view src/share/vm/adlc/dict2.cpp @ 2149:7e37af9d69ef

7011379: G1: overly long concurrent marking cycles Summary: This changeset introduces filtering of SATB buffers at the point when they are about to be enqueued. If this filtering clears enough entries on each buffer, the buffer can then be re-used and not enqueued. This cuts down the number of SATB buffers that need to be processed by the concurrent marking threads. Reviewed-by: johnc, ysr
author tonyp
date Wed, 19 Jan 2011 09:35:17 -0500
parents cccd1b172b85
children d336b3173277
line wrap: on
line source

/*
 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// Dictionaries - An Abstract Data Type

#include "adlc.hpp"

// #include "dict.hpp"


//------------------------------data-----------------------------------------
// String hash tables
#define MAXID 20
static char initflag = 0;       // True after 1st initialization
static char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
static short xsum[MAXID];

//------------------------------bucket---------------------------------------
class bucket {
public:
  int          _cnt, _max;      // Size of bucket
  const void **_keyvals;        // Array of keys and values
};

//------------------------------Dict-----------------------------------------
// The dictionary is kept has a hash table.  The hash table is a even power
// of two, for nice modulo operations.  Each bucket in the hash table points
// to a linear list of key-value pairs; each key & value is just a (void *).
// The list starts with a count.  A hash lookup finds the list head, then a
// simple linear scan finds the key.  If the table gets too full, it's
// doubled in size; the total amount of EXTRA times all hash functions are
// computed for the doubling is no more than the current size - thus the
// doubling in size costs no more than a constant factor in speed.
Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(NULL) {
  init();
}

Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) {
  init();
}

void Dict::init() {
  int i;

  // Precompute table of null character hashes
  if( !initflag ) {             // Not initializated yet?
    xsum[0] = (1<<shft[0])+1;   // Initialize
    for( i = 1; i < MAXID; i++) {
      xsum[i] = (1<<shft[i])+1+xsum[i-1];
    }
    initflag = 1;               // Never again
  }

  _size = 16;                   // Size is a power of 2
  _cnt = 0;                     // Dictionary is empty
  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  memset(_bin,0,sizeof(bucket)*_size);
}

//------------------------------~Dict------------------------------------------
// Delete an existing dictionary.
Dict::~Dict() {
}

//------------------------------Clear----------------------------------------
// Zap to empty; ready for re-use
void Dict::Clear() {
  _cnt = 0;                     // Empty contents
  for( int i=0; i<_size; i++ )
    _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
  // Leave _size & _bin alone, under the assumption that dictionary will
  // grow to this size again.
}

//------------------------------doubhash---------------------------------------
// Double hash table size.  If can't do so, just suffer.  If can, then run
// thru old hash table, moving things to new table.  Note that since hash
// table doubled, exactly 1 new bit is exposed in the mask - so everything
// in the old table ends up on 1 of two lists in the new table; a hi and a
// lo list depending on the value of the bit.
void Dict::doubhash(void) {
  int oldsize = _size;
  _size <<= 1;                  // Double in size
  _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
  memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
  // Rehash things to spread into new table
  for( int i=0; i < oldsize; i++) { // For complete OLD table do
    bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
    if( !b->_keyvals ) continue;        // Skip empties fast

    bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
    int j = b->_max;                // Trim new bucket to nearest power of 2
    while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
    if( !j ) j = 1;             // Handle zero-sized buckets
    nb->_max = j<<1;
    // Allocate worst case space for key-value pairs
    nb->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
    int nbcnt = 0;

    for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
      const void *key = b->_keyvals[j+j];
      if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
        nb->_keyvals[nbcnt+nbcnt] = key;
        nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
        nb->_cnt = nbcnt = nbcnt+1;
        b->_cnt--;              // Remove key/value from lo bucket
        b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
        b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
        j--;                    // Hash compacted element also
      }
    } // End of for all key-value pairs in bucket
  } // End of for all buckets


