view src/share/vm/runtime/frame.hpp @ 1145:e018e6884bd8

6631166: CMS: better heuristics when combatting fragmentation Summary: Autonomic per-worker free block cache sizing, tunable coalition policies, fixes to per-size block statistics, retuned gain and bandwidth of some feedback loop filters to allow quicker reactivity to abrupt changes in ambient demand, and other heuristics to reduce fragmentation of the CMS old gen. Also tightened some assertions, including those related to locking. Reviewed-by: jmasa
author ysr
date Wed, 23 Dec 2009 09:23:54 -0800
parents 148e5441d916
children dd57230ba8fe
line wrap: on
line source

/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

typedef class BytecodeInterpreter* interpreterState;

class CodeBlob;


// A frame represents a physical stack frame (an activation).  Frames
// can be C or Java frames, and the Java frames can be interpreted or
// compiled.  In contrast, vframes represent source-level activations,
// so that one physical frame can correspond to multiple source level
// frames because of inlining.

class frame VALUE_OBJ_CLASS_SPEC {
 private:
  // Instance variables:
  intptr_t* _sp; // stack pointer (from Thread::last_Java_sp)
  address   _pc; // program counter (the next instruction after the call)

  CodeBlob* _cb; // CodeBlob that "owns" pc
  enum deopt_state {
    not_deoptimized,
    is_deoptimized,
    unknown
  };

  deopt_state _deopt_state;

 public:
  // Constructors
  frame();

  // Accessors

  // pc: Returns the pc at which this frame will continue normally.
  // It must point at the beginning of the next instruction to execute.
  address pc() const             { return _pc; }

  // This returns the pc that if you were in the debugger you'd see. Not
  // the idealized value in the frame object. This undoes the magic conversion
  // that happens for deoptimized frames. In addition it makes the value the
  // hardware would want to see in the native frame. The only user (at this point)
  // is deoptimization. It likely no one else should ever use it.
  address raw_pc() const;

  void set_pc( address   newpc );

  intptr_t* sp() const           { return _sp; }
  void set_sp( intptr_t* newsp ) { _sp = newsp; }


  CodeBlob* cb() const           { return _cb; }

  // patching operations
  void   patch_pc(Thread* thread, address pc);

  // Every frame needs to return a unique id which distinguishes it from all other frames.
  // For sparc and ia32 use sp. ia64 can have memory frames that are empty so multiple frames
  // will have identical sp values. For ia64 the bsp (fp) value will serve. No real frame
  // should have an id() of NULL so it is a distinguishing value for an unmatchable frame.
  // We also have relationals which allow comparing a frame to anoth frame's id() allow
  // us to distinguish younger (more recent activation) from older (less recent activations)
  // A NULL id is only valid when comparing for equality.

  intptr_t* id(void) const;
  bool is_younger(intptr_t* id) const;
  bool is_older(intptr_t* id) const;

  // testers

  // Compares for strict equality. Rarely used or needed.
  // It can return a different result than f1.id() == f2.id()
  bool equal(frame other) const;

  // type testers
  bool is_interpreted_frame()    const;
  bool is_java_frame()           const;
  bool is_entry_frame()          const;             // Java frame called from C?
  bool is_native_frame()         const;
  bool is_runtime_frame()        const;
  bool is_compiled_frame()       const;
  bool is_safepoint_blob_frame() const;
  bool is_deoptimized_frame()    const;

  // testers
  bool is_first_frame() const; // oldest frame? (has no sender)
  bool is_first_java_frame() const;              // same for Java frame

  bool is_interpreted_frame_valid(JavaThread* thread) const;       // performs sanity checks on interpreted frames.

  // tells whether this frame is marked for deoptimization
  bool should_be_deoptimized() const;

  // tells whether this frame can be deoptimized
  bool can_be_deoptimized() const;

  // returns the frame size in stack slots
  int frame_size(RegisterMap* map) const;

  // returns the sending frame
  frame sender(RegisterMap* map) const;

  // for Profiling - acting on another frame. walks sender frames
  // if valid.
  frame profile_find_Java_sender_frame(JavaThread *thread);
  bool safe_for_sender(JavaThread *thread);

  // returns the sender, but skips conversion frames
  frame real_sender(RegisterMap* map) const;

  // returns the the sending Java frame, skipping any intermediate C frames
  // NB: receiver must not be first frame
  frame java_sender() const;

 private:
  // Helper methods for better factored code in frame::sender
  frame sender_for_compiled_frame(RegisterMap* map) const;
  frame sender_for_entry_frame(RegisterMap* map) const;
  frame sender_for_interpreter_frame(RegisterMap* map) const;
  frame sender_for_native_frame(RegisterMap* map) const;

  // All frames:

  // A low-level interface for vframes:

 public:

  intptr_t* addr_at(int index) const             { return &fp()[index];    }
  intptr_t  at(int index) const                  { return *addr_at(index); }

  // accessors for locals
  oop obj_at(int offset) const                   { return *obj_at_addr(offset);  }
  void obj_at_put(int offset, oop value)         { *obj_at_addr(offset) = value; }

  jint int_at(int offset) const                  { return *int_at_addr(offset);  }
  void int_at_put(int offset, jint value)        { *int_at_addr(offset) = value; }

  oop*      obj_at_addr(int offset) const        { return (oop*)     addr_at(offset); }

  oop*      adjusted_obj_at_addr(methodOop method, int index) { return obj_at_addr(adjust_offset(method, index)); }

 private:
  jint*    int_at_addr(int offset) const         { return (jint*)    addr_at(offset); }

 public:
  // Link (i.e., the pointer to the previous frame)
  intptr_t* link() const;
  void set_link(intptr_t* addr);

  // Return address
  address  sender_pc() const;

  // Support for deoptimization
  void deoptimize(JavaThread* thread, bool thread_is_known_safe = false);

  // The frame's original SP, before any extension by an interpreted callee;
  // used for packing debug info into vframeArray objects and vframeArray lookup.
  intptr_t* unextended_sp() const;

  // returns the stack pointer of the calling frame
  intptr_t* sender_sp() const;


  // Interpreter frames:

 private:
  intptr_t** interpreter_frame_locals_addr() const;
  intptr_t*  interpreter_frame_bcx_addr() const;
  intptr_t*  interpreter_frame_mdx_addr() const;

 public:
  // Tags for TaggedStackInterpreter
  enum Tag {
      TagValue = 0,          // Important: must be zero to use G0 on sparc.
      TagReference = 0x555,  // Reference type - is an oop that needs gc.
      TagCategory2 = 0x666   // Only used internally by interpreter
                             // and not written to the java stack.
      // The values above are chosen so that misuse causes a crash
      // with a recognizable value.
  };

  static Tag tag_for_basic_type(BasicType typ) {
    return (typ == T_OBJECT ? TagReference : TagValue);
  }

  // Locals

  // The _at version returns a pointer because the address is used for GC.
  intptr_t* interpreter_frame_local_at(int index) const;
  Tag       interpreter_frame_local_tag(int index) const;
  void      interpreter_frame_set_local_tag(int index, Tag tag) const;

  void interpreter_frame_set_locals(intptr_t* locs);

  // byte code index/pointer (use these functions for unchecked frame access only!)
  intptr_t interpreter_frame_bcx() const                  { return *interpreter_frame_bcx_addr(); }
  void interpreter_frame_set_bcx(intptr_t bcx);

  // byte code index
  jint interpreter_frame_bci() const;
  void interpreter_frame_set_bci(jint bci);

  // byte code pointer
  address interpreter_frame_bcp() const;
  void    interpreter_frame_set_bcp(address bcp);

  // Unchecked access to the method data index/pointer.
  // Only use this if you know what you are doing.
  intptr_t interpreter_frame_mdx() const                  { return *interpreter_frame_mdx_addr(); }
  void interpreter_frame_set_mdx(intptr_t mdx);

  // method data pointer
  address interpreter_frame_mdp() const;
  void    interpreter_frame_set_mdp(address dp);

  // Find receiver out of caller's (compiled) argument list
  oop retrieve_receiver(RegisterMap *reg_map);

  // Return the monitor owner and BasicLock for compiled synchronized
  // native methods so that biased locking can revoke the receiver's
  // bias if necessary. Takes optional nmethod for this frame as
  // argument to avoid performing repeated lookups in code cache.
  BasicLock* compiled_synchronized_native_monitor      (nmethod* nm = NULL);
  oop        compiled_synchronized_native_monitor_owner(nmethod* nm = NULL);

  // Find receiver for an invoke when arguments are just pushed on stack (i.e., callee stack-frame is
  // not setup)
  oop interpreter_callee_receiver(symbolHandle signature)     { return *interpreter_callee_receiver_addr(signature); }


  oop* interpreter_callee_receiver_addr(symbolHandle signature);


  // expression stack (may go up or down, direction == 1 or -1)
 public:
  intptr_t* interpreter_frame_expression_stack() const;
  static  jint  interpreter_frame_expression_stack_direction();

  // The _at version returns a pointer because the address is used for GC.
  intptr_t* interpreter_frame_expression_stack_at(jint offset) const;
  Tag       interpreter_frame_expression_stack_tag(jint offset) const;
  void      interpreter_frame_set_expression_stack_tag(jint offset, Tag tag) const;

  // top of expression stack
  intptr_t* interpreter_frame_tos_at(jint offset) const;
  intptr_t* interpreter_frame_tos_address() const;


  jint  interpreter_frame_expression_stack_size() const;

  intptr_t* interpreter_frame_sender_sp() const;

#ifndef CC_INTERP
  // template based interpreter deoptimization support
  void  set_interpreter_frame_sender_sp(intptr_t* sender_sp);
  void interpreter_frame_set_monitor_end(BasicObjectLock* value);
#endif // CC_INTERP

  // BasicObjectLocks:
  //
  // interpreter_frame_monitor_begin is higher in memory than interpreter_frame_monitor_end
  // Interpreter_frame_monitor_begin points to one element beyond the oldest one,
  // interpreter_frame_monitor_end   points to the youngest one, or if there are none,
  //                                 it points to one beyond where the first element will be.
  // interpreter_frame_monitor_size  reports the allocation size of a monitor in the interpreter stack.
  //                                 this value is >= BasicObjectLock::size(), and may be rounded up

  BasicObjectLock* interpreter_frame_monitor_begin() const;
  BasicObjectLock* interpreter_frame_monitor_end()   const;
  BasicObjectLock* next_monitor_in_interpreter_frame(BasicObjectLock* current) const;
  BasicObjectLock* previous_monitor_in_interpreter_frame(BasicObjectLock* current) const;
  static int interpreter_frame_monitor_size();

  void interpreter_frame_verify_monitor(BasicObjectLock* value) const;

  // Tells whether the current interpreter_frame frame pointer
  // corresponds to the old compiled/deoptimized fp
  // The receiver used to be a top level frame
  bool interpreter_frame_equals_unpacked_fp(intptr_t* fp);

  // Return/result value from this interpreter frame
  // If the method return type is T_OBJECT or T_ARRAY populates oop_result
  // For other (non-T_VOID) the appropriate field in the jvalue is populated
  // with the result value.
  // Should only be called when at method exit when the method is not
  // exiting due to an exception.
  BasicType interpreter_frame_result(oop* oop_result, jvalue* value_result);

 public:
  // Method & constant pool cache
  methodOop interpreter_frame_method() const;
  void interpreter_frame_set_method(methodOop method);
  methodOop* interpreter_frame_method_addr() const;
  constantPoolCacheOop* interpreter_frame_cache_addr() const;

 public:
  // Entry frames
  JavaCallWrapper* entry_frame_call_wrapper() const;
  intptr_t* entry_frame_argument_at(int offset) const;

  // tells whether there is another chunk of Delta stack above
  bool entry_frame_is_first() const;

  // Compiled frames:

 public:
  // Given the index of a local, and the number of argument words
  // in this stack frame, tell which word of the stack frame to find
  // the local in.  Arguments are stored above the ofp/rpc pair,
  // while other locals are stored below it.
  // Since monitors (BasicLock blocks) are also assigned indexes,
  // but may have different storage requirements, their presence
  // can also affect the calculation of offsets.
  static int local_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors);

  // Given the index of a monitor, etc., tell which word of the
  // stack frame contains the start of the BasicLock block.
  // Note that the local index by convention is the __higher__
  // of the two indexes allocated to the block.
  static int monitor_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors);

  // Tell the smallest value that local_offset_for_compiler will attain.
  // This is used to help determine how much stack frame to allocate.
  static int min_local_offset_for_compiler(int nof_args, int max_nof_locals, int max_nof_monitors);

  // Tells if this register must be spilled during a call.
  // On Intel, all registers are smashed by calls.
  static bool volatile_across_calls(Register reg);


  // Safepoints

 public:
  oop saved_oop_result(RegisterMap* map) const;
  void set_saved_oop_result(RegisterMap* map, oop obj);

  // For debugging
 private:
  const char* print_name() const;

 public:
  void print_value() const { print_value_on(tty,NULL); }
  void print_value_on(outputStream* st, JavaThread *thread) const;
  void print_on(outputStream* st) const;
  void interpreter_frame_print_on(outputStream* st) const;
  void print_on_error(outputStream* st, char* buf, int buflen, bool verbose = false) const;

  // Conversion from an VMReg to physical stack location
  oop* oopmapreg_to_location(VMReg reg, const RegisterMap* regmap) const;

  // Oops-do's
  void oops_compiled_arguments_do(symbolHandle signature, bool is_static, const RegisterMap* reg_map, OopClosure* f);
  void oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache = true);

 private:
  void oops_interpreted_locals_do(OopClosure *f,
                                 int max_locals,
                                 InterpreterOopMap *mask);
  void oops_interpreted_expressions_do(OopClosure *f, symbolHandle signature,
                                 bool is_static, int max_stack, int max_locals,
                                 InterpreterOopMap *mask);
  void oops_interpreted_arguments_do(symbolHandle signature, bool is_static, OopClosure* f);

  // Iteration of oops
  void oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache);
  void oops_entry_do(OopClosure* f, const RegisterMap* map);
  void oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* map);
  int adjust_offset(methodOop method, int index); // helper for above fn
 public:
  // Memory management
  void oops_do(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map) { oops_do_internal(f, cf, map, true); }
  void nmethods_do(CodeBlobClosure* cf);

  void gc_prologue();
  void gc_epilogue();
  void pd_gc_epilog();

# ifdef ENABLE_ZAP_DEAD_LOCALS
 private:
  class CheckValueClosure: public OopClosure {
   public:
    void do_oop(oop* p);
    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  };
  static CheckValueClosure _check_value;

  class CheckOopClosure: public OopClosure {
   public:
    void do_oop(oop* p);
    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  };
  static CheckOopClosure _check_oop;

  static void check_derived_oop(oop* base, oop* derived);

  class ZapDeadClosure: public OopClosure {
   public:
    void do_oop(oop* p);
    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  };
  static ZapDeadClosure _zap_dead;

 public:
  // Zapping
  void zap_dead_locals            (JavaThread* thread, const RegisterMap* map);
  void zap_dead_interpreted_locals(JavaThread* thread, const RegisterMap* map);
  void zap_dead_compiled_locals   (JavaThread* thread, const RegisterMap* map);
  void zap_dead_entry_locals      (JavaThread* thread, const RegisterMap* map);
  void zap_dead_deoptimized_locals(JavaThread* thread, const RegisterMap* map);
# endif
  // Verification
  void verify(const RegisterMap* map);
  static bool verify_return_pc(address x);
  static bool is_bci(intptr_t bcx);
  // Usage:
  // assert(frame::verify_return_pc(return_address), "must be a return pc");

  int pd_oop_map_offset_adjustment() const;

# include "incls/_frame_pd.hpp.incl"
};


//
// StackFrameStream iterates through the frames of a thread starting from
// top most frame. It automatically takes care of updating the location of
// all (callee-saved) registers. Notice: If a thread is stopped at
// a safepoint, all registers are saved, not only the callee-saved ones.
//
// Use:
//
//   for(StackFrameStream fst(thread); !fst.is_done(); fst.next()) {
//     ...
//   }
//
class StackFrameStream : public StackObj {
 private:
  frame       _fr;
  RegisterMap _reg_map;
  bool        _is_done;
 public:
   StackFrameStream(JavaThread *thread, bool update = true);

  // Iteration
  bool is_done()                  { return (_is_done) ? true : (_is_done = _fr.is_first_frame(), false); }
  void next()                     { if (!_is_done) _fr = _fr.sender(&_reg_map); }

  // Query
  frame *current()                { return &_fr; }
  RegisterMap* register_map()     { return &_reg_map; }
};