view src/share/vm/runtime/simpleThresholdPolicy.cpp @ 2368:dde920245681

6896099: Integrate CMS heap ergo with default heap sizing ergo 6627787: CMS: JVM refuses to start up with -Xms16m -Xmx16m 7000125: CMS: Anti-monotone young gen sizing with respect to maximum whole heap size specification 7027529: CMS: retire CMSUseOldDefaults flag Summary: Simplify CMS heap sizing code, relying on ergonomic initial sizing consistent with other collectors for the most part, controlling only young gen sizing to rein in pause times. Make CMS young gen sizing default statically cpu-dependant. Remove inconsistencies wrt generation sizing and policy code, allowing for the fixing for 6627787 and 7000125. For 7027529, retire the flag CMSUseOldDefaults which had been introduced as a bridge from JDK 5 to JDK 6 a number of years ago. Reviewed-by: brutisso, poonam
author ysr
date Wed, 16 Mar 2011 10:37:08 -0700
parents 72d6c57d0658
children 97b64f73103b
line wrap: on
line source

/*
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "compiler/compileBroker.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/arguments.hpp"
#include "runtime/simpleThresholdPolicy.hpp"
#include "runtime/simpleThresholdPolicy.inline.hpp"
#include "code/scopeDesc.hpp"

// Print an event.
void SimpleThresholdPolicy::print_event(EventType type, methodHandle mh, methodHandle imh,
                                        int bci, CompLevel level) {
  bool inlinee_event = mh() != imh();

  ttyLocker tty_lock;
  tty->print("%lf: [", os::elapsedTime());

  int invocation_count = mh->invocation_count();
  int backedge_count = mh->backedge_count();
  switch(type) {
  case CALL:
    tty->print("call");
    break;
  case LOOP:
    tty->print("loop");
    break;
  case COMPILE:
    tty->print("compile");
    break;
  case KILL:
    tty->print("kill");
    break;
  case UPDATE:
    tty->print("update");
    break;
  case REPROFILE:
    tty->print("reprofile");
    break;
  default:
    tty->print("unknown");
  }

  tty->print(" level: %d ", level);

  ResourceMark rm;
  char *method_name = mh->name_and_sig_as_C_string();
  tty->print("[%s", method_name);
  // We can have an inlinee, although currently we don't generate any notifications for the inlined methods.
  if (inlinee_event) {
    char *inlinee_name = imh->name_and_sig_as_C_string();
    tty->print(" [%s]] ", inlinee_name);
  }
  else tty->print("] ");
  tty->print("@%d queues: %d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
                                       CompileBroker::queue_size(CompLevel_full_optimization));

  print_specific(type, mh, imh, bci, level);

  if (type != COMPILE) {
    methodDataHandle mdh = mh->method_data();
    int mdo_invocations = 0, mdo_backedges = 0;
    int mdo_invocations_start = 0, mdo_backedges_start = 0;
    if (mdh() != NULL) {
      mdo_invocations = mdh->invocation_count();
      mdo_backedges = mdh->backedge_count();
      mdo_invocations_start = mdh->invocation_count_start();
      mdo_backedges_start = mdh->backedge_count_start();
    }
    tty->print(" total: %d,%d mdo: %d(%d),%d(%d)",
               invocation_count, backedge_count,
               mdo_invocations, mdo_invocations_start,
               mdo_backedges, mdo_backedges_start);
    tty->print(" max levels: %d,%d",
                mh->highest_comp_level(), mh->highest_osr_comp_level());
    if (inlinee_event) {
      tty->print(" inlinee max levels: %d,%d", imh->highest_comp_level(), imh->highest_osr_comp_level());
    }
    tty->print(" compilable: ");
    bool need_comma = false;
    if (!mh->is_not_compilable(CompLevel_full_profile)) {
      tty->print("c1");
      need_comma = true;
    }
    if (!mh->is_not_compilable(CompLevel_full_optimization)) {
      if (need_comma) tty->print(", ");
      tty->print("c2");
      need_comma = true;
    }
    if (!mh->is_not_osr_compilable()) {
      if (need_comma) tty->print(", ");
      tty->print("osr");
    }
    tty->print(" status:");
    if (mh->queued_for_compilation()) {
      tty->print(" in queue");
    } else tty->print(" idle");
  }
  tty->print_cr("]");
}

