind(L_loop);
3265 br(Assembler::equal, false, Assembler::pn, *L_failure);
3266 delayed()->add(scan_temp, element_size, scan_temp);
3267
3268 // Skip the array header in all array accesses.
3269 int elem_offset = Array<Klass*>::base_offset_in_bytes();
3270 elem_offset -= element_size; // the scan pointer was pre-incremented also
3271
3272 // Load next super to check
3273 ld_ptr( scan_temp, elem_offset, scratch_reg );
3274
3275 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3276 cmp(scratch_reg, search_key);
3277
3278 // A miss means we are NOT a subtype and need to keep looping
3279 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3280 delayed()->deccc(count_temp); // decrement trip counter in delay slot
3281
3282 // Success. Cache the super we found and proceed in triumph.
3283 st_ptr(super_klass, sub_klass, sc_offset);
3284
3285 if (L_success != &L_fallthrough) {
3286 ba(*L_success);
3287 delayed()->nop();
3288 }
3289
3290 bind(L_fallthrough);
3291 }
3292
3293
3294 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3295 Register temp_reg,
3296 int extra_slot_offset) {
3297 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3298 int stackElementSize = Interpreter::stackElementSize;
3299 int offset = extra_slot_offset * stackElementSize;
3300 if (arg_slot.is_constant()) {
3301 offset += arg_slot.as_constant() * stackElementSize;
3302 return offset;
3303 } else {
3304 assert(temp_reg != noreg, "must specify");
3305 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
3306 if (offset != 0)
3307 add(temp_reg, offset, temp_reg);
3308 return temp_reg;
3309 }
3310 }
3311
3312
3313 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3314 Register temp_reg,
3315 int extra_slot_offset) {
3316 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
3317 }
3318
3319
3320 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3321 Register temp_reg,
3322 Label& done, Label* slow_case,
3323 BiasedLockingCounters* counters) {
3324 assert(UseBiasedLocking, "why call this otherwise?");
3325
3326 if (PrintBiasedLockingStatistics) {
3327 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3328 if (counters == NULL)
3329 counters = BiasedLocking::counters();
3330 }
3331
3332 Label cas_label;
3333
3334 // Biased locking
3335 // See whether the lock is currently biased toward our thread and
3336 // whether the epoch is still valid
3337 // Note that the runtime guarantees sufficient alignment of JavaThread
3338 // pointers to allow age to be placed into low bits
3339 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3340 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3341 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
3342
3343 load_klass(obj_reg, temp_reg);
3344 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3345 or3(G2_thread, temp_reg, temp_reg);
3346 xor3(mark_reg, temp_reg, temp_reg);
3347 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3348 if (counters != NULL) {
3349 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3350 // Reload mark_reg as we may need it later
3351 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3352 }
3353 brx(Assembler::equal, true, Assembler::pt, done);
3354 delayed()->nop();
3355
3356 Label try_revoke_bias;
3357 Label try_rebias;
3358 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3359 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3360
3361 // At this point we know that the header has the bias pattern and
3362 // that we are not the bias owner in the current epoch. We need to
3363 // figure out more details about the state of the header in order to
3364 // know what operations can be legally performed on the object's
3365 // header.
3366
3367 // If the low three bits in the xor result aren't clear, that means
3368 // the prototype header is no longer biased and we have to revoke
3369 // the bias on this object.
3370 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3371 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3372
3373 // Biasing is still enabled for this data type. See whether the
3374 // epoch of the current bias is still valid, meaning that the epoch
3375 // bits of the mark word are equal to the epoch bits of the
3376 // prototype header. (Note that the prototype header's epoch bits
3377 // only change at a safepoint.) If not, attempt to rebias the object
3378 // toward the current thread. Note that we must be absolutely sure
3379 // that the current epoch is invalid in order to do this because
3380 // otherwise the manipulations it performs on the mark word are
3381 // illegal.
3382 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3383 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3384
3385 // The epoch of the current bias is still valid but we know nothing
3386 // about the owner; it might be set or it might be clear. Try to
3387 // acquire the bias of the object using an atomic operation. If this
3388 // fails we will go in to the runtime to revoke the object's bias.
3389 // Note that we first construct the presumed unbiased header so we
3390 // don't accidentally blow away another thread's valid bias.
3391 delayed()->and3(mark_reg,
3392 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3393 mark_reg);
3394 or3(G2_thread, mark_reg, temp_reg);
3395 casn(mark_addr.base(), mark_reg, temp_reg);
3396 // If the biasing toward our thread failed, this means that
3397 // another thread succeeded in biasing it toward itself and we
3398 // need to revoke that bias. The revocation will occur in the
3399 // interpreter runtime in the slow case.
3400 cmp(mark_reg, temp_reg);
3401 if (counters != NULL) {
3402 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3403 }
3404 if (slow_case != NULL) {
3405 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3406 delayed()->nop();
3407 }
3408 ba_short(done);
3409
3410 bind(try_rebias);
3411 // At this point we know the epoch has expired, meaning that the
3412 // current "bias owner", if any, is actually invalid. Under these
3413 // circumstances _only_, we are allowed to use the current header's
3414 // value as the comparison value when doing the cas to acquire the
3415 // bias in the current epoch. In other words, we allow transfer of
3416 // the bias from one thread to another directly in this situation.
3417 //
3418 // FIXME: due to a lack of registers we currently blow away the age
3419 // bits in this situation. Should attempt to preserve them.
3420 load_klass(obj_reg, temp_reg);
3421 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3422 or3(G2_thread, temp_reg, temp_reg);
3423 casn(mark_addr.base(), mark_reg, temp_reg);
3424 // If the biasing toward our thread failed, this means that
3425 // another thread succeeded in biasing it toward itself and we
3426 // need to revoke that bias. The revocation will occur in the
3427 // interpreter runtime in the slow case.
3428 cmp(mark_reg, temp_reg);
3429 if (counters != NULL) {
3430 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3431 }
3432 if (slow_case != NULL) {
3433 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3434 delayed()->nop();
3435 }
3436 ba_short(done);
3437
3438 bind(try_revoke_bias);
3439 // The prototype mark in the klass doesn't have the bias bit set any
3440 // more, indicating that objects of this data type are not supposed
3441 // to be biased any more. We are going to try to reset the mark of
3442 // this object to the prototype value and fall through to the
3443 // CAS-based locking scheme. Note that if our CAS fails, it means
3444 // that another thread raced us for the privilege of revoking the
3445 // bias of this particular object, so it's okay to continue in the
3446 // normal locking code.
3447 //
3448 // FIXME: due to a lack of registers we currently blow away the age
3449 // bits in this situation. Should attempt to preserve them.
3450 load_klass(obj_reg, temp_reg);
3451 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
3452 casn(mark_addr.base(), mark_reg, temp_reg);
3453 // Fall through to the normal CAS-based lock, because no matter what
3454 // the result of the above CAS, some thread must have succeeded in
3455 // removing the bias bit from the object's header.
3456 if (counters != NULL) {
3457 cmp(mark_reg, temp_reg);
3458 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3459 }
3460
3461 bind(cas_label);
3462 }
3463
3464 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3465 bool allow_delay_slot_filling) {
3466 // Check for biased locking unlock case, which is a no-op
3467 // Note: we do not have to check the thread ID for two reasons.
