view src/share/vm/gc_implementation/g1/g1CollectedHeap.inline.hpp @ 1842:6e0aac35bfa9

6980838: G1: guarantee(false) failed: thread has an unexpected active value in its SATB queue Summary: Under certain circumstances a safepoint could happen between a JavaThread object being created and that object being added to the Java threads list. This could cause the active field of that thread's SATB queue to get out-of-sync with respect to the other Java threads. The solution is to activate the SATB queue, when necessary, before adding the thread to the Java threads list, not when the JavaThread object is created. The changeset also includes a small fix to rename the surrogate locker thread from "Surrogate Locker Thread (CMS)" to "Surrogate Locker Thread (Concurrent GC)" since it's also used in G1. Reviewed-by: iveresov, ysr, johnc, jcoomes
author tonyp
date Fri, 01 Oct 2010 16:43:05 -0400
parents bb847e31b836
children f95d63e2154a
line wrap: on
line source

/*
 * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// Inline functions for G1CollectedHeap

inline HeapRegion*
G1CollectedHeap::heap_region_containing(const void* addr) const {
  HeapRegion* hr = _hrs->addr_to_region(addr);
  // hr can be null if addr in perm_gen
  if (hr != NULL && hr->continuesHumongous()) {
    hr = hr->humongous_start_region();
  }
  return hr;
}

inline HeapRegion*
G1CollectedHeap::heap_region_containing_raw(const void* addr) const {
  assert(_g1_reserved.contains(addr), "invariant");
  size_t index = pointer_delta(addr, _g1_reserved.start(), 1)
                                        >> HeapRegion::LogOfHRGrainBytes;

  HeapRegion* res = _hrs->at(index);
  assert(res == _hrs->addr_to_region(addr), "sanity");
  return res;
}

inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  HeapRegion* r = _hrs->addr_to_region(obj);
  return r != NULL && r->in_collection_set();
}

inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
                                              bool permit_collection_pause) {
  HeapWord* res = NULL;

  assert( SafepointSynchronize::is_at_safepoint() ||
          Heap_lock->owned_by_self(), "pre-condition of the call" );

  // All humongous allocation requests should go through the slow path in
  // attempt_allocation_slow().
  if (!isHumongous(word_size) && _cur_alloc_region != NULL) {
    // If this allocation causes a region to become non empty,
    // then we need to update our free_regions count.

    if (_cur_alloc_region->is_empty()) {
      res = _cur_alloc_region->allocate(word_size);
      if (res != NULL)
        _free_regions--;
    } else {
      res = _cur_alloc_region->allocate(word_size);
    }

    if (res != NULL) {
      if (!SafepointSynchronize::is_at_safepoint()) {
        assert( Heap_lock->owned_by_self(), "invariant" );
        Heap_lock->unlock();
      }
      return res;
    }
  }
  // attempt_allocation_slow will also unlock the heap lock when appropriate.
  return attempt_allocation_slow(word_size, permit_collection_pause);
}

inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
  return _task_queues->queue(i);
}

inline  bool G1CollectedHeap::isMarkedPrev(oop obj) const {
  return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
}

inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
  return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}