void SimpleThresholdPolicy::initialize() {
  if (FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCount, 3);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    count = MAX2(log2_intptr(os::active_processor_count()), 1) * 3 / 2;
  }
  set_c1_count(MAX2(count / 3, 1));
  set_c2_count(MAX2(count - count / 3, 1));
}

void SimpleThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
  if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
    counter->set_carry_flag();
  }
}

// Set carry flags on the counters if necessary
void SimpleThresholdPolicy::handle_counter_overflow(methodOop method) {
  set_carry_if_necessary(method->invocation_counter());
  set_carry_if_necessary(method->backedge_counter());
  methodDataOop mdo = method->method_data();
  if (mdo != NULL) {
    set_carry_if_necessary(mdo->invocation_counter());
    set_carry_if_necessary(mdo->backedge_counter());
  }
}

// Called with the queue locked and with at least one element
CompileTask* SimpleThresholdPolicy::select_task(CompileQueue* compile_queue) {
  return compile_queue->first();
}

void SimpleThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
  for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
    if (PrintTieredEvents) {
      methodHandle mh(sd->method());
      print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
    }
    methodDataOop mdo = sd->method()->method_data();
    if (mdo != NULL) {
      mdo->reset_start_counters();
    }
    if (sd->is_top()) break;
  }
}

nmethod* SimpleThresholdPolicy::event(methodHandle method, methodHandle inlinee,
                                      int branch_bci, int bci, CompLevel comp_level, TRAPS) {
  if (comp_level == CompLevel_none &&
      JvmtiExport::can_post_interpreter_events()) {
    assert(THREAD->is_Java_thread(), "Should be java thread");
    if (((JavaThread*)THREAD)->is_interp_only_mode()) {
      return NULL;
    }
  }
  nmethod *osr_nm = NULL;

  handle_counter_overflow(method());
  if (method() != inlinee()) {
    handle_counter_overflow(inlinee());
  }

  if (PrintTieredEvents) {
    print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
  }

  if (bci == InvocationEntryBci) {
    method_invocation_event(method, inlinee, comp_level, THREAD);
  } else {
    method_back_branch_event(method, inlinee, bci, comp_level, THREAD);
    int highest_level = method->highest_osr_comp_level();
    if (highest_level > comp_level) {
      osr_nm = method->lookup_osr_nmethod_for(bci, highest_level, false);
    }
  }
  return osr_nm;
}

// Check if the method can be compiled, change level if necessary
void SimpleThresholdPolicy::compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
  // Take the given ceiling into the account.
  // NOTE: You can set it to 1 to get a pure C1 version.
  if ((CompLevel)TieredStopAtLevel < level) {
    level = (CompLevel)TieredStopAtLevel;
  }
  if (level == CompLevel_none) {
    return;
  }
  // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
  // in the interpreter and then compile with C2 (the transition function will request that,
  // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
  // pure C1.
  if (!can_be_compiled(mh, level)) {
    if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
        compile(mh, bci, CompLevel_simple, THREAD);
    }
    return;
  }
  if (bci != InvocationEntryBci && mh->is_not_osr_compilable()) {
    return;
  }
  if (PrintTieredEvents) {
    print_event(COMPILE, mh, mh, bci, level);
  }
  if (!CompileBroker::compilation_is_in_queue(mh, bci)) {
    submit_compile(mh, bci, level, THREAD);
  }
}

// Tell the broker to compile the method
void SimpleThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
  CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
}

// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common() transition function).
bool SimpleThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    return loop_predicate_helper<CompLevel_none>(i, b, 1.0);
  }
  case CompLevel_full_profile: {
    return loop_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
  }
  default:
    return true;
  }
}

bool SimpleThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
  switch(cur_level) {
  case CompLevel_none:
  case CompLevel_limited_profile: {
    return call_predicate_helper<CompLevel_none>(i, b, 1.0);
  }
  case CompLevel_full_profile: {
    return call_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
  }
  default:
    return true;
  }
}