3468 // First, the interpreter checks for IllegalMonitorStateException at
3469 // a higher level. Second, if the bias was revoked while we held the
3470 // lock, the object could not be rebiased toward another thread, so
3471 // the bias bit would be clear.
3472 ld_ptr(mark_addr, temp_reg);
3473 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3474 cmp(temp_reg, markOopDesc::biased_lock_pattern);
3475 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3476 delayed();
3477 if (!allow_delay_slot_filling) {
3478 nop();
3479 }
3480 }
3481
3482
3483 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3484 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
3485
3486 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3487 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3488 }
3489
3490
3491
3492 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3493 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
3494 // The code could be tightened up considerably.
3495 //
3496 // box->dhw disposition - post-conditions at DONE_LABEL.
3497 // - Successful inflated lock: box->dhw != 0.
3498 // Any non-zero value suffices.
3499 // Consider G2_thread, rsp, boxReg, or unused_mark()
3500 // - Successful Stack-lock: box->dhw == mark.
3501 // box->dhw must contain the displaced mark word value
3502 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3503 // The slow-path fast_enter() and slow_enter() operators
3504 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3505 // - Biased: box->dhw is undefined
3506 //
3507 // SPARC refworkload performance - specifically jetstream and scimark - are
3508 // extremely sensitive to the size of the code emitted by compiler_lock_object
3509 // and compiler_unlock_object. Critically, the key factor is code size, not path
3510 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3511 // effect).
3512
3513
3514 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3515 Register Rbox, Register Rscratch,
3516 BiasedLockingCounters* counters,
3517 bool try_bias) {
3518 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3519
3520 verify_oop(Roop);
3521 Label done ;
3522
3523 if (counters != NULL) {
3524 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3525 }
3526
3527 if (EmitSync & 1) {
3528 mov(3, Rscratch);
3529 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3530 cmp(SP, G0);
3531 return ;
3532 }
3533
3534 if (EmitSync & 2) {
3535
3536 // Fetch object's markword
3537 ld_ptr(mark_addr, Rmark);
3538
3539 if (try_bias) {
3540 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3541 }
3542
3543 // Save Rbox in Rscratch to be used for the cas operation
3544 mov(Rbox, Rscratch);
3545
3546 // set Rmark to markOop | markOopDesc::unlocked_value
3547 or3(Rmark, markOopDesc::unlocked_value, Rmark);
3548
3549 // Initialize the box. (Must happen before we update the object mark!)
3550 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3551
3552 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3553 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3554 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3555 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3556
3557 // if compare/exchange succeeded we found an unlocked object and we now have locked it
3558 // hence we are done
3559 cmp(Rmark, Rscratch);
3560 #ifdef _LP64
3561 sub(Rscratch, STACK_BIAS, Rscratch);
3562 #endif
3563 brx(Assembler::equal, false, Assembler::pt, done);
3564 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
3565
3566 // we did not find an unlocked object so see if this is a recursive case
3567 // sub(Rscratch, SP, Rscratch);
3568 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3569 andcc(Rscratch, 0xfffff003, Rscratch);
3570 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3571 bind (done);
3572 return ;
3573 }
3574
3575 Label Egress ;
3576
3577 if (EmitSync & 256) {
3578 Label IsInflated ;
3579
3580 ld_ptr(mark_addr, Rmark); // fetch obj->mark
3581 // Triage: biased, stack-locked, neutral, inflated
3582 if (try_bias) {
3583 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3584 // Invariant: if control reaches this point in the emitted stream
3585 // then Rmark has not been modified.
3586 }
3587
3588 // Store mark into displaced mark field in the on-stack basic-lock "box"
3589 // Critically, this must happen before the CAS
3590 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3591 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3592 andcc(Rmark, 2, G0);
3593 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3594 delayed()->
3595
3596 // Try stack-lock acquisition.
3597 // Beware: the 1st instruction is in a delay slot
3598 mov(Rbox, Rscratch);
3599 or3(Rmark, markOopDesc::unlocked_value, Rmark);
3600 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3601 casn(mark_addr.base(), Rmark, Rscratch);
3602 cmp(Rmark, Rscratch);
3603 brx(Assembler::equal, false, Assembler::pt, done);
3604 delayed()->sub(Rscratch, SP, Rscratch);
3605
3606 // Stack-lock attempt failed - check for recursive stack-lock.
3607 // See the comments below about how we might remove this case.
3608 #ifdef _LP64
3609 sub(Rscratch, STACK_BIAS, Rscratch);
3610 #endif
3611 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3612 andcc(Rscratch, 0xfffff003, Rscratch);
3613 br(Assembler::always, false, Assembler::pt, done);
3614 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3615
3616 bind(IsInflated);
3617 if (EmitSync & 64) {
3618 // If m->owner != null goto IsLocked
3619 // Pessimistic form: Test-and-CAS vs CAS
3620 // The optimistic form avoids RTS->RTO cache line upgrades.
3621 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3622 andcc(Rscratch, Rscratch, G0);
3623 brx(Assembler::notZero, false, Assembler::pn, done);
3624 delayed()->nop();
3625 // m->owner == null : it's unlocked.
3626 }
3627
3628 // Try to CAS m->owner from null to Self
3629 // Invariant: if we acquire the lock then _recursions should be 0.
3630 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3631 mov(G2_thread, Rscratch);
3632 casn(Rmark, G0, Rscratch);
3633 cmp(Rscratch, G0);
3634 // Intentional fall-through into done
3635 } else {
3636 // Aggressively avoid the Store-before-CAS penalty
3637 // Defer the store into box->dhw until after the CAS
3638 Label IsInflated, Recursive ;
3639
3640 // Anticipate CAS -- Avoid RTS->RTO upgrade
3641 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3642
3643 ld_ptr(mark_addr, Rmark); // fetch obj->mark
3644 // Triage: biased, stack-locked, neutral, inflated
3645
3646 if (try_bias) {
3647 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3648 // Invariant: if control reaches this point in the emitted stream
3649 // then Rmark has not been modified.
3650 }
3651 andcc(Rmark, 2, G0);
3652 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
3653 delayed()-> // Beware - dangling delay-slot
3654
3655 // Try stack-lock acquisition.
3656 // Transiently install BUSY (0) encoding in the mark word.
3657 // if the CAS of 0 into the mark was successful then we execute:
3658 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
3659 // ST obj->mark = box -- overwrite transient 0 value
3660 // This presumes TSO, of course.
3661
3662 mov(0, Rscratch);
3663 or3(Rmark, markOopDesc::unlocked_value, Rmark);
3664 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3665 casn(mark_addr.base(), Rmark, Rscratch);
3666 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
3667 cmp(Rscratch, Rmark);
3668 brx(Assembler::notZero, false, Assembler::pn, Recursive);
3669 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3670 if (counters != NULL) {
3671 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3672 }
3673 ba(done);
3674 delayed()->st_ptr(Rbox, mark_addr);
3675
3676 bind(Recursive);
3677 // Stack-lock attempt failed - check for recursive stack-lock.
3678 // Tests show that we can remove the recursive case with no impact
3679 // on refworkload 0.83. If we need to reduce the size of the code
3680 // emitted by compiler_lock_object() the recursive case is perfect
3681 // candidate.
3682 //
3683 // A more extreme idea is to always inflate on stack-lock recursion.
