diff src/cpu/sparc/vm/nativeInst_sparc.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 018d5b58dd4f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/sparc/vm/nativeInst_sparc.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,914 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// We have interface for the following instructions:
+// - NativeInstruction
+// - - NativeCall
+// - - NativeFarCall
+// - - NativeMovConstReg
+// - - NativeMovConstRegPatching
+// - - NativeMovRegMem
+// - - NativeMovRegMemPatching
+// - - NativeJump
+// - - NativeGeneralJump
+// - - NativeIllegalInstruction
+// The base class for different kinds of native instruction abstractions.
+// Provides the primitive operations to manipulate code relative to this.
+class NativeInstruction VALUE_OBJ_CLASS_SPEC {
+  friend class Relocation;
+
+ public:
+  enum Sparc_specific_constants {
+    nop_instruction_size        =    4
+  };
+
+  bool is_nop()                        { return long_at(0) == nop_instruction(); }
+  bool is_call()                       { return is_op(long_at(0), Assembler::call_op); }
+  bool is_sethi()                      { return (is_op2(long_at(0), Assembler::sethi_op2)
+                                          && inv_rd(long_at(0)) != G0); }
+
+  bool sets_cc() {
+    // conservative (returns true for some instructions that do not set the
+    // the condition code, such as, "save".
+    // Does not return true for the deprecated tagged instructions, such as, TADDcc
+    int x = long_at(0);
+    return (is_op(x, Assembler::arith_op) &&
+            (inv_op3(x) & Assembler::cc_bit_op3) == Assembler::cc_bit_op3);
+  }
+  bool is_illegal();
+  bool is_zombie() {
+    int x = long_at(0);
+    return is_op3(x,
+                  VM_Version::v9_instructions_work() ?
+                    Assembler::ldsw_op3 : Assembler::lduw_op3,
+                  Assembler::ldst_op)
+        && Assembler::inv_rs1(x) == G0
+        && Assembler::inv_rd(x) == O7;
+  }
+  bool is_ic_miss_trap();       // Inline-cache uses a trap to detect a miss
+  bool is_return() {
+    // is it the output of MacroAssembler::ret or MacroAssembler::retl?
+    int x = long_at(0);
+    const int pc_return_offset = 8; // see frame_sparc.hpp
+    return is_op3(x, Assembler::jmpl_op3, Assembler::arith_op)
+        && (inv_rs1(x) == I7 || inv_rs1(x) == O7)
+        && inv_immed(x) && inv_simm(x, 13) == pc_return_offset
+        && inv_rd(x) == G0;
+  }
+  bool is_int_jump() {
+    // is it the output of MacroAssembler::b?
+    int x = long_at(0);
+    return is_op2(x, Assembler::bp_op2) || is_op2(x, Assembler::br_op2);
+  }
+  bool is_float_jump() {
+    // is it the output of MacroAssembler::fb?
