view visualizer/Filter/src/com/sun/hotspot/igv/filter/GradientColorFilter.java @ 13268:68b964b6dc8e

introduced BlockEndOp interface and require that every LIR block is terminated by such an operation LIR BranchOps now control whether or not additional unconditional jump is emitted (obviating the need for the ControlFlowOptimizer to eliminate such jumps)
author Doug Simon <doug.simon@oracle.com>
date Mon, 09 Dec 2013 15:24:27 +0100
parents 015fb895586b
children
line wrap: on
line source

/*
 * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
package com.sun.hotspot.igv.filter;

import com.sun.hotspot.igv.graph.Diagram;
import com.sun.hotspot.igv.graph.Figure;
import java.awt.*;
import java.awt.geom.AffineTransform;
import java.awt.image.Raster;
import java.util.List;

/**
 * Filter that colors nodes using a customizable color gradient, based on how
 * a numeric property is located in a specified interval.
 * 
 * @author Peter Hofer
 */
public class GradientColorFilter extends AbstractFilter {

    public static final String LINEAR = "LINEAR";
    public static final String LOGARITHMIC = "LOGARITHMIC";

    private String propertyName = "probability";
    private float minValue = 0;
    private float maxValue = 500;
    private float[] fractions = {0, 0.5f, 1};
    private Color[] colors = {Color.BLUE, Color.YELLOW, Color.RED};
    private int shadeCount = 8;
    private String mode = LINEAR;

    @Override
    public String getName() {
        return "Gradient Color Filter";
    }

    @Override
    public void apply(Diagram d) {
        boolean logarithmic = mode.equalsIgnoreCase(LOGARITHMIC);
        if (!logarithmic && !mode.equalsIgnoreCase(LINEAR)) {
            throw new RuntimeException("Unknown mode: " + mode);
        }

        Rectangle bounds = new Rectangle(shadeCount, 1);
        LinearGradientPaint lgp = new LinearGradientPaint(bounds.x, bounds.y, bounds.width, bounds.y, fractions, colors);
        PaintContext context = lgp.createContext(null, bounds, bounds.getBounds2D(), AffineTransform.getTranslateInstance(0, 0), new RenderingHints(null));
        Raster raster = context.getRaster(bounds.x, bounds.y, bounds.width, bounds.height);
        int[] rgb = raster.getPixels(bounds.x, bounds.y, bounds.width, bounds.height, (int[]) null);
        Color[] shades = new Color[rgb.length / 3];
        for (int i = 0; i < shades.length; ++i) {
            shades[i] = new Color(rgb[i * 3], rgb[i * 3 + 1], rgb[i * 3 + 2]);
        }

        List<Figure> figures = d.getFigures();
        for (Figure f : figures) {
            String property = f.getProperties().get(propertyName);
            if (property != null) {
                try {
                    float value = Float.parseFloat(property);

                    Color nodeColor;
                    if (value <= minValue) {
                        nodeColor = colors[0];
                    } else if (value >= maxValue) {
                        nodeColor = colors[colors.length - 1];
                    } else {
                        double normalized = value - minValue;
                        double interval = maxValue - minValue;
                        int index;
                        // Use Math.ceil() to make values above zero distinguishable from zero
                        if (logarithmic) {
                            index = (int) Math.ceil(shades.length * Math.log(1 + normalized) / Math.log(1 + interval));
                        } else {
                            index = (int) Math.ceil(shades.length * normalized / interval);
                        }
                        nodeColor = shades[index];
                    }
                    f.setColor(nodeColor);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }
    }

    public String getPropertyName() {
        return propertyName;
    }

    public void setPropertyName(String propertyName) {
        this.propertyName = propertyName;
    }

    public float getMinValue() {
        return minValue;
    }

    public void setMinValue(float minValue) {
        this.minValue = minValue;
    }

    public float getMaxValue() {
        return maxValue;
    }

    public void setMaxValue(float maxValue) {
        this.maxValue = maxValue;
    }

    public float[] getFractions() {
        return fractions;
    }

    public void setFractions(float[] fractions) {
        this.fractions = fractions;
    }

    public Color[] getColors() {
        return colors;
    }

    public void setColors(Color[] colors) {
        this.colors = colors;
    }

    public int getShadeCount() {
        return shadeCount;
    }

    public void setShadeCount(int shadeCount) {
        this.shadeCount = shadeCount;
    }

    public String getMode() {
        return mode;
    }

    public void setMode(String mode) {
        this.mode = mode;
    }
}