view src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp @ 1145:e018e6884bd8

6631166: CMS: better heuristics when combatting fragmentation Summary: Autonomic per-worker free block cache sizing, tunable coalition policies, fixes to per-size block statistics, retuned gain and bandwidth of some feedback loop filters to allow quicker reactivity to abrupt changes in ambient demand, and other heuristics to reduce fragmentation of the CMS old gen. Also tightened some assertions, including those related to locking. Reviewed-by: jmasa
author ysr
date Wed, 23 Dec 2009 09:23:54 -0800
parents 850fdf70db2b
children cff162798819
line wrap: on
line source

/*
 * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_binaryTreeDictionary.cpp.incl"

////////////////////////////////////////////////////////////////////////////////
// A binary tree based search structure for free blocks.
// This is currently used in the Concurrent Mark&Sweep implementation.
////////////////////////////////////////////////////////////////////////////////

TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
  // Do some assertion checking here.
  return (TreeChunk*) fc;
}

void TreeChunk::verifyTreeChunkList() const {
  TreeChunk* nextTC = (TreeChunk*)next();
  if (prev() != NULL) { // interior list node shouldn'r have tree fields
    guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
              embedded_list()->right()  == NULL, "should be clear");
  }
  if (nextTC != NULL) {
    guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    guarantee(nextTC->size() == size(), "wrong size");
    nextTC->verifyTreeChunkList();
  }
}


TreeList* TreeList::as_TreeList(TreeChunk* tc) {
  // This first free chunk in the list will be the tree list.
  assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  TreeList* tl = tc->embedded_list();
  tc->set_list(tl);
#ifdef ASSERT
  tl->set_protecting_lock(NULL);
#endif
  tl->set_hint(0);
  tl->set_size(tc->size());
  tl->link_head(tc);
  tl->link_tail(tc);
  tl->set_count(1);
  tl->init_statistics(true /* split_birth */);
  tl->setParent(NULL);
  tl->setLeft(NULL);
  tl->setRight(NULL);
  return tl;
}

TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
  TreeChunk* tc = (TreeChunk*) addr;
  assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  // The space in the heap will have been mangled initially but
  // is not remangled when a free chunk is returned to the free list
  // (since it is used to maintain the chunk on the free list).
  assert((ZapUnusedHeapArea &&
          SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
          SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
          SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
          (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
    "Space should be clear or mangled");
  tc->setSize(size);
  tc->linkPrev(NULL);
  tc->linkNext(NULL);
  TreeList* tl = TreeList::as_TreeList(tc);
  return tl;
}

TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {

  TreeList* retTL = this;
  FreeChunk* list = head();
  assert(!list || list != list->next(), "Chunk on list twice");
  assert(tc != NULL, "Chunk being removed is NULL");
  assert(parent() == NULL || this == parent()->left() ||
    this == parent()->right(), "list is inconsistent");
  assert(tc->isFree(), "Header is not marked correctly");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* prevFC = tc->prev();
  TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
  assert(list != NULL, "should have at least the target chunk");

  // Is this the first item on the list?
  if (tc == list) {
    // The "getChunk..." functions for a TreeList will not return the
    // first chunk in the list unless it is the last chunk in the list
    // because the first chunk is also acting as the tree node.
    // When coalescing happens, however, the first chunk in the a tree
    // list can be the start of a free range.  Free ranges are removed
    // from the free lists so that they are not available to be
    // allocated when the sweeper yields (giving up the free list lock)
    // to allow mutator activity.  If this chunk is the first in the
    // list and is not the last in the list, do the work to copy the
    // TreeList from the first chunk to the next chunk and update all
    // the TreeList pointers in the chunks in the list.
    if (nextTC == NULL) {
      assert(prevFC == NULL, "Not last chunk in the list")
      set_tail(NULL);
      set_head(NULL);
    } else {
      // copy embedded list.
      nextTC->set_embedded_list(tc->embedded_list());
      retTL = nextTC->embedded_list();
      // Fix the pointer to the list in each chunk in the list.
      // This can be slow for a long list.  Consider having
      // an option that does not allow the first chunk on the
      // list to be coalesced.
      for (TreeChunk* curTC = nextTC; curTC != NULL;
          curTC = TreeChunk::as_TreeChunk(curTC->next())) {
        curTC->set_list(retTL);
      }
      // Fix the parent to point to the new TreeList.
      if (retTL->parent() != NULL) {
        if (this == retTL->parent()->left()) {
          retTL->parent()->setLeft(retTL);
        } else {
          assert(this == retTL->parent()->right(), "Parent is incorrect");
          retTL->parent()->setRight(retTL);
        }
      }
      // Fix the children's parent pointers to point to the
      // new list.
      assert(right() == retTL->right(), "Should have been copied");
      if (retTL->right() != NULL) {
        retTL->right()->setParent(retTL);
      }
      assert(left() == retTL->left(), "Should have been copied");
      if (retTL->left() != NULL) {
        retTL->left()->setParent(retTL);
      }
      retTL->link_head(nextTC);
      assert(nextTC->isFree(), "Should be a free chunk");
    }
  } else {
    if (nextTC == NULL) {
      // Removing chunk at tail of list
      link_tail(prevFC);
    }
    // Chunk is interior to the list
    prevFC->linkAfter(nextTC);
  }