+    int x = long_at(0);
+    return is_op2(x, Assembler::fbp_op2) || is_op2(x, Assembler::fb_op2);
+  }
+  bool is_jump() {
+    return is_int_jump() || is_float_jump();
+  }
+  bool is_cond_jump() {
+    int x = long_at(0);
+    return (is_int_jump() && Assembler::inv_cond(x) != Assembler::always) ||
+           (is_float_jump() && Assembler::inv_cond(x) != Assembler::f_always);
+  }
+
+  bool is_stack_bang() {
+    int x = long_at(0);
+    return is_op3(x, Assembler::stw_op3, Assembler::ldst_op) &&
+      (inv_rd(x) == G0) && (inv_rs1(x) == SP) && (inv_rs2(x) == G3_scratch);
+  }
+
+  bool is_prefetch() {
+    int x = long_at(0);
+    return is_op3(x, Assembler::prefetch_op3, Assembler::ldst_op);
+  }
+
+  bool is_membar() {
+    int x = long_at(0);
+    return is_op3(x, Assembler::membar_op3, Assembler::arith_op) &&
+      (inv_rd(x) == G0) && (inv_rs1(x) == O7);
+  }
+
+  bool is_safepoint_poll() {
+    int x = long_at(0);
+#ifdef _LP64
+    return is_op3(x, Assembler::ldx_op3,  Assembler::ldst_op) &&
+#else
+    return is_op3(x, Assembler::lduw_op3, Assembler::ldst_op) &&
+#endif
+      (inv_rd(x) == G0) && (inv_immed(x) ? Assembler::inv_simm13(x) == 0 : inv_rs2(x) == G0);
+  }
+
+  bool is_zero_test(Register &reg);
+  bool is_load_store_with_small_offset(Register reg);
+
+ public:
+#ifdef ASSERT
+  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) | Assembler::u_field(5, 18, 14) | Assembler::rd(O7); }
+#else
+  // Temporary fix: in optimized mode, u_field is a macro for efficiency reasons (see Assembler::u_field) - needs to be fixed
+  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) |            u_field(5, 18, 14) | Assembler::rd(O7); }
+#endif
+  static int nop_instruction()         { return Assembler::op(Assembler::branch_op) | Assembler::op2(Assembler::sethi_op2); }
+  static int illegal_instruction();    // the output of __ breakpoint_trap()
+  static int call_instruction(address destination, address pc) { return Assembler::op(Assembler::call_op) | Assembler::wdisp((intptr_t)destination, (intptr_t)pc, 30); }
+
+  static int branch_instruction(Assembler::op2s op2val, Assembler::Condition c, bool a) {
+    return Assembler::op(Assembler::branch_op) | Assembler::op2(op2val) | Assembler::annul(a) | Assembler::cond(c);
+  }
+
+  static int op3_instruction(Assembler::ops opval, Register rd, Assembler::op3s op3val, Register rs1, int simm13a) {
+    return Assembler::op(opval) | Assembler::rd(rd) | Assembler::op3(op3val) | Assembler::rs1(rs1) | Assembler::immed(true) | Assembler::simm(simm13a, 13);
+  }
+
+  static int sethi_instruction(Register rd, int imm22a) {
+    return Assembler::op(Assembler::branch_op) | Assembler::rd(rd) | Assembler::op2(Assembler::sethi_op2) | Assembler::hi22(imm22a);
+  }
+
+ protected:
+  address  addr_at(int offset) const    { return address(this) + offset; }
+  int      long_at(int offset) const    { return *(int*)addr_at(offset); }
+  void set_long_at(int offset, int i);      /* deals with I-cache */
+  void set_jlong_at(int offset, jlong i);   /* deals with I-cache */
+  void set_addr_at(int offset, address x);  /* deals with I-cache */
+
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(BytesPerInstWord); }
+
+  static bool is_op( int x, Assembler::ops opval)  {
+    return Assembler::inv_op(x) == opval;
+  }
+  static bool is_op2(int x, Assembler::op2s op2val) {
+    return Assembler::inv_op(x) == Assembler::branch_op && Assembler::inv_op2(x) == op2val;
+  }
+  static bool is_op3(int x, Assembler::op3s op3val, Assembler::ops opval) {
