view src/share/vm/oops/typeArrayKlass.cpp @ 10185:d50cc62e94ff

8012715: G1: GraphKit accesses PtrQueue::_index as int but is size_t Summary: In graphKit INT operations were generated to access PtrQueue::_index which has type size_t. This is 64 bit on 64-bit machines. No problems occur on little endian machines as long as the index fits into 32 bit, but on big endian machines the upper part is read, which is zero. This leads to unnecessary branches to the slow path in the runtime. Reviewed-by: twisti, johnc Contributed-by: Martin Doerr <martin.doerr@sap.com>
author johnc
date Wed, 24 Apr 2013 14:48:43 -0700
parents db9981fd3124
children de6a9e811145
line wrap: on
line source

/*
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/handles.inline.hpp"
#include "utilities/macros.hpp"

bool TypeArrayKlass::compute_is_subtype_of(Klass* k) {
  if (!k->oop_is_typeArray()) {
    return ArrayKlass::compute_is_subtype_of(k);
  }

  TypeArrayKlass* tak = TypeArrayKlass::cast(k);
  if (dimension() != tak->dimension()) return false;

  return element_type() == tak->element_type();
}

TypeArrayKlass* TypeArrayKlass::create_klass(BasicType type,
                                      const char* name_str, TRAPS) {
  Symbol* sym = NULL;
  if (name_str != NULL) {
    sym = SymbolTable::new_permanent_symbol(name_str, CHECK_NULL);
  }

  ClassLoaderData* null_loader_data = ClassLoaderData::the_null_class_loader_data();

  TypeArrayKlass* ak = TypeArrayKlass::allocate(null_loader_data, type, sym, CHECK_NULL);

  // Add all classes to our internal class loader list here,
  // including classes in the bootstrap (NULL) class loader.
  // GC walks these as strong roots.
  null_loader_data->add_class(ak);

  // Call complete_create_array_klass after all instance variables have been initialized.
  complete_create_array_klass(ak, ak->super(), CHECK_NULL);

  return ak;
}

TypeArrayKlass* TypeArrayKlass::allocate(ClassLoaderData* loader_data, BasicType type, Symbol* name, TRAPS) {
  assert(TypeArrayKlass::header_size() <= InstanceKlass::header_size(),
      "array klasses must be same size as InstanceKlass");

  int size = ArrayKlass::static_size(TypeArrayKlass::header_size());

  return new (loader_data, size, THREAD) TypeArrayKlass(type, name);
}

TypeArrayKlass::TypeArrayKlass(BasicType type, Symbol* name) : ArrayKlass(name) {
  set_layout_helper(array_layout_helper(type));
  assert(oop_is_array(), "sanity");
  assert(oop_is_typeArray(), "sanity");

  set_max_length(arrayOopDesc::max_array_length(type));
  assert(size() >= TypeArrayKlass::header_size(), "bad size");

  set_class_loader_data(ClassLoaderData::the_null_class_loader_data());
}

typeArrayOop TypeArrayKlass::allocate_common(int length, bool do_zero, TRAPS) {
  assert(log2_element_size() >= 0, "bad scale");
  if (length >= 0) {
    if (length <= max_length()) {
      size_t size = typeArrayOopDesc::object_size(layout_helper(), length);
      KlassHandle h_k(THREAD, this);
      typeArrayOop t;
      CollectedHeap* ch = Universe::heap();
      if (do_zero) {
        t = (typeArrayOop)CollectedHeap::array_allocate(h_k, (int)size, length, CHECK_NULL);
      } else {
        t = (typeArrayOop)CollectedHeap::array_allocate_nozero(h_k, (int)size, length, CHECK_NULL);
      }
      return t;
    } else {
      report_java_out_of_memory("Requested array size exceeds VM limit");
      JvmtiExport::post_array_size_exhausted();
      THROW_OOP_0(Universe::out_of_memory_error_array_size());
    }
  } else {
    THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
  }
}

oop TypeArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) {
  // For typeArrays this is only called for the last dimension
  assert(rank == 1, "just checking");
  int length = *last_size;
  return allocate(length, THREAD);
}


void TypeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
  assert(s->is_typeArray(), "must be type array");

  // Check destination
  if (!d->is_typeArray() || element_type() != TypeArrayKlass::cast(d->klass())->element_type()) {
    THROW(vmSymbols::java_lang_ArrayStoreException());
  }

  // Check is all offsets and lengths are non negative
  if (src_pos < 0 || dst_pos < 0 || length < 0) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check if the ranges are valid
  if  ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
     || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check zero copy
  if (length == 0)
    return;

  // This is an attempt to make the copy_array fast.
  int l2es = log2_element_size();
  int ihs = array_header_in_bytes() / wordSize;
  char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);
  char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);
  Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);
}


// create a klass of array holding typeArrays
Klass* TypeArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {
  int dim = dimension();
  assert(dim <= n, "check order of chain");
    if (dim == n)
      return this;

  if (higher_dimension() == NULL) {
    if (or_null)  return NULL;

