view src/cpu/x86/vm/nativeInst_x86.hpp @ 1842:6e0aac35bfa9

6980838: G1: guarantee(false) failed: thread has an unexpected active value in its SATB queue Summary: Under certain circumstances a safepoint could happen between a JavaThread object being created and that object being added to the Java threads list. This could cause the active field of that thread's SATB queue to get out-of-sync with respect to the other Java threads. The solution is to activate the SATB queue, when necessary, before adding the thread to the Java threads list, not when the JavaThread object is created. The changeset also includes a small fix to rename the surrogate locker thread from "Surrogate Locker Thread (CMS)" to "Surrogate Locker Thread (Concurrent GC)" since it's also used in G1. Reviewed-by: iveresov, ysr, johnc, jcoomes
author tonyp
date Fri, 01 Oct 2010 16:43:05 -0400
parents c18cbe5936b8
children f95d63e2154a
line wrap: on
line source

/*
 * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// We have interfaces for the following instructions:
// - NativeInstruction
// - - NativeCall
// - - NativeMovConstReg
// - - NativeMovConstRegPatching
// - - NativeMovRegMem
// - - NativeMovRegMemPatching
// - - NativeJump
// - - NativeIllegalOpCode
// - - NativeGeneralJump
// - - NativeReturn
// - - NativeReturnX (return with argument)
// - - NativePushConst
// - - NativeTstRegMem

// The base class for different kinds of native instruction abstractions.
// Provides the primitive operations to manipulate code relative to this.

class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  friend class Relocation;

 public:
  enum Intel_specific_constants {
    nop_instruction_code        = 0x90,
    nop_instruction_size        =    1
  };

  bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
  bool is_dtrace_trap();
  inline bool is_call();
  inline bool is_illegal();
  inline bool is_return();
  inline bool is_jump();
  inline bool is_cond_jump();
  inline bool is_safepoint_poll();
  inline bool is_mov_literal64();

 protected:
  address addr_at(int offset) const    { return address(this) + offset; }

  s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }

  jint int_at(int offset) const         { return *(jint*) addr_at(offset); }

  intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }

  oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }


  void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
  void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
  void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }
  void set_oop_at (int offset, oop  o)        { *(oop*) addr_at(offset) = o;  wrote(offset); }

  // This doesn't really do anything on Intel, but it is the place where
  // cache invalidation belongs, generically:
  void wrote(int offset);

 public:

  // unit test stuff
  static void test() {}                 // override for testing

  inline friend NativeInstruction* nativeInstruction_at(address address);
};

inline NativeInstruction* nativeInstruction_at(address address) {
  NativeInstruction* inst = (NativeInstruction*)address;
#ifdef ASSERT
  //inst->verify();
#endif
  return inst;
}

inline NativeCall* nativeCall_at(address address);
// The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
// instructions (used to manipulate inline caches, primitive & dll calls, etc.).

class NativeCall: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0xE8,
    instruction_size            =    5,
    instruction_offset          =    0,
    displacement_offset         =    1,
    return_address_offset       =    5
  };

  enum { cache_line_size = BytesPerWord };  // conservative estimate!

  address instruction_address() const       { return addr_at(instruction_offset); }
  address next_instruction_address() const  { return addr_at(return_address_offset); }
  int   displacement() const                { return (jint) int_at(displacement_offset); }
  address displacement_address() const      { return addr_at(displacement_offset); }
  address return_address() const            { return addr_at(return_address_offset); }
  address destination() const;
  void  set_destination(address dest)       {
#ifdef AMD64
    assert((labs((intptr_t) dest - (intptr_t) return_address())  &
            0xFFFFFFFF00000000) == 0,
           "must be 32bit offset");
#endif // AMD64
    set_int_at(displacement_offset, dest - return_address());
  }
  void  set_destination_mt_safe(address dest);

  void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
  void  verify();
  void  print();

  // Creation
  inline friend NativeCall* nativeCall_at(address address);
  inline friend NativeCall* nativeCall_before(address return_address);

  static bool is_call_at(address instr) {
    return ((*instr) & 0xFF) == NativeCall::instruction_code;
  }

  static bool is_call_before(address return_address) {
    return is_call_at(return_address - NativeCall::return_address_offset);
  }

  static bool is_call_to(address instr, address target) {
    return nativeInstruction_at(instr)->is_call() &&
      nativeCall_at(instr)->destination() == target;
  }

  // MT-safe patching of a call instruction.
  static void insert(address code_pos, address entry);

  static void replace_mt_safe(address instr_addr, address code_buffer);
};

inline NativeCall* nativeCall_at(address address) {
  NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
#ifdef ASSERT
  call->verify();
#endif
  return call;
}

inline NativeCall* nativeCall_before(address return_address) {
  NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
#ifdef ASSERT
  call->verify();
#endif
  return call;
}