+    return Assembler::inv_op(x) == opval && Assembler::inv_op3(x) == op3val;
+  }
+
+  // utilities to help subclasses decode:
+  static Register inv_rd(  int x ) { return Assembler::inv_rd( x); }
+  static Register inv_rs1( int x ) { return Assembler::inv_rs1(x); }
+  static Register inv_rs2( int x ) { return Assembler::inv_rs2(x); }
+
+  static bool inv_immed( int x ) { return Assembler::inv_immed(x); }
+  static bool inv_annul( int x ) { return (Assembler::annul(true) & x) != 0; }
+  static int  inv_cond(  int x ) { return Assembler::inv_cond(x); }
+
+  static int inv_op(  int x ) { return Assembler::inv_op( x); }
+  static int inv_op2( int x ) { return Assembler::inv_op2(x); }
+  static int inv_op3( int x ) { return Assembler::inv_op3(x); }
+
+  static int inv_simm(    int x, int nbits ) { return Assembler::inv_simm(x, nbits); }
+  static intptr_t inv_wdisp(   int x, int nbits ) { return Assembler::inv_wdisp(  x, 0, nbits); }
+  static intptr_t inv_wdisp16( int x )            { return Assembler::inv_wdisp16(x, 0); }
+  static int branch_destination_offset(int x) { return Assembler::branch_destination(x, 0); }
+  static int patch_branch_destination_offset(int dest_offset, int x) {
+    return Assembler::patched_branch(dest_offset, x, 0);
+  }
+  void set_annul_bit() { set_long_at(0, long_at(0) | Assembler::annul(true)); }
+
+  // utility for checking if x is either of 2 small constants
+  static bool is_either(int x, int k1, int k2) {
+    // return x == k1 || x == k2;
+    return (1 << x) & (1 << k1 | 1 << k2);
+  }
+
+  // utility for checking overflow of signed instruction fields
+  static bool fits_in_simm(int x, int nbits) {
+    // cf. Assembler::assert_signed_range()
+    // return -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
+    return (unsigned)(x + (1 << nbits-1)) < (unsigned)(1 << nbits);
+  }
+
+  // set a signed immediate field
+  static int set_simm(int insn, int imm, int nbits) {
+    return (insn &~ Assembler::simm(-1, nbits)) | Assembler::simm(imm, nbits);
+  }
+
+  // set a wdisp field (disp should be the difference of two addresses)
+  static int set_wdisp(int insn, intptr_t disp, int nbits) {
+    return (insn &~ Assembler::wdisp((intptr_t)-4, (intptr_t)0, nbits)) | Assembler::wdisp(disp, 0, nbits);
+  }
+
+  static int set_wdisp16(int insn, intptr_t disp) {
+    return (insn &~ Assembler::wdisp16((intptr_t)-4, 0)) | Assembler::wdisp16(disp, 0);
+  }
+
+  // get a simm13 field from an arithmetic or memory instruction
+  static int get_simm13(int insn) {
+    assert(is_either(Assembler::inv_op(insn),
+                     Assembler::arith_op, Assembler::ldst_op) &&
+            (insn & Assembler::immed(true)), "must have a simm13 field");
+    return Assembler::inv_simm(insn, 13);
+  }
+
+  // set the simm13 field of an arithmetic or memory instruction
+  static bool set_simm13(int insn, int imm) {
+    get_simm13(insn);           // tickle the assertion check
+    return set_simm(insn, imm, 13);
+  }
+
+  // combine the fields of a sethi stream (7 instructions ) and an add, jmp or ld/st
+  static intptr_t data64( address pc, int arith_insn ) {
+    assert(is_op2(*(unsigned int *)pc, Assembler::sethi_op2), "must be sethi");
+    intptr_t hi = (intptr_t)gethi( (unsigned int *)pc );
+    intptr_t lo = (intptr_t)get_simm13(arith_insn);
+    assert((unsigned)lo < (1 << 10), "offset field of set_oop must be 10 bits");
+    return hi | lo;
+  }
+
+  // Regenerate the instruction sequence that performs the 64 bit
+  // sethi.  This only does the sethi.  The disp field (bottom 10 bits)
+  // must be handled seperately.