}

//------------------------------Dict-----------------------------------------
// Deep copy a dictionary.
Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  memcpy( _bin, d._bin, sizeof(bucket)*_size );
  for( int i=0; i<_size; i++ ) {
    if( !_bin[i]._keyvals ) continue;
    _bin[i]._keyvals=(const void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
    memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
  }
}

//------------------------------Dict-----------------------------------------
// Deep copy a dictionary.
Dict &Dict::operator =( const Dict &d ) {
  if( _size < d._size ) {       // If must have more buckets
    _arena = d._arena;
    _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
    memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
    _size = d._size;
  }
  for( int i=0; i<_size; i++ ) // All buckets are empty
    _bin[i]._cnt = 0;           // But leave bucket allocations alone
  _cnt = d._cnt;
  *(Hash*)(&_hash) = d._hash;
  *(CmpKey*)(&_cmp) = d._cmp;
  for(int k=0; k<_size; k++ ) {
    bucket *b = &d._bin[k];     // Shortcut to source bucket
    for( int j=0; j<b->_cnt; j++ )
      Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
  }
  return *this;
}

//------------------------------Insert---------------------------------------
// Insert or replace a key/value pair in the given dictionary.  If the
// dictionary is too full, it's size is doubled.  The prior value being
// replaced is returned (NULL if this is a 1st insertion of that key).  If
// an old value is found, it's swapped with the prior key-value pair on the
// list.  This moves a commonly searched-for value towards the list head.
const void *Dict::Insert(const void *key, const void *val) {
  int hash = _hash( key );      // Get hash key
  int i = hash & (_size-1);     // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( int j=0; j<b->_cnt; j++ )
    if( !_cmp(key,b->_keyvals[j+j]) ) {
      const void *prior = b->_keyvals[j+j+1];
      b->_keyvals[j+j  ] = key; // Insert current key-value
      b->_keyvals[j+j+1] = val;
      return prior;             // Return prior
    }

  if( ++_cnt > _size ) {        // Hash table is full
    doubhash();                 // Grow whole table if too full
    i = hash & (_size-1);       // Rehash
    b = &_bin[i];               // Handy shortcut
  }
  if( b->_cnt == b->_max ) {    // Must grow bucket?
    if( !b->_keyvals ) {
      b->_max = 2;              // Initial bucket size
      b->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*b->_max*2 );
    } else {
      b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 );
      b->_max <<= 1;            // Double bucket
    }
  }
  b->_keyvals[b->_cnt+b->_cnt  ] = key;
  b->_keyvals[b->_cnt+b->_cnt+1] = val;
  b->_cnt++;
  return NULL;                  // Nothing found prior
}

//------------------------------Delete---------------------------------------
// Find & remove a value from dictionary. Return old value.
const void *Dict::Delete(void *key) {
  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( int j=0; j<b->_cnt; j++ )
    if( !_cmp(key,b->_keyvals[j+j]) ) {
      const void *prior = b->_keyvals[j+j+1];
      b->_cnt--;                // Remove key/value from lo bucket
      b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
      b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
      _cnt--;                   // One less thing in table
      return prior;
    }
  return NULL;
}

//------------------------------FindDict-------------------------------------
// Find a key-value pair in the given dictionary.  If not found, return NULL.
// If found, move key-value pair towards head of list.
const void *Dict::operator [](const void *key) const {
  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
  bucket *b = &_bin[i];         // Handy shortcut
  for( int j=0; j<b->_cnt; j++ )
    if( !_cmp(key,b->_keyvals[j+j]) )
      return b->_keyvals[j+j+1];
  return NULL;
}