// An interface for accessing/manipulating native mov reg, imm32 instructions.
// (used to manipulate inlined 32bit data dll calls, etc.)
class NativeMovConstReg: public NativeInstruction {
#ifdef AMD64
  static const bool has_rex = true;
  static const int rex_size = 1;
#else
  static const bool has_rex = false;
  static const int rex_size = 0;
#endif // AMD64
 public:
  enum Intel_specific_constants {
    instruction_code            = 0xB8,
    instruction_size            =    1 + rex_size + wordSize,
    instruction_offset          =    0,
    data_offset                 =    1 + rex_size,
    next_instruction_offset     =    instruction_size,
    register_mask               = 0x07
  };

  address instruction_address() const       { return addr_at(instruction_offset); }
  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
  intptr_t data() const                     { return ptr_at(data_offset); }
  void  set_data(intptr_t x)                { set_ptr_at(data_offset, x); }

  void  verify();
  void  print();

  // unit test stuff
  static void test() {}

  // Creation
  inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
  inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
};

inline NativeMovConstReg* nativeMovConstReg_at(address address) {
  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
#ifdef ASSERT
  test->verify();
#endif
  return test;
}

inline NativeMovConstReg* nativeMovConstReg_before(address address) {
  NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
#ifdef ASSERT
  test->verify();
#endif
  return test;
}

class NativeMovConstRegPatching: public NativeMovConstReg {
 private:
    friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }
};

// An interface for accessing/manipulating native moves of the form:
//      mov[b/w/l/q] [reg + offset], reg   (instruction_code_reg2mem)
//      mov[b/w/l/q] reg, [reg+offset]     (instruction_code_mem2reg
//      mov[s/z]x[w/b/q] [reg + offset], reg
//      fld_s  [reg+offset]
//      fld_d  [reg+offset]
//      fstp_s [reg + offset]
//      fstp_d [reg + offset]
//      mov_literal64  scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
//
// Warning: These routines must be able to handle any instruction sequences
// that are generated as a result of the load/store byte,word,long
// macros.  For example: The load_unsigned_byte instruction generates
// an xor reg,reg inst prior to generating the movb instruction.  This
// class must skip the xor instruction.

class NativeMovRegMem: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_prefix_wide_lo          = Assembler::REX,
    instruction_prefix_wide_hi          = Assembler::REX_WRXB,
    instruction_code_xor                = 0x33,
    instruction_extended_prefix         = 0x0F,
    instruction_code_mem2reg_movslq     = 0x63,
    instruction_code_mem2reg_movzxb     = 0xB6,
    instruction_code_mem2reg_movsxb     = 0xBE,
    instruction_code_mem2reg_movzxw     = 0xB7,
    instruction_code_mem2reg_movsxw     = 0xBF,
    instruction_operandsize_prefix      = 0x66,
    instruction_code_reg2mem            = 0x89,
    instruction_code_mem2reg            = 0x8b,
    instruction_code_reg2memb           = 0x88,
    instruction_code_mem2regb           = 0x8a,
    instruction_code_float_s            = 0xd9,
    instruction_code_float_d            = 0xdd,
    instruction_code_long_volatile      = 0xdf,
    instruction_code_xmm_ss_prefix      = 0xf3,
    instruction_code_xmm_sd_prefix      = 0xf2,
    instruction_code_xmm_code           = 0x0f,
    instruction_code_xmm_load           = 0x10,
    instruction_code_xmm_store          = 0x11,
    instruction_code_xmm_lpd            = 0x12,

    instruction_size                    = 4,
    instruction_offset                  = 0,
    data_offset                         = 2,
    next_instruction_offset             = 4
  };

  // helper
  int instruction_start() const;

  address instruction_address() const;

  address next_instruction_address() const;

  int   offset() const;

  void  set_offset(int x);

  void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }

  void verify();
  void print ();

  // unit test stuff
  static void test() {}

 private:
  inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
};

inline NativeMovRegMem* nativeMovRegMem_at (address address) {
  NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
#ifdef ASSERT
  test->verify();
#endif
  return test;
}

class NativeMovRegMemPatching: public NativeMovRegMem {
 private:
  friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
    NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }
};



// An interface for accessing/manipulating native leal instruction of form:
//        leal reg, [reg + offset]

class NativeLoadAddress: public NativeMovRegMem {
#ifdef AMD64
  static const bool has_rex = true;
  static const int rex_size = 1;
#else
  static const bool has_rex = false;
  static const int rex_size = 0;
#endif // AMD64
 public:
  enum Intel_specific_constants {
    instruction_prefix_wide             = Assembler::REX_W,
    instruction_prefix_wide_extended    = Assembler::REX_WB,
    lea_instruction_code                = 0x8D,
    mov64_instruction_code              = 0xB8
  };

  void verify();
  void print ();