// Determine is a method is mature.
bool SimpleThresholdPolicy::is_mature(methodOop method) {
  if (is_trivial(method)) return true;
  methodDataOop mdo = method->method_data();
  if (mdo != NULL) {
    int i = mdo->invocation_count();
    int b = mdo->backedge_count();
    double k = ProfileMaturityPercentage / 100.0;
    return call_predicate_helper<CompLevel_full_profile>(i, b, k) ||
           loop_predicate_helper<CompLevel_full_profile>(i, b, k);
  }
  return false;
}

// Common transition function. Given a predicate determines if a method should transition to another level.
CompLevel SimpleThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
  if (is_trivial(method)) return CompLevel_simple;

  CompLevel next_level = cur_level;
  int i = method->invocation_count();
  int b = method->backedge_count();

  switch(cur_level) {
  case CompLevel_none:
    // If we were at full profile level, would we switch to full opt?
    if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) {
      next_level = CompLevel_full_optimization;
    } else if ((this->*p)(i, b, cur_level)) {
      next_level = CompLevel_full_profile;
    }
    break;
  case CompLevel_limited_profile:
  case CompLevel_full_profile:
    {
      methodDataOop mdo = method->method_data();
      if (mdo != NULL) {
        if (mdo->would_profile()) {
          int mdo_i = mdo->invocation_count_delta();
          int mdo_b = mdo->backedge_count_delta();
          if ((this->*p)(mdo_i, mdo_b, cur_level)) {
            next_level = CompLevel_full_optimization;
          }
        } else {
          next_level = CompLevel_full_optimization;
        }
      }
    }
    break;
  }
  return next_level;
}

// Determine if a method should be compiled with a normal entry point at a different level.
CompLevel SimpleThresholdPolicy::call_event(methodOop method,  CompLevel cur_level) {
  CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
  CompLevel next_level = common(&SimpleThresholdPolicy::call_predicate, method, cur_level);

  // If OSR method level is greater than the regular method level, the levels should be
  // equalized by raising the regular method level in order to avoid OSRs during each
  // invocation of the method.
  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
    methodDataOop mdo = method->method_data();
    guarantee(mdo != NULL, "MDO should not be NULL");
    if (mdo->invocation_count() >= 1) {
      next_level = CompLevel_full_optimization;
    }
  } else {
    next_level = MAX2(osr_level, next_level);
  }

  return next_level;
}

// Determine if we should do an OSR compilation of a given method.
CompLevel SimpleThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
  if (cur_level == CompLevel_none) {
    // If there is a live OSR method that means that we deopted to the interpreter
    // for the transition.
    CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
    if (osr_level > CompLevel_none) {
      return osr_level;
    }
  }
  return common(&SimpleThresholdPolicy::loop_predicate, method, cur_level);
}


// Handle the invocation event.
void SimpleThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
                                              CompLevel level, TRAPS) {
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
    CompLevel next_level = call_event(mh(), level);
    if (next_level != level) {
      compile(mh, InvocationEntryBci, next_level, THREAD);
    }
  }
}

// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void SimpleThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
                                               int bci, CompLevel level, TRAPS) {
  // If the method is already compiling, quickly bail out.
  if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
    // Use loop event as an opportinity to also check there's been
    // enough calls.
    CompLevel cur_level = comp_level(mh());
    CompLevel next_level = call_event(mh(), cur_level);
    CompLevel next_osr_level = loop_event(mh(), level);

    next_level = MAX2(next_level,
                      next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
    bool is_compiling = false;
    if (next_level != cur_level) {
      compile(mh, InvocationEntryBci, next_level, THREAD);
      is_compiling = true;
    }

    // Do the OSR version
    if (!is_compiling && next_osr_level != level) {
      compile(mh, bci, next_osr_level, THREAD);
    }
  }
}