diff src/cpu/x86/vm/methodHandles_x86.cpp @ 710:e5b0439ef4ae

6655638: dynamic languages need method handles Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.) Reviewed-by: kvn, twisti, never
author jrose
date Wed, 08 Apr 2009 10:56:49 -0700
parents
children df6caf649ff7
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/methodHandles_x86.cpp	Wed Apr 08 10:56:49 2009 -0700
@@ -0,0 +1,1133 @@
+/*
+ * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_methodHandles_x86.cpp.incl"
+
+#define __ _masm->
+
+address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
+                                                address interpreted_entry) {
+  // Just before the actual machine code entry point, allocate space
+  // for a MethodHandleEntry::Data record, so that we can manage everything
+  // from one base pointer.
+  __ align(wordSize);
+  address target = __ pc() + sizeof(Data);
+  while (__ pc() < target) {
+    __ nop();
+    __ align(wordSize);
+  }
+
+  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
+  me->set_end_address(__ pc());         // set a temporary end_address
+  me->set_from_interpreted_entry(interpreted_entry);
+  me->set_type_checking_entry(NULL);
+
+  return (address) me;
+}
+
+MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
+                                                address start_addr) {
+  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
+  assert(me->end_address() == start_addr, "valid ME");
+
+  // Fill in the real end_address:
+  __ align(wordSize);
+  me->set_end_address(__ pc());
+
+  return me;
+}
+
+#ifdef ASSERT
+static void verify_argslot(MacroAssembler* _masm, Register rax_argslot,
+                           const char* error_message) {
+  // Verify that argslot lies within (rsp, rbp].
+  Label L_ok, L_bad;
+  __ cmpptr(rax_argslot, rbp);
+  __ jcc(Assembler::above, L_bad);
+  __ cmpptr(rsp, rax_argslot);
+  __ jcc(Assembler::below, L_ok);
+  __ bind(L_bad);
+  __ stop(error_message);
+  __ bind(L_ok);
+}
+#endif
+
+
+// Code generation
+address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
+  // rbx: methodOop
+  // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
+  // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
+  // rdx: garbage temp, blown away
+
+  Register rbx_method = rbx;
+  Register rcx_recv   = rcx;
+  Register rax_mtype  = rax;
+  Register rdx_temp   = rdx;
+
+  // emit WrongMethodType path first, to enable jccb back-branch from main path
+  Label wrong_method_type;
+  __ bind(wrong_method_type);
+  __ push(rax_mtype);       // required mtype
+  __ push(rcx_recv);        // bad mh (1st stacked argument)
+  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
+
+  // here's where control starts out:
+  __ align(CodeEntryAlignment);
+  address entry_point = __ pc();
+
+  // fetch the MethodType from the method handle into rax (the 'check' register)
+  {
+    Register tem = rbx_method;
+    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
+      __ movptr(rax_mtype, Address(tem, *pchase));
+      tem = rax_mtype;          // in case there is another indirection
+    }
+  }
+  Register rbx_temp = rbx_method; // done with incoming methodOop
+
+  // given the MethodType, find out where the MH argument is buried
+  __ movptr(rdx_temp, Address(rax_mtype,
+                              __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
+  __ movl(rdx_temp, Address(rdx_temp,
+                            __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
+  __ movptr(rcx_recv, __ argument_address(rdx_temp));
+
+  __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
+  __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+
+  return entry_point;
+}
+
+// Helper to insert argument slots into the stack.
+// arg_slots must be a multiple of stack_move_unit() and <= 0
+void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
+                                     RegisterOrConstant arg_slots,
+                                     int arg_mask,
+                                     Register rax_argslot,
+                                     Register rbx_temp, Register rdx_temp) {
+  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
+                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
+
+#ifdef ASSERT
+  verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
+  if (arg_slots.is_register()) {
+    Label L_ok, L_bad;
+    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
+    __ jcc(Assembler::greater, L_bad);
+    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
+    __ jcc(Assembler::zero, L_ok);
+    __ bind(L_bad);
+    __ stop("assert arg_slots <= 0 and clear low bits");
+    __ bind(L_ok);
+  } else {
+    assert(arg_slots.as_constant() <= 0, "");
+    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
+  }
+#endif //ASSERT
+
+#ifdef _LP64
+  if (arg_slots.is_register()) {
+    // clean high bits of stack motion register (was loaded as an int)
+    __ movslq(arg_slots.as_register(), arg_slots.as_register());
+  }
+#endif
+
+  // Make space on the stack for the inserted argument(s).
+  // Then pull down everything shallower than rax_argslot.
+  // The stacked return address gets pulled down with everything else.
