view src/share/vm/gc_implementation/g1/concurrentG1RefineThread.cpp @ 364:919e7959392a

6742641: G1: NullPointerException during GCOld Summary: An update buffer is not processed correctly, which causes roots into the collection set not to be scanned and, hence, for the heap to be corrupted. The cause is that an object is accessed after it has been explicitly deleted, which causes a race. Reviewed-by: jcoomes, ysr
author tonyp
date Mon, 22 Sep 2008 09:56:49 -0400
parents 37f87013dfd8
children 4f360ec815ba
line wrap: on
line source

/*
 * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_concurrentG1RefineThread.cpp.incl"

// ======= Concurrent Mark Thread ========

// The CM thread is created when the G1 garbage collector is used

ConcurrentG1RefineThread::
ConcurrentG1RefineThread(ConcurrentG1Refine* cg1r) :
  ConcurrentGCThread(),
  _cg1r(cg1r),
  _started(false),
  _in_progress(false),
  _do_traversal(false),
  _vtime_accum(0.0),
  _co_tracker(G1CRGroup),
  _interval_ms(5.0)
{
  create_and_start();
}

const long timeout = 200; // ms.

void ConcurrentG1RefineThread::traversalBasedRefinement() {
  _cg1r->wait_for_ConcurrentG1Refine_enabled();
  MutexLocker x(G1ConcRefine_mon);
  while (_cg1r->enabled()) {
    MutexUnlocker ux(G1ConcRefine_mon);
    ResourceMark rm;
    HandleMark   hm;

    if (TraceG1Refine) gclog_or_tty->print_cr("G1-Refine starting pass");
    _sts.join();
    bool no_sleep = _cg1r->refine();
    _sts.leave();
    if (!no_sleep) {
      MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
      // We do this only for the timeout; we don't expect this to be signalled.
      CGC_lock->wait(Mutex::_no_safepoint_check_flag, timeout);
    }
  }
}

void ConcurrentG1RefineThread::queueBasedRefinement() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  // Wait for completed log buffers to exist.
  {
    MutexLockerEx x(DirtyCardQ_CBL_mon, Mutex::_no_safepoint_check_flag);
    while (!_do_traversal && !dcqs.process_completed_buffers() &&
           !_should_terminate) {
      DirtyCardQ_CBL_mon->wait(Mutex::_no_safepoint_check_flag);
    }
  }

  if (_should_terminate) {
    return;
  }

  // Now we take them off (this doesn't hold locks while it applies
  // closures.)  (If we did a full collection, then we'll do a full
  // traversal.
  _sts.join();
  if (_do_traversal) {
    (void)_cg1r->refine();
    switch (_cg1r->get_last_pya()) {
    case PYA_cancel: case PYA_continue:
      // Continue was caught and handled inside "refine".  If it's still
      // "continue" when we get here, we're done.
      _do_traversal = false;
      break;
    case PYA_restart:
      assert(_do_traversal, "Because of Full GC.");
      break;
    }
  } else {
    int n_logs = 0;
    int lower_limit = 0;
    double start_vtime_sec; // only used when G1SmoothConcRefine is on
    int prev_buffer_num; // only used when G1SmoothConcRefine is on

    if (G1SmoothConcRefine) {
      lower_limit = 0;
      start_vtime_sec = os::elapsedVTime();
      prev_buffer_num = (int) dcqs.completed_buffers_num();
    } else {
      lower_limit = DCQBarrierProcessCompletedThreshold / 4; // For now.
    }
    while (dcqs.apply_closure_to_completed_buffer(0, lower_limit)) {
      double end_vtime_sec;
      double elapsed_vtime_sec;
      int elapsed_vtime_ms;
      int curr_buffer_num;

      if (G1SmoothConcRefine) {
        end_vtime_sec = os::elapsedVTime();
        elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        elapsed_vtime_ms = (int) (elapsed_vtime_sec * 1000.0);
        curr_buffer_num = (int) dcqs.completed_buffers_num();

        if (curr_buffer_num > prev_buffer_num ||
            curr_buffer_num > DCQBarrierProcessCompletedThreshold) {
          decreaseInterval(elapsed_vtime_ms);
        } else if (curr_buffer_num < prev_buffer_num) {
          increaseInterval(elapsed_vtime_ms);
        }
      }

      sample_young_list_rs_lengths();
      _co_tracker.update(false);

      if (G1SmoothConcRefine) {
        start_vtime_sec = os::elapsedVTime();
        prev_buffer_num = curr_buffer_num;

        _sts.leave();
        os::sleep(Thread::current(), (jlong) _interval_ms, false);
        _sts.join();
      }

      n_logs++;
    }
    // Make sure we harvest the PYA, if any.
    (void)_cg1r->get_pya();
  }
  _sts.leave();
}

void ConcurrentG1RefineThread::sample_young_list_rs_lengths() {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  if (g1p->adaptive_young_list_length()) {
    int regions_visited = 0;

    g1h->young_list_rs_length_sampling_init();
    while (g1h->young_list_rs_length_sampling_more()) {
      g1h->young_list_rs_length_sampling_next();
      ++regions_visited;

      // we try to yield every time we visit 10 regions
      if (regions_visited == 10) {
        if (_sts.should_yield()) {
          _sts.yield("G1 refine");
          // we just abandon the iteration
          break;
        }
        regions_visited = 0;
      }
    }

    g1p->check_prediction_validity();
  }
}

void ConcurrentG1RefineThread::run() {
  initialize_in_thread();
  _vtime_start = os::elapsedVTime();
  wait_for_universe_init();

  _co_tracker.enable();
  _co_tracker.start();

  while (!_should_terminate) {
    // wait until started is set.
    if (G1RSBarrierUseQueue) {
      queueBasedRefinement();
    } else {
      traversalBasedRefinement();
    }
    _sts.join();
    _co_tracker.update();
    _sts.leave();
    if (os::supports_vtime()) {
      _vtime_accum = (os::elapsedVTime() - _vtime_start);
    } else {
      _vtime_accum = 0.0;
    }
  }
  _sts.join();
  _co_tracker.update(true);
  _sts.leave();
  assert(_should_terminate, "just checking");

  terminate();
}


void ConcurrentG1RefineThread::yield() {
  if (TraceG1Refine) gclog_or_tty->print_cr("G1-Refine-yield");
  _sts.yield("G1 refine");
  if (TraceG1Refine) gclog_or_tty->print_cr("G1-Refine-yield-end");
}

void ConcurrentG1RefineThread::stop() {
  // it is ok to take late safepoints here, if needed
  {
    MutexLockerEx mu(Terminator_lock);
    _should_terminate = true;
  }

  {
    MutexLockerEx x(DirtyCardQ_CBL_mon, Mutex::_no_safepoint_check_flag);
    DirtyCardQ_CBL_mon->notify_all();
  }

  {
    MutexLockerEx mu(Terminator_lock);
    while (!_has_terminated) {
      Terminator_lock->wait();
    }
  }
  if (TraceG1Refine) gclog_or_tty->print_cr("G1-Refine-stop");
}

void ConcurrentG1RefineThread::print() {
  gclog_or_tty->print("\"Concurrent G1 Refinement Thread\" ");
  Thread::print();
  gclog_or_tty->cr();
}

void ConcurrentG1RefineThread::set_do_traversal(bool b) {
  _do_traversal = b;
}