3684 // This lets us eliminate the recursive checks in compiler_lock_object
3685 // and compiler_unlock_object and the (box->dhw == 0) encoding.
3686 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3687 // and showed a performance *increase*. In the same experiment I eliminated
3688 // the fast-path stack-lock code from the interpreter and always passed
3689 // control to the "slow" operators in synchronizer.cpp.
3690
3691 // RScratch contains the fetched obj->mark value from the failed CASN.
3692 #ifdef _LP64
3693 sub(Rscratch, STACK_BIAS, Rscratch);
3694 #endif
3695 sub(Rscratch, SP, Rscratch);
3696 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3697 andcc(Rscratch, 0xfffff003, Rscratch);
3698 if (counters != NULL) {
3699 // Accounting needs the Rscratch register
3700 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3701 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3702 ba_short(done);
3703 } else {
3704 ba(done);
3705 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3706 }
3707
3708 bind (IsInflated);
3709 if (EmitSync & 64) {
3710 // If m->owner != null goto IsLocked
3711 // Test-and-CAS vs CAS
3712 // Pessimistic form avoids futile (doomed) CAS attempts
3713 // The optimistic form avoids RTS->RTO cache line upgrades.
3714 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3715 andcc(Rscratch, Rscratch, G0);
3716 brx(Assembler::notZero, false, Assembler::pn, done);
3717 delayed()->nop();
3718 // m->owner == null : it's unlocked.
3719 }
3720
3721 // Try to CAS m->owner from null to Self
3722 // Invariant: if we acquire the lock then _recursions should be 0.
3723 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3724 mov(G2_thread, Rscratch);
3725 casn(Rmark, G0, Rscratch);
3726 cmp(Rscratch, G0);
3727 // ST box->displaced_header = NonZero.
3728 // Any non-zero value suffices:
3729 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3730 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3731 // Intentional fall-through into done
3732 }
3733
3734 bind (done);
3735 }
3736
3737 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3738 Register Rbox, Register Rscratch,
3739 bool try_bias) {
3740 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3741
3742 Label done ;
3743
3744 if (EmitSync & 4) {
3745 cmp(SP, G0);
3746 return ;
3747 }
3748
3749 if (EmitSync & 8) {
3750 if (try_bias) {
3751 biased_locking_exit(mark_addr, Rscratch, done);
3752 }
3753
3754 // Test first if it is a fast recursive unlock
3755 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3756 br_null_short(Rmark, Assembler::pt, done);
3757
3758 // Check if it is still a light weight lock, this is is true if we see
3759 // the stack address of the basicLock in the markOop of the object
3760 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3761 casx_under_lock(mark_addr.base(), Rbox, Rmark,
3762 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3763 ba(done);
3764 delayed()->cmp(Rbox, Rmark);
3765 bind(done);
3766 return ;
3767 }
3768
3769 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3770 // is too large performance rolls abruptly off a cliff.
3771 // This could be related to inlining policies, code cache management, or
3772 // I$ effects.
3773 Label LStacked ;
3774
3775 if (try_bias) {
3776 // TODO: eliminate redundant LDs of obj->mark
3777 biased_locking_exit(mark_addr, Rscratch, done);
3778 }
3779
3780 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3781 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3782 andcc(Rscratch, Rscratch, G0);
3783 brx(Assembler::zero, false, Assembler::pn, done);
3784 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
3785 andcc(Rmark, 2, G0);
3786 brx(Assembler::zero, false, Assembler::pt, LStacked);
3787 delayed()->nop();
3788
3789 // It's inflated
3790 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3791 // the ST of 0 into _owner which releases the lock. This prevents loads
3792 // and stores within the critical section from reordering (floating)
3793 // past the store that releases the lock. But TSO is a strong memory model
3794 // and that particular flavor of barrier is a noop, so we can safely elide it.
3795 // Note that we use 1-0 locking by default for the inflated case. We
3796 // close the resultant (and rare) race by having contented threads in
3797 // monitorenter periodically poll _owner.
3798 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3799 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3800 xor3(Rscratch, G2_thread, Rscratch);
3801 orcc(Rbox, Rscratch, Rbox);
3802 brx(Assembler::notZero, false, Assembler::pn, done);
3803 delayed()->
3804 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3805 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3806 orcc(Rbox, Rscratch, G0);
3807 if (EmitSync & 65536) {
3808 Label LSucc ;
3809 brx(Assembler::notZero, false, Assembler::pn, LSucc);
3810 delayed()->nop();
3811 ba(done);
3812 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3813
3814 bind(LSucc);
3815 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3816 if (os::is_MP()) { membar (StoreLoad); }
3817 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3818 andcc(Rscratch, Rscratch, G0);
3819 brx(Assembler::notZero, false, Assembler::pt, done);
3820 delayed()->andcc(G0, G0, G0);
3821 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3822 mov(G2_thread, Rscratch);
3823 casn(Rmark, G0, Rscratch);
3824 // invert icc.zf and goto done
3825 br_notnull(Rscratch, false, Assembler::pt, done);
3826 delayed()->cmp(G0, G0);
3827 ba(done);
3828 delayed()->cmp(G0, 1);
3829 } else {
3830 brx(Assembler::notZero, false, Assembler::pn, done);
3831 delayed()->nop();
3832 ba(done);
3833 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3834 }
3835
3836 bind (LStacked);
3837 // Consider: we could replace the expensive CAS in the exit
3838 // path with a simple ST of the displaced mark value fetched from
3839 // the on-stack basiclock box. That admits a race where a thread T2
3840 // in the slow lock path -- inflating with monitor M -- could race a
3841 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3842 // More precisely T1 in the stack-lock unlock path could "stomp" the
3843 // inflated mark value M installed by T2, resulting in an orphan
3844 // object monitor M and T2 becoming stranded. We can remedy that situation
3845 // by having T2 periodically poll the object's mark word using timed wait
3846 // operations. If T2 discovers that a stomp has occurred it vacates
3847 // the monitor M and wakes any other threads stranded on the now-orphan M.
3848 // In addition the monitor scavenger, which performs deflation,
3849 // would also need to check for orpan monitors and stranded threads.
3850 //
3851 // Finally, inflation is also used when T2 needs to assign a hashCode
3852 // to O and O is stack-locked by T1. The "stomp" race could cause
3853 // an assigned hashCode value to be lost. We can avoid that condition
3854 // and provide the necessary hashCode stability invariants by ensuring
3855 // that hashCode generation is idempotent between copying GCs.
3856 // For example we could compute the hashCode of an object O as
3857 // O's heap address XOR some high quality RNG value that is refreshed
3858 // at GC-time. The monitor scavenger would install the hashCode
3859 // found in any orphan monitors. Again, the mechanism admits a
3860 // lost-update "stomp" WAW race but detects and recovers as needed.
3861 //
3862 // A prototype implementation showed excellent results, although
3863 // the scavenger and timeout code was rather involved.
3864
3865 casn(mark_addr.base(), Rbox, Rscratch);
3866 cmp(Rbox, Rscratch);
3867 // Intentional fall through into done ...