+  // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
+  //   rsp -= size;
+  //   for (rdx = rsp + size; rdx < argslot; rdx++)
+  //     rdx[-size] = rdx[0]
+  //   argslot -= size;
+  __ mov(rdx_temp, rsp);                        // source pointer for copy
+  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
+  {
+    Label loop;
+    __ bind(loop);
+    // pull one word down each time through the loop
+    __ movptr(rbx_temp, Address(rdx_temp, 0));
+    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
+    __ addptr(rdx_temp, wordSize);
+    __ cmpptr(rdx_temp, rax_argslot);
+    __ jcc(Assembler::less, loop);
+  }
+
+  // Now move the argslot down, to point to the opened-up space.
+  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
+
+  if (TaggedStackInterpreter && arg_mask != _INSERT_NO_MASK) {
+    // The caller has specified a bitmask of tags to put into the opened space.
+    // This only works when the arg_slots value is an assembly-time constant.
+    int constant_arg_slots = arg_slots.as_constant() / stack_move_unit();
+    int tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
+    for (int slot = 0; slot < constant_arg_slots; slot++) {
+      BasicType slot_type   = ((arg_mask & (1 << slot)) == 0 ? T_OBJECT : T_INT);
+      int       slot_offset = Interpreter::stackElementSize() * slot;
+      Address   tag_addr(rax_argslot, slot_offset + tag_offset);
+      __ movptr(tag_addr, frame::tag_for_basic_type(slot_type));
+    }
+    // Note that the new argument slots are tagged properly but contain
+    // garbage at this point.  The value portions must be initialized
+    // by the caller.  (Especially references!)
+  }
+}
+
+// Helper to remove argument slots from the stack.
+// arg_slots must be a multiple of stack_move_unit() and >= 0
+void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
+                                    RegisterOrConstant arg_slots,
+                                    Register rax_argslot,
+                                    Register rbx_temp, Register rdx_temp) {
+  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
+                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
+
+#ifdef ASSERT
+  {
+    // Verify that [argslot..argslot+size) lies within (rsp, rbp).
+    Label L_ok, L_bad;
+    __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
+    __ cmpptr(rbx_temp, rbp);
+    __ jcc(Assembler::above, L_bad);
+    __ cmpptr(rsp, rax_argslot);
+    __ jcc(Assembler::below, L_ok);
+    __ bind(L_bad);
+    __ stop("deleted argument(s) must fall within current frame");
+    __ bind(L_ok);
+  }
+  if (arg_slots.is_register()) {
+    Label L_ok, L_bad;
+    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
+    __ jcc(Assembler::less, L_bad);
+    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
+    __ jcc(Assembler::zero, L_ok);
+    __ bind(L_bad);
+    __ stop("assert arg_slots >= 0 and clear low bits");
+    __ bind(L_ok);
+  } else {
+    assert(arg_slots.as_constant() >= 0, "");
+    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
+  }
+#endif //ASSERT
+
+#ifdef _LP64
+  if (false) {                  // not needed, since register is positive
+    // clean high bits of stack motion register (was loaded as an int)
+    if (arg_slots.is_register())
+      __ movslq(arg_slots.as_register(), arg_slots.as_register());
+  }
+#endif
+
+  // Pull up everything shallower than rax_argslot.
+  // Then remove the excess space on the stack.
+  // The stacked return address gets pulled up with everything else.
+  // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
+  //   for (rdx = argslot-1; rdx >= rsp; --rdx)
+  //     rdx[size] = rdx[0]
+  //   argslot += size;
+  //   rsp += size;
+  __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
+  {
+    Label loop;
+    __ bind(loop);
+    // pull one word up each time through the loop
+    __ movptr(rbx_temp, Address(rdx_temp, 0));
+    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
+    __ addptr(rdx_temp, -wordSize);
+    __ cmpptr(rdx_temp, rsp);
+    __ jcc(Assembler::greaterEqual, loop);
+  }
+
+  // Now move the argslot up, to point to the just-copied block.
+  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
+  // And adjust the argslot address to point at the deletion point.
+  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
+}
+
+#ifndef PRODUCT
+void trace_method_handle_stub(const char* adaptername,
+                              oop mh,
+                              intptr_t* entry_sp,
+                              intptr_t* saved_sp) {
+  // called as a leaf from native code: do not block the JVM!
+  printf("MH %s "PTR_FORMAT" "PTR_FORMAT" "INTX_FORMAT"\n", adaptername, mh, entry_sp, entry_sp - saved_sp);
+}
+#endif //PRODUCT
+
+// Generate an "entry" field for a method handle.
+// This determines how the method handle will respond to calls.
