view src/share/vm/memory/resourceArea.hpp @ 452:00b023ae2d78

6722113: CMS: Incorrect overflow handling during precleaning of Reference lists Summary: When we encounter marking stack overflow during precleaning of Reference lists, we were using the overflow list mechanism, which can cause problems on account of mutating the mark word of the header because of conflicts with mutator accesses and updates of that field. Instead we should use the usual mechanism for overflow handling in concurrent phases, namely dirtying of the card on which the overflowed object lies. Since precleaning effectively does a form of discovered list processing, albeit with discovery enabled, we needed to adjust some code to be correct in the face of interleaved processing and discovery. Reviewed-by: apetrusenko, jcoomes
author ysr
date Thu, 20 Nov 2008 12:27:41 -0800
parents a61af66fc99e
children c18cbe5936b8
line wrap: on
line source

/*
 * Copyright 1997-2003 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// The resource area holds temporary data structures in the VM.
// The actual allocation areas are thread local. Typical usage:
//
//   ...
//   {
//     ResourceMark rm;
//     int foo[] = NEW_RESOURCE_ARRAY(int, 64);
//     ...
//   }
//   ...

//------------------------------ResourceArea-----------------------------------
// A ResourceArea is an Arena that supports safe usage of ResourceMark.
class ResourceArea: public Arena {
  friend class ResourceMark;
  friend class DeoptResourceMark;
  debug_only(int _nesting;)             // current # of nested ResourceMarks
  debug_only(static int _warned;)       // to suppress multiple warnings

public:
  ResourceArea() {
    debug_only(_nesting = 0;)
  }

  ResourceArea(size_t init_size) : Arena(init_size) {
    debug_only(_nesting = 0;);
  }

  char* allocate_bytes(size_t size) {
#ifdef ASSERT
    if (_nesting < 1 && !_warned++)
      fatal("memory leak: allocating without ResourceMark");
    if (UseMallocOnly) {
      // use malloc, but save pointer in res. area for later freeing
      char** save = (char**)internal_malloc_4(sizeof(char*));
      return (*save = (char*)os::malloc(size));
    }
#endif
    return (char*)Amalloc(size);
  }

  debug_only(int nesting() const { return _nesting; });
};


//------------------------------ResourceMark-----------------------------------
// A resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable.
class ResourceMark: public StackObj {
protected:
  ResourceArea *_area;          // Resource area to stack allocate
  Chunk *_chunk;                // saved arena chunk
  char *_hwm, *_max;
  NOT_PRODUCT(size_t _size_in_bytes;)

  void initialize(Thread *thread) {
    _area = thread->resource_area();
    _chunk = _area->_chunk;
    _hwm = _area->_hwm;
    _max= _area->_max;
    NOT_PRODUCT(_size_in_bytes = _area->size_in_bytes();)
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

 public:

#ifndef ASSERT
  ResourceMark(Thread *thread) {
    assert(thread == Thread::current(), "not the current thread");
    initialize(thread);
  }
#else
  ResourceMark(Thread *thread);
#endif // ASSERT

  ResourceMark()               { initialize(Thread::current()); }

  ResourceMark( ResourceArea *r ) :
    _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) {
    NOT_PRODUCT(_size_in_bytes = _area->size_in_bytes();)
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

  void reset_to_mark() {
    if (UseMallocOnly) free_malloced_objects();

    if( _chunk->next() )        // Delete later chunks
      _chunk->next_chop();
    _area->_chunk = _chunk;     // Roll back arena to saved chunk
    _area->_hwm = _hwm;
    _area->_max = _max;

    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm);
    _area->set_size_in_bytes(size_in_bytes());
  }

  ~ResourceMark() {
    assert( _area->_nesting > 0, "must stack allocate RMs" );
    debug_only(_area->_nesting--;)
    reset_to_mark();
  }


 private:
  void free_malloced_objects()                                         PRODUCT_RETURN;
  size_t size_in_bytes()       NOT_PRODUCT({ return _size_in_bytes; }) PRODUCT_RETURN0;
};

//------------------------------DeoptResourceMark-----------------------------------
// A deopt resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable. It differs
// from a typical resource more in that it is C-Heap allocated so that deoptimization
// can use data structures that are arena based but are not amenable to vanilla
// ResourceMarks because deoptimization can not use a stack allocated mark. During
// deoptimization we go thru the following steps:
//
// 0: start in assembly stub and call either uncommon_trap/fetch_unroll_info
// 1: create the vframeArray (contains pointers to Resource allocated structures)
//   This allocates the DeoptResourceMark.
// 2: return to assembly stub and remove stub frame and deoptee frame and create
//    the new skeletal frames.
// 3: push new stub frame and call unpack_frames
// 4: retrieve information from the vframeArray to populate the skeletal frames
// 5: release the DeoptResourceMark
// 6: return to stub and eventually to interpreter
//
// With old style eager deoptimization the vframeArray was created by the vmThread there
// was no way for the vframeArray to contain resource allocated objects and so
// a complex set of data structures to simulate an array of vframes in CHeap memory
// was used. With new style lazy deoptimization the vframeArray is created in the
// the thread that will use it and we can use a much simpler scheme for the vframeArray
// leveraging existing data structures if we simply create a way to manage this one
// special need for a ResourceMark. If ResourceMark simply inherited from CHeapObj
// then existing ResourceMarks would work fine since no one use new to allocate them
// and they would be stack allocated. This leaves open the possibilty of accidental
// misuse so we simple duplicate the ResourceMark functionality here.

class DeoptResourceMark: public CHeapObj {
protected:
  ResourceArea *_area;          // Resource area to stack allocate
  Chunk *_chunk;                // saved arena chunk
  char *_hwm, *_max;
  NOT_PRODUCT(size_t _size_in_bytes;)

  void initialize(Thread *thread) {
    _area = thread->resource_area();
    _chunk = _area->_chunk;
    _hwm = _area->_hwm;
    _max= _area->_max;
    NOT_PRODUCT(_size_in_bytes = _area->size_in_bytes();)
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

 public:

#ifndef ASSERT
  DeoptResourceMark(Thread *thread) {
    assert(thread == Thread::current(), "not the current thread");
    initialize(thread);
  }
#else
  DeoptResourceMark(Thread *thread);
#endif // ASSERT

  DeoptResourceMark()               { initialize(Thread::current()); }

  DeoptResourceMark( ResourceArea *r ) :
    _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) {
    NOT_PRODUCT(_size_in_bytes = _area->size_in_bytes();)
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

  void reset_to_mark() {
    if (UseMallocOnly) free_malloced_objects();

    if( _chunk->next() )        // Delete later chunks
      _chunk->next_chop();
    _area->_chunk = _chunk;     // Roll back arena to saved chunk
    _area->_hwm = _hwm;
    _area->_max = _max;

    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm);
    _area->set_size_in_bytes(size_in_bytes());
  }

  ~DeoptResourceMark() {
    assert( _area->_nesting > 0, "must stack allocate RMs" );
    debug_only(_area->_nesting--;)
    reset_to_mark();
  }


 private:
  void free_malloced_objects()                                         PRODUCT_RETURN;
  size_t size_in_bytes()       NOT_PRODUCT({ return _size_in_bytes; }) PRODUCT_RETURN0;
};