comparison src/cpu/sparc/vm/macroAssembler_sparc.inline.hpp @ 7204:f0c2369fda5a

8003250: SPARC: move MacroAssembler into separate file Reviewed-by: jrose, kvn
author twisti
date Thu, 06 Dec 2012 09:57:41 -0800
parents
children 18d56ca3e901
comparison
equal deleted inserted replaced
7201:c5d414e98fd4 7204:f0c2369fda5a
1 /*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
26 #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
27
28 #include "asm/assembler.inline.hpp"
29 #include "asm/macroAssembler.hpp"
30 #include "asm/codeBuffer.hpp"
31 #include "code/codeCache.hpp"
32
33 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
34
35
36 inline int AddressLiteral::low10() const {
37 return Assembler::low10(value());
38 }
39
40
41 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
42 jint& stub_inst = *(jint*) branch;
43 stub_inst = patched_branch(target - branch, stub_inst, 0);
44 }
45
46 #ifndef PRODUCT
47 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
48 jint stub_inst = *(jint*) branch;
49 print_instruction(stub_inst);
50 ::tty->print("%s", " (unresolved)");
51 }
52 #endif // PRODUCT
53
54 // Use the right loads/stores for the platform
55 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
56 #ifdef _LP64
57 Assembler::ldx(s1, s2, d);
58 #else
59 ld( s1, s2, d);
60 #endif
61 }
62
63 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
64 #ifdef _LP64
65 Assembler::ldx(s1, simm13a, d);
66 #else
67 ld( s1, simm13a, d);
68 #endif
69 }
70
71 #ifdef ASSERT
72 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
73 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
74 ld_ptr(s1, in_bytes(simm13a), d);
75 }
76 #endif
77
78 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
79 #ifdef _LP64
80 ldx(s1, s2, d);
81 #else
82 ld( s1, s2, d);
83 #endif
84 }
85
86 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
87 #ifdef _LP64
88 ldx(a, d, offset);
89 #else
90 ld( a, d, offset);
91 #endif
92 }
93
94 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
95 #ifdef _LP64
96 Assembler::stx(d, s1, s2);
97 #else
98 st( d, s1, s2);
99 #endif
100 }
101
102 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
103 #ifdef _LP64
104 Assembler::stx(d, s1, simm13a);
105 #else
106 st( d, s1, simm13a);
107 #endif
108 }
109
110 #ifdef ASSERT
111 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
112 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
113 st_ptr(d, s1, in_bytes(simm13a));
114 }
115 #endif
116
117 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
118 #ifdef _LP64
119 stx(d, s1, s2);
120 #else
121 st( d, s1, s2);
122 #endif
123 }
124
125 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
126 #ifdef _LP64
127 stx(d, a, offset);
128 #else
129 st( d, a, offset);
130 #endif
131 }
132
133 // Use the right loads/stores for the platform
134 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
135 #ifdef _LP64
136 Assembler::ldx(s1, s2, d);
137 #else
138 Assembler::ldd(s1, s2, d);
139 #endif
140 }
141
142 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
143 #ifdef _LP64
144 Assembler::ldx(s1, simm13a, d);
145 #else
146 Assembler::ldd(s1, simm13a, d);
147 #endif
148 }
149
150 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
151 #ifdef _LP64
152 ldx(s1, s2, d);
153 #else
154 ldd(s1, s2, d);
155 #endif
156 }
157
158 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
159 #ifdef _LP64
160 ldx(a, d, offset);
161 #else
162 ldd(a, d, offset);
163 #endif
164 }
165
166 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
167 #ifdef _LP64
168 Assembler::stx(d, s1, s2);
169 #else
170 Assembler::std(d, s1, s2);
171 #endif
172 }
173
174 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
175 #ifdef _LP64
176 Assembler::stx(d, s1, simm13a);
177 #else
178 Assembler::std(d, s1, simm13a);
179 #endif
180 }
181
182 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
183 #ifdef _LP64
184 stx(d, s1, s2);
185 #else
186 std(d, s1, s2);
187 #endif
188 }
189
190 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
191 #ifdef _LP64
192 stx(d, a, offset);
193 #else
194 std(d, a, offset);
195 #endif
196 }
197
198 // Functions for isolating 64 bit shifts for LP64
199