+void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
+  // Here is the register state during an interpreted call,
+  // as set up by generate_method_handle_interpreter_entry():
+  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
+  // - rcx: receiver method handle
+  // - rax: method handle type (only used by the check_mtype entry point)
+  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
+  // - rdx: garbage temp, can blow away
+
+  Register rcx_recv    = rcx;
+  Register rax_argslot = rax;
+  Register rbx_temp    = rbx;
+  Register rdx_temp    = rdx;
+
+  guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
+
+  // some handy addresses
+  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
+
+  Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
+  Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
+
+  Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
+  Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
+
+  Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
+  Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
+  Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
+  Address vmarg;                // __ argument_address(vmargslot)
+
+  int tag_offset = -1;
+  if (TaggedStackInterpreter) {
+    tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
+    assert(tag_offset = wordSize, "stack grows as expected");
+  }
+
+  if (have_entry(ek)) {
+    __ nop();                   // empty stubs make SG sick
+    return;
+  }
+
+  address interp_entry = __ pc();
+  if (UseCompressedOops)  __ unimplemented("UseCompressedOops");
+
+#ifndef PRODUCT
+  if (TraceMethodHandles) {
+    __ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
+    __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
+    // arguments:
+    __ push(rsi);               // saved_sp
+    __ push(rax);               // entry_sp
+    __ push(rcx);               // mh
+    __ push(rcx);
+    __ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
+    __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 4);
+    __ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
+  }
+#endif //PRODUCT
+
+  switch ((int) ek) {
+  case _check_mtype:
+    {
+      // this stub is special, because it requires a live mtype argument
+      Register rax_mtype = rax;
+
+      // emit WrongMethodType path first, to enable jccb back-branch
+      Label wrong_method_type;
+      __ bind(wrong_method_type);
+      __ movptr(rdx_temp, ExternalAddress((address) &_entries[_wrong_method_type]));
+      __ jmp(Address(rdx_temp, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
+      __ hlt();
+
+      interp_entry = __ pc();
+      __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
+      // now rax_mtype is dead; subsequent stubs will use it as a temp
+
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _wrong_method_type:
+    {
+      // this stub is special, because it requires a live mtype argument
+      Register rax_mtype = rax;
+
+      interp_entry = __ pc();
+      __ push(rax_mtype);       // required mtype
+      __ push(rcx_recv);        // random mh (1st stacked argument)
+      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
+    }
+    break;
+
+  case _invokestatic_mh:
+  case _invokespecial_mh:
+    {
+      Register rbx_method = rbx_temp;
+      __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
+      __ verify_oop(rbx_method);
+      // same as TemplateTable::invokestatic or invokespecial,
+      // minus the CP setup and profiling:
+      if (ek == _invokespecial_mh) {
+        // Must load & check the first argument before entering the target method.
+        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
+        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
+        __ null_check(rcx_recv);
+        __ verify_oop(rcx_recv);
+      }
+      __ jmp(rbx_method_fie);
+    }
+    break;
+
+  case _invokevirtual_mh:
+    {
+      // same as TemplateTable::invokevirtual,
+      // minus the CP setup and profiling:
+
+      // pick out the vtable index and receiver offset from the MH,
+      // and then we can discard it:
+      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
+      Register rbx_index = rbx_temp;
+      __ movl(rbx_index, rcx_dmh_vmindex);
+      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
+      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
+      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
+
+      // get receiver klass
+      Register rax_klass = rax_argslot;
+      __ load_klass(rax_klass, rcx_recv);
+      __ verify_oop(rax_klass);
+
+      // get target methodOop & entry point
+      const int base = instanceKlass::vtable_start_offset() * wordSize;
+      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
+      Address vtable_entry_addr(rax_klass,
+                                rbx_index, Address::times_ptr,
+                                base + vtableEntry::method_offset_in_bytes());
+      Register rbx_method = rbx_temp;
+      __ movl(rbx_method, vtable_entry_addr);
+
+      __ verify_oop(rbx_method);
+      __ jmp(rbx_method_fie);
+    }
+    break;
+
+  case _invokeinterface_mh:
+    {
+      // same as TemplateTable::invokeinterface,
+      // minus the CP setup and profiling:
+
+      // pick out the interface and itable index from the MH.