3868
3869 bind(done);
3870 }
3871
3872
3873
3874 void MacroAssembler::print_CPU_state() {
3875 // %%%%% need to implement this
3876 }
3877
3878 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3879 // %%%%% need to implement this
3880 }
3881
3882 void MacroAssembler::push_IU_state() {
3883 // %%%%% need to implement this
3884 }
3885
3886
3887 void MacroAssembler::pop_IU_state() {
3888 // %%%%% need to implement this
3889 }
3890
3891
3892 void MacroAssembler::push_FPU_state() {
3893 // %%%%% need to implement this
3894 }
3895
3896
3897 void MacroAssembler::pop_FPU_state() {
3898 // %%%%% need to implement this
3899 }
3900
3901
3902 void MacroAssembler::push_CPU_state() {
3903 // %%%%% need to implement this
3904 }
3905
3906
3907 void MacroAssembler::pop_CPU_state() {
3908 // %%%%% need to implement this
3909 }
3910
3911
3912
3913 void MacroAssembler::verify_tlab() {
3914 #ifdef ASSERT
3915 if (UseTLAB && VerifyOops) {
3916 Label next, next2, ok;
3917 Register t1 = L0;
3918 Register t2 = L1;
3919 Register t3 = L2;
3920
3921 save_frame(0);
3922 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3923 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3924 or3(t1, t2, t3);
3925 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3926 STOP("assert(top >= start)");
3927 should_not_reach_here();
3928
3929 bind(next);
3930 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3931 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3932 or3(t3, t2, t3);
3933 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3934 STOP("assert(top <= end)");
3935 should_not_reach_here();
3936
3937 bind(next2);
3938 and3(t3, MinObjAlignmentInBytesMask, t3);
3939 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3940 STOP("assert(aligned)");
3941 should_not_reach_here();
3942
3943 bind(ok);
3944 restore();
3945 }
3946 #endif
3947 }
3948
3949
3950 void MacroAssembler::eden_allocate(
3951 Register obj, // result: pointer to object after successful allocation
3952 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
3953 int con_size_in_bytes, // object size in bytes if known at compile time
3954 Register t1, // temp register
3955 Register t2, // temp register
3956 Label& slow_case // continuation point if fast allocation fails
3957 ){
3958 // make sure arguments make sense
3959 assert_different_registers(obj, var_size_in_bytes, t1, t2);
3960 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3961 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3962
3963 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3964 // No allocation in the shared eden.
3965 ba_short(slow_case);
3966 } else {
3967 // get eden boundaries
3968 // note: we need both top & top_addr!
3969 const Register top_addr = t1;
3970 const Register end = t2;
3971
3972 CollectedHeap* ch = Universe::heap();
3973 set((intx)ch->top_addr(), top_addr);
3974 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3975 ld_ptr(top_addr, delta, end);
3976 ld_ptr(top_addr, 0, obj);
3977
3978 // try to allocate
3979 Label retry;
3980 bind(retry);
3981 #ifdef ASSERT
3982 // make sure eden top is properly aligned
3983 {
3984 Label L;
3985 btst(MinObjAlignmentInBytesMask, obj);
3986 br(Assembler::zero, false, Assembler::pt, L);
3987 delayed()->nop();
3988 STOP("eden top is not properly aligned");
3989 bind(L);
3990 }
3991 #endif // ASSERT
3992 const Register free = end;
3993 sub(end, obj, free); // compute amount of free space
3994 if (var_size_in_bytes->is_valid()) {
3995 // size is unknown at compile time
3996 cmp(free, var_size_in_bytes);
3997 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3998 delayed()->add(obj, var_size_in_bytes, end);
3999 } else {
4000 // size is known at compile time
4001 cmp(free, con_size_in_bytes);
4002 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
4003 delayed()->add(obj, con_size_in_bytes, end);
4004 }
4005 // Compare obj with the value at top_addr; if still equal, swap the value of
4006 // end with the value at top_addr. If not equal, read the value at top_addr
4007 // into end.
4008 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
4009 // if someone beat us on the allocation, try again, otherwise continue
4010 cmp(obj, end);
4011 brx(Assembler::notEqual, false, Assembler::pn, retry);
4012 delayed()->mov(end, obj); // nop if successfull since obj == end
4013
4014 #ifdef ASSERT
4015 // make sure eden top is properly aligned
4016 {
4017 Label L;
4018 const Register top_addr = t1;
4019
4020 set((intx)ch->top_addr(), top_addr);
4021 ld_ptr(top_addr, 0, top_addr);
4022 btst(MinObjAlignmentInBytesMask, top_addr);
4023 br(Assembler::zero, false, Assembler::pt, L);
4024 delayed()->nop();
4025 STOP("eden top is not properly aligned");
4026 bind(L);
4027 }
4028 #endif // ASSERT
4029 }
4030 }
4031
4032
4033 void MacroAssembler::tlab_allocate(
4034 Register obj, // result: pointer to object after successful allocation
4035 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
4036 int con_size_in_bytes, // object size in bytes if known at compile time
4037 Register t1, // temp register
4038 Label& slow_case // continuation point if fast allocation fails
4039 ){
4040 // make sure arguments make sense
4041 assert_different_registers(obj, var_size_in_bytes, t1);
4042 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
4043 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
4044
4045 const Register free = t1;
4046
4047 verify_tlab();
4048
4049 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
4050
4051 // calculate amount of free space
4052 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
4053 sub(free, obj, free);
4054
4055 Label done;
4056 if (var_size_in_bytes == noreg) {
4057 cmp(free, con_size_in_bytes);
4058 } else {
4059 cmp(free, var_size_in_bytes);
4060 }
4061 br(Assembler::less, false, Assembler::pn, slow_case);
4062 // calculate the new top pointer
4063 if (var_size_in_bytes == noreg) {
4064 delayed()->add(obj, con_size_in_bytes, free);
4065 } else {
4066 delayed()->add(obj, var_size_in_bytes, free);
4067 }
4068
4069 bind(done);
4070
4071 #ifdef ASSERT
4072 // make sure new free pointer is properly aligned
4073 {
4074 Label L;
4075 btst(MinObjAlignmentInBytesMask, free);
4076 br(Assembler::zero, false, Assembler::pt, L);
4077 delayed()->nop();
4078 STOP("updated TLAB free is not properly aligned");
4079 bind(L);
4080 }
4081 #endif // ASSERT
4082
4083 // update the tlab top pointer
4084 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4085 verify_tlab();
4086 }
4087
4088
4089 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
4090 Register top = O0;
4091 Register t1 = G1;
4092 Register t2 = G3;
4093 Register t3 = O1;
4094 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
4095 Label do_refill, discard_tlab;
4096
4097 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4098 // No allocation in the shared eden.
4099 ba_short(slow_case);
4100 }
4101
4102 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
4103 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
4104 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
4105
4106 // calculate amount of free space
4107 sub(t1, top, t1);
4108 srl_ptr(t1, LogHeapWordSize, t1);
4109
4110 // Retain tlab and allocate object in shared space if
4111 // the amount free in the tlab is too large to discard.
