view src/share/vm/memory/generation.hpp @ 1145:e018e6884bd8

6631166: CMS: better heuristics when combatting fragmentation Summary: Autonomic per-worker free block cache sizing, tunable coalition policies, fixes to per-size block statistics, retuned gain and bandwidth of some feedback loop filters to allow quicker reactivity to abrupt changes in ambient demand, and other heuristics to reduce fragmentation of the CMS old gen. Also tightened some assertions, including those related to locking. Reviewed-by: jmasa
author ysr
date Wed, 23 Dec 2009 09:23:54 -0800
parents 0fbdb4381b99
children c18cbe5936b8
line wrap: on
line source

/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// A Generation models a heap area for similarly-aged objects.
// It will contain one ore more spaces holding the actual objects.
//
// The Generation class hierarchy:
//
// Generation                      - abstract base class
// - DefNewGeneration              - allocation area (copy collected)
//   - ParNewGeneration            - a DefNewGeneration that is collected by
//                                   several threads
// - CardGeneration                 - abstract class adding offset array behavior
//   - OneContigSpaceCardGeneration - abstract class holding a single
//                                    contiguous space with card marking
//     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
//     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
//   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
//                                       (Detlefs-Printezis refinement of
//                                       Boehm-Demers-Schenker)
//
// The system configurations currently allowed are:
//
//   DefNewGeneration + TenuredGeneration + PermGeneration
//   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
//
//   ParNewGeneration + TenuredGeneration + PermGeneration
//   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
//

class DefNewGeneration;
class GenerationSpec;
class CompactibleSpace;
class ContiguousSpace;
class CompactPoint;
class OopsInGenClosure;
class OopClosure;
class ScanClosure;
class FastScanClosure;
class GenCollectedHeap;
class GenRemSet;
class GCStats;

// A "ScratchBlock" represents a block of memory in one generation usable by
// another.  It represents "num_words" free words, starting at and including
// the address of "this".
struct ScratchBlock {
  ScratchBlock* next;
  size_t num_words;
  HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
                              // first two fields are word-sized.)
};


class Generation: public CHeapObj {
  friend class VMStructs;
 private:
  jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  MemRegion _prev_used_region; // for collectors that want to "remember" a value for
                               // used region at some specific point during collection.

 protected:
  // Minimum and maximum addresses for memory reserved (not necessarily
  // committed) for generation.
  // Used by card marking code. Must not overlap with address ranges of
  // other generations.
  MemRegion _reserved;

  // Memory area reserved for generation
  VirtualSpace _virtual_space;

  // Level in the generation hierarchy.
  int _level;

  // ("Weak") Reference processing support
  ReferenceProcessor* _ref_processor;

  // Performance Counters
  CollectorCounters* _gc_counters;

  // Statistics for garbage collection
  GCStats* _gc_stats;

  // Returns the next generation in the configuration, or else NULL if this
  // is the highest generation.
  Generation* next_gen() const;

  // Initialize the generation.
  Generation(ReservedSpace rs, size_t initial_byte_size, int level);

  // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
  // "sp" that point into younger generations.
  // The iteration is only over objects allocated at the start of the
  // iterations; objects allocated as a result of applying the closure are
  // not included.
  void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);

 public:
  // The set of possible generation kinds.
  enum Name {
    ASParNew,
    ASConcurrentMarkSweep,
    DefNew,
    ParNew,
    MarkSweepCompact,
    ConcurrentMarkSweep,
    Other
  };

  enum SomePublicConstants {
    // Generations are GenGrain-aligned and have size that are multiples of
    // GenGrain.
    LogOfGenGrain = 16,
    GenGrain = 1 << LogOfGenGrain
  };

  // allocate and initialize ("weak") refs processing support
  virtual void ref_processor_init();
  void set_ref_processor(ReferenceProcessor* rp) {
    assert(_ref_processor == NULL, "clobbering existing _ref_processor");
    _ref_processor = rp;
  }

  virtual Generation::Name kind() { return Generation::Other; }
  GenerationSpec* spec();