+      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
+      Register rdx_intf  = rdx_temp;
+      Register rbx_index = rbx_temp;
+      __ movptr(rdx_intf,  rcx_mh_vmtarget);
+      __ movl(rbx_index,   rcx_dmh_vmindex);
+      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
+      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
+
+      // get receiver klass
+      Register rax_klass = rax_argslot;
+      __ load_klass(rax_klass, rcx_recv);
+      __ verify_oop(rax_klass);
+
+      Register rcx_temp   = rcx_recv;
+      Register rbx_method = rbx_index;
+
+      // get interface klass
+      Label no_such_interface;
+      __ verify_oop(rdx_intf);
+      __ lookup_interface_method(rax_klass, rdx_intf,
+                                 // note: next two args must be the same:
+                                 rbx_index, rbx_method,
+                                 rcx_temp,
+                                 no_such_interface);
+
+      __ verify_oop(rbx_method);
+      __ jmp(rbx_method_fie);
+      __ hlt();
+
+      __ bind(no_such_interface);
+      // Throw an exception.
+      // For historical reasons, it will be IncompatibleClassChangeError.
+      __ should_not_reach_here(); // %%% FIXME NYI
+    }
+    break;
+
+  case _bound_ref_mh:
+  case _bound_int_mh:
+  case _bound_long_mh:
+  case _bound_ref_direct_mh:
+  case _bound_int_direct_mh:
+  case _bound_long_direct_mh:
+    {
+      bool direct_to_method = (ek >= _bound_ref_direct_mh);
+      BasicType arg_type = T_ILLEGAL;
+      if (ek == _bound_long_mh || ek == _bound_long_direct_mh) {
+        arg_type = T_LONG;
+      } else if (ek == _bound_int_mh || ek == _bound_int_direct_mh) {
+        arg_type = T_INT;
+      } else {
+        assert(ek == _bound_ref_mh || ek == _bound_ref_direct_mh, "must be ref");
+        arg_type = T_OBJECT;
+      }
+      int arg_slots = type2size[arg_type];
+      int arg_mask  = (arg_type == T_OBJECT ? _INSERT_REF_MASK :
+                       arg_slots == 1       ? _INSERT_INT_MASK :  _INSERT_LONG_MASK);
+
+      // make room for the new argument:
+      __ movl(rax_argslot, rcx_bmh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot));
+      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
+                       rax_argslot, rbx_temp, rdx_temp);
+
+      // store bound argument into the new stack slot:
+      __ movptr(rbx_temp, rcx_bmh_argument);
+      Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
+      if (arg_type == T_OBJECT) {
+        __ movptr(Address(rax_argslot, 0), rbx_temp);
+      } else {
+        __ load_sized_value(rbx_temp, prim_value_addr,
+                            type2aelembytes(arg_type), is_signed_subword_type(arg_type));
+        __ movptr(Address(rax_argslot, 0), rbx_temp);
+#ifndef _LP64
+        if (arg_slots == 2) {
+          __ movl(rbx_temp, prim_value_addr.plus_disp(wordSize));
+          __ movl(Address(rax_argslot, Interpreter::stackElementSize()), rbx_temp);
+        }
+#endif //_LP64
+        break;
+      }
+
+      if (direct_to_method) {
+        Register rbx_method = rbx_temp;
+        __ movptr(rbx_method, rcx_mh_vmtarget);
+        __ verify_oop(rbx_method);
+        __ jmp(rbx_method_fie);
+      } else {
+        __ movptr(rcx_recv, rcx_mh_vmtarget);
+        __ verify_oop(rcx_recv);
+        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+      }
+    }
+    break;
+
+  case _adapter_retype_only:
+    // immediately jump to the next MH layer:
+    __ movptr(rcx_recv, rcx_mh_vmtarget);
+    __ verify_oop(rcx_recv);
+    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    // This is OK when all parameter types widen.
+    // It is also OK when a return type narrows.
+    break;
+
+  case _adapter_check_cast:
+    {
+      // temps:
+      Register rbx_klass = rbx_temp; // interesting AMH data
+
+      // check a reference argument before jumping to the next layer of MH:
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      vmarg = __ argument_address(rax_argslot);
+
+      // What class are we casting to?
+      __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
+      __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
+
+      // get the new MH:
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      // (now we are done with the old MH)
+
+      Label done;
+      __ movptr(rdx_temp, vmarg);
+      __ testl(rdx_temp, rdx_temp);
+      __ jcc(Assembler::zero, done);          // no cast if null
+      __ load_klass(rdx_temp, rdx_temp);
+
+      // live at this point:
+      // - rbx_klass:  klass required by the target method
+      // - rdx_temp:   argument klass to test
+      // - rcx_recv:   method handle to invoke (after cast succeeds)
+      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
+
+      // If we get here, the type check failed!
+      // Call the wrong_method_type stub, passing the failing argument type in rax.
+      Register rax_mtype = rax_argslot;
+      __ push(rbx_klass);       // missed klass (required type)
+      __ push(rdx_temp);        // bad actual type (1st stacked argument)
+      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
+
+      __ bind(done);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_prim_to_prim:
+  case _adapter_ref_to_prim:
+    // handled completely by optimized cases
+    __ stop("init_AdapterMethodHandle should not issue this");
+    break;
+
+  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
+//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
+  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
+  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
+    {
+      // perform an in-place conversion to int or an int subword
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      vmarg = __ argument_address(rax_argslot);
+
+      switch (ek) {
+      case _adapter_opt_i2i:
+        __ movl(rdx_temp, vmarg);
+        break;
+      case _adapter_opt_l2i:
+        {
+          // just delete the extra slot; on a little-endian machine we keep the first
+          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
+          remove_arg_slots(_masm, -stack_move_unit(),
+                           rax_argslot, rbx_temp, rdx_temp);
+          vmarg = Address(rax_argslot, -Interpreter::stackElementSize());
+          __ movl(rdx_temp, vmarg);
+        }
+        break;
+      case _adapter_opt_unboxi:
+        {
+          // Load the value up from the heap.
+          __ movptr(rdx_temp, vmarg);
+          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
+#ifdef ASSERT
+          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
+            if (is_subword_type(BasicType(bt)))
+              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
+          }
+#endif
+          __ null_check(rdx_temp, value_offset);
+          __ movl(rdx_temp, Address(rdx_temp, value_offset));
+          // We load this as a word.  Because we are little-endian,
+          // the low bits will be correct, but the high bits may need cleaning.
+          // The vminfo will guide us to clean those bits.
+        }
+        break;
+      default:
+        assert(false, "");
+      }
+      goto finish_int_conversion;
+    }
+
+  finish_int_conversion:
+    {
+      Register rbx_vminfo = rbx_temp;
+      __ movl(rbx_vminfo, rcx_amh_conversion);
+      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
+
+      // get the new MH:
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      // (now we are done with the old MH)
+
+      // original 32-bit vmdata word must be of this form:
+      //    | MBZ:16 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
+      __ xchgl(rcx, rbx_vminfo);                // free rcx for shifts
+      __ shll(rdx_temp /*, rcx*/);
+      Label zero_extend, done;
+      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
+      __ jcc(Assembler::zero, zero_extend);
+
+      // this path is taken for int->byte, int->short
+      __ sarl(rdx_temp /*, rcx*/);
+      __ jmp(done);
+
+      __ bind(zero_extend);
+      // this is taken for int->char
+      __ shrl(rdx_temp /*, rcx*/);
+
+      __ bind(done);
+      __ movptr(vmarg, rdx_temp);
+      __ xchgl(rcx, rbx_vminfo);                // restore rcx_recv
+
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
+  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
+    {
+      // perform an in-place int-to-long or ref-to-long conversion
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+
+      // on a little-endian machine we keep the first slot and add another after
+      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
+      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
+                       rax_argslot, rbx_temp, rdx_temp);
+      Address vmarg1(rax_argslot, -Interpreter::stackElementSize());
+      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize());
+
+      switch (ek) {
+      case _adapter_opt_i2l:
+        {
+          __ movl(rdx_temp, vmarg1);
+          __ sarl(rdx_temp, 31);  // __ extend_sign()
+          __ movl(vmarg2, rdx_temp); // store second word
+        }
+        break;
+      case _adapter_opt_unboxl:
+        {
+          // Load the value up from the heap.
+          __ movptr(rdx_temp, vmarg1);
+          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
+          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
+          __ null_check(rdx_temp, value_offset);
+          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
+          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
+          __ movl(vmarg1, rbx_temp);
+          __ movl(vmarg2, rdx_temp);
+        }
+        break;
+      default:
+        assert(false, "");
+      }
+
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
+  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
+    {
+      // perform an in-place floating primitive conversion
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