4112 cmp(t1, t2);
4113 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
4114
4115 // increment waste limit to prevent getting stuck on this slow path
4116 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
4117 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
4118 if (TLABStats) {
4119 // increment number of slow_allocations
4120 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
4121 add(t2, 1, t2);
4122 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
4123 }
4124 ba_short(try_eden);
4125
4126 bind(discard_tlab);
4127 if (TLABStats) {
4128 // increment number of refills
4129 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
4130 add(t2, 1, t2);
4131 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
4132 // accumulate wastage
4133 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
4134 add(t2, t1, t2);
4135 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
4136 }
4137
4138 // if tlab is currently allocated (top or end != null) then
4139 // fill [top, end + alignment_reserve) with array object
4140 br_null_short(top, Assembler::pn, do_refill);
4141
4142 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
4143 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
4144 // set klass to intArrayKlass
4145 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
4146 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
4147 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
4148 st(t1, top, arrayOopDesc::length_offset_in_bytes());
4149 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
4150 ld_ptr(t2, 0, t2);
4151 // store klass last. concurrent gcs assumes klass length is valid if
4152 // klass field is not null.
4153 store_klass(t2, top);
4154 verify_oop(top);
4155
4156 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
4157 sub(top, t1, t1); // size of tlab's allocated portion
4158 incr_allocated_bytes(t1, t2, t3);
4159
4160 // refill the tlab with an eden allocation
4161 bind(do_refill);
4162 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
4163 sll_ptr(t1, LogHeapWordSize, t1);
4164 // allocate new tlab, address returned in top
4165 eden_allocate(top, t1, 0, t2, t3, slow_case);
4166
4167 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
4168 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4169 #ifdef ASSERT
4170 // check that tlab_size (t1) is still valid
4171 {
4172 Label ok;
4173 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
4174 sll_ptr(t2, LogHeapWordSize, t2);
4175 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
4176 STOP("assert(t1 == tlab_size)");
4177 should_not_reach_here();
4178
4179 bind(ok);
4180 }
4181 #endif // ASSERT
4182 add(top, t1, top); // t1 is tlab_size
4183 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
4184 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
4185 verify_tlab();
4186 ba_short(retry);
4187 }
4188
4189 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
4190 Register t1, Register t2) {
4191 // Bump total bytes allocated by this thread
4192 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
4193 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
4194 // v8 support has gone the way of the dodo
4195 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
4196 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
4197 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
4198 }
4199
4200 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
4201 switch (cond) {
4202 // Note some conditions are synonyms for others
4203 case Assembler::never: return Assembler::always;
4204 case Assembler::zero: return Assembler::notZero;
4205 case Assembler::lessEqual: return Assembler::greater;
4206 case Assembler::less: return Assembler::greaterEqual;
4207 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
4208 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
4209 case Assembler::negative: return Assembler::positive;
4210 case Assembler::overflowSet: return Assembler::overflowClear;
4211 case Assembler::always: return Assembler::never;
4212 case Assembler::notZero: return Assembler::zero;
4213 case Assembler::greater: return Assembler::lessEqual;
4214 case Assembler::greaterEqual: return Assembler::less;
4215 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
4216 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
4217 case Assembler::positive: return Assembler::negative;
4218 case Assembler::overflowClear: return Assembler::overflowSet;
4219 }
4220
4221 ShouldNotReachHere(); return Assembler::overflowClear;
4222 }
4223
4224 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
4225 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
4226 Condition negated_cond = negate_condition(cond);
4227 Label L;
4228 brx(negated_cond, false, Assembler::pt, L);
4229 delayed()->nop();
4230 inc_counter(counter_ptr, Rtmp1, Rtmp2);
4231 bind(L);
4232 }
4233
4234 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
4235 AddressLiteral addrlit(counter_addr);
4236 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
4237 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
4238 ld(addr, Rtmp2);
4239 inc(Rtmp2);
4240 st(Rtmp2, addr);
4241 }
4242
4243 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4244 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4245 }
4246
4247 SkipIfEqual::SkipIfEqual(
4248 MacroAssembler* masm, Register temp, const bool* flag_addr,
4249 Assembler::Condition condition) {
4250 _masm = masm;
4251 AddressLiteral flag(flag_addr);
4252 _masm->sethi(flag, temp);
4253 _masm->ldub(temp, flag.low10(), temp);
4254 _masm->tst(temp);
4255 _masm->br(condition, false, Assembler::pt, _label);
4256 _masm->delayed()->nop();
4257 }
4258
4259 SkipIfEqual::~SkipIfEqual() {
4260 _masm->bind(_label);
4261 }
4262
4263
4264 // Writes to stack successive pages until offset reached to check for
4265 // stack overflow + shadow pages. This clobbers tsp and scratch.
4266 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4267 Register Rscratch) {
4268 // Use stack pointer in temp stack pointer
4269 mov(SP, Rtsp);
4270
4271 // Bang stack for total size given plus stack shadow page size.
4272 // Bang one page at a time because a large size can overflow yellow and
4273 // red zones (the bang will fail but stack overflow handling can't tell that
4274 // it was a stack overflow bang vs a regular segv).
4275 int offset = os::vm_page_size();
4276 Register Roffset = Rscratch;
4277
4278 Label loop;
4279 bind(loop);
4280 set((-offset)+STACK_BIAS, Rscratch);
4281 st(G0, Rtsp, Rscratch);
4282 set(offset, Roffset);
4283 sub(Rsize, Roffset, Rsize);
4284 cmp(Rsize, G0);
4285 br(Assembler::greater, false, Assembler::pn, loop);
4286 delayed()->sub(Rtsp, Roffset, Rtsp);
4287
4288 // Bang down shadow pages too.
4289 // The -1 because we already subtracted 1 page.
4290 for (int i = 0; i< StackShadowPages-1; i++) {
4291 set((-i*offset)+STACK_BIAS, Rscratch);
4292 st(G0, Rtsp, Rscratch);
4293 }
4294 }
4295
4296 ///////////////////////////////////////////////////////////////////////////////////
4297 #ifndef SERIALGC
4298
4299 static address satb_log_enqueue_with_frame = NULL;
4300 static u_char* satb_log_enqueue_with_frame_end = NULL;
4301
4302 static address satb_log_enqueue_frameless = NULL;
4303 static u_char* satb_log_enqueue_frameless_end = NULL;
4304
4305 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4306
4307 static void generate_satb_log_enqueue(bool with_frame) {
4308 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4309 CodeBuffer buf(bb);
4310 MacroAssembler masm(&buf);
4311
4312 #define __ masm.
4313
4314 address start = __ pc();
4315 Register pre_val;
4316
4317 Label refill, restart;
4318 if (with_frame) {
4319 __ save_frame(0);
4320 pre_val = I0; // Was O0 before the save.
4321 } else {
4322 pre_val = O0;
4323 }
4324
4325 int satb_q_index_byte_offset =
4326 in_bytes(JavaThread::satb_mark_queue_offset() +
4327 PtrQueue::byte_offset_of_index());
4328
4329 int satb_q_buf_byte_offset =
4330 in_bytes(JavaThread::satb_mark_queue_offset() +
4331 PtrQueue::byte_offset_of_buf());
4332
4333 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4334 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4335 "check sizes in assembly below");
4336
4337 __ bind(restart);
4338
4339 // Load the index into the SATB buffer. PtrQueue::_index is a size_t
4340 // so ld_ptr is appropriate.
4341 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4342
4343 // index == 0?
4344 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
4345
4346 __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4347 __ sub(L0, oopSize, L0);
4348
4349 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
4350 if (!with_frame) {
4351 // Use return-from-leaf
4352 __ retl();
4353 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4354 } else {
4355 // Not delayed.