  // Below this point the embeded TreeList being used for the
  // tree node may have changed. Don't use "this"
  // TreeList*.
  // chunk should still be a free chunk (bit set in _prev)
  assert(!retTL->head() || retTL->size() == retTL->head()->size(),
    "Wrong sized chunk in list");
  debug_only(
    tc->linkPrev(NULL);
    tc->linkNext(NULL);
    tc->set_list(NULL);
    bool prev_found = false;
    bool next_found = false;
    for (FreeChunk* curFC = retTL->head();
         curFC != NULL; curFC = curFC->next()) {
      assert(curFC != tc, "Chunk is still in list");
      if (curFC == prevFC) {
        prev_found = true;
      }
      if (curFC == nextTC) {
        next_found = true;
      }
    }
    assert(prevFC == NULL || prev_found, "Chunk was lost from list");
    assert(nextTC == NULL || next_found, "Chunk was lost from list");
    assert(retTL->parent() == NULL ||
           retTL == retTL->parent()->left() ||
           retTL == retTL->parent()->right(),
           "list is inconsistent");
  )
  retTL->decrement_count();

  assert(tc->isFree(), "Should still be a free chunk");
  assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
    "list invariant");
  assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
    "list invariant");
  return retTL;
}
void TreeList::returnChunkAtTail(TreeChunk* chunk) {
  assert(chunk != NULL, "returning NULL chunk");
  assert(chunk->list() == this, "list should be set for chunk");
  assert(tail() != NULL, "The tree list is embedded in the first chunk");
  // which means that the list can never be empty.
  assert(!verifyChunkInFreeLists(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* fc = tail();
  fc->linkAfter(chunk);
  link_tail(chunk);

  assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
  increment_count();
  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

// Add this chunk at the head of the list.  "At the head of the list"
// is defined to be after the chunk pointer to by head().  This is
// because the TreeList is embedded in the first TreeChunk in the
// list.  See the definition of TreeChunk.
void TreeList::returnChunkAtHead(TreeChunk* chunk) {
  assert(chunk->list() == this, "list should be set for chunk");
  assert(head() != NULL, "The tree list is embedded in the first chunk");
  assert(chunk != NULL, "returning NULL chunk");
  assert(!verifyChunkInFreeLists(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* fc = head()->next();
  if (fc != NULL) {
    chunk->linkAfter(fc);
  } else {
    assert(tail() == NULL, "List is inconsistent");
    link_tail(chunk);
  }
  head()->linkAfter(chunk);
  assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
  increment_count();
  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

TreeChunk* TreeList::head_as_TreeChunk() {
  assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
    "Wrong type of chunk?");
  return TreeChunk::as_TreeChunk(head());
}

TreeChunk* TreeList::first_available() {
  guarantee(head() != NULL, "The head of the list cannot be NULL");
  FreeChunk* fc = head()->next();
  TreeChunk* retTC;
  if (fc == NULL) {
    retTC = head_as_TreeChunk();
  } else {
    retTC = TreeChunk::as_TreeChunk(fc);
  }
  assert(retTC->list() == this, "Wrong type of chunk.");
  return retTC;
}

// Returns the block with the largest heap address amongst
// those in the list for this size; potentially slow and expensive,
// use with caution!
TreeChunk* TreeList::largest_address() {
  guarantee(head() != NULL, "The head of the list cannot be NULL");
  FreeChunk* fc = head()->next();
  TreeChunk* retTC;
  if (fc == NULL) {
    retTC = head_as_TreeChunk();
  } else {
    // walk down the list and return the one with the highest
    // heap address among chunks of this size.
    FreeChunk* last = fc;
    while (fc->next() != NULL) {
      if ((HeapWord*)last < (HeapWord*)fc) {
        last = fc;
      }
      fc = fc->next();
    }
    retTC = TreeChunk::as_TreeChunk(last);
  }
  assert(retTC->list() == this, "Wrong type of chunk.");
  return retTC;
}

BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
  _splay(splay)
{
  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");

  reset(mr);
  assert(root()->left() == NULL, "reset check failed");
  assert(root()->right() == NULL, "reset check failed");
  assert(root()->head()->next() == NULL, "reset check failed");
  assert(root()->head()->prev() == NULL, "reset check failed");
  assert(totalSize() == root()->size(), "reset check failed");
  assert(totalFreeBlocks() == 1, "reset check failed");
}

void BinaryTreeDictionary::inc_totalSize(size_t inc) {
  _totalSize = _totalSize + inc;
}

void BinaryTreeDictionary::dec_totalSize(size_t dec) {
  _totalSize = _totalSize - dec;
}

void BinaryTreeDictionary::reset(MemRegion mr) {
  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
  set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
  set_totalSize(mr.word_size());
  set_totalFreeBlocks(1);
}

void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
  MemRegion mr(addr, heap_word_size(byte_size));
  reset(mr);
}

void BinaryTreeDictionary::reset() {
  set_root(NULL);
  set_totalSize(0);
  set_totalFreeBlocks(0);
}

// Get a free block of size at least size from tree, or NULL.
// If a splay step is requested, the removal algorithm (only) incorporates
// a splay step as follows:
// . the search proceeds down the tree looking for a possible
//   match. At the (closest) matching location, an appropriate splay step is applied
//   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
//   if available, and if it's the last chunk, the node is deleted. A deteleted
//   node is replaced in place by its tree successor.
TreeChunk*
BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
{
  TreeList *curTL, *prevTL;
  TreeChunk* retTC = NULL;
  assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  // starting at the root, work downwards trying to find match.
  // Remember the last node of size too great or too small.
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }
    prevTL = curTL;
    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  if (curTL == NULL) { // couldn't find exact match
    // try and find the next larger size by walking back up the search path
    for (curTL = prevTL; curTL != NULL;) {
      if (curTL->size() >= size) break;
      else curTL = curTL->parent();
    }
    assert(curTL == NULL || curTL->count() > 0,
      "An empty list should not be in the tree");
  }
  if (curTL != NULL) {
    assert(curTL->size() >= size, "size inconsistency");
    if (UseCMSAdaptiveFreeLists) {

      // A candidate chunk has been found.  If it is already under
      // populated, get a chunk associated with the hint for this
      // chunk.
      if (curTL->surplus() <= 0) {
        /* Use the hint to find a size with a surplus, and reset the hint. */
        TreeList* hintTL = curTL;
        while (hintTL->hint() != 0) {
          assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
            "hint points in the wrong direction");
          hintTL = findList(hintTL->hint());
          assert(curTL != hintTL, "Infinite loop");
          if (hintTL == NULL ||
              hintTL == curTL /* Should not happen but protect against it */ ) {
            // No useful hint.  Set the hint to NULL and go on.
            curTL->set_hint(0);
            break;
          }
          assert(hintTL->size() > size, "hint is inconsistent");
          if (hintTL->surplus() > 0) {
            // The hint led to a list that has a surplus.  Use it.
            // Set the hint for the candidate to an overpopulated
            // size.
            curTL->set_hint(hintTL->size());
            // Change the candidate.
            curTL = hintTL;
            break;
          }
          // The evm code reset the hint of the candidate as
          // at an interim point.  Why?  Seems like this leaves
          // the hint pointing to a list that didn't work.
          // curTL->set_hint(hintTL->size());
        }
      }
    }
    // don't waste time splaying if chunk's singleton
    if (splay && curTL->head()->next() != NULL) {
      semiSplayStep(curTL);
    }
    retTC = curTL->first_available();
    assert((retTC != NULL) && (curTL->count() > 0),
      "A list in the binary tree should not be NULL");
    assert(retTC->size() >= size,
      "A chunk of the wrong size was found");
    removeChunkFromTree(retTC);
    assert(retTC->isFree(), "Header is not marked correctly");
  }

  if (FLSVerifyDictionary) {
    verify();
  }
  return retTC;
}

TreeList* BinaryTreeDictionary::findList(size_t size) const {
  TreeList* curTL;
  for (curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }

    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  return curTL;
}


bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
  size_t size = tc->size();
  TreeList* tl = findList(size);
  if (tl == NULL) {
    return false;
  } else {
    return tl->verifyChunkInFreeLists(tc);
  }
}

FreeChunk* BinaryTreeDictionary::findLargestDict() const {
  TreeList *curTL = root();
  if (curTL != NULL) {
    while(curTL->right() != NULL) curTL = curTL->right();
    return curTL->largest_address();
  } else {
    return NULL;
  }
}