+      if (ek == _adapter_opt_f2d) {
+        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
+                         rax_argslot, rbx_temp, rdx_temp);
+      }
+      Address vmarg(rax_argslot, -Interpreter::stackElementSize());
+
+#ifdef _LP64
+      if (ek == _adapter_opt_f2d) {
+        __ movflt(xmm0, vmarg);
+        __ cvtss2sd(xmm0, xmm0);
+        __ movdbl(vmarg, xmm0);
+      } else {
+        __ movdbl(xmm0, vmarg);
+        __ cvtsd2ss(xmm0, xmm0);
+        __ movflt(vmarg, xmm0);
+      }
+#else //_LP64
+      if (ek == _adapter_opt_f2d) {
+        __ fld_s(vmarg);        // load float to ST0
+        __ fstp_s(vmarg);       // store single
+      } else if (!TaggedStackInterpreter) {
+        __ fld_d(vmarg);        // load double to ST0
+        __ fstp_s(vmarg);       // store single
+      } else {
+        Address vmarg_tag = vmarg.plus_disp(tag_offset);
+        Address vmarg2    = vmarg.plus_disp(Interpreter::stackElementSize());
+        // vmarg2_tag does not participate in this code
+        Register rbx_tag = rbx_temp;
+        __ movl(rbx_tag, vmarg_tag); // preserve tag
+        __ movl(rdx_temp, vmarg2); // get second word of double
+        __ movl(vmarg_tag, rdx_temp); // align with first word
+        __ fld_d(vmarg);        // load double to ST0
+        __ movl(vmarg_tag, rbx_tag); // restore tag
+        __ fstp_s(vmarg);       // store single
+      }
+#endif //_LP64
+
+      if (ek == _adapter_opt_d2f) {
+        remove_arg_slots(_masm, -stack_move_unit(),
+                         rax_argslot, rbx_temp, rdx_temp);
+      }
+
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_prim_to_ref:
+    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
+    break;
+
+  case _adapter_swap_args:
+  case _adapter_rot_args:
+    // handled completely by optimized cases
+    __ stop("init_AdapterMethodHandle should not issue this");
+    break;
+
+  case _adapter_opt_swap_1:
+  case _adapter_opt_swap_2:
+  case _adapter_opt_rot_1_up:
+  case _adapter_opt_rot_1_down:
+  case _adapter_opt_rot_2_up:
+  case _adapter_opt_rot_2_down:
+    {
+      int rotate = 0, swap_slots = 0;
+      switch ((int)ek) {
+      case _adapter_opt_swap_1:     swap_slots = 1; break;
+      case _adapter_opt_swap_2:     swap_slots = 2; break;
+      case _adapter_opt_rot_1_up:   swap_slots = 1; rotate++; break;
+      case _adapter_opt_rot_1_down: swap_slots = 1; rotate--; break;
+      case _adapter_opt_rot_2_up:   swap_slots = 2; rotate++; break;
+      case _adapter_opt_rot_2_down: swap_slots = 2; rotate--; break;
+      default: assert(false, "");
+      }
+
+      // the real size of the move must be doubled if TaggedStackInterpreter:
+      int swap_bytes = (int)( swap_slots * Interpreter::stackElementWords() * wordSize );
+
+      // 'argslot' is the position of the first argument to swap
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot));
+
+      // 'vminfo' is the second
+      Register rbx_destslot = rbx_temp;
+      __ movl(rbx_destslot, rcx_amh_conversion);
+      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
+      __ andl(rbx_destslot, CONV_VMINFO_MASK);
+      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
+      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
+
+      if (!rotate) {
+        for (int i = 0; i < swap_bytes; i += wordSize) {
+          __ movptr(rdx_temp, Address(rax_argslot , i));
+          __ push(rdx_temp);
+          __ movptr(rdx_temp, Address(rbx_destslot, i));
+          __ movptr(Address(rax_argslot, i), rdx_temp);
+          __ pop(rdx_temp);
+          __ movptr(Address(rbx_destslot, i), rdx_temp);
+        }
+      } else {
+        // push the first chunk, which is going to get overwritten
+        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
+          __ movptr(rdx_temp, Address(rax_argslot, i));
+          __ push(rdx_temp);
+        }
+
+        if (rotate > 0) {
+          // rotate upward
+          __ subptr(rax_argslot, swap_bytes);
+#ifdef ASSERT
+          {
+            // Verify that argslot > destslot, by at least swap_bytes.
+            Label L_ok;
+            __ cmpptr(rax_argslot, rbx_destslot);
+            __ jcc(Assembler::aboveEqual, L_ok);
+            __ stop("source must be above destination (upward rotation)");
+            __ bind(L_ok);
+          }
+#endif
+          // work argslot down to destslot, copying contiguous data upwards
+          // pseudo-code:
+          //   rax = src_addr - swap_bytes
+          //   rbx = dest_addr
+          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
+          Label loop;
+          __ bind(loop);
+          __ movptr(rdx_temp, Address(rax_argslot, 0));
+          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
+          __ addptr(rax_argslot, -wordSize);
+          __ cmpptr(rax_argslot, rbx_destslot);
+          __ jcc(Assembler::aboveEqual, loop);
+        } else {
+          __ addptr(rax_argslot, swap_bytes);
+#ifdef ASSERT
+          {
+            // Verify that argslot < destslot, by at least swap_bytes.