200 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
201 #ifdef _LP64
202 Assembler::sllx(s1, s2, d);
203 #else
204 Assembler::sll( s1, s2, d);
205 #endif
206 }
207
208 inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) {
209 #ifdef _LP64
210 Assembler::sllx(s1, imm6a, d);
211 #else
212 Assembler::sll( s1, imm6a, d);
213 #endif
214 }
215
216 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
217 #ifdef _LP64
218 Assembler::srlx(s1, s2, d);
219 #else
220 Assembler::srl( s1, s2, d);
221 #endif
222 }
223
224 inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) {
225 #ifdef _LP64
226 Assembler::srlx(s1, imm6a, d);
227 #else
228 Assembler::srl( s1, imm6a, d);
229 #endif
230 }
231
232 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
233 if (s2.is_register()) sll_ptr(s1, s2.as_register(), d);
234 else sll_ptr(s1, s2.as_constant(), d);
235 }
236
237 // Use the right branch for the platform
238
239 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
240 if (VM_Version::v9_instructions_work())
241 Assembler::bp(c, a, icc, p, d, rt);
242 else
243 Assembler::br(c, a, d, rt);
244 }
245
246 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
247 br(c, a, p, target(L));
248 }
249
250
251 // Branch that tests either xcc or icc depending on the
252 // architecture compiled (LP64 or not)
253 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
254 #ifdef _LP64
255 Assembler::bp(c, a, xcc, p, d, rt);
256 #else
257 MacroAssembler::br(c, a, p, d, rt);
258 #endif
259 }
260
261 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
262 brx(c, a, p, target(L));
263 }
264
265 inline void MacroAssembler::ba( Label& L ) {
266 br(always, false, pt, L);
267 }
268
269 // Warning: V9 only functions
270 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
271 Assembler::bp(c, a, cc, p, d, rt);
272 }
273
274 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
275 Assembler::bp(c, a, cc, p, L);
276 }
277
278 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
279 if (VM_Version::v9_instructions_work())
280 fbp(c, a, fcc0, p, d, rt);
281 else
282 Assembler::fb(c, a, d, rt);
283 }
284
285 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
286 fb(c, a, p, target(L));
287 }
288
289 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
290 Assembler::fbp(c, a, cc, p, d, rt);
291 }
292
293 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
294 Assembler::fbp(c, a, cc, p, L);
295 }
296
297 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
298 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
299
300 inline bool MacroAssembler::is_far_target(address d) {
301 if (ForceUnreachable) {
302 // References outside the code cache should be treated as far
303 return d < CodeCache::low_bound() || d > CodeCache::high_bound();
304 }
305 return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
306 }
307
308 // Call with a check to see if we need to deal with the added
309 // expense of relocation and if we overflow the displacement
310 // of the quick call instruction.
311 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
312 #ifdef _LP64
313 intptr_t disp;
314 // NULL is ok because it will be relocated later.
315 // Must change NULL to a reachable address in order to
316 // pass asserts here and in wdisp.
317 if ( d == NULL )
318 d = pc();
319
320 // Is this address within range of the call instruction?
321 // If not, use the expensive instruction sequence
322 if (is_far_target(d)) {
323 relocate(rt);
324 AddressLiteral dest(d);
325 jumpl_to(dest, O7, O7);
326 } else {
327 Assembler::call(d, rt);
328 }
329 #else
330 Assembler::call( d, rt );
331 #endif
332 }
333
334 inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) {
335 MacroAssembler::call( target(L), rt);
336 }
337
338
339
340 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
341 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
342
343 // prefetch instruction
344 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
345 if (VM_Version::v9_instructions_work())
346 Assembler::bp( never, true, xcc, pt, d, rt );
347 }
348 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
349
350
351 // clobbers o7 on V8!!