+  static void set_data64_sethi(address instaddr, intptr_t x);
+
+  // combine the fields of a sethi/simm13 pair (simm13 = or, add, jmpl, ld/st)
+  static int data32(int sethi_insn, int arith_insn) {
+    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
+    int hi = Assembler::inv_hi22(sethi_insn);
+    int lo = get_simm13(arith_insn);
+    assert((unsigned)lo < (1 << 10), "offset field of set_oop must be 10 bits");
+    return hi | lo;
+  }
+
+  static int set_data32_sethi(int sethi_insn, int imm) {
+    // note that Assembler::hi22 clips the low 10 bits for us
+    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
+    return (sethi_insn &~ Assembler::hi22(-1)) | Assembler::hi22(imm);
+  }
+
+  static int set_data32_simm13(int arith_insn, int imm) {
+    get_simm13(arith_insn);             // tickle the assertion check
+    int imm10 = Assembler::low10(imm);
+    return (arith_insn &~ Assembler::simm(-1, 13)) | Assembler::simm(imm10, 13);
+  }
+
+  static int low10(int imm) {
+    return Assembler::low10(imm);
+  }
+
+  // Perform the inverse of the LP64 Macroassembler::sethi
+  // routine.  Extracts the 54 bits of address from the instruction
+  // stream. This routine must agree with the sethi routine in
+  // assembler_inline_sparc.hpp
+  static address gethi( unsigned int *pc ) {
+    int i = 0;
+    uintptr_t adr;
+    // We first start out with the real sethi instruction
+    assert(is_op2(*pc, Assembler::sethi_op2), "in gethi - must be sethi");
+    adr = (unsigned int)Assembler::inv_hi22( *(pc++) );
+    i++;
+    while ( i < 7 ) {
+       // We're done if we hit a nop
+       if ( (int)*pc == nop_instruction() ) break;
+       assert ( Assembler::inv_op(*pc) == Assembler::arith_op, "in gethi - must be arith_op" );
+       switch  ( Assembler::inv_op3(*pc) ) {
+         case Assembler::xor_op3:
+           adr ^= (intptr_t)get_simm13( *pc );
+           return ( (address)adr );
+           break;
+         case Assembler::sll_op3:
+           adr <<= ( *pc & 0x3f );
+           break;
+         case Assembler::or_op3:
+           adr |= (intptr_t)get_simm13( *pc );
+           break;
+         default:
+           assert ( 0, "in gethi - Should not reach here" );
+           break;
+       }
+       pc++;
+       i++;
+    }
+    return ( (address)adr );
+  }
+
+ public:
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void test() {}                 // override for testing
+
+  inline friend NativeInstruction* nativeInstruction_at(address address);
+};
+
+inline NativeInstruction* nativeInstruction_at(address address) {
+    NativeInstruction* inst = (NativeInstruction*)address;
+#ifdef ASSERT
+      inst->verify();
+#endif
+    return inst;
+}
+
+
+
+//-----------------------------------------------------------------------------
+
+// The NativeCall is an abstraction for accessing/manipulating native call imm32 instructions.
+// (used to manipulate inline caches, primitive & dll calls, etc.)
+inline NativeCall* nativeCall_at(address instr);
+inline NativeCall* nativeCall_overwriting_at(address instr,
+                                             address destination);
+inline NativeCall* nativeCall_before(address return_address);
+class NativeCall: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    instruction_size                   = 8,
+    return_address_offset              = 8,
+    call_displacement_width            = 30,
+    displacement_offset                = 0,
+    instruction_offset                 = 0
+  };
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(instruction_size); }
+  address return_address() const            { return addr_at(return_address_offset); }
+
+  address destination() const               { return inv_wdisp(long_at(0), call_displacement_width) + instruction_address(); }
+  address displacement_address() const      { return addr_at(displacement_offset); }
+  void  set_destination(address dest)       { set_long_at(0, set_wdisp(long_at(0), dest - instruction_address(), call_displacement_width)); }
+  void  set_destination_mt_safe(address dest);
+
+  void  verify_alignment() {} // do nothing on sparc
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void  test();
+
+  // Creation
+  friend inline NativeCall* nativeCall_at(address instr);
+  friend NativeCall* nativeCall_overwriting_at(address instr, address destination = NULL) {
+    // insert a "blank" call:
+    NativeCall* call = (NativeCall*)instr;
+    call->set_long_at(0 * BytesPerInstWord, call_instruction(destination, instr));
+    call->set_long_at(1 * BytesPerInstWord, nop_instruction());
+    assert(call->addr_at(2 * BytesPerInstWord) - instr == instruction_size, "instruction size");
+    // check its structure now:
+    assert(nativeCall_at(instr)->destination() == destination, "correct call destination");
+    return call;
+  }
+
+  friend inline NativeCall* nativeCall_before(address return_address) {
+    NativeCall* call = (NativeCall*)(return_address - return_address_offset);
+    #ifdef ASSERT
+      call->verify();
+    #endif
+    return call;
+  }
+
+  static bool is_call_at(address instr) {
+    return nativeInstruction_at(instr)->is_call();
+  }
+
+  static bool is_call_before(address instr) {
+    return nativeInstruction_at(instr - return_address_offset)->is_call();
+  }
+
+  static bool is_call_to(address instr, address target) {
+    return nativeInstruction_at(instr)->is_call() &&
+      nativeCall_at(instr)->destination() == target;
+  }
+
+  // MT-safe patching of a call instruction.