+            Label L_ok;
+            __ cmpptr(rax_argslot, rbx_destslot);
+            __ jcc(Assembler::belowEqual, L_ok);
+            __ stop("source must be below destination (downward rotation)");
+            __ bind(L_ok);
+          }
+#endif
+          // work argslot up to destslot, copying contiguous data downwards
+          // pseudo-code:
+          //   rax = src_addr + swap_bytes
+          //   rbx = dest_addr
+          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
+          Label loop;
+          __ bind(loop);
+          __ movptr(rdx_temp, Address(rax_argslot, 0));
+          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
+          __ addptr(rax_argslot, wordSize);
+          __ cmpptr(rax_argslot, rbx_destslot);
+          __ jcc(Assembler::belowEqual, loop);
+        }
+
+        // pop the original first chunk into the destination slot, now free
+        for (int i = 0; i < swap_bytes; i += wordSize) {
+          __ pop(rdx_temp);
+          __ movptr(Address(rbx_destslot, i), rdx_temp);
+        }
+      }
+
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_dup_args:
+    {
+      // 'argslot' is the position of the first argument to duplicate
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot));
+
+      // 'stack_move' is negative number of words to duplicate
+      Register rdx_stack_move = rdx_temp;
+      __ movl(rdx_stack_move, rcx_amh_conversion);
+      __ sarl(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
+
+      int argslot0_num = 0;
+      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
+      assert(argslot0.base() == rsp, "");
+      int pre_arg_size = argslot0.disp();
+      assert(pre_arg_size % wordSize == 0, "");
+      assert(pre_arg_size > 0, "must include PC");
+
+      // remember the old rsp+1 (argslot[0])
+      Register rbx_oldarg = rbx_temp;
+      __ lea(rbx_oldarg, argslot0);
+
+      // move rsp down to make room for dups
+      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
+
+      // compute the new rsp+1 (argslot[0])
+      Register rdx_newarg = rdx_temp;
+      __ lea(rdx_newarg, argslot0);
+
+      __ push(rdi);             // need a temp
+      // (preceding push must be done after arg addresses are taken!)
+
+      // pull down the pre_arg_size data (PC)
+      for (int i = -pre_arg_size; i < 0; i += wordSize) {
+        __ movptr(rdi, Address(rbx_oldarg, i));
+        __ movptr(Address(rdx_newarg, i), rdi);
+      }
+
+      // copy from rax_argslot[0...] down to new_rsp[1...]
+      // pseudo-code:
+      //   rbx = old_rsp+1
+      //   rdx = new_rsp+1
+      //   rax = argslot
+      //   while (rdx < rbx) *rdx++ = *rax++
+      Label loop;
+      __ bind(loop);
+      __ movptr(rdi, Address(rax_argslot, 0));
+      __ movptr(Address(rdx_newarg, 0), rdi);
+      __ addptr(rax_argslot, wordSize);
+      __ addptr(rdx_newarg, wordSize);
+      __ cmpptr(rdx_newarg, rbx_oldarg);
+      __ jcc(Assembler::less, loop);
+
+      __ pop(rdi);              // restore temp
+
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_drop_args:
+    {
+      // 'argslot' is the position of the first argument to nuke
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot));
+
+      __ push(rdi);             // need a temp
+      // (must do previous push after argslot address is taken)
+
+      // 'stack_move' is number of words to drop
+      Register rdi_stack_move = rdi;
+      __ movl(rdi_stack_move, rcx_amh_conversion);
+      __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
+      remove_arg_slots(_masm, rdi_stack_move,
+                       rax_argslot, rbx_temp, rdx_temp);
+
+      __ pop(rdi);              // restore temp
+
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+    }
+    break;
+
+  case _adapter_collect_args:
+    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
+    break;
+
+  case _adapter_spread_args:
+    // handled completely by optimized cases
+    __ stop("init_AdapterMethodHandle should not issue this");
+    break;
+
+  case _adapter_opt_spread_0:
+  case _adapter_opt_spread_1:
+  case _adapter_opt_spread_more:
+    {
+      // spread an array out into a group of arguments
+      int length_constant = -1;
+      switch (ek) {
+      case _adapter_opt_spread_0: length_constant = 0; break;
+      case _adapter_opt_spread_1: length_constant = 1; break;
+      }
+
+      // find the address of the array argument
+      __ movl(rax_argslot, rcx_amh_vmargslot);
+      __ lea(rax_argslot, __ argument_address(rax_argslot));
+
+      // grab some temps
+      { __ push(rsi); __ push(rdi); }
+      // (preceding pushes must be done after argslot address is taken!)
+#define UNPUSH_RSI_RDI \
+      { __ pop(rdi); __ pop(rsi); }
+
+      // arx_argslot points both to the array and to the first output arg
+      vmarg = Address(rax_argslot, 0);
+
+      // Get the array value.