  // unit test stuff
  static void test() {}

 private:
  friend NativeLoadAddress* nativeLoadAddress_at (address address) {
    NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }
};

// jump rel32off

class NativeJump: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0xe9,
    instruction_size            =    5,
    instruction_offset          =    0,
    data_offset                 =    1,
    next_instruction_offset     =    5
  };

  address instruction_address() const       { return addr_at(instruction_offset); }
  address next_instruction_address() const  { return addr_at(next_instruction_offset); }
  address jump_destination() const          {
     address dest = (int_at(data_offset)+next_instruction_address());
     // 32bit used to encode unresolved jmp as jmp -1
     // 64bit can't produce this so it used jump to self.
     // Now 32bit and 64bit use jump to self as the unresolved address
     // which the inline cache code (and relocs) know about

     // return -1 if jump to self
    dest = (dest == (address) this) ? (address) -1 : dest;
    return dest;
  }

  void  set_jump_destination(address dest)  {
    intptr_t val = dest - next_instruction_address();
    if (dest == (address) -1) {
      val = -5; // jump to self
    }
#ifdef AMD64
    assert((labs(val)  & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
#endif // AMD64
    set_int_at(data_offset, (jint)val);
  }

  // Creation
  inline friend NativeJump* nativeJump_at(address address);

  void verify();

  // Unit testing stuff
  static void test() {}

  // Insertion of native jump instruction
  static void insert(address code_pos, address entry);
  // MT-safe insertion of native jump at verified method entry
  static void check_verified_entry_alignment(address entry, address verified_entry);
  static void patch_verified_entry(address entry, address verified_entry, address dest);
};

inline NativeJump* nativeJump_at(address address) {
  NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
#ifdef ASSERT
  jump->verify();
#endif
  return jump;
}

// Handles all kinds of jump on Intel. Long/far, conditional/unconditional
class NativeGeneralJump: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    // Constants does not apply, since the lengths and offsets depends on the actual jump
    // used
    // Instruction codes:
    //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
    //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
    unconditional_long_jump  = 0xe9,
    unconditional_short_jump = 0xeb,
    instruction_size = 5
  };

  address instruction_address() const       { return addr_at(0); }
  address jump_destination()    const;

  // Creation
  inline friend NativeGeneralJump* nativeGeneralJump_at(address address);

  // Insertion of native general jump instruction
  static void insert_unconditional(address code_pos, address entry);
  static void replace_mt_safe(address instr_addr, address code_buffer);

  void verify();
};

inline NativeGeneralJump* nativeGeneralJump_at(address address) {
  NativeGeneralJump* jump = (NativeGeneralJump*)(address);
  debug_only(jump->verify();)
  return jump;
}

class NativePopReg : public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0x58,
    instruction_size            =    1,
    instruction_offset          =    0,
    data_offset                 =    1,
    next_instruction_offset     =    1
  };

  // Insert a pop instruction
  static void insert(address code_pos, Register reg);
};


class NativeIllegalInstruction: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
    instruction_size            =    2,
    instruction_offset          =    0,
    next_instruction_offset     =    2
  };

  // Insert illegal opcode as specific address
  static void insert(address code_pos);
};

// return instruction that does not pop values of the stack
class NativeReturn: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0xC3,
    instruction_size            =    1,
    instruction_offset          =    0,
    next_instruction_offset     =    1
  };
};

// return instruction that does pop values of the stack
class NativeReturnX: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code            = 0xC2,
    instruction_size            =    2,
    instruction_offset          =    0,
    next_instruction_offset     =    2
  };
};

// Simple test vs memory
class NativeTstRegMem: public NativeInstruction {
 public:
  enum Intel_specific_constants {
    instruction_code_memXregl   = 0x85
  };
};

inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
                                                          ubyte_at(0) == NativeReturnX::instruction_code; }
inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
                                                          ubyte_at(0) == 0xEB; /* short jump */ }
inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
                                                          (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
inline bool NativeInstruction::is_safepoint_poll() {
#ifdef AMD64
  if ( ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
       ubyte_at(1) == 0x05 ) { // 00 rax 101
     address fault = addr_at(6) + int_at(2);
     return os::is_poll_address(fault);
  } else {
    return false;
  }
#else
  return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
           ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
           (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
           (os::is_poll_address((address)int_at(2)));
#endif // AMD64
}

inline bool NativeInstruction::is_mov_literal64() {
#ifdef AMD64
  return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
          (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
#else
  return false;
#endif // AMD64
}