+  static void insert(address code_pos, address entry) {
+    (void)nativeCall_overwriting_at(code_pos, entry);
+  }
+
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+};
+inline NativeCall* nativeCall_at(address instr) {
+  NativeCall* call = (NativeCall*)instr;
+#ifdef ASSERT
+  call->verify();
+#endif
+  return call;
+}
+
+// The NativeFarCall is an abstraction for accessing/manipulating native call-anywhere
+// instructions in the sparcv9 vm.  Used to call native methods which may be loaded
+// anywhere in the address space, possibly out of reach of a call instruction.
+
+#ifndef _LP64
+
+// On 32-bit systems, a far call is the same as a near one.
+class NativeFarCall;
+inline NativeFarCall* nativeFarCall_at(address instr);
+class NativeFarCall : public NativeCall {
+public:
+  friend inline NativeFarCall* nativeFarCall_at(address instr) { return (NativeFarCall*)nativeCall_at(instr); }
+  friend NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL)
+                                                        { return (NativeFarCall*)nativeCall_overwriting_at(instr, destination); }
+  friend NativeFarCall* nativeFarCall_before(address return_address)
+                                                        { return (NativeFarCall*)nativeCall_before(return_address); }
+};
+
+#else
+
+// The format of this extended-range call is:
+//      jumpl_to addr, lreg
+//      == sethi %hi54(addr), O7 ;  jumpl O7, %lo10(addr), O7 ;  <delay>
+// That is, it is essentially the same as a NativeJump.
+class NativeFarCall;
+inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination);
+inline NativeFarCall* nativeFarCall_at(address instr);
+class NativeFarCall: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    // instruction_size includes the delay slot instruction.
+    instruction_size                   = 9 * BytesPerInstWord,
+    return_address_offset              = 9 * BytesPerInstWord,
+    jmpl_offset                        = 7 * BytesPerInstWord,
+    displacement_offset                = 0,
+    instruction_offset                 = 0
+  };
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(instruction_size); }
+  address return_address() const            { return addr_at(return_address_offset); }
+
+  address destination() const {
+    return (address) data64(addr_at(0), long_at(jmpl_offset));
+  }
+  address displacement_address() const      { return addr_at(displacement_offset); }
+  void set_destination(address dest);
+
+  bool destination_is_compiled_verified_entry_point();
+
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void  test();
+
+  // Creation
+  friend inline NativeFarCall* nativeFarCall_at(address instr) {
+    NativeFarCall* call = (NativeFarCall*)instr;
+    #ifdef ASSERT
+      call->verify();
+    #endif
+    return call;
+  }
+
+  friend inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL) {
+    Unimplemented();
+    NativeFarCall* call = (NativeFarCall*)instr;
+    return call;
+  }
+
+  friend NativeFarCall* nativeFarCall_before(address return_address) {
+    NativeFarCall* call = (NativeFarCall*)(return_address - return_address_offset);
+    #ifdef ASSERT
+      call->verify();
+    #endif
+    return call;
+  }
+
+  static bool is_call_at(address instr);
+
+  // MT-safe patching of a call instruction.
+  static void insert(address code_pos, address entry) {
+    (void)nativeFarCall_overwriting_at(code_pos, entry);
+  }
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+};
+
+#endif // _LP64
+
+// An interface for accessing/manipulating native set_oop imm, reg instructions.
+// (used to manipulate inlined data references, etc.)