4356 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4357 }
4358 if (with_frame) {
4359 __ ret();
4360 __ delayed()->restore();
4361 }
4362 __ bind(refill);
4363
4364 address handle_zero =
4365 CAST_FROM_FN_PTR(address,
4366 &SATBMarkQueueSet::handle_zero_index_for_thread);
4367 // This should be rare enough that we can afford to save all the
4368 // scratch registers that the calling context might be using.
4369 __ mov(G1_scratch, L0);
4370 __ mov(G3_scratch, L1);
4371 __ mov(G4, L2);
4372 // We need the value of O0 above (for the write into the buffer), so we
4373 // save and restore it.
4374 __ mov(O0, L3);
4375 // Since the call will overwrite O7, we save and restore that, as well.
4376 __ mov(O7, L4);
4377 __ call_VM_leaf(L5, handle_zero, G2_thread);
4378 __ mov(L0, G1_scratch);
4379 __ mov(L1, G3_scratch);
4380 __ mov(L2, G4);
4381 __ mov(L3, O0);
4382 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4383 __ delayed()->mov(L4, O7);
4384
4385 if (with_frame) {
4386 satb_log_enqueue_with_frame = start;
4387 satb_log_enqueue_with_frame_end = __ pc();
4388 } else {
4389 satb_log_enqueue_frameless = start;
4390 satb_log_enqueue_frameless_end = __ pc();
4391 }
4392
4393 #undef __
4394 }
4395
4396 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4397 if (with_frame) {
4398 if (satb_log_enqueue_with_frame == 0) {
4399 generate_satb_log_enqueue(with_frame);
4400 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4401 if (G1SATBPrintStubs) {
4402 tty->print_cr("Generated with-frame satb enqueue:");
4403 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4404 satb_log_enqueue_with_frame_end,
4405 tty);
4406 }
4407 }
4408 } else {
4409 if (satb_log_enqueue_frameless == 0) {
4410 generate_satb_log_enqueue(with_frame);
4411 assert(satb_log_enqueue_frameless != 0, "postcondition.");
4412 if (G1SATBPrintStubs) {
4413 tty->print_cr("Generated frameless satb enqueue:");
4414 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4415 satb_log_enqueue_frameless_end,
4416 tty);
4417 }
4418 }
4419 }
4420 }
4421
4422 void MacroAssembler::g1_write_barrier_pre(Register obj,
4423 Register index,
4424 int offset,
4425 Register pre_val,
4426 Register tmp,
4427 bool preserve_o_regs) {
4428 Label filtered;
4429
4430 if (obj == noreg) {
4431 // We are not loading the previous value so make
4432 // sure that we don't trash the value in pre_val
4433 // with the code below.
4434 assert_different_registers(pre_val, tmp);
4435 } else {
4436 // We will be loading the previous value
4437 // in this code so...
4438 assert(offset == 0 || index == noreg, "choose one");
4439 assert(pre_val == noreg, "check this code");
4440 }
4441
4442 // Is marking active?
4443 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4444 ld(G2,
4445 in_bytes(JavaThread::satb_mark_queue_offset() +
4446 PtrQueue::byte_offset_of_active()),
4447 tmp);
4448 } else {
4449 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4450 "Assumption");
4451 ldsb(G2,
4452 in_bytes(JavaThread::satb_mark_queue_offset() +
4453 PtrQueue::byte_offset_of_active()),
4454 tmp);
4455 }
4456
4457 // Is marking active?
4458 cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4459
4460 // Do we need to load the previous value?
4461 if (obj != noreg) {
4462 // Load the previous value...
4463 if (index == noreg) {
4464 if (Assembler::is_simm13(offset)) {
4465 load_heap_oop(obj, offset, tmp);
4466 } else {
4467 set(offset, tmp);
4468 load_heap_oop(obj, tmp, tmp);
4469 }
4470 } else {
4471 load_heap_oop(obj, index, tmp);
4472 }
4473 // Previous value has been loaded into tmp
4474 pre_val = tmp;
4475 }
4476
4477 assert(pre_val != noreg, "must have a real register");
4478
4479 // Is the previous value null?
4480 cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
4481
4482 // OK, it's not filtered, so we'll need to call enqueue. In the normal
4483 // case, pre_val will be a scratch G-reg, but there are some cases in
4484 // which it's an O-reg. In the first case, do a normal call. In the
4485 // latter, do a save here and call the frameless version.
4486
4487 guarantee(pre_val->is_global() || pre_val->is_out(),
4488 "Or we need to think harder.");
4489
4490 if (pre_val->is_global() && !preserve_o_regs) {
4491 generate_satb_log_enqueue_if_necessary(true); // with frame
4492
4493 call(satb_log_enqueue_with_frame);
4494 delayed()->mov(pre_val, O0);
4495 } else {
4496 generate_satb_log_enqueue_if_necessary(false); // frameless
4497
4498 save_frame(0);
4499 call(satb_log_enqueue_frameless);
4500 delayed()->mov(pre_val->after_save(), O0);
4501 restore();
4502 }
4503
4504 bind(filtered);
4505 }
4506
4507 static address dirty_card_log_enqueue = 0;
4508 static u_char* dirty_card_log_enqueue_end = 0;
4509
4510 // This gets to assume that o0 contains the object address.
4511 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4512 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4513 CodeBuffer buf(bb);
4514 MacroAssembler masm(&buf);
4515 #define __ masm.
4516 address start = __ pc();
4517
4518 Label not_already_dirty, restart, refill;
4519
4520 #ifdef _LP64
4521 __ srlx(O0, CardTableModRefBS::card_shift, O0);
4522 #else
4523 __ srl(O0, CardTableModRefBS::card_shift, O0);
4524 #endif
4525 AddressLiteral addrlit(byte_map_base);
4526 __ set(addrlit, O1); // O1 := <card table base>
4527 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
4528
4529 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
4530 __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
4531
4532 // We didn't take the branch, so we're already dirty: return.
4533 // Use return-from-leaf
4534 __ retl();
4535 __ delayed()->nop();
4536
4537 // Not dirty.
4538 __ bind(not_already_dirty);
4539
4540 // Get O0 + O1 into a reg by itself
4541 __ add(O0, O1, O3);
4542
4543 // First, dirty it.
4544 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
4545
4546 int dirty_card_q_index_byte_offset =
4547 in_bytes(JavaThread::dirty_card_queue_offset() +
4548 PtrQueue::byte_offset_of_index());
4549 int dirty_card_q_buf_byte_offset =
4550 in_bytes(JavaThread::dirty_card_queue_offset() +
4551 PtrQueue::byte_offset_of_buf());
4552 __ bind(restart);
4553
4554 // Load the index into the update buffer. PtrQueue::_index is
4555 // a size_t so ld_ptr is appropriate here.
4556 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4557
4558 // index == 0?
4559 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
4560
4561 __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4562 __ sub(L0, oopSize, L0);
4563
4564 __ st_ptr(O3, L1, L0); // [_buf + index] := I0
4565 // Use return-from-leaf
4566 __ retl();
4567 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4568
4569 __ bind(refill);
4570 address handle_zero =
4571 CAST_FROM_FN_PTR(address,
4572 &DirtyCardQueueSet::handle_zero_index_for_thread);
4573 // This should be rare enough that we can afford to save all the
4574 // scratch registers that the calling context might be using.