// Remove the current chunk from the tree.  If it is not the last
// chunk in a list on a tree node, just unlink it.
// If it is the last chunk in the list (the next link is NULL),
// remove the node and repair the tree.
TreeChunk*
BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
  assert(tc != NULL, "Should not call with a NULL chunk");
  assert(tc->isFree(), "Header is not marked correctly");

  TreeList *newTL, *parentTL;
  TreeChunk* retTC;
  TreeList* tl = tc->list();
  debug_only(
    bool removing_only_chunk = false;
    if (tl == _root) {
      if ((_root->left() == NULL) && (_root->right() == NULL)) {
        if (_root->count() == 1) {
          assert(_root->head() == tc, "Should only be this one chunk");
          removing_only_chunk = true;
        }
      }
    }
  )
  assert(tl != NULL, "List should be set");
  assert(tl->parent() == NULL || tl == tl->parent()->left() ||
         tl == tl->parent()->right(), "list is inconsistent");

  bool complicatedSplice = false;

  retTC = tc;
  // Removing this chunk can have the side effect of changing the node
  // (TreeList*) in the tree.  If the node is the root, update it.
  TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
  assert(tc->isFree(), "Chunk should still be free");
  assert(replacementTL->parent() == NULL ||
         replacementTL == replacementTL->parent()->left() ||
         replacementTL == replacementTL->parent()->right(),
         "list is inconsistent");
  if (tl == root()) {
    assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
    set_root(replacementTL);
  }
  debug_only(
    if (tl != replacementTL) {
      assert(replacementTL->head() != NULL,
        "If the tree list was replaced, it should not be a NULL list");
      TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
      TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
      assert(rhl == replacementTL, "Broken head");
      assert(rtl == replacementTL, "Broken tail");
      assert(replacementTL->size() == tc->size(),  "Broken size");
    }
  )

  // Does the tree need to be repaired?
  if (replacementTL->count() == 0) {
    assert(replacementTL->head() == NULL &&
           replacementTL->tail() == NULL, "list count is incorrect");
    // Find the replacement node for the (soon to be empty) node being removed.
    // if we have a single (or no) child, splice child in our stead
    if (replacementTL->left() == NULL) {
      // left is NULL so pick right.  right may also be NULL.
      newTL = replacementTL->right();
      debug_only(replacementTL->clearRight();)
    } else if (replacementTL->right() == NULL) {
      // right is NULL
      newTL = replacementTL->left();
      debug_only(replacementTL->clearLeft();)
    } else {  // we have both children, so, by patriarchal convention,
              // my replacement is least node in right sub-tree
      complicatedSplice = true;
      newTL = removeTreeMinimum(replacementTL->right());
      assert(newTL != NULL && newTL->left() == NULL &&
             newTL->right() == NULL, "sub-tree minimum exists");
    }
    // newTL is the replacement for the (soon to be empty) node.
    // newTL may be NULL.
    // should verify; we just cleanly excised our replacement
    if (FLSVerifyDictionary) {
      verifyTree();
    }
    // first make newTL my parent's child
    if ((parentTL = replacementTL->parent()) == NULL) {
      // newTL should be root
      assert(tl == root(), "Incorrectly replacing root");
      set_root(newTL);
      if (newTL != NULL) {
        newTL->clearParent();
      }
    } else if (parentTL->right() == replacementTL) {
      // replacementTL is a right child
      parentTL->setRight(newTL);
    } else {                                // replacementTL is a left child
      assert(parentTL->left() == replacementTL, "should be left child");
      parentTL->setLeft(newTL);
    }
    debug_only(replacementTL->clearParent();)
    if (complicatedSplice) {  // we need newTL to get replacementTL's
                              // two children
      assert(newTL != NULL &&
             newTL->left() == NULL && newTL->right() == NULL,
            "newTL should not have encumbrances from the past");
      // we'd like to assert as below:
      // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
      //       "else !complicatedSplice");
      // ... however, the above assertion is too strong because we aren't
      // guaranteed that replacementTL->right() is still NULL.
      // Recall that we removed
      // the right sub-tree minimum from replacementTL.
      // That may well have been its right
      // child! So we'll just assert half of the above:
      assert(replacementTL->left() != NULL, "else !complicatedSplice");
      newTL->setLeft(replacementTL->left());
      newTL->setRight(replacementTL->right());
      debug_only(
        replacementTL->clearRight();
        replacementTL->clearLeft();
      )
    }
    assert(replacementTL->right() == NULL &&
           replacementTL->left() == NULL &&
           replacementTL->parent() == NULL,
        "delete without encumbrances");
  }

  assert(totalSize() >= retTC->size(), "Incorrect total size");
  dec_totalSize(retTC->size());     // size book-keeping
  assert(totalFreeBlocks() > 0, "Incorrect total count");
  set_totalFreeBlocks(totalFreeBlocks() - 1);

  assert(retTC != NULL, "null chunk?");
  assert(retTC->prev() == NULL && retTC->next() == NULL,
         "should return without encumbrances");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  assert(!removing_only_chunk || _root == NULL, "root should be NULL");
  return TreeChunk::as_TreeChunk(retTC);
}