  // This properly belongs in the collector, but for now this
  // will do.
  virtual bool refs_discovery_is_atomic() const { return true;  }
  virtual bool refs_discovery_is_mt()     const { return false; }

  // Space enquiries (results in bytes)
  virtual size_t capacity() const = 0;  // The maximum number of object bytes the
                                        // generation can currently hold.
  virtual size_t used() const = 0;      // The number of used bytes in the gen.
  virtual size_t free() const = 0;      // The number of free bytes in the gen.

  // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
  // Returns the total number of bytes  available in a generation
  // for the allocation of objects.
  virtual size_t max_capacity() const;

  // If this is a young generation, the maximum number of bytes that can be
  // allocated in this generation before a GC is triggered.
  virtual size_t capacity_before_gc() const { return 0; }

  // The largest number of contiguous free bytes in the generation,
  // including expansion  (Assumes called at a safepoint.)
  virtual size_t contiguous_available() const = 0;
  // The largest number of contiguous free bytes in this or any higher generation.
  virtual size_t max_contiguous_available() const;

  // Returns true if promotions of the specified amount can
  // be attempted safely (without a vm failure).
  // Promotion of the full amount is not guaranteed but
  // can be attempted.
  //   younger_handles_promotion_failure
  // is true if the younger generation handles a promotion
  // failure.
  virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
    bool younger_handles_promotion_failure) const;

  // For a non-young generation, this interface can be used to inform a
  // generation that a promotion attempt into that generation failed.
  // Typically used to enable diagnostic output for post-mortem analysis,
  // but other uses of the interface are not ruled out.
  virtual void promotion_failure_occurred() { /* does nothing */ }

  // Return an estimate of the maximum allocation that could be performed
  // in the generation without triggering any collection or expansion
  // activity.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc_nogc() const = 0;

  // Returns true if this generation cannot be expanded further
  // without a GC. Override as appropriate.
  virtual bool is_maximal_no_gc() const {
    return _virtual_space.uncommitted_size() == 0;
  }

  MemRegion reserved() const { return _reserved; }

  // Returns a region guaranteed to contain all the objects in the
  // generation.
  virtual MemRegion used_region() const { return _reserved; }

  MemRegion prev_used_region() const { return _prev_used_region; }
  virtual void  save_used_region()   { _prev_used_region = used_region(); }

  // Returns "TRUE" iff "p" points into an allocated object in the generation.
  // For some kinds of generations, this may be an expensive operation.
  // To avoid performance problems stemming from its inadvertent use in
  // product jvm's, we restrict its use to assertion checking or
  // verification only.
  virtual bool is_in(const void* p) const;

  /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
  bool is_in_reserved(const void* p) const {
    return _reserved.contains(p);
  }

  // Check that the generation kind is DefNewGeneration or a sub
  // class of DefNewGeneration and return a DefNewGeneration*
  DefNewGeneration*  as_DefNewGeneration();

  // If some space in the generation contains the given "addr", return a
  // pointer to that space, else return "NULL".
  virtual Space* space_containing(const void* addr) const;

  // Iteration - do not use for time critical operations
  virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;

  // Returns the first space, if any, in the generation that can participate
  // in compaction, or else "NULL".
  virtual CompactibleSpace* first_compaction_space() const = 0;

  // Returns "true" iff this generation should be used to allocate an
  // object of the given size.  Young generations might
  // wish to exclude very large objects, for example, since, if allocated
  // often, they would greatly increase the frequency of young-gen
  // collection.
  virtual bool should_allocate(size_t word_size, bool is_tlab) {
    bool result = false;
    size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
    if (!is_tlab || supports_tlab_allocation()) {
      result = (word_size > 0) && (word_size < overflow_limit);
    }
    return result;
  }

  // Allocate and returns a block of the requested size, or returns "NULL".
  // Assumes the caller has done any necessary locking.
  virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;

  // Like "allocate", but performs any necessary locking internally.
  virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;

  // A 'younger' gen has reached an allocation limit, and uses this to notify
  // the next older gen.  The return value is a new limit, or NULL if none.  The
  // caller must do the necessary locking.
  virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
                                             size_t word_size) {
    return NULL;
  }

  // Some generation may offer a region for shared, contiguous allocation,
  // via inlined code (by exporting the address of the top and end fields
  // defining the extent of the contiguous allocation region.)

  // This function returns "true" iff the heap supports this kind of
  // allocation.  (More precisely, this means the style of allocation that
  // increments *top_addr()" with a CAS.) (Default is "no".)
  // A generation that supports this allocation style must use lock-free
  // allocation for *all* allocation, since there are times when lock free
  // allocation will be concurrent with plain "allocate" calls.
  virtual bool supports_inline_contig_alloc() const { return false; }

  // These functions return the addresses of the fields that define the
  // boundaries of the contiguous allocation area.  (These fields should be
  // physicall near to one another.)
  virtual HeapWord** top_addr() const { return NULL; }
  virtual HeapWord** end_addr() const { return NULL; }

  // Thread-local allocation buffers
  virtual bool supports_tlab_allocation() const { return false; }
  virtual size_t tlab_capacity() const {
    guarantee(false, "Generation doesn't support thread local allocation buffers");
    return 0;
  }
  virtual size_t unsafe_max_tlab_alloc() const {
    guarantee(false, "Generation doesn't support thread local allocation buffers");
    return 0;
  }

  // "obj" is the address of an object in a younger generation.  Allocate space
  // for "obj" in the current (or some higher) generation, and copy "obj" into
  // the newly allocated space, if possible, returning the result (or NULL if
  // the allocation failed).
  //
  // The "obj_size" argument is just obj->size(), passed along so the caller can
  // avoid repeating the virtual call to retrieve it.
  virtual oop promote(oop obj, size_t obj_size);

  // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
  // object "obj", whose original mark word was "m", and whose size is
  // "word_sz".  If possible, allocate space for "obj", copy obj into it
  // (taking care to copy "m" into the mark word when done, since the mark
  // word of "obj" may have been overwritten with a forwarding pointer, and
  // also taking care to copy the klass pointer *last*.  Returns the new
  // object if successful, or else NULL.
  virtual oop par_promote(int thread_num,
                          oop obj, markOop m, size_t word_sz);

  // Undo, if possible, the most recent par_promote_alloc allocation by
  // "thread_num" ("obj", of "word_sz").
  virtual void par_promote_alloc_undo(int thread_num,
                                      HeapWord* obj, size_t word_sz);

  // Informs the current generation that all par_promote_alloc's in the
  // collection have been completed; any supporting data structures can be
  // reset.  Default is to do nothing.
  virtual void par_promote_alloc_done(int thread_num) {}

  // Informs the current generation that all oop_since_save_marks_iterates
  // performed by "thread_num" in the current collection, if any, have been
  // completed; any supporting data structures can be reset.  Default is to
  // do nothing.
  virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}

  // This generation will collect all younger generations
  // during a full collection.
  virtual bool full_collects_younger_generations() const { return false; }

  // This generation does in-place marking, meaning that mark words
  // are mutated during the marking phase and presumably reinitialized
  // to a canonical value after the GC. This is currently used by the
  // biased locking implementation to determine whether additional
  // work is required during the GC prologue and epilogue.
  virtual bool performs_in_place_marking() const { return true; }

  // Returns "true" iff collect() should subsequently be called on this
  // this generation. See comment below.
  // This is a generic implementation which can be overridden.
  //
  // Note: in the current (1.4) implementation, when genCollectedHeap's
  // incremental_collection_will_fail flag is set, all allocations are
  // slow path (the only fast-path place to allocate is DefNew, which
  // will be full if the flag is set).
  // Thus, older generations which collect younger generations should
  // test this flag and collect if it is set.
  virtual bool should_collect(bool   full,
                              size_t word_size,
                              bool   is_tlab) {
    return (full || should_allocate(word_size, is_tlab));
  }

  // Perform a garbage collection.
  // If full is true attempt a full garbage collection of this generation.
  // Otherwise, attempting to (at least) free enough space to support an
  // allocation of the given "word_size".
  virtual void collect(bool   full,
                       bool   clear_all_soft_refs,
                       size_t word_size,
                       bool   is_tlab) = 0;

  // Perform a heap collection, attempting to create (at least) enough
  // space to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the resulting
  // "oop" (initializing the allocated block). If the allocation is
  // still unsuccessful, return "NULL".
  virtual HeapWord* expand_and_allocate(size_t word_size,
                                        bool is_tlab,
                                        bool parallel = false) = 0;

  // Some generations may require some cleanup or preparation actions before
  // allowing a collection.  The default is to do nothing.
  virtual void gc_prologue(bool full) {};

  // Some generations may require some cleanup actions after a collection.
  // The default is to do nothing.
  virtual void gc_epilogue(bool full) {};

  // Save the high water marks for the used space in a generation.
  virtual void record_spaces_top() {};

  // Some generations may need to be "fixed-up" after some allocation
  // activity to make them parsable again. The default is to do nothing.
  virtual void ensure_parsability() {};

  // Time (in ms) when we were last collected or now if a collection is
  // in progress.
  virtual jlong time_of_last_gc(jlong now) {
    // XXX See note in genCollectedHeap::millis_since_last_gc()
    NOT_PRODUCT(
      if (now < _time_of_last_gc) {
        warning("time warp: %d to %d", _time_of_last_gc, now);
      }
    )
    return _time_of_last_gc;
  }

  virtual void update_time_of_last_gc(jlong now)  {
    _time_of_last_gc = now;
  }

  // Generations may keep statistics about collection.  This
  // method updates those statistics.  current_level is
  // the level of the collection that has most recently
  // occurred.  This allows the generation to decide what
  // statistics are valid to collect.  For example, the
  // generation can decide to gather the amount of promoted data
  // if the collection of the younger generations has completed.
  GCStats* gc_stats() const { return _gc_stats; }
  virtual void update_gc_stats(int current_level, bool full) {}

  // Mark sweep support phase2
  virtual void prepare_for_compaction(CompactPoint* cp);
  // Mark sweep support phase3
  virtual void pre_adjust_pointers() {ShouldNotReachHere();}
  virtual void adjust_pointers();
  // Mark sweep support phase4
  virtual void compact();
  virtual void post_compact() {ShouldNotReachHere();}

  // Support for CMS's rescan. In this general form we return a pointer
  // to an abstract object that can be used, based on specific previously
  // decided protocols, to exchange information between generations,
  // information that may be useful for speeding up certain types of
  // garbage collectors. A NULL value indicates to the client that
  // no data recording is expected by the provider. The data-recorder is
  // expected to be GC worker thread-local, with the worker index
  // indicated by "thr_num".
  virtual void* get_data_recorder(int thr_num) { return NULL; }

  // Some generations may require some cleanup actions before allowing
  // a verification.
  virtual void prepare_for_verify() {};

  // Accessing "marks".

  // This function gives a generation a chance to note a point between
  // collections.  For example, a contiguous generation might note the
  // beginning allocation point post-collection, which might allow some later
  // operations to be optimized.
  virtual void save_marks() {}

  // This function allows generations to initialize any "saved marks".  That
  // is, should only be called when the generation is empty.
  virtual void reset_saved_marks() {}

  // This function is "true" iff any no allocations have occurred in the
  // generation since the last call to "save_marks".
  virtual bool no_allocs_since_save_marks() = 0;

  // Apply "cl->apply" to (the addresses of) all reference fields in objects
  // allocated in the current generation since the last call to "save_marks".
  // If more objects are allocated in this generation as a result of applying
  // the closure, iterates over reference fields in those objects as well.
  // Calls "save_marks" at the end of the iteration.
  // General signature...
  virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
  // ...and specializations for de-virtualization.  (The general
  // implemention of the _nv versions call the virtual version.
  // Note that the _nv suffix is not really semantically necessary,
  // but it avoids some not-so-useful warnings on Solaris.)
#define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
  virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
    oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
  }
  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)

#undef Generation_SINCE_SAVE_MARKS_DECL

  // The "requestor" generation is performing some garbage collection
  // action for which it would be useful to have scratch space.  If
  // the target is not the requestor, no gc actions will be required
  // of the target.  The requestor promises to allocate no more than
  // "max_alloc_words" in the target generation (via promotion say,
  // if the requestor is a young generation and the target is older).
  // If the target generation can provide any scratch space, it adds
  // it to "list", leaving "list" pointing to the head of the
  // augmented list.  The default is to offer no space.
  virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
                                  size_t max_alloc_words) {}

  // Give each generation an opportunity to do clean up for any
  // contributed scratch.
  virtual void reset_scratch() {};

  // When an older generation has been collected, and perhaps resized,
  // this method will be invoked on all younger generations (from older to
  // younger), allowing them to resize themselves as appropriate.
  virtual void compute_new_size() = 0;

  // Printing
  virtual const char* name() const = 0;
  virtual const char* short_name() const = 0;

  int level() const { return _level; }

  // Attributes

  // True iff the given generation may only be the youngest generation.
  virtual bool must_be_youngest() const = 0;
  // True iff the given generation may only be the oldest generation.
  virtual bool must_be_oldest() const = 0;

  // Reference Processing accessor
  ReferenceProcessor* const ref_processor() { return _ref_processor; }

  // Iteration.

  // Iterate over all the ref-containing fields of all objects in the
  // generation, calling "cl.do_oop" on each.
  virtual void oop_iterate(OopClosure* cl);

  // Same as above, restricted to the intersection of a memory region and
  // the generation.
  virtual void oop_iterate(MemRegion mr, OopClosure* cl);

  // Iterate over all objects in the generation, calling "cl.do_object" on
  // each.
  virtual void object_iterate(ObjectClosure* cl);

  // Iterate over all safe objects in the generation, calling "cl.do_object" on
  // each.  An object is safe if its references point to other objects in
  // the heap.  This defaults to object_iterate() unless overridden.
  virtual void safe_object_iterate(ObjectClosure* cl);

  // Iterate over all objects allocated in the generation since the last
  // collection, calling "cl.do_object" on each.  The generation must have
  // been initialized properly to support this function, or else this call
  // will fail.
  virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;

  // Apply "cl->do_oop" to (the address of) all and only all the ref fields
  // in the current generation that contain pointers to objects in younger
  // generations. Objects allocated since the last "save_marks" call are
  // excluded.
  virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;

  // Inform a generation that it longer contains references to objects
  // in any younger generation.    [e.g. Because younger gens are empty,
  // clear the card table.]
  virtual void clear_remembered_set() { }

  // Inform a generation that some of its objects have moved.  [e.g. The
  // generation's spaces were compacted, invalidating the card table.]
  virtual void invalidate_remembered_set() { }

  // Block abstraction.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const ;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;


  // PrintGC, PrintGCDetails support
  void print_heap_change(size_t prev_used) const;

  // PrintHeapAtGC support
  virtual void print() const;
  virtual void print_on(outputStream* st) const;

  virtual void verify(bool allow_dirty) = 0;

  struct StatRecord {
    int invocations;
    elapsedTimer accumulated_time;
    StatRecord() :
      invocations(0),
      accumulated_time(elapsedTimer()) {}
  };
private:
  StatRecord _stat_record;
public:
  StatRecord* stat_record() { return &_stat_record; }

  virtual void print_summary_info();
  virtual void print_summary_info_on(outputStream* st);

  // Performance Counter support
  virtual void update_counters() = 0;
  virtual CollectorCounters* counters() { return _gc_counters; }
};

// Class CardGeneration is a generation that is covered by a card table,
// and uses a card-size block-offset array to implement block_start.

// class BlockOffsetArray;
// class BlockOffsetArrayContigSpace;
class BlockOffsetSharedArray;

class CardGeneration: public Generation {
  friend class VMStructs;
 protected:
  // This is shared with other generations.
  GenRemSet* _rs;
  // This is local to this generation.
  BlockOffsetSharedArray* _bts;

  CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
                 GenRemSet* remset);

 public:

  // Attempt to expand the generation by "bytes".  Expand by at a
  // minimum "expand_bytes".  Return true if some amount (not
  // necessarily the full "bytes") was done.
  virtual bool expand(size_t bytes, size_t expand_bytes);

  virtual void clear_remembered_set();

  virtual void invalidate_remembered_set();

  virtual void prepare_for_verify();

  // Grow generation with specified size (returns false if unable to grow)
  virtual bool grow_by(size_t bytes) = 0;
  // Grow generation to reserved size.
  virtual bool grow_to_reserved() = 0;
};

// OneContigSpaceCardGeneration models a heap of old objects contained in a single
// contiguous space.
//
// Garbage collection is performed using mark-compact.

class OneContigSpaceCardGeneration: public CardGeneration {
  friend class VMStructs;
  // Abstractly, this is a subtype that gets access to protected fields.
  friend class CompactingPermGen;
  friend class VM_PopulateDumpSharedSpace;

 protected:
  size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
  ContiguousSpace*  _the_space;       // actual space holding objects
  WaterMark  _last_gc;                // watermark between objects allocated before
                                      // and after last GC.

  // Grow generation with specified size (returns false if unable to grow)
  virtual bool grow_by(size_t bytes);
  // Grow generation to reserved size.
  virtual bool grow_to_reserved();
  // Shrink generation with specified size (returns false if unable to shrink)
  void shrink_by(size_t bytes);

  // Allocation failure
  virtual bool expand(size_t bytes, size_t expand_bytes);
  void shrink(size_t bytes);

  // Accessing spaces
  ContiguousSpace* the_space() const { return _the_space; }

 public:
  OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
                               size_t min_heap_delta_bytes,
                               int level, GenRemSet* remset,
                               ContiguousSpace* space) :
    CardGeneration(rs, initial_byte_size, level, remset),
    _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
  {}

  inline bool is_in(const void* p) const;

  // Space enquiries
  size_t capacity() const;
  size_t used() const;
  size_t free() const;

  MemRegion used_region() const;

  size_t unsafe_max_alloc_nogc() const;
  size_t contiguous_available() const;

  // Iteration
  void object_iterate(ObjectClosure* blk);
  void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  void object_iterate_since_last_GC(ObjectClosure* cl);

  void younger_refs_iterate(OopsInGenClosure* blk);

  inline CompactibleSpace* first_compaction_space() const;

  virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
  virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);

  // Accessing marks
  inline WaterMark top_mark();
  inline WaterMark bottom_mark();

#define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
  void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)

  void save_marks();
  void reset_saved_marks();
  bool no_allocs_since_save_marks();

  inline size_t block_size(const HeapWord* addr) const;

  inline bool block_is_obj(const HeapWord* addr) const;

  virtual void collect(bool full,
                       bool clear_all_soft_refs,
                       size_t size,
                       bool is_tlab);
  HeapWord* expand_and_allocate(size_t size,
                                bool is_tlab,
                                bool parallel = false);

  virtual void prepare_for_verify();

  virtual void gc_epilogue(bool full);

  virtual void record_spaces_top();

  virtual void verify(bool allow_dirty);
  virtual void print_on(outputStream* st) const;
};