4575 __ mov(G1_scratch, L3);
4576 __ mov(G3_scratch, L5);
4577 // We need the value of O3 above (for the write into the buffer), so we
4578 // save and restore it.
4579 __ mov(O3, L6);
4580 // Since the call will overwrite O7, we save and restore that, as well.
4581 __ mov(O7, L4);
4582
4583 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4584 __ mov(L3, G1_scratch);
4585 __ mov(L5, G3_scratch);
4586 __ mov(L6, O3);
4587 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4588 __ delayed()->mov(L4, O7);
4589
4590 dirty_card_log_enqueue = start;
4591 dirty_card_log_enqueue_end = __ pc();
4592 // XXX Should have a guarantee here about not going off the end!
4593 // Does it already do so? Do an experiment...
4594
4595 #undef __
4596
4597 }
4598
4599 static inline void
4600 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4601 if (dirty_card_log_enqueue == 0) {
4602 generate_dirty_card_log_enqueue(byte_map_base);
4603 assert(dirty_card_log_enqueue != 0, "postcondition.");
4604 if (G1SATBPrintStubs) {
4605 tty->print_cr("Generated dirty_card enqueue:");
4606 Disassembler::decode((u_char*)dirty_card_log_enqueue,
4607 dirty_card_log_enqueue_end,
4608 tty);
4609 }
4610 }
4611 }
4612
4613
4614 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4615
4616 Label filtered;
4617 MacroAssembler* post_filter_masm = this;
4618
4619 if (new_val == G0) return;
4620
4621 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4622 assert(bs->kind() == BarrierSet::G1SATBCT ||
4623 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4624
4625 if (G1RSBarrierRegionFilter) {
4626 xor3(store_addr, new_val, tmp);
4627 #ifdef _LP64
4628 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4629 #else
4630 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4631 #endif
4632
4633 // XXX Should I predict this taken or not? Does it matter?
4634 cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
4635 }
4636
4637 // If the "store_addr" register is an "in" or "local" register, move it to
4638 // a scratch reg so we can pass it as an argument.
4639 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4640 // Pick a scratch register different from "tmp".
4641 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4642 // Make sure we use up the delay slot!
4643 if (use_scr) {
4644 post_filter_masm->mov(store_addr, scr);
4645 } else {
4646 post_filter_masm->nop();
4647 }
4648 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4649 save_frame(0);
4650 call(dirty_card_log_enqueue);
4651 if (use_scr) {
4652 delayed()->mov(scr, O0);
4653 } else {
4654 delayed()->mov(store_addr->after_save(), O0);
4655 }
4656 restore();
4657
4658 bind(filtered);
4659 }
4660
4661 #endif // SERIALGC
4662 ///////////////////////////////////////////////////////////////////////////////////
4663
4664 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4665 // If we're writing constant NULL, we can skip the write barrier.
4666 if (new_val == G0) return;
4667 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4668 assert(bs->kind() == BarrierSet::CardTableModRef ||
4669 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4670 card_table_write(bs->byte_map_base, tmp, store_addr);
4671 }
4672
4673 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4674 // The number of bytes in this code is used by
4675 // MachCallDynamicJavaNode::ret_addr_offset()
4676 // if this changes, change that.
4677 if (UseCompressedKlassPointers) {
4678 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4679 decode_klass_not_null(klass);
4680 } else {
4681 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4682 }
4683 }
4684
4685 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4686 if (UseCompressedKlassPointers) {
4687 assert(dst_oop != klass, "not enough registers");
4688 encode_klass_not_null(klass);
4689 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4690 } else {
4691 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4692 }
4693 }
4694
4695 void MacroAssembler::store_klass_gap(Register s, Register d) {
4696 if (UseCompressedKlassPointers) {
4697 assert(s != d, "not enough registers");
4698 st(s, d, oopDesc::klass_gap_offset_in_bytes());
4699 }
4700 }
4701
4702 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4703 if (UseCompressedOops) {
4704 lduw(s, d);
4705 decode_heap_oop(d);
4706 } else {
4707 ld_ptr(s, d);
4708 }
4709 }
4710
4711 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4712 if (UseCompressedOops) {
4713 lduw(s1, s2, d);
4714 decode_heap_oop(d, d);
4715 } else {
4716 ld_ptr(s1, s2, d);
4717 }
4718 }
4719
4720 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4721 if (UseCompressedOops) {
4722 lduw(s1, simm13a, d);
4723 decode_heap_oop(d, d);
4724 } else {
4725 ld_ptr(s1, simm13a, d);
4726 }
4727 }
4728
4729 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4730 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
4731 else load_heap_oop(s1, s2.as_register(), d);
4732 }
4733
4734 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4735 if (UseCompressedOops) {
4736 assert(s1 != d && s2 != d, "not enough registers");
4737 encode_heap_oop(d);
4738 st(d, s1, s2);
4739 } else {
4740 st_ptr(d, s1, s2);
4741 }
4742 }
4743
4744 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4745 if (UseCompressedOops) {
4746 assert(s1 != d, "not enough registers");
4747 encode_heap_oop(d);
4748 st(d, s1, simm13a);
4749 } else {
4750 st_ptr(d, s1, simm13a);
4751 }
4752 }
4753
4754 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4755 if (UseCompressedOops) {
4756 assert(a.base() != d, "not enough registers");
4757 encode_heap_oop(d);
4758 st(d, a, offset);
4759 } else {
4760 st_ptr(d, a, offset);
4761 }
4762 }
4763
4764
4765 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4766 assert (UseCompressedOops, "must be compressed");
4767 assert (Universe::heap() != NULL, "java heap should be initialized");
4768 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4769 verify_oop(src);
4770 if (Universe::narrow_oop_base() == NULL) {
4771 srlx(src, LogMinObjAlignmentInBytes, dst);
4772 return;
4773 }
4774 Label done;
4775 if (src == dst) {
4776 // optimize for frequent case src == dst
4777 bpr(rc_nz, true, Assembler::pt, src, done);
4778 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4779 bind(done);
4780 srlx(src, LogMinObjAlignmentInBytes, dst);
4781 } else {
4782 bpr(rc_z, false, Assembler::pn, src, done);
4783 delayed() -> mov(G0, dst);
4784 // could be moved before branch, and annulate delay,
4785 // but may add some unneeded work decoding null
4786 sub(src, G6_heapbase, dst);
4787 srlx(dst, LogMinObjAlignmentInBytes, dst);
4788 bind(done);
4789 }
4790 }
4791
4792
4793 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4794 assert (UseCompressedOops, "must be compressed");
4795 assert (Universe::heap() != NULL, "java heap should be initialized");
4796 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4797 verify_oop(r);
4798 if (Universe::narrow_oop_base() != NULL)
4799 sub(r, G6_heapbase, r);
4800 srlx(r, LogMinObjAlignmentInBytes, r);
4801 }
4802
4803 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4804 assert (UseCompressedOops, "must be compressed");
4805 assert (Universe::heap() != NULL, "java heap should be initialized");
4806 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4807 verify_oop(src);
4808 if (Universe::narrow_oop_base() == NULL) {
4809 srlx(src, LogMinObjAlignmentInBytes, dst);
4810 } else {
4811 sub(src, G6_heapbase, dst);
4812 srlx(dst, LogMinObjAlignmentInBytes, dst);
4813 }
4814 }
4815
4816 // Same algorithm as oops.inline.hpp decode_heap_oop.