    ResourceMark rm;
    JavaThread *jt = (JavaThread *)THREAD;
    {
      MutexLocker mc(Compile_lock, THREAD);   // for vtables
      // Atomic create higher dimension and link into list
      MutexLocker mu(MultiArray_lock, THREAD);

      if (higher_dimension() == NULL) {
        Klass* oak = ObjArrayKlass::allocate_objArray_klass(
              class_loader_data(), dim + 1, this, CHECK_NULL);
        ObjArrayKlass* h_ak = ObjArrayKlass::cast(oak);
        h_ak->set_lower_dimension(this);
        OrderAccess::storestore();
        set_higher_dimension(h_ak);
        assert(h_ak->oop_is_objArray(), "incorrect initialization of ObjArrayKlass");
      }
    }
  } else {
    CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
  }
  ObjArrayKlass* h_ak = ObjArrayKlass::cast(higher_dimension());
  if (or_null) {
    return h_ak->array_klass_or_null(n);
  }
  return h_ak->array_klass(n, CHECK_NULL);
}

Klass* TypeArrayKlass::array_klass_impl(bool or_null, TRAPS) {
  return array_klass_impl(or_null, dimension() +  1, THREAD);
}

int TypeArrayKlass::oop_size(oop obj) const {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  return t->object_size();
}

void TypeArrayKlass::oop_follow_contents(oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::TypeArrayKlass never moves.
}

#if INCLUDE_ALL_GCS
void TypeArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::TypeArrayKlass never moves.
}
#endif // INCLUDE_ALL_GCS

int TypeArrayKlass::oop_adjust_pointers(oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::TypeArrayKlass never moves.
  return t->object_size();
}

int TypeArrayKlass::oop_oop_iterate(oop obj, ExtendedOopClosure* blk) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::TypeArrayKlass never moves.
  return t->object_size();
}

int TypeArrayKlass::oop_oop_iterate_m(oop obj, ExtendedOopClosure* blk, MemRegion mr) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::TypeArrayKlass never moves.
  return t->object_size();
}

#if INCLUDE_ALL_GCS
void TypeArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
  ShouldNotReachHere();
  assert(obj->is_typeArray(),"must be a type array");
}

int
TypeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  return typeArrayOop(obj)->object_size();
}
#endif // INCLUDE_ALL_GCS

void TypeArrayKlass::initialize(TRAPS) {
  // Nothing to do. Having this function is handy since objArrayKlasses can be
  // initialized by calling initialize on their bottom_klass, see ObjArrayKlass::initialize
}

const char* TypeArrayKlass::external_name(BasicType type) {
  switch (type) {
    case T_BOOLEAN: return "[Z";
    case T_CHAR:    return "[C";
    case T_FLOAT:   return "[F";
    case T_DOUBLE:  return "[D";
    case T_BYTE:    return "[B";
    case T_SHORT:   return "[S";
    case T_INT:     return "[I";
    case T_LONG:    return "[J";
    default: ShouldNotReachHere();
  }
  return NULL;
}


// Printing

void TypeArrayKlass::print_on(outputStream* st) const {
#ifndef PRODUCT
  assert(is_klass(), "must be klass");
  print_value_on(st);
  Klass::print_on(st);
#endif //PRODUCT
}

void TypeArrayKlass::print_value_on(outputStream* st) const {
  assert(is_klass(), "must be klass");
  st->print("{type array ");
  switch (element_type()) {
    case T_BOOLEAN: st->print("bool");    break;
    case T_CHAR:    st->print("char");    break;
    case T_FLOAT:   st->print("float");   break;
    case T_DOUBLE:  st->print("double");  break;
    case T_BYTE:    st->print("byte");    break;
    case T_SHORT:   st->print("short");   break;
    case T_INT:     st->print("int");     break;
    case T_LONG:    st->print("long");    break;
    default: ShouldNotReachHere();
  }
  st->print("}");
}

#ifndef PRODUCT

static void print_boolean_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %s", index, (ta->bool_at(index) == 0) ? "false" : "true");
  }
}


static void print_char_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jchar c = ta->char_at(index);
    st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
  }
}


static void print_float_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %g", index, ta->float_at(index));
  }
}


static void print_double_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %g", index, ta->double_at(index));
  }
}


static void print_byte_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jbyte c = ta->byte_at(index);
    st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
  }
}


static void print_short_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    int v = ta->ushort_at(index);
    st->print_cr(" - %3d: 0x%x\t %d", index, v, v);
  }
}


static void print_int_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jint v = ta->int_at(index);
    st->print_cr(" - %3d: 0x%x %d", index, v, v);
  }
}


static void print_long_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jlong v = ta->long_at(index);
    st->print_cr(" - %3d: 0x%x 0x%x", index, high(v), low(v));
  }
}


void TypeArrayKlass::oop_print_on(oop obj, outputStream* st) {
  ArrayKlass::oop_print_on(obj, st);
  typeArrayOop ta = typeArrayOop(obj);
  int print_len = MIN2((intx) ta->length(), MaxElementPrintSize);
  switch (element_type()) {
    case T_BOOLEAN: print_boolean_array(ta, print_len, st); break;
    case T_CHAR:    print_char_array(ta, print_len, st);    break;
    case T_FLOAT:   print_float_array(ta, print_len, st);   break;
    case T_DOUBLE:  print_double_array(ta, print_len, st);  break;
    case T_BYTE:    print_byte_array(ta, print_len, st);    break;
    case T_SHORT:   print_short_array(ta, print_len, st);   break;
    case T_INT:     print_int_array(ta, print_len, st);     break;
    case T_LONG:    print_long_array(ta, print_len, st);    break;
    default: ShouldNotReachHere();
  }
  int remaining = ta->length() - print_len;
  if (remaining > 0) {
    st->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
  }
}

#endif // PRODUCT

const char* TypeArrayKlass::internal_name() const {
  return Klass::external_name();
}