352 // returns delta from gotten pc to addr after
353 inline int MacroAssembler::get_pc( Register d ) {
354 int x = offset();
355 if (VM_Version::v9_instructions_work())
356 rdpc(d);
357 else {
358 Label lbl;
359 Assembler::call(lbl, relocInfo::none); // No relocation as this is call to pc+0x8
360 if (d == O7) delayed()->nop();
361 else delayed()->mov(O7, d);
362 bind(lbl);
363 }
364 return offset() - x;
365 }
366
367
368 // Note: All MacroAssembler::set_foo functions are defined out-of-line.
369
370
371 // Loads the current PC of the following instruction as an immediate value in
372 // 2 instructions. All PCs in the CodeCache are within 2 Gig of each other.
373 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
374 intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
375 #ifdef _LP64
376 Unimplemented();
377 #else
378 Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
379 add(reg, thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc));
380 #endif
381 return thepc;
382 }
383
384
385 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
386 assert_not_delayed();
387 if (ForceUnreachable) {
388 patchable_sethi(addrlit, d);
389 } else {
390 sethi(addrlit, d);
391 }
392 ld(d, addrlit.low10() + offset, d);
393 }
394
395
396 inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
397 assert_not_delayed();
398 if (ForceUnreachable) {
399 patchable_sethi(addrlit, d);
400 } else {
401 sethi(addrlit, d);
402 }
403 ldub(d, addrlit.low10() + offset, d);
404 }
405
406
407 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
408 assert_not_delayed();
409 if (ForceUnreachable) {
410 patchable_sethi(addrlit, d);
411 } else {
412 sethi(addrlit, d);
413 }
414 ld_ptr(d, addrlit.low10() + offset, d);
415 }
416
417
418 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
419 assert_not_delayed();
420 if (ForceUnreachable) {
421 patchable_sethi(addrlit, temp);
422 } else {
423 sethi(addrlit, temp);
424 }
425 st(s, temp, addrlit.low10() + offset);
426 }
427
428
429 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
430 assert_not_delayed();
431 if (ForceUnreachable) {
432 patchable_sethi(addrlit, temp);
433 } else {
434 sethi(addrlit, temp);
435 }
436 st_ptr(s, temp, addrlit.low10() + offset);
437 }
438
439
440 // This code sequence is relocatable to any address, even on LP64.
441 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
442 assert_not_delayed();
443 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
444 // variable length instruction streams.
445 patchable_sethi(addrlit, temp);
446 jmpl(temp, addrlit.low10() + offset, d);
447 }
448
449
450 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
451 jumpl_to(addrlit, temp, G0, offset);
452 }
453
454
455 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
456 int ld_offset, int jmp_offset) {
457 assert_not_delayed();
458 //sethi(al); // sethi is caller responsibility for this one
459 ld_ptr(a, temp, ld_offset);
460 jmp(temp, jmp_offset);
461 }
462
463
464 inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
465 set_metadata(allocate_metadata_address(obj), d);
466 }
467
468 inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
469 set_metadata(constant_metadata_address(obj), d);
470 }
471
472 inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
473 assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
474 set(obj_addr, d);
475 }
476
477 inline void MacroAssembler::set_oop(jobject obj, Register d) {
478 set_oop(allocate_oop_address(obj), d);
479 }
480
481
482 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
483 set_oop(constant_oop_address(obj), d);
484 }
485
486
487 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
488 assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
489 set(obj_addr, d);
490 }
491
492
493 inline void MacroAssembler::load_argument( Argument& a, Register d ) {
494 if (a.is_register())
495 mov(a.as_register(), d);
496 else
497 ld (a.as_address(), d);
498 }
499
500 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
501 if (a.is_register())
502 mov(s, a.as_register());
503 else
504 st_ptr (s, a.as_address()); // ABI says everything is right justified.
505 }
506
507 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
508 if (a.is_register())
509 mov(s, a.as_register());
510 else
511 st_ptr (s, a.as_address());
512 }
513
514
515 #ifdef _LP64
516 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
517 if (a.is_float_register())
518 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
519 fmov(FloatRegisterImpl::S, s, a.as_float_register() );
520 else
521 // Floats are stored in the high half of the stack entry
522 // The low half is undefined per the ABI.