+      Register  rsi_array       = rsi;
+      Register  rdx_array_klass = rdx_temp;
+      BasicType elem_type       = T_OBJECT;
+      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
+      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
+      __ movptr(rsi_array, vmarg);
+      Label skip_array_check;
+      if (length_constant == 0) {
+        __ testptr(rsi_array, rsi_array);
+        __ jcc(Assembler::zero, skip_array_check);
+      }
+      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
+      __ load_klass(rdx_array_klass, rsi_array);
+
+      // Check the array type.
+      Register rbx_klass = rbx_temp;
+      __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
+      __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
+
+      Label ok_array_klass, bad_array_klass, bad_array_length;
+      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
+      // If we get here, the type check failed!
+      __ jmp(bad_array_klass);
+      __ bind(ok_array_klass);
+
+      // Check length.
+      if (length_constant >= 0) {
+        __ cmpl(Address(rsi_array, length_offset), length_constant);
+      } else {
+        Register rbx_vminfo = rbx_temp;
+        __ movl(rbx_vminfo, rcx_amh_conversion);
+        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
+        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
+        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
+      }
+      __ jcc(Assembler::notEqual, bad_array_length);
+
+      Register rdx_argslot_limit = rdx_temp;
+
+      // Array length checks out.  Now insert any required stack slots.
+      if (length_constant == -1) {
+        // Form a pointer to the end of the affected region.
+        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize()));
+        // 'stack_move' is negative number of words to insert
+        Register rdi_stack_move = rdi;
+        __ movl(rdi_stack_move, rcx_amh_conversion);
+        __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
+        Register rsi_temp = rsi_array;  // spill this
+        insert_arg_slots(_masm, rdi_stack_move, -1,
+                         rax_argslot, rbx_temp, rsi_temp);
+        // reload the array (since rsi was killed)
+        __ movptr(rsi_array, vmarg);
+      } else if (length_constant > 1) {
+        int arg_mask = 0;
+        int new_slots = (length_constant - 1);
+        for (int i = 0; i < new_slots; i++) {
+          arg_mask <<= 1;
+          arg_mask |= _INSERT_REF_MASK;
+        }
+        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
+                         rax_argslot, rbx_temp, rdx_temp);
+      } else if (length_constant == 1) {
+        // no stack resizing required
+      } else if (length_constant == 0) {
+        remove_arg_slots(_masm, -stack_move_unit(),
+                         rax_argslot, rbx_temp, rdx_temp);
+      }
+
+      // Copy from the array to the new slots.
+      // Note: Stack change code preserves integrity of rax_argslot pointer.
+      // So even after slot insertions, rax_argslot still points to first argument.
+      if (length_constant == -1) {
+        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
+        Register rsi_source = rsi_array;
+        __ lea(rsi_source, Address(rsi_array, elem0_offset));
+        Label loop;
+        __ bind(loop);
+        __ movptr(rbx_temp, Address(rsi_source, 0));
+        __ movptr(Address(rax_argslot, 0), rbx_temp);
+        __ addptr(rsi_source, type2aelembytes(elem_type));
+        if (TaggedStackInterpreter) {
+          __ movptr(Address(rax_argslot, tag_offset),
+                    frame::tag_for_basic_type(elem_type));
+        }
+        __ addptr(rax_argslot, Interpreter::stackElementSize());
+        __ cmpptr(rax_argslot, rdx_argslot_limit);
+        __ jcc(Assembler::less, loop);
+      } else if (length_constant == 0) {
+        __ bind(skip_array_check);
+        // nothing to copy
+      } else {
+        int elem_offset = elem0_offset;
+        int slot_offset = 0;
+        for (int index = 0; index < length_constant; index++) {
+          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
+          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
+          elem_offset += type2aelembytes(elem_type);
+          if (TaggedStackInterpreter) {
+            __ movptr(Address(rax_argslot, slot_offset + tag_offset),
+                      frame::tag_for_basic_type(elem_type));
+          }
+          slot_offset += Interpreter::stackElementSize();
+        }
+      }
+
+      // Arguments are spread.  Move to next method handle.
+      UNPUSH_RSI_RDI;
+      __ movptr(rcx_recv, rcx_mh_vmtarget);
+      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
+
+      __ bind(bad_array_klass);
+      UNPUSH_RSI_RDI;
+      __ stop("bad array klass NYI");
+
+      __ bind(bad_array_length);
+      UNPUSH_RSI_RDI;
+      __ stop("bad array length NYI");
+
+#undef UNPUSH_RSI_RDI
+    }
+    break;
+
+  case _adapter_flyby:
+  case _adapter_ricochet:
+    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
+    break;
+
+  default:  ShouldNotReachHere();
+  }
+  __ hlt();
+
+  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
+  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
+
+  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
+}