view src/share/vm/gc_implementation/g1/g1CollectedHeap.inline.hpp @ 20295:3f2894c5052e

8048112: G1 Full GC needs to support the case when the very first region is not available Summary: Refactor preparation for compaction during Full GC so that it lazily initializes the first compaction point. This also avoids problems later when the first region may not be committed. Also reviewed by K. Barrett. Reviewed-by: brutisso
author tschatzl
date Mon, 21 Jul 2014 10:00:31 +0200
parents b0c374311c4e
children a3953c777565
line wrap: on
line source

/*
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "utilities/taskqueue.hpp"

// Inline functions for G1CollectedHeap

// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }

template <class T>
inline HeapRegion*
G1CollectedHeap::heap_region_containing(const T addr) const {
  HeapRegion* hr = _hrs.addr_to_region((HeapWord*) addr);
  // hr can be null if addr in perm_gen
  if (hr != NULL && hr->continuesHumongous()) {
    hr = hr->humongous_start_region();
  }
  return hr;
}

template <class T>
inline HeapRegion*
G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  assert(_g1_reserved.contains((const void*) addr), "invariant");
  HeapRegion* res = _hrs.addr_to_region_unsafe((HeapWord*) addr);
  return res;
}

inline void G1CollectedHeap::reset_gc_time_stamp() {
  _gc_time_stamp = 0;
  OrderAccess::fence();
  // Clear the cached CSet starting regions and time stamps.
  // Their validity is dependent on the GC timestamp.
  clear_cset_start_regions();
}

inline void G1CollectedHeap::increment_gc_time_stamp() {
  ++_gc_time_stamp;
  OrderAccess::fence();
}

inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  _old_set.remove(hr);
}

inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
  return r != NULL && r->in_collection_set();
}

inline HeapWord*
G1CollectedHeap::attempt_allocation(size_t word_size,
                                    unsigned int* gc_count_before_ret,
                                    int* gclocker_retry_count_ret) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation() should not "
         "be called for humongous allocation requests");

  HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
  if (result == NULL) {
    result = attempt_allocation_slow(word_size,
                                     gc_count_before_ret,
                                     gclocker_retry_count_ret);
  }
  assert_heap_not_locked();
  if (result != NULL) {
    dirty_young_block(result, word_size);
  }
  return result;
}

inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
                                                              word_size) {
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

  HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  }
  if (result != NULL) {
    dirty_young_block(result, word_size);
  }
  return result;
}

inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

  HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
                                                       true /* bot_updates */);
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
                                                       true /* bot_updates */);
  }
  return result;
}

// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void
G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
  assert_heap_not_locked();

  // Assign the containing region to containing_hr so that we don't
  // have to keep calling heap_region_containing_raw() in the
  // asserts below.
  DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
  assert(containing_hr != NULL && start != NULL && word_size > 0,
         "pre-condition");
  assert(containing_hr->is_in(start), "it should contain start");
  assert(containing_hr->is_young(), "it should be young");
  assert(!containing_hr->isHumongous(), "it should not be humongous");

  HeapWord* end = start + word_size;
  assert(containing_hr->is_in(end - 1), "it should also contain end - 1");

  MemRegion mr(start, end);
  g1_barrier_set()->g1_mark_as_young(mr);
}

inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
  return _task_queues->queue(i);
}

inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
  return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
}

inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
  return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}


// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
inline bool G1CollectedHeap::in_cset_fast_test(oop obj) {
  bool ret = _in_cset_fast_test.get_by_address((HeapWord*)obj);
  // let's make sure the result is consistent with what the slower
  // test returns
  assert( ret || !obj_in_cs(obj), "sanity");
  assert(!ret ||  obj_in_cs(obj), "sanity");
  return ret;
}

#ifndef PRODUCT
// Support for G1EvacuationFailureALot

inline bool
G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                     bool during_initial_mark,
                                                     bool during_marking) {
  bool res = false;
  if (during_marking) {
    res |= G1EvacuationFailureALotDuringConcMark;
  }
  if (during_initial_mark) {
    res |= G1EvacuationFailureALotDuringInitialMark;
  }
  if (gcs_are_young) {
    res |= G1EvacuationFailureALotDuringYoungGC;
  } else {
    // GCs are mixed
    res |= G1EvacuationFailureALotDuringMixedGC;
  }
  return res;
}

inline void
G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
  if (G1EvacuationFailureALot) {
    // Note we can't assert that _evacuation_failure_alot_for_current_gc
    // is clear here. It may have been set during a previous GC but that GC
    // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
    // trigger an evacuation failure and clear the flags and and counts.

    // Check if we have gone over the interval.
    const size_t gc_num = total_collections();
    const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;

    _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);

    // Now check if G1EvacuationFailureALot is enabled for the current GC type.
    const bool gcs_are_young = g1_policy()->gcs_are_young();
    const bool during_im = g1_policy()->during_initial_mark_pause();
    const bool during_marking = mark_in_progress();

    _evacuation_failure_alot_for_current_gc &=
      evacuation_failure_alot_for_gc_type(gcs_are_young,
                                          during_im,
                                          during_marking);
  }
}

inline bool
G1CollectedHeap::evacuation_should_fail() {
  if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
    return false;
  }
  // G1EvacuationFailureALot is in effect for current GC
  // Access to _evacuation_failure_alot_count is not atomic;
  // the value does not have to be exact.
  if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
    return false;
  }
  _evacuation_failure_alot_count = 0;
  return true;
}

inline void G1CollectedHeap::reset_evacuation_should_fail() {
  if (G1EvacuationFailureALot) {
    _evacuation_failure_alot_gc_number = total_collections();
    _evacuation_failure_alot_count = 0;
    _evacuation_failure_alot_for_current_gc = false;
  }
}
#endif  // #ifndef PRODUCT

inline bool G1CollectedHeap::is_in_young(const oop obj) {
  HeapRegion* hr = heap_region_containing(obj);
  return hr != NULL && hr->is_young();
}

// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
  return is_in_young(new_obj);
}

inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
  const HeapRegion* hr = heap_region_containing(obj);
  if (hr == NULL) {
    if (obj == NULL) return false;
    else return true;
  }
  else return is_obj_dead(obj, hr);
}

inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
  const HeapRegion* hr = heap_region_containing(obj);
  if (hr == NULL) {
    if (obj == NULL) return false;
    else return true;
  }
  else return is_obj_ill(obj, hr);
}

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP