view src/share/vm/gc_implementation/shared/vmGCOperations.cpp @ 1842:6e0aac35bfa9

6980838: G1: guarantee(false) failed: thread has an unexpected active value in its SATB queue Summary: Under certain circumstances a safepoint could happen between a JavaThread object being created and that object being added to the Java threads list. This could cause the active field of that thread's SATB queue to get out-of-sync with respect to the other Java threads. The solution is to activate the SATB queue, when necessary, before adding the thread to the Java threads list, not when the JavaThread object is created. The changeset also includes a small fix to rename the surrogate locker thread from "Surrogate Locker Thread (CMS)" to "Surrogate Locker Thread (Concurrent GC)" since it's also used in G1. Reviewed-by: iveresov, ysr, johnc, jcoomes
author tonyp
date Fri, 01 Oct 2010 16:43:05 -0400
parents c18cbe5936b8
children f95d63e2154a
line wrap: on
line source

/*
 * Copyright (c) 2005, 2008, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
# include "incls/_precompiled.incl"
# include "incls/_vmGCOperations.cpp.incl"

HS_DTRACE_PROBE_DECL1(hotspot, gc__begin, bool);
HS_DTRACE_PROBE_DECL(hotspot, gc__end);

// The same dtrace probe can't be inserted in two different files, so we
// have to call it here, so it's only in one file.  Can't create new probes
// for the other file anymore.   The dtrace probes have to remain stable.
void VM_GC_Operation::notify_gc_begin(bool full) {
  HS_DTRACE_PROBE1(hotspot, gc__begin, full);
  HS_DTRACE_WORKAROUND_TAIL_CALL_BUG();
}

void VM_GC_Operation::notify_gc_end() {
  HS_DTRACE_PROBE(hotspot, gc__end);
  HS_DTRACE_WORKAROUND_TAIL_CALL_BUG();
}

void VM_GC_Operation::acquire_pending_list_lock() {
  // we may enter this with pending exception set
  instanceRefKlass::acquire_pending_list_lock(&_pending_list_basic_lock);
}


void VM_GC_Operation::release_and_notify_pending_list_lock() {

  instanceRefKlass::release_and_notify_pending_list_lock(&_pending_list_basic_lock);
}

// Allocations may fail in several threads at about the same time,
// resulting in multiple gc requests.  We only want to do one of them.
// In case a GC locker is active and the need for a GC is already signalled,
// we want to skip this GC attempt altogether, without doing a futile
// safepoint operation.
bool VM_GC_Operation::skip_operation() const {
  bool skip = (_gc_count_before != Universe::heap()->total_collections());
  if (_full && skip) {
    skip = (_full_gc_count_before != Universe::heap()->total_full_collections());
  }
  if (!skip && GC_locker::is_active_and_needs_gc()) {
    skip = Universe::heap()->is_maximal_no_gc();
    assert(!(skip && (_gc_cause == GCCause::_gc_locker)),
           "GC_locker cannot be active when initiating GC");
  }
  return skip;
}

bool VM_GC_Operation::doit_prologue() {
  assert(Thread::current()->is_Java_thread(), "just checking");

  acquire_pending_list_lock();
  // If the GC count has changed someone beat us to the collection
  // Get the Heap_lock after the pending_list_lock.
  Heap_lock->lock();

  // Check invocations
  if (skip_operation()) {
    // skip collection
    Heap_lock->unlock();
    release_and_notify_pending_list_lock();
    _prologue_succeeded = false;
  } else {
    _prologue_succeeded = true;
    SharedHeap* sh = SharedHeap::heap();
    if (sh != NULL) sh->_thread_holds_heap_lock_for_gc = true;
  }
  return _prologue_succeeded;
}


void VM_GC_Operation::doit_epilogue() {
  assert(Thread::current()->is_Java_thread(), "just checking");
  // Release the Heap_lock first.
  SharedHeap* sh = SharedHeap::heap();
  if (sh != NULL) sh->_thread_holds_heap_lock_for_gc = false;
  Heap_lock->unlock();
  release_and_notify_pending_list_lock();
}

bool VM_GC_HeapInspection::doit_prologue() {
  if (Universe::heap()->supports_heap_inspection()) {
    return VM_GC_Operation::doit_prologue();
  } else {
    return false;
  }
}

bool VM_GC_HeapInspection::skip_operation() const {
  assert(Universe::heap()->supports_heap_inspection(), "huh?");
  return false;
}

void VM_GC_HeapInspection::doit() {
  HandleMark hm;
  CollectedHeap* ch = Universe::heap();
  ch->ensure_parsability(false); // must happen, even if collection does
                                 // not happen (e.g. due to GC_locker)
  if (_full_gc) {
    // The collection attempt below would be skipped anyway if
    // the gc locker is held. The following dump may then be a tad
    // misleading to someone expecting only live objects to show
    // up in the dump (see CR 6944195). Just issue a suitable warning
    // in that case and do not attempt to do a collection.
    // The latter is a subtle point, because even a failed attempt
    // to GC will, in fact, induce one in the future, which we
    // probably want to avoid in this case because the GC that we may
    // be about to attempt holds value for us only
    // if it happens now and not if it happens in the eventual
    // future.
    if (GC_locker::is_active()) {
      warning("GC locker is held; pre-dump GC was skipped");
    } else {
      ch->collect_as_vm_thread(GCCause::_heap_inspection);
    }
  }
  HeapInspection::heap_inspection(_out, _need_prologue /* need_prologue */);
}


void VM_GenCollectForAllocation::doit() {
  JvmtiGCForAllocationMarker jgcm;
  notify_gc_begin(false);

  GenCollectedHeap* gch = GenCollectedHeap::heap();
  GCCauseSetter gccs(gch, _gc_cause);
  _res = gch->satisfy_failed_allocation(_size, _tlab);
  assert(gch->is_in_reserved_or_null(_res), "result not in heap");

  if (_res == NULL && GC_locker::is_active_and_needs_gc()) {
    set_gc_locked();
  }
  notify_gc_end();
}

void VM_GenCollectFull::doit() {
  JvmtiGCFullMarker jgcm;
  notify_gc_begin(true);

  GenCollectedHeap* gch = GenCollectedHeap::heap();
  GCCauseSetter gccs(gch, _gc_cause);
  gch->do_full_collection(gch->must_clear_all_soft_refs(), _max_level);
  notify_gc_end();
}

void VM_GenCollectForPermanentAllocation::doit() {
  JvmtiGCForAllocationMarker jgcm;
  notify_gc_begin(true);
  SharedHeap* heap = (SharedHeap*)Universe::heap();
  GCCauseSetter gccs(heap, _gc_cause);
  switch (heap->kind()) {
    case (CollectedHeap::GenCollectedHeap): {
      GenCollectedHeap* gch = (GenCollectedHeap*)heap;
      gch->do_full_collection(gch->must_clear_all_soft_refs(),
                              gch->n_gens() - 1);
      break;
    }
#ifndef SERIALGC
    case (CollectedHeap::G1CollectedHeap): {
      G1CollectedHeap* g1h = (G1CollectedHeap*)heap;
      g1h->do_full_collection(_gc_cause == GCCause::_last_ditch_collection);
      break;
    }
#endif // SERIALGC
    default:
      ShouldNotReachHere();
  }
  _res = heap->perm_gen()->allocate(_size, false);
  assert(heap->is_in_reserved_or_null(_res), "result not in heap");
  if (_res == NULL && GC_locker::is_active_and_needs_gc()) {
    set_gc_locked();
  }
  notify_gc_end();
}