view src/cpu/x86/vm/dump_x86_32.cpp @ 2007:5ddfcf4b079e

7003554: (tiered) assert(is_null_object() || handle() != NULL) failed: cannot embed null pointer Summary: C1 with profiling doesn't check whether the MDO has been really allocated, which can silently fail if the perm gen is full. The solution is to check if the allocation failed and bailout out of inlining or compilation. Reviewed-by: kvn, never
author iveresov
date Thu, 02 Dec 2010 17:21:12 -0800
parents f95d63e2154a
children
line wrap: on
line source

/*
 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "assembler_x86.inline.hpp"
#include "memory/compactingPermGenGen.hpp"
#include "memory/generation.inline.hpp"
#include "memory/space.inline.hpp"



// Generate the self-patching vtable method:
//
// This method will be called (as any other Klass virtual method) with
// the Klass itself as the first argument.  Example:
//
//      oop obj;
//      int size = obj->klass()->klass_part()->oop_size(this);
//
// for which the virtual method call is Klass::oop_size();
//
// The dummy method is called with the Klass object as the first
// operand, and an object as the second argument.
//

//=====================================================================

// All of the dummy methods in the vtable are essentially identical,
// differing only by an ordinal constant, and they bear no releationship
// to the original method which the caller intended. Also, there needs
// to be 'vtbl_list_size' instances of the vtable in order to
// differentiate between the 'vtable_list_size' original Klass objects.

#define __ masm->

void CompactingPermGenGen::generate_vtable_methods(void** vtbl_list,
                                                   void** vtable,
                                                   char** md_top,
                                                   char* md_end,
                                                   char** mc_top,
                                                   char* mc_end) {

  intptr_t vtable_bytes = (num_virtuals * vtbl_list_size) * sizeof(void*);
  *(intptr_t *)(*md_top) = vtable_bytes;
  *md_top += sizeof(intptr_t);
  void** dummy_vtable = (void**)*md_top;
  *vtable = dummy_vtable;
  *md_top += vtable_bytes;

  // Get ready to generate dummy methods.

  CodeBuffer cb((unsigned char*)*mc_top, mc_end - *mc_top);
  MacroAssembler* masm = new MacroAssembler(&cb);

  Label common_code;
  for (int i = 0; i < vtbl_list_size; ++i) {
    for (int j = 0; j < num_virtuals; ++j) {
      dummy_vtable[num_virtuals * i + j] = (void*)masm->pc();

      // Load rax, with a value indicating vtable/offset pair.
      // -- bits[ 7..0]  (8 bits) which virtual method in table?
      // -- bits[12..8]  (5 bits) which virtual method table?
      // -- must fit in 13-bit instruction immediate field.
      __ movl(rax, (i << 8) + j);
      __ jmp(common_code);
    }
  }

  __ bind(common_code);

#ifdef WIN32
  // Expecting to be called with "thiscall" conventions -- the arguments
  // are on the stack, except that the "this" pointer is in rcx.
#else
  // Expecting to be called with Unix conventions -- the arguments
  // are on the stack, including the "this" pointer.
#endif

  // In addition, rax was set (above) to the offset of the method in the
  // table.

#ifdef WIN32
  __ push(rcx);                         // save "this"
#endif
  __ mov(rcx, rax);
  __ shrptr(rcx, 8);                    // isolate vtable identifier.
  __ shlptr(rcx, LogBytesPerWord);
  Address index(noreg, rcx,  Address::times_1);
  ExternalAddress vtbl((address)vtbl_list);
  __ movptr(rdx, ArrayAddress(vtbl, index)); // get correct vtable address.
#ifdef WIN32
  __ pop(rcx);                          // restore "this"
#else
  __ movptr(rcx, Address(rsp, BytesPerWord));   // fetch "this"
#endif
  __ movptr(Address(rcx, 0), rdx);      // update vtable pointer.

  __ andptr(rax, 0x00ff);                       // isolate vtable method index
  __ shlptr(rax, LogBytesPerWord);
  __ addptr(rax, rdx);                  // address of real method pointer.
  __ jmp(Address(rax, 0));              // get real method pointer.

  __ flush();

  *mc_top = (char*)__ pc();
}