523 stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
524 }
525
526 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
527 if (a.is_float_register())
528 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
529 fmov(FloatRegisterImpl::D, s, a.as_double_register() );
530 else
531 stf(FloatRegisterImpl::D, s, a.as_address());
532 }
533
534 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
535 if (a.is_register())
536 mov(s, a.as_register());
537 else
538 stx(s, a.as_address());
539 }
540 #endif
541
542 inline void MacroAssembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype) {
543 relocate(rtype);
544 add(s1, simm13a, d);
545 }
546 inline void MacroAssembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec) {
547 relocate(rspec);
548 add(s1, simm13a, d);
549 }
550
551 // form effective addresses this way:
552 inline void MacroAssembler::add(const Address& a, Register d, int offset) {
553 if (a.has_index()) add(a.base(), a.index(), d);
554 else { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
555 if (offset != 0) add(d, offset, d);
556 }
557 inline void MacroAssembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
558 if (s2.is_register()) add(s1, s2.as_register(), d);
559 else { add(s1, s2.as_constant() + offset, d); offset = 0; }
560 if (offset != 0) add(d, offset, d);
561 }
562
563 inline void MacroAssembler::andn(Register s1, RegisterOrConstant s2, Register d) {
564 if (s2.is_register()) andn(s1, s2.as_register(), d);
565 else andn(s1, s2.as_constant(), d);
566 }
567
568 inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
569 inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
570 inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); }
571 inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
572
573 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
574 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
575 inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); }
576 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
577
578 #ifdef _LP64
579 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
580 inline void MacroAssembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
581 inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
582 #else
583 inline void MacroAssembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); }
584 inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
585 #endif
586
587 #ifdef ASSERT
588 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
589 # ifdef _LP64
590 inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
591 # else
592 inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
593 # endif
594 #endif
595
596 inline void MacroAssembler::ld( const Address& a, Register d, int offset) {
597 if (a.has_index()) { assert(offset == 0, ""); ld( a.base(), a.index(), d); }
598 else { ld( a.base(), a.disp() + offset, d); }
599 }
600
601 inline void MacroAssembler::ldsb(const Address& a, Register d, int offset) {
602 if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(), d); }
603 else { ldsb(a.base(), a.disp() + offset, d); }
604 }
605 inline void MacroAssembler::ldsh(const Address& a, Register d, int offset) {
606 if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(), d); }
607 else { ldsh(a.base(), a.disp() + offset, d); }
608 }
609 inline void MacroAssembler::ldsw(const Address& a, Register d, int offset) {
610 if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(), d); }
611 else { ldsw(a.base(), a.disp() + offset, d); }
612 }
613 inline void MacroAssembler::ldub(const Address& a, Register d, int offset) {
614 if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(), d); }
615 else { ldub(a.base(), a.disp() + offset, d); }
616 }
617 inline void MacroAssembler::lduh(const Address& a, Register d, int offset) {
618 if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(), d); }
619 else { lduh(a.base(), a.disp() + offset, d); }
620 }
621 inline void MacroAssembler::lduw(const Address& a, Register d, int offset) {
622 if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(), d); }
623 else { lduw(a.base(), a.disp() + offset, d); }
624 }
625 inline void MacroAssembler::ldd( const Address& a, Register d, int offset) {
626 if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(), d); }
627 else { ldd( a.base(), a.disp() + offset, d); }
628 }
629 inline void MacroAssembler::ldx( const Address& a, Register d, int offset) {
630 if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(), d); }
631 else { ldx( a.base(), a.disp() + offset, d); }
632 }
633
634 inline void MacroAssembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
635 inline void MacroAssembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
636 inline void MacroAssembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
637 inline void MacroAssembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
638 inline void MacroAssembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
639 inline void MacroAssembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
640 inline void MacroAssembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
641 inline void MacroAssembler::ld( Register s1, RegisterOrConstant s2, Register d) { ld( Address(s1, s2), d); }
642 inline void MacroAssembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
643
644 inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
645 if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
646 else ldf(w, s1, s2.as_constant(), d);
647 }
648
649 inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) {
650 relocate(a.rspec(offset));
651 ldf(w, a.base(), a.disp() + offset, d);
652 }
653
654 // returns if membar generates anything, obviously this code should mirror
655 // membar below.
656 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
657 if( !os::is_MP() ) return false; // Not needed on single CPU
658 if( VM_Version::v9_instructions_work() ) {
659 const Membar_mask_bits effective_mask =
660 Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
661 return (effective_mask != 0);
662 } else {
663 return true;
664 }
665 }
666
667 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
668 // Uniprocessors do not need memory barriers
669 if (!os::is_MP()) return;
670 // Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3,
671 // 8.4.4.3, a.31 and a.50.
672 if( VM_Version::v9_instructions_work() ) {
673 // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
674 // of the mmask subfield of const7a that does anything that isn't done
675 // implicitly is StoreLoad.
676 const Membar_mask_bits effective_mask =
677 Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
678 if ( effective_mask != 0 ) {
679 Assembler::membar( effective_mask );
680 }
681 } else {
682 // stbar is the closest there is on v8. Equivalent to membar(StoreStore). We
683 // do not issue the stbar because to my knowledge all v8 machines implement TSO,
684 // which guarantees that all stores behave as if an stbar were issued just after
685 // each one of them. On these machines, stbar ought to be a nop. There doesn't
686 // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
687 // it can't be specified by stbar, nor have I come up with a way to simulate it.
688 //
689 // Addendum. Dave says that ldstub guarantees a write buffer flush to coherent
690 // space. Put one here to be on the safe side.
691 Assembler::ldstub(SP, 0, G0);
692 }
693 }
694
695 inline void MacroAssembler::prefetch(const Address& a, PrefetchFcn f, int offset) {
696 relocate(a.rspec(offset));
697 assert(!a.has_index(), "");
698 prefetch(a.base(), a.disp() + offset, f);
699 }
700
701 inline void MacroAssembler::st(Register d, Register s1, Register s2) { stw(d, s1, s2); }
702 inline void MacroAssembler::st(Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
703
704 #ifdef ASSERT
705 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
706 inline void MacroAssembler::st(Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
707 #endif
708
709 inline void MacroAssembler::st(Register d, const Address& a, int offset) {
710 if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index() ); }
711 else { st( d, a.base(), a.disp() + offset); }
712 }
713
714 inline void MacroAssembler::stb(Register d, const Address& a, int offset) {
715 if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index() ); }
716 else { stb(d, a.base(), a.disp() + offset); }
717 }
718 inline void MacroAssembler::sth(Register d, const Address& a, int offset) {
719 if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index() ); }
720 else { sth(d, a.base(), a.disp() + offset); }
721 }
722 inline void MacroAssembler::stw(Register d, const Address& a, int offset) {
723 if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index() ); }
724 else { stw(d, a.base(), a.disp() + offset); }
725 }
726 inline void MacroAssembler::std(Register d, const Address& a, int offset) {
727 if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index() ); }
728 else { std(d, a.base(), a.disp() + offset); }
729 }
730 inline void MacroAssembler::stx(Register d, const Address& a, int offset) {
731 if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index() ); }
732 else { stx(d, a.base(), a.disp() + offset); }
733 }
734
735 inline void MacroAssembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
736 inline void MacroAssembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
737 inline void MacroAssembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
738 inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
739 inline void MacroAssembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
740 inline void MacroAssembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
741
742 inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
743 if (s2.is_register()) stf(w, d, s1, s2.as_register());
744 else stf(w, d, s1, s2.as_constant());
745 }
746
747 inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
748 relocate(a.rspec(offset));
749 if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index() ); }
750 else { stf(w, d, a.base(), a.disp() + offset); }
751 }
752
753 inline void MacroAssembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
754 if (s2.is_register()) sub(s1, s2.as_register(), d);
755 else { sub(s1, s2.as_constant() + offset, d); offset = 0; }
756 if (offset != 0) sub(d, offset, d);
757 }
758
759 inline void MacroAssembler::swap(Address& a, Register d, int offset) {
760 relocate(a.rspec(offset));
761 if (a.has_index()) { assert(offset == 0, ""); swap(a.base(), a.index(), d ); }
762 else { swap(a.base(), a.disp() + offset, d); }
763 }
764
765 #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP