view src/share/vm/prims/methodHandleWalk.cpp @ 3249:e1162778c1c8

7009266: G1: assert(obj->is_oop_or_null(true )) failed: Error Summary: A referent object that is only weakly reachable at the start of concurrent marking but is re-attached to the strongly reachable object graph during marking may not be marked as live. This can cause the reference object to be processed prematurely and leave dangling pointers to the referent object. Implement a read barrier for the java.lang.ref.Reference::referent field by intrinsifying the Reference.get() method, and intercepting accesses though JNI, reflection, and Unsafe, so that when a non-null referent object is read it is also logged in an SATB buffer. Reviewed-by: kvn, iveresov, never, tonyp, dholmes
author johnc
date Thu, 07 Apr 2011 09:53:20 -0700
parents 8033953d67ff
children ed69575596ac
line wrap: on
line source

/*
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "interpreter/rewriter.hpp"
#include "memory/oopFactory.hpp"
#include "prims/methodHandleWalk.hpp"

/*
 * JSR 292 reference implementation: method handle structure analysis
 */


// -----------------------------------------------------------------------------
// MethodHandleChain

void MethodHandleChain::set_method_handle(Handle mh, TRAPS) {
  if (!java_lang_invoke_MethodHandle::is_instance(mh()))  lose("bad method handle", CHECK);

  // set current method handle and unpack partially
  _method_handle = mh;
  _is_last       = false;
  _is_bound      = false;
  _arg_slot      = -1;
  _arg_type      = T_VOID;
  _conversion    = -1;
  _last_invoke   = Bytecodes::_nop;  //arbitrary non-garbage

  if (java_lang_invoke_DirectMethodHandle::is_instance(mh())) {
    set_last_method(mh(), THREAD);
    return;
  }
  if (java_lang_invoke_AdapterMethodHandle::is_instance(mh())) {
    _conversion = AdapterMethodHandle_conversion();
    assert(_conversion != -1, "bad conv value");
    assert(java_lang_invoke_BoundMethodHandle::is_instance(mh()), "also BMH");
  }
  if (java_lang_invoke_BoundMethodHandle::is_instance(mh())) {
    if (!is_adapter())          // keep AMH and BMH separate in this model
      _is_bound = true;
    _arg_slot = BoundMethodHandle_vmargslot();
    oop target = MethodHandle_vmtarget_oop();
    if (!is_bound() || java_lang_invoke_MethodHandle::is_instance(target)) {
      _arg_type = compute_bound_arg_type(target, NULL, _arg_slot, CHECK);
    } else if (target != NULL && target->is_method()) {
      methodOop m = (methodOop) target;
      _arg_type = compute_bound_arg_type(NULL, m, _arg_slot, CHECK);
      set_last_method(mh(), CHECK);
    } else {
      _is_bound = false;  // lose!
    }
  }
  if (is_bound() && _arg_type == T_VOID) {
    lose("bad vmargslot", CHECK);
  }
  if (!is_bound() && !is_adapter()) {
    lose("unrecognized MH type", CHECK);
  }
}


void MethodHandleChain::set_last_method(oop target, TRAPS) {
  _is_last = true;
  klassOop receiver_limit_oop = NULL;
  int flags = 0;
  methodOop m = MethodHandles::decode_method(target, receiver_limit_oop, flags);
  _last_method = methodHandle(THREAD, m);
  if ((flags & MethodHandles::_dmf_has_receiver) == 0)
    _last_invoke = Bytecodes::_invokestatic;
  else if ((flags & MethodHandles::_dmf_does_dispatch) == 0)
    _last_invoke = Bytecodes::_invokespecial;
  else if ((flags & MethodHandles::_dmf_from_interface) != 0)
    _last_invoke = Bytecodes::_invokeinterface;
  else
    _last_invoke = Bytecodes::_invokevirtual;
}


BasicType MethodHandleChain::compute_bound_arg_type(oop target, methodOop m, int arg_slot, TRAPS) {
  // There is no direct indication of whether the argument is primitive or not.
  // It is implied by the _vmentry code, and by the MethodType of the target.
  BasicType arg_type = T_VOID;
  if (target != NULL) {
    oop mtype = java_lang_invoke_MethodHandle::type(target);
    int arg_num = MethodHandles::argument_slot_to_argnum(mtype, arg_slot);
    if (arg_num >= 0) {
      oop ptype = java_lang_invoke_MethodType::ptype(mtype, arg_num);
      arg_type = java_lang_Class::as_BasicType(ptype);
    }
  } else if (m != NULL) {
    // figure out the argument type from the slot
    // FIXME: make this explicit in the MH
    int cur_slot = m->size_of_parameters();
    if (arg_slot >= cur_slot)
      return T_VOID;
    if (!m->is_static()) {
      cur_slot -= type2size[T_OBJECT];
      if (cur_slot == arg_slot)
        return T_OBJECT;
    }
    ResourceMark rm(THREAD);
    for (SignatureStream ss(m->signature()); !ss.is_done(); ss.next()) {
      BasicType bt = ss.type();
      cur_slot -= type2size[bt];
      if (cur_slot <= arg_slot) {
        if (cur_slot == arg_slot)
          arg_type = bt;
        break;
      }
    }
  }
  if (arg_type == T_ARRAY)
    arg_type = T_OBJECT;
  return arg_type;
}


void MethodHandleChain::lose(const char* msg, TRAPS) {
  _lose_message = msg;
  if (!THREAD->is_Java_thread() || ((JavaThread*)THREAD)->thread_state() != _thread_in_vm) {
    // throw a preallocated exception
    THROW_OOP(Universe::virtual_machine_error_instance());
  }
  THROW_MSG(vmSymbols::java_lang_InternalError(), msg);
}


// -----------------------------------------------------------------------------
// MethodHandleWalker

Bytecodes::Code MethodHandleWalker::conversion_code(BasicType src, BasicType dest) {
  if (is_subword_type(src)) {
    src = T_INT;          // all subword src types act like int
  }
  if (src == dest) {
    return Bytecodes::_nop;
  }

#define SRC_DEST(s,d) (((int)(s) << 4) + (int)(d))
  switch (SRC_DEST(src, dest)) {
  case SRC_DEST(T_INT, T_LONG):           return Bytecodes::_i2l;
  case SRC_DEST(T_INT, T_FLOAT):          return Bytecodes::_i2f;
  case SRC_DEST(T_INT, T_DOUBLE):         return Bytecodes::_i2d;
  case SRC_DEST(T_INT, T_BYTE):           return Bytecodes::_i2b;
  case SRC_DEST(T_INT, T_CHAR):           return Bytecodes::_i2c;
  case SRC_DEST(T_INT, T_SHORT):          return Bytecodes::_i2s;

  case SRC_DEST(T_LONG, T_INT):           return Bytecodes::_l2i;
  case SRC_DEST(T_LONG, T_FLOAT):         return Bytecodes::_l2f;
  case SRC_DEST(T_LONG, T_DOUBLE):        return Bytecodes::_l2d;

  case SRC_DEST(T_FLOAT, T_INT):          return Bytecodes::_f2i;
  case SRC_DEST(T_FLOAT, T_LONG):         return Bytecodes::_f2l;
  case SRC_DEST(T_FLOAT, T_DOUBLE):       return Bytecodes::_f2d;

  case SRC_DEST(T_DOUBLE, T_INT):         return Bytecodes::_d2i;
  case SRC_DEST(T_DOUBLE, T_LONG):        return Bytecodes::_d2l;
  case SRC_DEST(T_DOUBLE, T_FLOAT):       return Bytecodes::_d2f;
  }
#undef SRC_DEST

  // cannot do it in one step, or at all
  return Bytecodes::_illegal;
}


// -----------------------------------------------------------------------------
// MethodHandleWalker::walk
//
MethodHandleWalker::ArgToken
MethodHandleWalker::walk(TRAPS) {
  ArgToken empty = ArgToken();  // Empty return value.

  walk_incoming_state(CHECK_(empty));

  for (;;) {
    set_method_handle(chain().method_handle_oop());

    assert(_outgoing_argc == argument_count_slow(), "empty slots under control");

    if (chain().is_adapter()) {
      int conv_op = chain().adapter_conversion_op();
      int arg_slot = chain().adapter_arg_slot();
      SlotState* arg_state = slot_state(arg_slot);
      if (arg_state == NULL
          && conv_op > java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW) {
        lose("bad argument index", CHECK_(empty));
      }

      // perform the adapter action
      switch (chain().adapter_conversion_op()) {
      case java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY:
        // No changes to arguments; pass the bits through.
        break;

      case java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW: {
        // To keep the verifier happy, emit bitwise ("raw") conversions as needed.
        // See MethodHandles::same_basic_type_for_arguments for allowed conversions.
        Handle incoming_mtype(THREAD, chain().method_type_oop());
        oop outgoing_mh_oop = chain().vmtarget_oop();
        if (!java_lang_invoke_MethodHandle::is_instance(outgoing_mh_oop))
          lose("outgoing target not a MethodHandle", CHECK_(empty));
        Handle outgoing_mtype(THREAD, java_lang_invoke_MethodHandle::type(outgoing_mh_oop));
        outgoing_mh_oop = NULL;  // GC safety

        int nptypes = java_lang_invoke_MethodType::ptype_count(outgoing_mtype());
        if (nptypes != java_lang_invoke_MethodType::ptype_count(incoming_mtype()))
          lose("incoming and outgoing parameter count do not agree", CHECK_(empty));

        for (int i = 0, slot = _outgoing.length() - 1; slot >= 0; slot--) {
          SlotState* arg_state = slot_state(slot);
          if (arg_state->_type == T_VOID)  continue;
          ArgToken arg = _outgoing.at(slot)._arg;

          klassOop  in_klass  = NULL;
          klassOop  out_klass = NULL;
          BasicType inpbt  = java_lang_Class::as_BasicType(java_lang_invoke_MethodType::ptype(incoming_mtype(), i), &in_klass);
          BasicType outpbt = java_lang_Class::as_BasicType(java_lang_invoke_MethodType::ptype(outgoing_mtype(), i), &out_klass);
          assert(inpbt == arg.basic_type(), "sanity");

          if (inpbt != outpbt) {
            vmIntrinsics::ID iid = vmIntrinsics::for_raw_conversion(inpbt, outpbt);
            if (iid == vmIntrinsics::_none) {
              lose("no raw conversion method", CHECK_(empty));
            }
            ArgToken arglist[2];
            arglist[0] = arg;         // outgoing 'this'
            arglist[1] = ArgToken();  // sentinel
            arg = make_invoke(NULL, iid, Bytecodes::_invokestatic, false, 1, &arglist[0], CHECK_(empty));
            change_argument(inpbt, slot, outpbt, arg);
          }

          i++;  // We need to skip void slots at the top of the loop.
        }

        BasicType inrbt  = java_lang_Class::as_BasicType(java_lang_invoke_MethodType::rtype(incoming_mtype()));
        BasicType outrbt = java_lang_Class::as_BasicType(java_lang_invoke_MethodType::rtype(outgoing_mtype()));
        if (inrbt != outrbt) {
          if (inrbt == T_INT && outrbt == T_VOID) {
            // See comments in MethodHandles::same_basic_type_for_arguments.
          } else {
            assert(false, "IMPLEMENT ME");
            lose("no raw conversion method", CHECK_(empty));
          }
        }
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST: {
        // checkcast the Nth outgoing argument in place
        klassOop dest_klass = NULL;
        BasicType dest = java_lang_Class::as_BasicType(chain().adapter_arg_oop(), &dest_klass);
        assert(dest == T_OBJECT, "");
        assert(dest == arg_state->_type, "");
        ArgToken arg = arg_state->_arg;
        ArgToken new_arg = make_conversion(T_OBJECT, dest_klass, Bytecodes::_checkcast, arg, CHECK_(empty));
        assert(arg.index() == new_arg.index(), "should be the same index");
        debug_only(dest_klass = (klassOop)badOop);
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM: {
        // i2l, etc., on the Nth outgoing argument in place
        BasicType src = chain().adapter_conversion_src_type(),
                  dest = chain().adapter_conversion_dest_type();
        Bytecodes::Code bc = conversion_code(src, dest);
        ArgToken arg = arg_state->_arg;
        if (bc == Bytecodes::_nop) {
          break;
        } else if (bc != Bytecodes::_illegal) {
          arg = make_conversion(dest, NULL, bc, arg, CHECK_(empty));
        } else if (is_subword_type(dest)) {
          bc = conversion_code(src, T_INT);
          if (bc != Bytecodes::_illegal) {
            arg = make_conversion(dest, NULL, bc, arg, CHECK_(empty));
            bc = conversion_code(T_INT, dest);
            arg = make_conversion(dest, NULL, bc, arg, CHECK_(empty));
          }
        }
        if (bc == Bytecodes::_illegal) {
          lose("bad primitive conversion", CHECK_(empty));
        }
        change_argument(src, arg_slot, dest, arg);
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM: {
        // checkcast to wrapper type & call intValue, etc.
        BasicType dest = chain().adapter_conversion_dest_type();
        ArgToken arg = arg_state->_arg;
        arg = make_conversion(T_OBJECT, SystemDictionary::box_klass(dest),
                              Bytecodes::_checkcast, arg, CHECK_(empty));
        vmIntrinsics::ID unboxer = vmIntrinsics::for_unboxing(dest);
        if (unboxer == vmIntrinsics::_none) {
          lose("no unboxing method", CHECK_(empty));
        }
        ArgToken arglist[2];
        arglist[0] = arg;         // outgoing 'this'
        arglist[1] = ArgToken();  // sentinel
        arg = make_invoke(NULL, unboxer, Bytecodes::_invokevirtual, false, 1, &arglist[0], CHECK_(empty));
        change_argument(T_OBJECT, arg_slot, dest, arg);
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF: {
        // call wrapper type.valueOf
        BasicType src = chain().adapter_conversion_src_type();
        ArgToken arg = arg_state->_arg;
        vmIntrinsics::ID boxer = vmIntrinsics::for_boxing(src);
        if (boxer == vmIntrinsics::_none) {
          lose("no boxing method", CHECK_(empty));
        }
        ArgToken arglist[2];
        arglist[0] = arg;         // outgoing value
        arglist[1] = ArgToken();  // sentinel
        arg = make_invoke(NULL, boxer, Bytecodes::_invokevirtual, false, 1, &arglist[0], CHECK_(empty));
        change_argument(src, arg_slot, T_OBJECT, arg);
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS: {
        int dest_arg_slot = chain().adapter_conversion_vminfo();
        if (!slot_has_argument(dest_arg_slot)) {
          lose("bad swap index", CHECK_(empty));
        }
        // a simple swap between two arguments
        SlotState* dest_arg_state = slot_state(dest_arg_slot);
        SlotState temp = (*dest_arg_state);
        (*dest_arg_state) = (*arg_state);
        (*arg_state) = temp;
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS: {
        int dest_arg_slot = chain().adapter_conversion_vminfo();
        if (!slot_has_argument(dest_arg_slot) || arg_slot == dest_arg_slot) {
          lose("bad rotate index", CHECK_(empty));
        }
        SlotState* dest_arg_state = slot_state(dest_arg_slot);
        // Rotate the source argument (plus following N slots) into the
        // position occupied by the dest argument (plus following N slots).
        int rotate_count = type2size[dest_arg_state->_type];
        // (no other rotate counts are currently supported)
        if (arg_slot < dest_arg_slot) {
          for (int i = 0; i < rotate_count; i++) {
            SlotState temp = _outgoing.at(arg_slot);
            _outgoing.remove_at(arg_slot);
            _outgoing.insert_before(dest_arg_slot + rotate_count - 1, temp);
          }
        } else { // arg_slot > dest_arg_slot
          for (int i = 0; i < rotate_count; i++) {
            SlotState temp = _outgoing.at(arg_slot + rotate_count - 1);
            _outgoing.remove_at(arg_slot + rotate_count - 1);
            _outgoing.insert_before(dest_arg_slot, temp);
          }
        }
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS: {
        int dup_slots = chain().adapter_conversion_stack_pushes();
        if (dup_slots <= 0) {
          lose("bad dup count", CHECK_(empty));
        }
        for (int i = 0; i < dup_slots; i++) {
          SlotState* dup = slot_state(arg_slot + 2*i);
          if (dup == NULL)              break;  // safety net
          if (dup->_type != T_VOID)     _outgoing_argc += 1;
          _outgoing.insert_before(i, (*dup));
        }
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS: {
        int drop_slots = -chain().adapter_conversion_stack_pushes();
        if (drop_slots <= 0) {
          lose("bad drop count", CHECK_(empty));
        }
        for (int i = 0; i < drop_slots; i++) {
          SlotState* drop = slot_state(arg_slot);
          if (drop == NULL)             break;  // safety net
          if (drop->_type != T_VOID)    _outgoing_argc -= 1;
          _outgoing.remove_at(arg_slot);
        }
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS: { //NYI, may GC
        lose("unimplemented", CHECK_(empty));
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS: {
        klassOop array_klass_oop = NULL;
        BasicType array_type = java_lang_Class::as_BasicType(chain().adapter_arg_oop(),
                                                             &array_klass_oop);
        assert(array_type == T_OBJECT, "");
        assert(Klass::cast(array_klass_oop)->oop_is_array(), "");
        arrayKlassHandle array_klass(THREAD, array_klass_oop);
        debug_only(array_klass_oop = (klassOop)badOop);

        klassOop element_klass_oop = NULL;
        BasicType element_type = java_lang_Class::as_BasicType(array_klass->component_mirror(),
                                                               &element_klass_oop);
        KlassHandle element_klass(THREAD, element_klass_oop);
        debug_only(element_klass_oop = (klassOop)badOop);

        // Fetch the argument, which we will cast to the required array type.
        assert(arg_state->_type == T_OBJECT, "");
        ArgToken array_arg = arg_state->_arg;
        array_arg = make_conversion(T_OBJECT, array_klass(), Bytecodes::_checkcast, array_arg, CHECK_(empty));
        change_argument(T_OBJECT, arg_slot, T_VOID, ArgToken(tt_void));

        // Check the required length.
        int spread_slots = 1 + chain().adapter_conversion_stack_pushes();
        int spread_length = spread_slots;
        if (type2size[element_type] == 2) {
          if (spread_slots % 2 != 0)  spread_slots = -1;  // force error
          spread_length = spread_slots / 2;
        }
        if (spread_slots < 0) {
          lose("bad spread length", CHECK_(empty));
        }

        jvalue   length_jvalue;  length_jvalue.i = spread_length;
        ArgToken length_arg = make_prim_constant(T_INT, &length_jvalue, CHECK_(empty));
        // Call a built-in method known to the JVM to validate the length.
        ArgToken arglist[3];
        arglist[0] = array_arg;   // value to check
        arglist[1] = length_arg;  // length to check
        arglist[2] = ArgToken();  // sentinel
        make_invoke(NULL, vmIntrinsics::_checkSpreadArgument,
                    Bytecodes::_invokestatic, false, 3, &arglist[0], CHECK_(empty));

        // Spread out the array elements.
        Bytecodes::Code aload_op = Bytecodes::_aaload;
        if (element_type != T_OBJECT) {
          lose("primitive array NYI", CHECK_(empty));
        }
        int ap = arg_slot;
        for (int i = 0; i < spread_length; i++) {
          jvalue   offset_jvalue;  offset_jvalue.i = i;
          ArgToken offset_arg = make_prim_constant(T_INT, &offset_jvalue, CHECK_(empty));
          ArgToken element_arg = make_fetch(element_type, element_klass(), aload_op, array_arg, offset_arg, CHECK_(empty));
          change_argument(T_VOID, ap, element_type, element_arg);
          ap += type2size[element_type];
        }
        break;
      }

      case java_lang_invoke_AdapterMethodHandle::OP_FLYBY: //NYI, runs Java code
      case java_lang_invoke_AdapterMethodHandle::OP_RICOCHET: //NYI, runs Java code
        lose("unimplemented", CHECK_(empty));
        break;

      default:
        lose("bad adapter conversion", CHECK_(empty));
        break;
      }
    }

    if (chain().is_bound()) {
      // push a new argument
      BasicType arg_type  = chain().bound_arg_type();
      jint      arg_slot  = chain().bound_arg_slot();
      oop       arg_oop   = chain().bound_arg_oop();
      ArgToken  arg;
      if (arg_type == T_OBJECT) {
        arg = make_oop_constant(arg_oop, CHECK_(empty));
      } else {
        jvalue arg_value;
        BasicType bt = java_lang_boxing_object::get_value(arg_oop, &arg_value);
        if (bt == arg_type) {
          arg = make_prim_constant(arg_type, &arg_value, CHECK_(empty));
        } else {
          lose("bad bound value", CHECK_(empty));
        }
      }
      debug_only(arg_oop = badOop);
      change_argument(T_VOID, arg_slot, arg_type, arg);
    }

    // this test must come after the body of the loop
    if (!chain().is_last()) {
      chain().next(CHECK_(empty));
    } else {
      break;
    }
  }

  // finish the sequence with a tail-call to the ultimate target
  // parameters are passed in logical order (recv 1st), not slot order
  ArgToken* arglist = NEW_RESOURCE_ARRAY(ArgToken, _outgoing.length() + 1);
  int ap = 0;
  for (int i = _outgoing.length() - 1; i >= 0; i--) {
    SlotState* arg_state = slot_state(i);
    if (arg_state->_type == T_VOID)  continue;
    arglist[ap++] = _outgoing.at(i)._arg;
  }
  assert(ap == _outgoing_argc, "");
  arglist[ap] = ArgToken();  // add a sentinel, for the sake of asserts
  return make_invoke(chain().last_method_oop(),
                     vmIntrinsics::_none,
                     chain().last_invoke_code(), true,
                     ap, arglist, THREAD);
}


// -----------------------------------------------------------------------------
// MethodHandleWalker::walk_incoming_state
//
void MethodHandleWalker::walk_incoming_state(TRAPS) {
  Handle mtype(THREAD, chain().method_type_oop());
  int nptypes = java_lang_invoke_MethodType::ptype_count(mtype());
  _outgoing_argc = nptypes;
  int argp = nptypes - 1;
  if (argp >= 0) {
    _outgoing.at_grow(argp, make_state(T_VOID, ArgToken(tt_void))); // presize
  }
  for (int i = 0; i < nptypes; i++) {
    klassOop  arg_type_klass = NULL;
    BasicType arg_type = java_lang_Class::as_BasicType(
                java_lang_invoke_MethodType::ptype(mtype(), i), &arg_type_klass);
    int index = new_local_index(arg_type);
    ArgToken arg = make_parameter(arg_type, arg_type_klass, index, CHECK);
    debug_only(arg_type_klass = (klassOop) NULL);
    _outgoing.at_put(argp, make_state(arg_type, arg));
    if (type2size[arg_type] == 2) {
      // add the extra slot, so we can model the JVM stack
      _outgoing.insert_before(argp+1, make_state(T_VOID, ArgToken(tt_void)));
    }
    --argp;
  }
  // call make_parameter at the end of the list for the return type
  klassOop  ret_type_klass = NULL;
  BasicType ret_type = java_lang_Class::as_BasicType(
              java_lang_invoke_MethodType::rtype(mtype()), &ret_type_klass);
  ArgToken  ret = make_parameter(ret_type, ret_type_klass, -1, CHECK);
  // ignore ret; client can catch it if needed
}


// -----------------------------------------------------------------------------
// MethodHandleWalker::change_argument
//
// This is messy because some kinds of arguments are paired with
// companion slots containing an empty value.
void MethodHandleWalker::change_argument(BasicType old_type, int slot, BasicType new_type,
                                         const ArgToken& new_arg) {
  int old_size = type2size[old_type];
  int new_size = type2size[new_type];
  if (old_size == new_size) {
    // simple case first
    _outgoing.at_put(slot, make_state(new_type, new_arg));
  } else if (old_size > new_size) {
    for (int i = old_size - 1; i >= new_size; i--) {
      assert((i != 0) == (_outgoing.at(slot + i)._type == T_VOID), "");
      _outgoing.remove_at(slot + i);
    }
    if (new_size > 0)
      _outgoing.at_put(slot, make_state(new_type, new_arg));
    else
      _outgoing_argc -= 1;      // deleted a real argument
  } else {
    for (int i = old_size; i < new_size; i++) {
      _outgoing.insert_before(slot + i, make_state(T_VOID, ArgToken(tt_void)));
    }
    _outgoing.at_put(slot, make_state(new_type, new_arg));
    if (old_size == 0)
      _outgoing_argc += 1;      // inserted a real argument
  }
}


#ifdef ASSERT
int MethodHandleWalker::argument_count_slow() {
  int args_seen = 0;
  for (int i = _outgoing.length() - 1; i >= 0; i--) {
    if (_outgoing.at(i)._type != T_VOID) {
      ++args_seen;
    }
  }
  return args_seen;
}
#endif


// -----------------------------------------------------------------------------
// MethodHandleCompiler

MethodHandleCompiler::MethodHandleCompiler(Handle root, methodHandle callee, bool is_invokedynamic, TRAPS)
  : MethodHandleWalker(root, is_invokedynamic, THREAD),
    _callee(callee),
    _thread(THREAD),
    _bytecode(THREAD, 50),
    _constants(THREAD, 10),
    _cur_stack(0),
    _max_stack(0),
    _rtype(T_ILLEGAL)
{

  // Element zero is always the null constant.
  (void) _constants.append(NULL);

  // Set name and signature index.
  _name_index      = cpool_symbol_put(_callee->name());
  _signature_index = cpool_symbol_put(_callee->signature());

  // Get return type klass.
  Handle first_mtype(THREAD, chain().method_type_oop());
  // _rklass is NULL for primitives.
  _rtype = java_lang_Class::as_BasicType(java_lang_invoke_MethodType::rtype(first_mtype()), &_rklass);
  if (_rtype == T_ARRAY)  _rtype = T_OBJECT;

  int params = _callee->size_of_parameters();  // Incoming arguments plus receiver.
  _num_params = for_invokedynamic() ? params - 1 : params;  // XXX Check if callee is static?
}


// -----------------------------------------------------------------------------
// MethodHandleCompiler::compile
//
// Compile this MethodHandle into a bytecode adapter and return a
// methodOop.
methodHandle MethodHandleCompiler::compile(TRAPS) {
  assert(_thread == THREAD, "must be same thread");
  methodHandle nullHandle;
  (void) walk(CHECK_(nullHandle));
  return get_method_oop(CHECK_(nullHandle));
}


void MethodHandleCompiler::emit_bc(Bytecodes::Code op, int index) {
  Bytecodes::check(op);  // Are we legal?

  switch (op) {
  // b
  case Bytecodes::_aconst_null:
  case Bytecodes::_iconst_m1:
  case Bytecodes::_iconst_0:
  case Bytecodes::_iconst_1:
  case Bytecodes::_iconst_2:
  case Bytecodes::_iconst_3:
  case Bytecodes::_iconst_4:
  case Bytecodes::_iconst_5:
  case Bytecodes::_lconst_0:
  case Bytecodes::_lconst_1:
  case Bytecodes::_fconst_0:
  case Bytecodes::_fconst_1:
  case Bytecodes::_fconst_2:
  case Bytecodes::_dconst_0:
  case Bytecodes::_dconst_1:
  case Bytecodes::_iload_0:
  case Bytecodes::_iload_1:
  case Bytecodes::_iload_2:
  case Bytecodes::_iload_3:
  case Bytecodes::_lload_0:
  case Bytecodes::_lload_1:
  case Bytecodes::_lload_2:
  case Bytecodes::_lload_3:
  case Bytecodes::_fload_0:
  case Bytecodes::_fload_1:
  case Bytecodes::_fload_2:
  case Bytecodes::_fload_3:
  case Bytecodes::_dload_0:
  case Bytecodes::_dload_1:
  case Bytecodes::_dload_2:
  case Bytecodes::_dload_3:
  case Bytecodes::_aload_0:
  case Bytecodes::_aload_1:
  case Bytecodes::_aload_2:
  case Bytecodes::_aload_3:
  case Bytecodes::_istore_0:
  case Bytecodes::_istore_1:
  case Bytecodes::_istore_2:
  case Bytecodes::_istore_3:
  case Bytecodes::_lstore_0:
  case Bytecodes::_lstore_1:
  case Bytecodes::_lstore_2:
  case Bytecodes::_lstore_3:
  case Bytecodes::_fstore_0:
  case Bytecodes::_fstore_1:
  case Bytecodes::_fstore_2:
  case Bytecodes::_fstore_3:
  case Bytecodes::_dstore_0:
  case Bytecodes::_dstore_1:
  case Bytecodes::_dstore_2:
  case Bytecodes::_dstore_3:
  case Bytecodes::_astore_0:
  case Bytecodes::_astore_1:
  case Bytecodes::_astore_2:
  case Bytecodes::_astore_3:
  case Bytecodes::_i2l:
  case Bytecodes::_i2f:
  case Bytecodes::_i2d:
  case Bytecodes::_i2b:
  case Bytecodes::_i2c:
  case Bytecodes::_i2s:
  case Bytecodes::_l2i:
  case Bytecodes::_l2f:
  case Bytecodes::_l2d:
  case Bytecodes::_f2i:
  case Bytecodes::_f2l:
  case Bytecodes::_f2d:
  case Bytecodes::_d2i:
  case Bytecodes::_d2l:
  case Bytecodes::_d2f:
  case Bytecodes::_ireturn:
  case Bytecodes::_lreturn:
  case Bytecodes::_freturn:
  case Bytecodes::_dreturn:
  case Bytecodes::_areturn:
  case Bytecodes::_return:
    assert(Bytecodes::format_bits(op, false) == Bytecodes::_fmt_b, "wrong bytecode format");
    _bytecode.push(op);
    break;

  // bi
  case Bytecodes::_ldc:
    assert(Bytecodes::format_bits(op, false) == (Bytecodes::_fmt_b|Bytecodes::_fmt_has_k), "wrong bytecode format");
    assert((char) index == index, "index does not fit in 8-bit");
    _bytecode.push(op);
    _bytecode.push(index);
    break;

  case Bytecodes::_iload:
  case Bytecodes::_lload:
  case Bytecodes::_fload:
  case Bytecodes::_dload:
  case Bytecodes::_aload:
  case Bytecodes::_istore:
  case Bytecodes::_lstore:
  case Bytecodes::_fstore:
  case Bytecodes::_dstore:
  case Bytecodes::_astore:
    assert(Bytecodes::format_bits(op, false) == Bytecodes::_fmt_bi, "wrong bytecode format");
    assert((char) index == index, "index does not fit in 8-bit");
    _bytecode.push(op);
    _bytecode.push(index);
    break;

  // bkk
  case Bytecodes::_ldc_w:
  case Bytecodes::_ldc2_w:
  case Bytecodes::_checkcast:
    assert(Bytecodes::format_bits(op, false) == Bytecodes::_fmt_bkk, "wrong bytecode format");
    assert((short) index == index, "index does not fit in 16-bit");
    _bytecode.push(op);
    _bytecode.push(index >> 8);
    _bytecode.push(index);
    break;

  // bJJ
  case Bytecodes::_invokestatic:
  case Bytecodes::_invokespecial:
  case Bytecodes::_invokevirtual:
    assert(Bytecodes::format_bits(op, false) == Bytecodes::_fmt_bJJ, "wrong bytecode format");
    assert((short) index == index, "index does not fit in 16-bit");
    _bytecode.push(op);
    _bytecode.push(index >> 8);
    _bytecode.push(index);
    break;

  default:
    ShouldNotReachHere();
  }
}


void MethodHandleCompiler::emit_load(BasicType bt, int index) {
  if (index <= 3) {
    switch (bt) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT:
    case T_INT:    emit_bc(Bytecodes::cast(Bytecodes::_iload_0 + index)); break;
    case T_LONG:   emit_bc(Bytecodes::cast(Bytecodes::_lload_0 + index)); break;
    case T_FLOAT:  emit_bc(Bytecodes::cast(Bytecodes::_fload_0 + index)); break;
    case T_DOUBLE: emit_bc(Bytecodes::cast(Bytecodes::_dload_0 + index)); break;
    case T_OBJECT: emit_bc(Bytecodes::cast(Bytecodes::_aload_0 + index)); break;
    default:
      ShouldNotReachHere();
    }
  }
  else {
    switch (bt) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT:
    case T_INT:    emit_bc(Bytecodes::_iload, index); break;
    case T_LONG:   emit_bc(Bytecodes::_lload, index); break;
    case T_FLOAT:  emit_bc(Bytecodes::_fload, index); break;
    case T_DOUBLE: emit_bc(Bytecodes::_dload, index); break;
    case T_OBJECT: emit_bc(Bytecodes::_aload, index); break;
    default:
      ShouldNotReachHere();
    }
  }
  stack_push(bt);
}

void MethodHandleCompiler::emit_store(BasicType bt, int index) {
  if (index <= 3) {
    switch (bt) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT:
    case T_INT:    emit_bc(Bytecodes::cast(Bytecodes::_istore_0 + index)); break;
    case T_LONG:   emit_bc(Bytecodes::cast(Bytecodes::_lstore_0 + index)); break;
    case T_FLOAT:  emit_bc(Bytecodes::cast(Bytecodes::_fstore_0 + index)); break;
    case T_DOUBLE: emit_bc(Bytecodes::cast(Bytecodes::_dstore_0 + index)); break;
    case T_OBJECT: emit_bc(Bytecodes::cast(Bytecodes::_astore_0 + index)); break;
    default:
      ShouldNotReachHere();
    }
  }
  else {
    switch (bt) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT:
    case T_INT:    emit_bc(Bytecodes::_istore, index); break;
    case T_LONG:   emit_bc(Bytecodes::_lstore, index); break;
    case T_FLOAT:  emit_bc(Bytecodes::_fstore, index); break;
    case T_DOUBLE: emit_bc(Bytecodes::_dstore, index); break;
    case T_OBJECT: emit_bc(Bytecodes::_astore, index); break;
    default:
      ShouldNotReachHere();
    }
  }
  stack_pop(bt);
}


void MethodHandleCompiler::emit_load_constant(ArgToken arg) {
  BasicType bt = arg.basic_type();
  switch (bt) {
  case T_INT: {
    jint value = arg.get_jint();
    if (-1 <= value && value <= 5)
      emit_bc(Bytecodes::cast(Bytecodes::_iconst_0 + value));
    else
      emit_bc(Bytecodes::_ldc, cpool_int_put(value));
    break;
  }
  case T_LONG: {
    jlong value = arg.get_jlong();
    if (0 <= value && value <= 1)
      emit_bc(Bytecodes::cast(Bytecodes::_lconst_0 + (int) value));
    else
      emit_bc(Bytecodes::_ldc2_w, cpool_long_put(value));
    break;
  }
  case T_FLOAT: {
    jfloat value  = arg.get_jfloat();
    if (value == 0.0 || value == 1.0 || value == 2.0)
      emit_bc(Bytecodes::cast(Bytecodes::_fconst_0 + (int) value));
    else
      emit_bc(Bytecodes::_ldc, cpool_float_put(value));
    break;
  }
  case T_DOUBLE: {
    jdouble value = arg.get_jdouble();
    if (value == 0.0 || value == 1.0)
      emit_bc(Bytecodes::cast(Bytecodes::_dconst_0 + (int) value));
    else
      emit_bc(Bytecodes::_ldc2_w, cpool_double_put(value));
    break;
  }
  case T_OBJECT: {
    Handle value = arg.object();
    if (value.is_null())
      emit_bc(Bytecodes::_aconst_null);
    else
      emit_bc(Bytecodes::_ldc, cpool_object_put(value));
    break;
  }
  default:
    ShouldNotReachHere();
  }
  stack_push(bt);
}


MethodHandleWalker::ArgToken
MethodHandleCompiler::make_conversion(BasicType type, klassOop tk, Bytecodes::Code op,
                                      const ArgToken& src, TRAPS) {

  BasicType srctype = src.basic_type();
  int index = src.index();

  switch (op) {
  case Bytecodes::_i2l:
  case Bytecodes::_i2f:
  case Bytecodes::_i2d:
  case Bytecodes::_i2b:
  case Bytecodes::_i2c:
  case Bytecodes::_i2s:

  case Bytecodes::_l2i:
  case Bytecodes::_l2f:
  case Bytecodes::_l2d:

  case Bytecodes::_f2i:
  case Bytecodes::_f2l:
  case Bytecodes::_f2d:

  case Bytecodes::_d2i:
  case Bytecodes::_d2l:
  case Bytecodes::_d2f:
    emit_load(srctype, index);
    stack_pop(srctype);  // pop the src type
    emit_bc(op);
    stack_push(type);    // push the dest value
    if (srctype != type)
      index = new_local_index(type);
    emit_store(type, index);
    break;

  case Bytecodes::_checkcast:
    emit_load(srctype, index);
    emit_bc(op, cpool_klass_put(tk));
    emit_store(srctype, index);
    break;

  default:
    ShouldNotReachHere();
  }

  return make_parameter(type, tk, index, THREAD);
}


// -----------------------------------------------------------------------------
// MethodHandleCompiler
//

static jvalue zero_jvalue;

// Emit bytecodes for the given invoke instruction.
MethodHandleWalker::ArgToken
MethodHandleCompiler::make_invoke(methodOop m, vmIntrinsics::ID iid,
                                  Bytecodes::Code op, bool tailcall,
                                  int argc, MethodHandleWalker::ArgToken* argv,
                                  TRAPS) {
  if (m == NULL) {
    // Get the intrinsic methodOop.
    m = vmIntrinsics::method_for(iid);
    if (m == NULL && iid == vmIntrinsics::_checkSpreadArgument && AllowTransitionalJSR292) {
      m = vmIntrinsics::method_for(vmIntrinsics::_checkSpreadArgument_TRANS);
      if (m == NULL)
        // sun.dyn.MethodHandleImpl not found, look for java.dyn.MethodHandleNatives:
        m = vmIntrinsics::method_for(vmIntrinsics::_checkSpreadArgument_TRANS2);
    }
    if (m == NULL) {
      ArgToken zero;
      lose(vmIntrinsics::name_at(iid), CHECK_(zero));
    }
  }

  klassOop  klass   = m->method_holder();
  Symbol* name      = m->name();
  Symbol* signature = m->signature();

  if (tailcall) {
    // Actually, in order to make these methods more recognizable,
    // let's put them in holder class MethodHandle.  That way stack
    // walkers and compiler heuristics can recognize them.
    _target_klass = SystemDictionary::MethodHandle_klass();
  }

  // Inline the method.
  InvocationCounter* ic = m->invocation_counter();
  ic->set_carry_flag();

  for (int i = 0; i < argc; i++) {
    ArgToken arg = argv[i];
    TokenType tt = arg.token_type();
    BasicType bt = arg.basic_type();

    switch (tt) {
    case tt_parameter:
    case tt_temporary:
      emit_load(bt, arg.index());
      break;
    case tt_constant:
      emit_load_constant(arg);
      break;
    case tt_illegal:
      // Sentinel.
      assert(i == (argc - 1), "sentinel must be last entry");
      break;
    case tt_void:
    default:
      ShouldNotReachHere();
    }
  }

  // Populate constant pool.
  int name_index          = cpool_symbol_put(name);
  int signature_index     = cpool_symbol_put(signature);
  int name_and_type_index = cpool_name_and_type_put(name_index, signature_index);
  int klass_index         = cpool_klass_put(klass);
  int methodref_index     = cpool_methodref_put(klass_index, name_and_type_index);

  // Generate invoke.
  switch (op) {
  case Bytecodes::_invokestatic:
  case Bytecodes::_invokespecial:
  case Bytecodes::_invokevirtual:
    emit_bc(op, methodref_index);
    break;
  case Bytecodes::_invokeinterface:
    Unimplemented();
    break;
  default:
    ShouldNotReachHere();
  }

  // If tailcall, we have walked all the way to a direct method handle.
  // Otherwise, make a recursive call to some helper routine.
  BasicType rbt = m->result_type();
  if (rbt == T_ARRAY)  rbt = T_OBJECT;
  ArgToken ret;
  if (tailcall) {
    if (rbt != _rtype) {
      if (rbt == T_VOID) {
        // push a zero of the right sort
        ArgToken zero;
        if (_rtype == T_OBJECT) {
          zero = make_oop_constant(NULL, CHECK_(zero));
        } else {
          zero = make_prim_constant(_rtype, &zero_jvalue, CHECK_(zero));
        }
        emit_load_constant(zero);
      } else if (_rtype == T_VOID) {
        // We'll emit a _return with something on the stack.
        // It's OK to ignore what's on the stack.
      } else {
        tty->print_cr("*** rbt=%d != rtype=%d", rbt, _rtype);
        assert(false, "IMPLEMENT ME");
      }
    }
    switch (_rtype) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT:
    case T_INT:    emit_bc(Bytecodes::_ireturn); break;
    case T_LONG:   emit_bc(Bytecodes::_lreturn); break;
    case T_FLOAT:  emit_bc(Bytecodes::_freturn); break;
    case T_DOUBLE: emit_bc(Bytecodes::_dreturn); break;
    case T_VOID:   emit_bc(Bytecodes::_return);  break;
    case T_OBJECT:
      if (_rklass.not_null() && _rklass() != SystemDictionary::Object_klass())
        emit_bc(Bytecodes::_checkcast, cpool_klass_put(_rklass()));
      emit_bc(Bytecodes::_areturn);
      break;
    default: ShouldNotReachHere();
    }
    ret = ArgToken();  // Dummy return value.
  }
  else {
    stack_push(rbt);  // The return value is already pushed onto the stack.
    int index = new_local_index(rbt);
    switch (rbt) {
    case T_BOOLEAN: case T_BYTE: case T_CHAR:  case T_SHORT:
    case T_INT:     case T_LONG: case T_FLOAT: case T_DOUBLE:
    case T_OBJECT:
      emit_store(rbt, index);
      ret = ArgToken(tt_temporary, rbt, index);
      break;
    case T_VOID:
      ret = ArgToken(tt_void);
      break;
    default:
      ShouldNotReachHere();
    }
  }

  return ret;
}

MethodHandleWalker::ArgToken
MethodHandleCompiler::make_fetch(BasicType type, klassOop tk, Bytecodes::Code op,
                                 const MethodHandleWalker::ArgToken& base,
                                 const MethodHandleWalker::ArgToken& offset,
                                 TRAPS) {
  Unimplemented();
  return ArgToken();
}


int MethodHandleCompiler::cpool_primitive_put(BasicType bt, jvalue* con) {
  jvalue con_copy;
  assert(bt < T_OBJECT, "");
  if (type2aelembytes(bt) < jintSize) {
    // widen to int
    con_copy = (*con);
    con = &con_copy;
    switch (bt) {
    case T_BOOLEAN: con->i = (con->z ? 1 : 0); break;
    case T_BYTE:    con->i = con->b;           break;
    case T_CHAR:    con->i = con->c;           break;
    case T_SHORT:   con->i = con->s;           break;
    default: ShouldNotReachHere();
    }
    bt = T_INT;
  }

//   for (int i = 1, imax = _constants.length(); i < imax; i++) {
//     ConstantValue* con = _constants.at(i);
//     if (con != NULL && con->is_primitive() && con->_type == bt) {
//       bool match = false;
//       switch (type2size[bt]) {
//       case 1:  if (pcon->_value.i == con->i)  match = true;  break;
//       case 2:  if (pcon->_value.j == con->j)  match = true;  break;
//       }
//       if (match)
//         return i;
//     }
//   }
  ConstantValue* cv = new ConstantValue(bt, *con);
  int index = _constants.append(cv);

  // long and double entries take 2 slots, we add another empty entry.
  if (type2size[bt] == 2)
    (void) _constants.append(NULL);

  return index;
}


constantPoolHandle MethodHandleCompiler::get_constant_pool(TRAPS) const {
  constantPoolHandle nullHandle;
  constantPoolOop cpool_oop = oopFactory::new_constantPool(_constants.length(),
                                                           oopDesc::IsSafeConc,
                                                           CHECK_(nullHandle));
  constantPoolHandle cpool(THREAD, cpool_oop);

  // Fill the real constant pool skipping the zero element.
  for (int i = 1; i < _constants.length(); i++) {
    ConstantValue* cv = _constants.at(i);
    switch (cv->tag()) {
    case JVM_CONSTANT_Utf8:        cpool->symbol_at_put(       i, cv->symbol()                         ); break;
    case JVM_CONSTANT_Integer:     cpool->int_at_put(          i, cv->get_jint()                       ); break;
    case JVM_CONSTANT_Float:       cpool->float_at_put(        i, cv->get_jfloat()                     ); break;
    case JVM_CONSTANT_Long:        cpool->long_at_put(         i, cv->get_jlong()                      ); break;
    case JVM_CONSTANT_Double:      cpool->double_at_put(       i, cv->get_jdouble()                    ); break;
    case JVM_CONSTANT_Class:       cpool->klass_at_put(        i, cv->klass_oop()                      ); break;
    case JVM_CONSTANT_Methodref:   cpool->method_at_put(       i, cv->first_index(), cv->second_index()); break;
    case JVM_CONSTANT_NameAndType: cpool->name_and_type_at_put(i, cv->first_index(), cv->second_index()); break;
    case JVM_CONSTANT_Object:      cpool->object_at_put(       i, cv->object_oop()                     ); break;
    default: ShouldNotReachHere();
    }

    switch (cv->tag()) {
    case JVM_CONSTANT_Long:
    case JVM_CONSTANT_Double:
      i++;  // Skip empty entry.
      assert(_constants.at(i) == NULL, "empty entry");
      break;
    }
  }

  // Set the constant pool holder to the target method's class.
  cpool->set_pool_holder(_target_klass());

  return cpool;
}


methodHandle MethodHandleCompiler::get_method_oop(TRAPS) const {
  methodHandle nullHandle;
  // Create a method that holds the generated bytecode.  invokedynamic
  // has no receiver, normal MH calls do.
  int flags_bits;
  if (for_invokedynamic())
    flags_bits = (/*JVM_MH_INVOKE_BITS |*/ JVM_ACC_PUBLIC | JVM_ACC_FINAL | JVM_ACC_SYNTHETIC | JVM_ACC_STATIC);
  else
    flags_bits = (/*JVM_MH_INVOKE_BITS |*/ JVM_ACC_PUBLIC | JVM_ACC_FINAL | JVM_ACC_SYNTHETIC);

  methodOop m_oop = oopFactory::new_method(bytecode_length(),
                                           accessFlags_from(flags_bits),
                                           0, 0, 0, oopDesc::IsSafeConc, CHECK_(nullHandle));
  methodHandle m(THREAD, m_oop);
  m_oop = NULL;  // oop not GC safe

  constantPoolHandle cpool = get_constant_pool(CHECK_(nullHandle));
  m->set_constants(cpool());

  m->set_name_index(_name_index);
  m->set_signature_index(_signature_index);

  m->set_code((address) bytecode());

  m->set_max_stack(_max_stack);
  m->set_max_locals(max_locals());
  m->set_size_of_parameters(_num_params);

  typeArrayHandle exception_handlers(THREAD, Universe::the_empty_int_array());
  m->set_exception_table(exception_handlers());

  // Set the carry bit of the invocation counter to force inlining of
  // the adapter.
  InvocationCounter* ic = m->invocation_counter();
  ic->set_carry_flag();

  // Rewrite the method and set up the constant pool cache.
  objArrayOop m_array = oopFactory::new_system_objArray(1, CHECK_(nullHandle));
  objArrayHandle methods(THREAD, m_array);
  methods->obj_at_put(0, m());
  Rewriter::rewrite(_target_klass(), cpool, methods, CHECK_(nullHandle));  // Use fake class.

#ifndef PRODUCT
  if (TraceMethodHandles) {
    m->print();
    m->print_codes();
  }
#endif //PRODUCT

  assert(m->is_method_handle_adapter(), "must be recognized as an adapter");
  return m;
}


#ifndef PRODUCT

#if 0
// MH printer for debugging.

class MethodHandlePrinter : public MethodHandleWalker {
private:
  outputStream* _out;
  bool          _verbose;
  int           _temp_num;
  stringStream  _strbuf;
  const char* strbuf() {
    const char* s = _strbuf.as_string();
    _strbuf.reset();
    return s;
  }
  ArgToken token(const char* str) {
    return (ArgToken) str;
  }
  void start_params() {
    _out->print("(");
  }
  void end_params() {
    if (_verbose)  _out->print("\n");
    _out->print(") => {");
  }
  void put_type_name(BasicType type, klassOop tk, outputStream* s) {
    const char* kname = NULL;
    if (tk != NULL)
      kname = Klass::cast(tk)->external_name();
    s->print("%s", (kname != NULL) ? kname : type2name(type));
  }
  ArgToken maybe_make_temp(const char* statement_op, BasicType type, const char* temp_name) {
    const char* value = strbuf();
    if (!_verbose)  return token(value);
    // make an explicit binding for each separate value
    _strbuf.print("%s%d", temp_name, ++_temp_num);
    const char* temp = strbuf();
    _out->print("\n  %s %s %s = %s;", statement_op, type2name(type), temp, value);
    return token(temp);
  }

public:
  MethodHandlePrinter(Handle root, bool verbose, outputStream* out, TRAPS)
    : MethodHandleWalker(root, THREAD),
      _out(out),
      _verbose(verbose),
      _temp_num(0)
  {
    start_params();
  }
  virtual ArgToken make_parameter(BasicType type, klassOop tk, int argnum, TRAPS) {
    if (argnum < 0) {
      end_params();
      return NULL;
    }
    if (argnum == 0) {
      _out->print(_verbose ? "\n  " : "");
    } else {
      _out->print(_verbose ? ",\n  " : ", ");
    }
    if (argnum >= _temp_num)
      _temp_num = argnum;
    // generate an argument name
    _strbuf.print("a%d", argnum);
    const char* arg = strbuf();
    put_type_name(type, tk, _out);
    _out->print(" %s", arg);
    return token(arg);
  }
  virtual ArgToken make_oop_constant(oop con, TRAPS) {
    if (con == NULL)
      _strbuf.print("null");
    else
      con->print_value_on(&_strbuf);
    if (_strbuf.size() == 0) {  // yuck
      _strbuf.print("(a ");
      put_type_name(T_OBJECT, con->klass(), &_strbuf);
      _strbuf.print(")");
    }
    return maybe_make_temp("constant", T_OBJECT, "k");
  }
  virtual ArgToken make_prim_constant(BasicType type, jvalue* con, TRAPS) {
    java_lang_boxing_object::print(type, con, &_strbuf);
    return maybe_make_temp("constant", type, "k");
  }
  virtual ArgToken make_conversion(BasicType type, klassOop tk, Bytecodes::Code op, ArgToken src, TRAPS) {
    _strbuf.print("%s(%s", Bytecodes::name(op), (const char*)src);
    if (tk != NULL) {
      _strbuf.print(", ");
      put_type_name(type, tk, &_strbuf);
    }
    _strbuf.print(")");
    return maybe_make_temp("convert", type, "v");
  }
  virtual ArgToken make_fetch(BasicType type, klassOop tk, Bytecodes::Code op, ArgToken base, ArgToken offset, TRAPS) {
    _strbuf.print("%s(%s, %s", Bytecodes::name(op), (const char*)base, (const char*)offset);
    if (tk != NULL) {
      _strbuf.print(", ");
      put_type_name(type, tk, &_strbuf);
    }
    _strbuf.print(")");
    return maybe_make_temp("fetch", type, "x");
  }
  virtual ArgToken make_invoke(methodOop m, vmIntrinsics::ID iid,
                               Bytecodes::Code op, bool tailcall,
                               int argc, ArgToken* argv, TRAPS) {
    Symbol* name, sig;
    if (m != NULL) {
      name = m->name();
      sig  = m->signature();
    } else {
      name = vmSymbols::symbol_at(vmIntrinsics::name_for(iid));
      sig  = vmSymbols::symbol_at(vmIntrinsics::signature_for(iid));
    }
    _strbuf.print("%s %s%s(", Bytecodes::name(op), name->as_C_string(), sig->as_C_string());
    for (int i = 0; i < argc; i++) {
      _strbuf.print("%s%s", (i > 0 ? ", " : ""), (const char*)argv[i]);
    }
    _strbuf.print(")");
    if (!tailcall) {
      BasicType rt = char2type(sig->byte_at(sig->utf8_length()-1));
      if (rt == T_ILLEGAL)  rt = T_OBJECT;  // ';' at the end of '(...)L...;'
      return maybe_make_temp("invoke", rt, "x");
    } else {
      const char* ret = strbuf();
      _out->print(_verbose ? "\n  return " : " ");
      _out->print("%s", ret);
      _out->print(_verbose ? "\n}\n" : " }");
    }
    return ArgToken();
  }

  virtual void set_method_handle(oop mh) {
    if (WizardMode && Verbose) {
      tty->print("\n--- next target: ");
      mh->print();
    }
  }

  static void print(Handle root, bool verbose, outputStream* out, TRAPS) {
    ResourceMark rm;
    MethodHandlePrinter printer(root, verbose, out, CHECK);
    printer.walk(CHECK);
    out->print("\n");
  }
  static void print(Handle root, bool verbose = Verbose, outputStream* out = tty) {
    EXCEPTION_MARK;
    ResourceMark rm;
    MethodHandlePrinter printer(root, verbose, out, THREAD);
    if (!HAS_PENDING_EXCEPTION)
      printer.walk(THREAD);
    if (HAS_PENDING_EXCEPTION) {
      oop ex = PENDING_EXCEPTION;
      CLEAR_PENDING_EXCEPTION;
      out->print("\n*** ");
      if (ex != Universe::virtual_machine_error_instance())
        ex->print_on(out);
      else
        out->print("lose: %s", printer.lose_message());
      out->print("\n}\n");
    }
    out->print("\n");
  }
};
#endif // 0

extern "C"
void print_method_handle(oop mh) {
  if (!mh->is_oop()) {
    tty->print_cr("*** not a method handle: "INTPTR_FORMAT, (intptr_t)mh);
  } else if (java_lang_invoke_MethodHandle::is_instance(mh)) {
    //MethodHandlePrinter::print(mh);
  } else {
    tty->print("*** not a method handle: ");
    mh->print();
  }
}

#endif // PRODUCT