+//      set_oop imm, reg
+//      == sethi %hi22(imm), reg ;  add reg, %lo10(imm), reg
+class NativeMovConstReg;
+inline NativeMovConstReg* nativeMovConstReg_at(address address);
+class NativeMovConstReg: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    sethi_offset           = 0,
+#ifdef _LP64
+    add_offset             = 7 * BytesPerInstWord,
+    instruction_size       = 8 * BytesPerInstWord
+#else
+    add_offset             = 4,
+    instruction_size       = 8
+#endif
+  };
+
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(instruction_size); }
+
+  // (The [set_]data accessor respects oop_type relocs also.)
+  intptr_t data() const;
+  void set_data(intptr_t x);
+
+  // report the destination register
+  Register destination() { return inv_rd(long_at(sethi_offset)); }
+
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void test();
+
+  // Creation
+  friend inline NativeMovConstReg* nativeMovConstReg_at(address address) {
+    NativeMovConstReg* test = (NativeMovConstReg*)address;
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+
+
+  friend NativeMovConstReg* nativeMovConstReg_before(address address) {
+    NativeMovConstReg* test = (NativeMovConstReg*)(address - instruction_size);
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+
+};
+
+
+// An interface for accessing/manipulating native set_oop imm, reg instructions.
+// (used to manipulate inlined data references, etc.)
+//      set_oop imm, reg
+//      == sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg
+//
+// Note that it is identical to NativeMovConstReg with the exception of a nop between the
+// sethi and the add.  The nop is required to be in the delay slot of the call instruction
+// which overwrites the sethi during patching.
+class NativeMovConstRegPatching;
+inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address);class NativeMovConstRegPatching: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    sethi_offset           = 0,
+#ifdef _LP64
+    nop_offset             = 7 * BytesPerInstWord,
+#else
+    nop_offset             = sethi_offset + BytesPerInstWord,
+#endif
+    add_offset             = nop_offset   + BytesPerInstWord,
+    instruction_size       = add_offset   + BytesPerInstWord
+  };
+
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(instruction_size); }
+
+  // (The [set_]data accessor respects oop_type relocs also.)
+  int data() const;
+  void  set_data(int x);
+
+  // report the destination register
+  Register destination() { return inv_rd(long_at(sethi_offset)); }
+
+  void  verify();
+  void  print();
+
+  // unit test stuff
+  static void test();
+
+  // Creation
+  friend inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
+    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)address;
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+
+
+  friend NativeMovConstRegPatching* nativeMovConstRegPatching_before(address address) {
+    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_size);
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+
+};
+
+
+// An interface for accessing/manipulating native memory ops
+//      ld* [reg + offset], reg
+//      st* reg, [reg + offset]
+//      sethi %hi(imm), reg; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
+//      sethi %hi(imm), reg; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
+// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
+//
+class NativeMovRegMem;
+inline NativeMovRegMem* nativeMovRegMem_at (address address);
+class NativeMovRegMem: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    op3_mask_ld = 1 << Assembler::lduw_op3 |
+                  1 << Assembler::ldub_op3 |
+                  1 << Assembler::lduh_op3 |
+                  1 << Assembler::ldd_op3 |
+                  1 << Assembler::ldsw_op3 |
+                  1 << Assembler::ldsb_op3 |
+                  1 << Assembler::ldsh_op3 |
+                  1 << Assembler::ldx_op3,
+    op3_mask_st = 1 << Assembler::stw_op3 |
+                  1 << Assembler::stb_op3 |
+                  1 << Assembler::sth_op3 |
+                  1 << Assembler::std_op3 |
+                  1 << Assembler::stx_op3,
+    op3_ldst_int_limit = Assembler::ldf_op3,
+    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
+                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
+    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