//------------------------------CmpDict--------------------------------------
// CmpDict compares two dictionaries; they must have the same keys (their
// keys must match using CmpKey) and they must have the same values (pointer
// comparison).  If so 1 is returned, if not 0 is returned.
int Dict::operator ==(const Dict &d2) const {
  if( _cnt != d2._cnt ) return 0;
  if( _hash != d2._hash ) return 0;
  if( _cmp != d2._cmp ) return 0;
  for( int i=0; i < _size; i++) {       // For complete hash table do
    bucket *b = &_bin[i];       // Handy shortcut
    if( b->_cnt != d2._bin[i]._cnt ) return 0;
    if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
      return 0;                 // Key-value pairs must match
  }
  return 1;                     // All match, is OK
}


//------------------------------print----------------------------------------
static void printvoid(const void* x) { printf("%p", x);  }
void Dict::print() {
  print(printvoid, printvoid);
}
void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) {
  for( int i=0; i < _size; i++) {       // For complete hash table do
    bucket *b = &_bin[i];       // Handy shortcut
    for( int j=0; j<b->_cnt; j++ ) {
      print_key(  b->_keyvals[j+j  ]);
      printf(" -> ");
      print_value(b->_keyvals[j+j+1]);
      printf("\n");
    }
  }
}

//------------------------------Hashing Functions----------------------------
// Convert string to hash key.  This algorithm implements a universal hash
// function with the multipliers frozen (ok, so it's not universal).  The
// multipliers (and allowable characters) are all odd, so the resultant sum
// is odd - guaranteed not divisible by any power of two, so the hash tables
// can be any power of two with good results.  Also, I choose multipliers
// that have only 2 bits set (the low is always set to be odd) so
// multiplication requires only shifts and adds.  Characters are required to
// be in the range 0-127 (I double & add 1 to force oddness).  Keys are
// limited to MAXID characters in length.  Experimental evidence on 150K of
// C text shows excellent spreading of values for any size hash table.
int hashstr(const void *t) {
  register char c, k = 0;
  register int sum = 0;
  register const char *s = (const char *)t;

  while( ((c = s[k]) != '\0') && (k < MAXID-1) ) { // Get characters till nul
    c = (c<<1)+1;               // Characters are always odd!
    sum += c + (c<<shft[k++]);  // Universal hash function
  }
  assert( k < (MAXID), "Exceeded maximum name length");
  return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
}

//------------------------------hashptr--------------------------------------
// Slimey cheap hash function; no guaranteed performance.  Better than the
// default for pointers, especially on MS-DOS machines.
int hashptr(const void *key) {
#ifdef __TURBOC__
    return (int)((intptr_t)key >> 16);
#else  // __TURBOC__
    return (int)((intptr_t)key >> 2);
#endif
}

// Slimey cheap hash function; no guaranteed performance.
int hashkey(const void *key) {
  return (int)((intptr_t)key);
}

//------------------------------Key Comparator Functions---------------------
int cmpstr(const void *k1, const void *k2) {
  return strcmp((const char *)k1,(const char *)k2);
}

// Cheap key comparator.
int cmpkey(const void *key1, const void *key2) {
  if (key1 == key2) return 0;
  intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
  if (delta > 0) return 1;
  return -1;
}

//=============================================================================
//------------------------------reset------------------------------------------
// Create an iterator and initialize the first variables.
void DictI::reset( const Dict *dict ) {
  _d = dict;                    // The dictionary
  _i = (int)-1;         // Before the first bin
  _j = 0;                       // Nothing left in the current bin
  ++(*this);                    // Step to first real value
}

//------------------------------next-------------------------------------------
// Find the next key-value pair in the dictionary, or return a NULL key and
// value.
void DictI::operator ++(void) {
  if( _j-- ) {                  // Still working in current bin?
    _key   = _d->_bin[_i]._keyvals[_j+_j];
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
    return;
  }

  while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
    _j = _d->_bin[_i]._cnt;
    if( !_j ) continue;
    _j--;
    _key   = _d->_bin[_i]._keyvals[_j+_j];
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
    return;
  }
  _key = _value = NULL;
}