// Remove the leftmost node (lm) in the tree and return it.
// If lm has a right child, link it to the left node of
// the parent of lm.
TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
  assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
  // locate the subtree minimum by walking down left branches
  TreeList* curTL = tl;
  for (; curTL->left() != NULL; curTL = curTL->left());
  // obviously curTL now has at most one child, a right child
  if (curTL != root()) {  // Should this test just be removed?
    TreeList* parentTL = curTL->parent();
    if (parentTL->left() == curTL) { // curTL is a left child
      parentTL->setLeft(curTL->right());
    } else {
      // If the list tl has no left child, then curTL may be
      // the right child of parentTL.
      assert(parentTL->right() == curTL, "should be a right child");
      parentTL->setRight(curTL->right());
    }
  } else {
    // The only use of this method would not pass the root of the
    // tree (as indicated by the assertion above that the tree list
    // has a parent) but the specification does not explicitly exclude the
    // passing of the root so accomodate it.
    set_root(NULL);
  }
  debug_only(
    curTL->clearParent();  // Test if this needs to be cleared
    curTL->clearRight();    // recall, above, left child is already null
  )
  // we just excised a (non-root) node, we should still verify all tree invariants
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  return curTL;
}

// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
// The simplifications are the following:
// . we splay only when we delete (not when we insert)
// . we apply a single spay step per deletion/access
// By doing such partial splaying, we reduce the amount of restructuring,
// while getting a reasonably efficient search tree (we think).
// [Measurements will be needed to (in)validate this expectation.]

void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
  // apply a semi-splay step at the given node:
  // . if root, norting needs to be done
  // . if child of root, splay once
  // . else zig-zig or sig-zag depending on path from grandparent
  if (root() == tc) return;
  warning("*** Splaying not yet implemented; "
          "tree operations may be inefficient ***");
}

void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
  TreeList *curTL, *prevTL;
  size_t size = fc->size();

  assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  // XXX: do i need to clear the FreeChunk fields, let me do it just in case
  // Revisit this later

  fc->clearNext();
  fc->linkPrev(NULL);

  // work down from the _root, looking for insertion point
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size)  // exact match
      break;
    prevTL = curTL;
    if (curTL->size() > size) { // follow left branch
      curTL = curTL->left();
    } else {                    // follow right branch
      assert(curTL->size() < size, "size inconsistency");
      curTL = curTL->right();
    }
  }
  TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
  // This chunk is being returned to the binary tree.  Its embedded
  // TreeList should be unused at this point.
  tc->initialize();
  if (curTL != NULL) {          // exact match
    tc->set_list(curTL);
    curTL->returnChunkAtTail(tc);
  } else {                     // need a new node in tree
    tc->clearNext();
    tc->linkPrev(NULL);
    TreeList* newTL = TreeList::as_TreeList(tc);
    assert(((TreeChunk*)tc)->list() == newTL,
      "List was not initialized correctly");
    if (prevTL == NULL) {      // we are the only tree node
      assert(root() == NULL, "control point invariant");
      set_root(newTL);
    } else {                   // insert under prevTL ...
      if (prevTL->size() < size) {   // am right child
        assert(prevTL->right() == NULL, "control point invariant");
        prevTL->setRight(newTL);
      } else {                       // am left child
        assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
        prevTL->setLeft(newTL);
      }
    }
  }
  assert(tc->list() != NULL, "Tree list should be set");

  inc_totalSize(size);
  // Method 'totalSizeInTree' walks through the every block in the
  // tree, so it can cause significant performance loss if there are
  // many blocks in the tree
  assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
  set_totalFreeBlocks(totalFreeBlocks() + 1);
  if (FLSVerifyDictionary) {
    verifyTree();
  }
}

size_t BinaryTreeDictionary::maxChunkSize() const {
  verify_par_locked();
  TreeList* tc = root();
  if (tc == NULL) return 0;
  for (; tc->right() != NULL; tc = tc->right());
  return tc->size();
}

size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
  size_t res;
  res = tl->count();
#ifdef ASSERT
  size_t cnt;
  FreeChunk* tc = tl->head();
  for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
  assert(res == cnt, "The count is not being maintained correctly");
#endif
  return res;
}

size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return (tl->size() * totalListLength(tl)) +
         totalSizeInTree(tl->left())    +
         totalSizeInTree(tl->right());
}

double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
  if (tl == NULL) {
    return 0.0;
  }
  double size = (double)(tl->size());
  double curr = size * size * totalListLength(tl);
  curr += sum_of_squared_block_sizes(tl->left());
  curr += sum_of_squared_block_sizes(tl->right());
  return curr;
}

size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return totalListLength(tl) +
         totalFreeBlocksInTree(tl->left()) +
         totalFreeBlocksInTree(tl->right());
}

size_t BinaryTreeDictionary::numFreeBlocks() const {
  assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
         "_totalFreeBlocks inconsistency");
  return totalFreeBlocks();
}

size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return 1 + MAX2(treeHeightHelper(tl->left()),
                  treeHeightHelper(tl->right()));
}

size_t BinaryTreeDictionary::treeHeight() const {
  return treeHeightHelper(root());
}

size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
  if (tl == NULL) {
    return 0;
  }
  return 1 + totalNodesHelper(tl->left()) +
    totalNodesHelper(tl->right());
}

size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
  return totalNodesHelper(root());
}

void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
  TreeList* nd = findList(size);
  if (nd) {
    if (split) {
      if (birth) {
        nd->increment_splitBirths();
        nd->increment_surplus();
      }  else {
        nd->increment_splitDeaths();
        nd->decrement_surplus();
      }
    } else {
      if (birth) {
        nd->increment_coalBirths();
        nd->increment_surplus();
      } else {
        nd->increment_coalDeaths();
        nd->decrement_surplus();
      }
    }
  }
  // A list for this size may not be found (nd == 0) if
  //   This is a death where the appropriate list is now
  //     empty and has been removed from the list.
  //   This is a birth associated with a LinAB.  The chunk
  //     for the LinAB is not in the dictionary.
}

bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
  if (FLSAlwaysCoalesceLarge) return true;

  TreeList* list_of_size = findList(size);
  // None of requested size implies overpopulated.
  return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
         list_of_size->count() > list_of_size->coalDesired();
}

// Closures for walking the binary tree.
//   do_list() walks the free list in a node applying the closure
//     to each free chunk in the list
//   do_tree() walks the nodes in the binary tree applying do_list()
//     to each list at each node.

class TreeCensusClosure : public StackObj {
 protected:
  virtual void do_list(FreeList* fl) = 0;
 public:
  virtual void do_tree(TreeList* tl) = 0;
};

class AscendTreeCensusClosure : public TreeCensusClosure {
 public:
  void do_tree(TreeList* tl) {
    if (tl != NULL) {
      do_tree(tl->left());
      do_list(tl);
      do_tree(tl->right());
    }
  }
};

class DescendTreeCensusClosure : public TreeCensusClosure {
 public:
  void do_tree(TreeList* tl) {
    if (tl != NULL) {
      do_tree(tl->right());
      do_list(tl);
      do_tree(tl->left());
    }
  }
};

// For each list in the tree, calculate the desired, desired
// coalesce, count before sweep, and surplus before sweep.
class BeginSweepClosure : public AscendTreeCensusClosure {
  double _percentage;
  float _inter_sweep_current;
  float _inter_sweep_estimate;
  float _intra_sweep_estimate;

 public:
  BeginSweepClosure(double p, float inter_sweep_current,
                              float inter_sweep_estimate,
                              float intra_sweep_estimate) :
   _percentage(p),
   _inter_sweep_current(inter_sweep_current),
   _inter_sweep_estimate(inter_sweep_estimate),
   _intra_sweep_estimate(intra_sweep_estimate) { }

  void do_list(FreeList* fl) {
    double coalSurplusPercent = _percentage;
    fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
    fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
    fl->set_beforeSweep(fl->count());
    fl->set_bfrSurp(fl->surplus());
  }
};

// Used to search the tree until a condition is met.
// Similar to TreeCensusClosure but searches the
// tree and returns promptly when found.

class TreeSearchClosure : public StackObj {
 protected:
  virtual bool do_list(FreeList* fl) = 0;
 public:
  virtual bool do_tree(TreeList* tl) = 0;
};