+                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
+
+    offset_width    = 13,
+    sethi_offset    = 0,
+#ifdef _LP64
+    add_offset      = 7 * BytesPerInstWord,
+#else
+    add_offset      = 4,
+#endif
+    ldst_offset     = add_offset + BytesPerInstWord
+  };
+  bool is_immediate() const {
+    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
+    int i0 = long_at(0);
+    return (is_op(i0, Assembler::ldst_op));
+  }
+
+  address instruction_address() const           { return addr_at(0); }
+  address next_instruction_address() const      {
+#ifdef _LP64
+    return addr_at(is_immediate() ? 4 : (7 * BytesPerInstWord));
+#else
+    return addr_at(is_immediate() ? 4 : 12);
+#endif
+  }
+  intptr_t   offset() const                             {
+     return is_immediate()? inv_simm(long_at(0), offset_width) :
+                            nativeMovConstReg_at(addr_at(0))->data();
+  }
+  void  set_offset(intptr_t x) {
+    if (is_immediate()) {
+      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
+      set_long_at(0, set_simm(long_at(0), x, offset_width));
+    } else
+      nativeMovConstReg_at(addr_at(0))->set_data(x);
+  }
+
+  void  add_offset_in_bytes(intptr_t radd_offset)     {
+      set_offset (offset() + radd_offset);
+  }
+
+  void  copy_instruction_to(address new_instruction_address);
+
+  void verify();
+  void print ();
+
+  // unit test stuff
+  static void test();
+
+ private:
+  friend inline NativeMovRegMem* nativeMovRegMem_at (address address) {
+    NativeMovRegMem* test = (NativeMovRegMem*)address;
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+};
+
+
+// An interface for accessing/manipulating native memory ops
+//      ld* [reg + offset], reg
+//      st* reg, [reg + offset]
+//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
+//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
+// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
+//
+// Note that it is identical to NativeMovRegMem with the exception of a nop between the
+// sethi and the add.  The nop is required to be in the delay slot of the call instruction
+// which overwrites the sethi during patching.
+class NativeMovRegMemPatching;
+inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address);
+class NativeMovRegMemPatching: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    op3_mask_ld = 1 << Assembler::lduw_op3 |
+                  1 << Assembler::ldub_op3 |
+                  1 << Assembler::lduh_op3 |
+                  1 << Assembler::ldd_op3 |
+                  1 << Assembler::ldsw_op3 |
+                  1 << Assembler::ldsb_op3 |
+                  1 << Assembler::ldsh_op3 |
+                  1 << Assembler::ldx_op3,
+    op3_mask_st = 1 << Assembler::stw_op3 |
+                  1 << Assembler::stb_op3 |
+                  1 << Assembler::sth_op3 |
+                  1 << Assembler::std_op3 |
+                  1 << Assembler::stx_op3,
+    op3_ldst_int_limit = Assembler::ldf_op3,
+    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
+                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
+    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
+                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
+
+    offset_width    = 13,
+    sethi_offset    = 0,
+#ifdef _LP64
+    nop_offset      = 7 * BytesPerInstWord,
+#else
+    nop_offset      = 4,
+#endif
+    add_offset      = nop_offset + BytesPerInstWord,
+    ldst_offset     = add_offset + BytesPerInstWord
+  };
+  bool is_immediate() const {
+    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
+    int i0 = long_at(0);
+    return (is_op(i0, Assembler::ldst_op));
+  }
+
+  address instruction_address() const           { return addr_at(0); }
+  address next_instruction_address() const      {
+    return addr_at(is_immediate()? 4 : 16);
+  }
+  int   offset() const                          {
+     return is_immediate()? inv_simm(long_at(0), offset_width) :
+                            nativeMovConstRegPatching_at(addr_at(0))->data();
+  }
+  void  set_offset(int x) {
+    if (is_immediate()) {
+      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
+      set_long_at(0, set_simm(long_at(0), x, offset_width));
+    }
+    else
+      nativeMovConstRegPatching_at(addr_at(0))->set_data(x);
+  }
+
+  void  add_offset_in_bytes(intptr_t radd_offset)     {