4817 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
4818 assert (UseCompressedOops, "must be compressed");
4819 assert (Universe::heap() != NULL, "java heap should be initialized");
4820 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4821 sllx(src, LogMinObjAlignmentInBytes, dst);
4822 if (Universe::narrow_oop_base() != NULL) {
4823 Label done;
4824 bpr(rc_nz, true, Assembler::pt, dst, done);
4825 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4826 bind(done);
4827 }
4828 verify_oop(dst);
4829 }
4830
4831 void MacroAssembler::decode_heap_oop_not_null(Register r) {
4832 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4833 // pd_code_size_limit.
4834 // Also do not verify_oop as this is called by verify_oop.
4835 assert (UseCompressedOops, "must be compressed");
4836 assert (Universe::heap() != NULL, "java heap should be initialized");
4837 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4838 sllx(r, LogMinObjAlignmentInBytes, r);
4839 if (Universe::narrow_oop_base() != NULL)
4840 add(r, G6_heapbase, r);
4841 }
4842
4843 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4844 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4845 // pd_code_size_limit.
4846 // Also do not verify_oop as this is called by verify_oop.
4847 assert (UseCompressedOops, "must be compressed");
4848 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4849 sllx(src, LogMinObjAlignmentInBytes, dst);
4850 if (Universe::narrow_oop_base() != NULL)
4851 add(dst, G6_heapbase, dst);
4852 }
4853
4854 void MacroAssembler::encode_klass_not_null(Register r) {
4855 assert(Metaspace::is_initialized(), "metaspace should be initialized");
4856 assert (UseCompressedKlassPointers, "must be compressed");
4857 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4858 if (Universe::narrow_klass_base() != NULL)
4859 sub(r, G6_heapbase, r);
4860 srlx(r, LogKlassAlignmentInBytes, r);
4861 }
4862
4863 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4864 assert(Metaspace::is_initialized(), "metaspace should be initialized");
4865 assert (UseCompressedKlassPointers, "must be compressed");
4866 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4867 if (Universe::narrow_klass_base() == NULL) {
4868 srlx(src, LogKlassAlignmentInBytes, dst);
4869 } else {
4870 sub(src, G6_heapbase, dst);
4871 srlx(dst, LogKlassAlignmentInBytes, dst);
4872 }
4873 }
4874
4875 void MacroAssembler::decode_klass_not_null(Register r) {
4876 assert(Metaspace::is_initialized(), "metaspace should be initialized");
4877 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4878 // pd_code_size_limit.
4879 assert (UseCompressedKlassPointers, "must be compressed");
4880 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4881 sllx(r, LogKlassAlignmentInBytes, r);
4882 if (Universe::narrow_klass_base() != NULL)
4883 add(r, G6_heapbase, r);
4884 }
4885
4886 void MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4887 assert(Metaspace::is_initialized(), "metaspace should be initialized");
4888 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4889 // pd_code_size_limit.
4890 assert (UseCompressedKlassPointers, "must be compressed");
4891 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4892 sllx(src, LogKlassAlignmentInBytes, dst);
4893 if (Universe::narrow_klass_base() != NULL)
4894 add(dst, G6_heapbase, dst);
4895 }
4896
4897 void MacroAssembler::reinit_heapbase() {
4898 if (UseCompressedOops || UseCompressedKlassPointers) {
4899 AddressLiteral base(Universe::narrow_ptrs_base_addr());
4900 load_ptr_contents(base, G6_heapbase);
4901 }
4902 }
4903
4904 // Compare char[] arrays aligned to 4 bytes.
4905 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4906 Register limit, Register result,
4907 Register chr1, Register chr2, Label& Ldone) {
4908 Label Lvector, Lloop;
4909 assert(chr1 == result, "should be the same");
4910
4911 // Note: limit contains number of bytes (2*char_elements) != 0.
4912 andcc(limit, 0x2, chr1); // trailing character ?
4913 br(Assembler::zero, false, Assembler::pt, Lvector);
4914 delayed()->nop();
4915
4916 // compare the trailing char
4917 sub(limit, sizeof(jchar), limit);
4918 lduh(ary1, limit, chr1);
4919 lduh(ary2, limit, chr2);
4920 cmp(chr1, chr2);
4921 br(Assembler::notEqual, true, Assembler::pt, Ldone);
4922 delayed()->mov(G0, result); // not equal
4923
4924 // only one char ?
4925 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4926 delayed()->add(G0, 1, result); // zero-length arrays are equal
4927
4928 // word by word compare, dont't need alignment check
4929 bind(Lvector);
4930 // Shift ary1 and ary2 to the end of the arrays, negate limit
4931 add(ary1, limit, ary1);
4932 add(ary2, limit, ary2);
4933 neg(limit, limit);
4934
4935 lduw(ary1, limit, chr1);
4936 bind(Lloop);
4937 lduw(ary2, limit, chr2);
4938 cmp(chr1, chr2);
4939 br(Assembler::notEqual, true, Assembler::pt, Ldone);
4940 delayed()->mov(G0, result); // not equal
4941 inccc(limit, 2*sizeof(jchar));
4942 // annul LDUW if branch is not taken to prevent access past end of array
4943 br(Assembler::notZero, true, Assembler::pt, Lloop);
4944 delayed()->lduw(ary1, limit, chr1); // hoisted
4945
4946 // Caller should set it:
4947 // add(G0, 1, result); // equals
4948 }
4949
4950 // Use BIS for zeroing (count is in bytes).
4951 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4952 assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4953 Register end = count;
4954 int cache_line_size = VM_Version::prefetch_data_size();
4955 // Minimum count when BIS zeroing can be used since
4956 // it needs membar which is expensive.
4957 int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4958
4959 Label small_loop;
4960 // Check if count is negative (dead code) or zero.
4961 // Note, count uses 64bit in 64 bit VM.
4962 cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4963
4964 // Use BIS zeroing only for big arrays since it requires membar.
4965 if (Assembler::is_simm13(block_zero_size)) { // < 4096
4966 cmp(count, block_zero_size);
4967 } else {
4968 set(block_zero_size, temp);
4969 cmp(count, temp);
4970 }
4971 br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4972 delayed()->add(to, count, end);
4973
4974 // Note: size is >= three (32 bytes) cache lines.
4975
4976 // Clean the beginning of space up to next cache line.
4977 for (int offs = 0; offs < cache_line_size; offs += 8) {
4978 stx(G0, to, offs);
4979 }
4980
4981 // align to next cache line
4982 add(to, cache_line_size, to);
4983 and3(to, -cache_line_size, to);
4984
4985 // Note: size left >= two (32 bytes) cache lines.
4986
4987 // BIS should not be used to zero tail (64 bytes)
4988 // to avoid zeroing a header of the following object.
4989 sub(end, (cache_line_size*2)-8, end);
4990
4991 Label bis_loop;
4992 bind(bis_loop);
4993 stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4994 add(to, cache_line_size, to);
4995 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4996
4997 // BIS needs membar.
4998 membar(Assembler::StoreLoad);
4999
5000 add(end, (cache_line_size*2)-8, end); // restore end
5001 cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
5002
5003 // Clean the tail.
5004 bind(small_loop);
5005 stx(G0, to, 0);
5006 add(to, 8, to);
5007 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
5008 nop(); // Separate short branches
5009 }