#if 0 //  Don't need this yet but here for symmetry.
class AscendTreeSearchClosure : public TreeSearchClosure {
 public:
  bool do_tree(TreeList* tl) {
    if (tl != NULL) {
      if (do_tree(tl->left())) return true;
      if (do_list(tl)) return true;
      if (do_tree(tl->right())) return true;
    }
    return false;
  }
};
#endif

class DescendTreeSearchClosure : public TreeSearchClosure {
 public:
  bool do_tree(TreeList* tl) {
    if (tl != NULL) {
      if (do_tree(tl->right())) return true;
      if (do_list(tl)) return true;
      if (do_tree(tl->left())) return true;
    }
    return false;
  }
};

// Searches the tree for a chunk that ends at the
// specified address.
class EndTreeSearchClosure : public DescendTreeSearchClosure {
  HeapWord* _target;
  FreeChunk* _found;

 public:
  EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  bool do_list(FreeList* fl) {
    FreeChunk* item = fl->head();
    while (item != NULL) {
      if (item->end() == _target) {
        _found = item;
        return true;
      }
      item = item->next();
    }
    return false;
  }
  FreeChunk* found() { return _found; }
};

FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
  EndTreeSearchClosure etsc(target);
  bool found_target = etsc.do_tree(root());
  assert(found_target || etsc.found() == NULL, "Consistency check");
  assert(!found_target || etsc.found() != NULL, "Consistency check");
  return etsc.found();
}

void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
  float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
                                            inter_sweep_estimate,
                                            intra_sweep_estimate);
  bsc.do_tree(root());
}

// Closures and methods for calculating total bytes returned to the
// free lists in the tree.
NOT_PRODUCT(
  class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
   public:
    void do_list(FreeList* fl) {
      fl->set_returnedBytes(0);
    }
  };

  void BinaryTreeDictionary::initializeDictReturnedBytes() {
    InitializeDictReturnedBytesClosure idrb;
    idrb.do_tree(root());
  }

  class ReturnedBytesClosure : public AscendTreeCensusClosure {
    size_t _dictReturnedBytes;
   public:
    ReturnedBytesClosure() { _dictReturnedBytes = 0; }
    void do_list(FreeList* fl) {
      _dictReturnedBytes += fl->returnedBytes();
    }
    size_t dictReturnedBytes() { return _dictReturnedBytes; }
  };

  size_t BinaryTreeDictionary::sumDictReturnedBytes() {
    ReturnedBytesClosure rbc;
    rbc.do_tree(root());

    return rbc.dictReturnedBytes();
  }

  // Count the number of entries in the tree.
  class treeCountClosure : public DescendTreeCensusClosure {
   public:
    uint count;
    treeCountClosure(uint c) { count = c; }
    void do_list(FreeList* fl) {
      count++;
    }
  };

  size_t BinaryTreeDictionary::totalCount() {
    treeCountClosure ctc(0);
    ctc.do_tree(root());
    return ctc.count;
  }
)

// Calculate surpluses for the lists in the tree.
class setTreeSurplusClosure : public AscendTreeCensusClosure {
  double percentage;
 public:
  setTreeSurplusClosure(double v) { percentage = v; }
  void do_list(FreeList* fl) {
    double splitSurplusPercent = percentage;
    fl->set_surplus(fl->count() -
                   (ssize_t)((double)fl->desired() * splitSurplusPercent));
  }
};

void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
  setTreeSurplusClosure sts(splitSurplusPercent);
  sts.do_tree(root());
}

// Set hints for the lists in the tree.
class setTreeHintsClosure : public DescendTreeCensusClosure {
  size_t hint;
 public:
  setTreeHintsClosure(size_t v) { hint = v; }
  void do_list(FreeList* fl) {
    fl->set_hint(hint);
    assert(fl->hint() == 0 || fl->hint() > fl->size(),
      "Current hint is inconsistent");
    if (fl->surplus() > 0) {
      hint = fl->size();
    }
  }
};

void BinaryTreeDictionary::setTreeHints(void) {
  setTreeHintsClosure sth(0);
  sth.do_tree(root());
}

// Save count before previous sweep and splits and coalesces.
class clearTreeCensusClosure : public AscendTreeCensusClosure {
  void do_list(FreeList* fl) {
    fl->set_prevSweep(fl->count());
    fl->set_coalBirths(0);
    fl->set_coalDeaths(0);
    fl->set_splitBirths(0);
    fl->set_splitDeaths(0);
  }
};

void BinaryTreeDictionary::clearTreeCensus(void) {
  clearTreeCensusClosure ctc;
  ctc.do_tree(root());
}

// Do reporting and post sweep clean up.
void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
  // Does walking the tree 3 times hurt?
  setTreeSurplus(splitSurplusPercent);
  setTreeHints();
  if (PrintGC && Verbose) {
    reportStatistics();
  }
  clearTreeCensus();
}