+      set_offset (offset() + radd_offset);
+  }
+
+  void  copy_instruction_to(address new_instruction_address);
+
+  void verify();
+  void print ();
+
+  // unit test stuff
+  static void test();
+
+ private:
+  friend inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
+    NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)address;
+    #ifdef ASSERT
+      test->verify();
+    #endif
+    return test;
+  }
+};
+
+
+// An interface for accessing/manipulating native jumps
+//      jump_to addr
+//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), G0 ;  <delay>
+//      jumpl_to addr, lreg
+//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), lreg ;  <delay>
+class NativeJump;
+inline NativeJump* nativeJump_at(address address);
+class NativeJump: public NativeInstruction {
+ private:
+  void guarantee_displacement(int disp, int width) {
+    guarantee(fits_in_simm(disp, width + 2), "branch displacement overflow");
+  }
+
+ public:
+  enum Sparc_specific_constants {
+    sethi_offset           = 0,
+#ifdef _LP64
+    jmpl_offset            = 7 * BytesPerInstWord,
+    instruction_size       = 9 * BytesPerInstWord  // includes delay slot
+#else
+    jmpl_offset            = 1 * BytesPerInstWord,
+    instruction_size       = 3 * BytesPerInstWord  // includes delay slot
+#endif
+  };
+
+  address instruction_address() const       { return addr_at(0); }
+  address next_instruction_address() const  { return addr_at(instruction_size); }
+
+#ifdef _LP64
+  address jump_destination() const {
+    return (address) data64(instruction_address(), long_at(jmpl_offset));
+  }
+  void set_jump_destination(address dest) {
+    set_data64_sethi( instruction_address(), (intptr_t)dest);
+    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
+  }
+#else
+  address jump_destination() const {
+    return (address) data32(long_at(sethi_offset), long_at(jmpl_offset));
+  }
+  void set_jump_destination(address dest) {
+    set_long_at(sethi_offset, set_data32_sethi(  long_at(sethi_offset), (intptr_t)dest));
+    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
+  }
+#endif
+
+  // Creation
+  friend inline NativeJump* nativeJump_at(address address) {
+    NativeJump* jump = (NativeJump*)address;
+    #ifdef ASSERT
+      jump->verify();
+    #endif
+    return jump;
+  }
+
+  void verify();
+  void print();
+
+  // Unit testing stuff
+  static void test();
+
+  // Insertion of native jump instruction
+  static void insert(address code_pos, address entry);
+  // MT-safe insertion of native jump at verified method entry
+  static void check_verified_entry_alignment(address entry, address verified_entry) {
+    // nothing to do for sparc.
+  }
+  static void patch_verified_entry(address entry, address verified_entry, address dest);
+};
+
+
+
+// Despite the name, handles only simple branches.
+class NativeGeneralJump;
+inline NativeGeneralJump* nativeGeneralJump_at(address address);
+class NativeGeneralJump: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    instruction_size                   = 8
+  };
+
+  address instruction_address() const       { return addr_at(0); }
+  address jump_destination()    const       { return addr_at(0) + branch_destination_offset(long_at(0)); }
+  void set_jump_destination(address dest) {
+    int patched_instr = patch_branch_destination_offset(dest - addr_at(0), long_at(0));
+    set_long_at(0, patched_instr);
+  }
+  void set_annul() { set_annul_bit(); }
+  NativeInstruction *delay_slot_instr() { return nativeInstruction_at(addr_at(4));}
+  void fill_delay_slot(int instr) { set_long_at(4, instr);}
+  Assembler::Condition condition() {
+    int x = long_at(0);
+    return (Assembler::Condition) Assembler::inv_cond(x);
+  }
+
+  // Creation
+  friend inline NativeGeneralJump* nativeGeneralJump_at(address address) {
+    NativeGeneralJump* jump = (NativeGeneralJump*)(address);
+#ifdef ASSERT
+      jump->verify();
+#endif
+    return jump;
+  }
+
+  // Insertion of native general jump instruction
+  static void insert_unconditional(address code_pos, address entry);
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+
+  void verify();
+};
+
+
+class NativeIllegalInstruction: public NativeInstruction {
+ public:
+  enum Sparc_specific_constants {
+    instruction_size            =    4
+  };
+
+  // Insert illegal opcode as specific address
+  static void insert(address code_pos);
+};