// Print summary statistics
void BinaryTreeDictionary::reportStatistics() const {
  verify_par_locked();
  gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
         "------------------------------------\n");
  size_t totalSize = totalChunkSize(debug_only(NULL));
  size_t    freeBlocks = numFreeBlocks();
  gclog_or_tty->print("Total Free Space: %d\n", totalSize);
  gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
  gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
  if (freeBlocks > 0) {
    gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
  }
  gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
}

// Print census information - counts, births, deaths, etc.
// for each list in the tree.  Also print some summary
// information.
class PrintTreeCensusClosure : public AscendTreeCensusClosure {
  int _print_line;
  size_t _totalFree;
  FreeList _total;

 public:
  PrintTreeCensusClosure() {
    _print_line = 0;
    _totalFree = 0;
  }
  FreeList* total() { return &_total; }
  size_t totalFree() { return _totalFree; }
  void do_list(FreeList* fl) {
    if (++_print_line >= 40) {
      FreeList::print_labels_on(gclog_or_tty, "size");
      _print_line = 0;
    }
    fl->print_on(gclog_or_tty);
    _totalFree +=            fl->count()            * fl->size()        ;
    total()->set_count(      total()->count()       + fl->count()      );
    total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
    total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
    total()->set_desired(    total()->desired()     + fl->desired()    );
    total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
    total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
    total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
    total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
    total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
    total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
  }
};

void BinaryTreeDictionary::printDictCensus(void) const {

  gclog_or_tty->print("\nBinaryTree\n");
  FreeList::print_labels_on(gclog_or_tty, "size");
  PrintTreeCensusClosure ptc;
  ptc.do_tree(root());

  FreeList* total = ptc.total();
  FreeList::print_labels_on(gclog_or_tty, " ");
  total->print_on(gclog_or_tty, "TOTAL\t");
  gclog_or_tty->print(
              "totalFree(words): " SIZE_FORMAT_W(16)
              " growth: %8.5f  deficit: %8.5f\n",
              ptc.totalFree(),
              (double)(total->splitBirths() + total->coalBirths()
                     - total->splitDeaths() - total->coalDeaths())
              /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
             (double)(total->desired() - total->count())
             /(total->desired() != 0 ? (double)total->desired() : 1.0));
}

class PrintFreeListsClosure : public AscendTreeCensusClosure {
  outputStream* _st;
  int _print_line;

 public:
  PrintFreeListsClosure(outputStream* st) {
    _st = st;
    _print_line = 0;
  }
  void do_list(FreeList* fl) {
    if (++_print_line >= 40) {
      FreeList::print_labels_on(_st, "size");
      _print_line = 0;
    }
    fl->print_on(gclog_or_tty);
    size_t sz = fl->size();
    for (FreeChunk* fc = fl->head(); fc != NULL;
         fc = fc->next()) {
      _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
                    fc, (HeapWord*)fc + sz,
                    fc->cantCoalesce() ? "\t CC" : "");
    }
  }
};

void BinaryTreeDictionary::print_free_lists(outputStream* st) const {

  FreeList::print_labels_on(st, "size");
  PrintFreeListsClosure pflc(st);
  pflc.do_tree(root());
}

// Verify the following tree invariants:
// . _root has no parent
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
void BinaryTreeDictionary::verifyTree() const {
  guarantee(root() == NULL || totalFreeBlocks() == 0 ||
    totalSize() != 0, "_totalSize should't be 0?");
  guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  verifyTreeHelper(root());
}

size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
  size_t ct = 0;
  for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
    ct++;
    assert(curFC->prev() == NULL || curFC->prev()->isFree(),
      "Chunk should be free");
  }
  return ct;
}

// Note: this helper is recursive rather than iterative, so use with
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
  if (tl == NULL)
    return;
  guarantee(tl->size() != 0, "A list must has a size");
  guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
         "parent<-/->left");
  guarantee(tl->right() == NULL || tl->right()->parent() == tl,
         "parent<-/->right");;
  guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
         "parent !> left");
  guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
         "parent !< left");
  guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
  guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
    "list inconsistency");
  guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
    "list count is inconsistent");
  guarantee(tl->count() > 1 || tl->head() == tl->tail(),
    "list is incorrectly constructed");
  size_t count = verifyPrevFreePtrs(tl);
  guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  if (tl->head() != NULL) {
    tl->head_as_TreeChunk()->verifyTreeChunkList();
  }
  verifyTreeHelper(tl->left());
  verifyTreeHelper(tl->right());
}

void BinaryTreeDictionary::verify() const {
  verifyTree();
  guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
}