view src/share/vm/gc_implementation/g1/heapRegionManager.cpp @ 20543:e7d0505c8a30

8059758: Footprint regressions with JDK-8038423 Summary: Changes in JDK-8038423 always initialize (zero out) virtual memory used for auxiliary data structures. This causes a footprint regression for G1 in startup benchmarks. This is because they do not touch that memory at all, so the operating system does not actually commit these pages. The fix is to, if the initialization value of the data structures matches the default value of just committed memory (=0), do not do anything. Reviewed-by: jwilhelm, brutisso
author tschatzl
date Fri, 10 Oct 2014 15:51:58 +0200
parents d35872270666
children 7848fc12602b
line wrap: on
line source

/*
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/heapRegionManager.inline.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "memory/allocation.hpp"

void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
                               G1RegionToSpaceMapper* prev_bitmap,
                               G1RegionToSpaceMapper* next_bitmap,
                               G1RegionToSpaceMapper* bot,
                               G1RegionToSpaceMapper* cardtable,
                               G1RegionToSpaceMapper* card_counts) {
  _allocated_heapregions_length = 0;

  _heap_mapper = heap_storage;

  _prev_bitmap_mapper = prev_bitmap;
  _next_bitmap_mapper = next_bitmap;

  _bot_mapper = bot;
  _cardtable_mapper = cardtable;

  _card_counts_mapper = card_counts;

  MemRegion reserved = heap_storage->reserved();
  _regions.initialize(reserved.start(), reserved.end(), HeapRegion::GrainBytes);

  _available_map.resize(_regions.length(), false);
  _available_map.clear();
}

bool HeapRegionManager::is_available(uint region) const {
  return _available_map.at(region);
}

#ifdef ASSERT
bool HeapRegionManager::is_free(HeapRegion* hr) const {
  return _free_list.contains(hr);
}
#endif

HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  HeapWord* bottom = g1h->bottom_addr_for_region(hrm_index);
  MemRegion mr(bottom, bottom + HeapRegion::GrainWords);
  assert(reserved().contains(mr), "invariant");
  return g1h->allocator()->new_heap_region(hrm_index, g1h->bot_shared(), mr);
}

void HeapRegionManager::commit_regions(uint index, size_t num_regions) {
  guarantee(num_regions > 0, "Must commit more than zero regions");
  guarantee(_num_committed + num_regions <= max_length(), "Cannot commit more than the maximum amount of regions");

  _num_committed += (uint)num_regions;

  _heap_mapper->commit_regions(index, num_regions);

  // Also commit auxiliary data
  _prev_bitmap_mapper->commit_regions(index, num_regions);
  _next_bitmap_mapper->commit_regions(index, num_regions);

  _bot_mapper->commit_regions(index, num_regions);
  _cardtable_mapper->commit_regions(index, num_regions);

  _card_counts_mapper->commit_regions(index, num_regions);
}

void HeapRegionManager::uncommit_regions(uint start, size_t num_regions) {
  guarantee(num_regions >= 1, err_msg("Need to specify at least one region to uncommit, tried to uncommit zero regions at %u", start));
  guarantee(_num_committed >= num_regions, "pre-condition");

  // Print before uncommitting.
  if (G1CollectedHeap::heap()->hr_printer()->is_active()) {
    for (uint i = start; i < start + num_regions; i++) {
      HeapRegion* hr = at(i);
      G1CollectedHeap::heap()->hr_printer()->uncommit(hr->bottom(), hr->end());
    }
  }

  _num_committed -= (uint)num_regions;

  _available_map.par_clear_range(start, start + num_regions, BitMap::unknown_range);
  _heap_mapper->uncommit_regions(start, num_regions);

  // Also uncommit auxiliary data
  _prev_bitmap_mapper->uncommit_regions(start, num_regions);
  _next_bitmap_mapper->uncommit_regions(start, num_regions);

  _bot_mapper->uncommit_regions(start, num_regions);
  _cardtable_mapper->uncommit_regions(start, num_regions);

  _card_counts_mapper->uncommit_regions(start, num_regions);
}

void HeapRegionManager::make_regions_available(uint start, uint num_regions) {
  guarantee(num_regions > 0, "No point in calling this for zero regions");
  commit_regions(start, num_regions);
  for (uint i = start; i < start + num_regions; i++) {
    if (_regions.get_by_index(i) == NULL) {
      HeapRegion* new_hr = new_heap_region(i);
      _regions.set_by_index(i, new_hr);
      _allocated_heapregions_length = MAX2(_allocated_heapregions_length, i + 1);
    }
  }

  _available_map.par_set_range(start, start + num_regions, BitMap::unknown_range);

  for (uint i = start; i < start + num_regions; i++) {
    assert(is_available(i), err_msg("Just made region %u available but is apparently not.", i));
    HeapRegion* hr = at(i);
    if (G1CollectedHeap::heap()->hr_printer()->is_active()) {
      G1CollectedHeap::heap()->hr_printer()->commit(hr->bottom(), hr->end());
    }
    HeapWord* bottom = G1CollectedHeap::heap()->bottom_addr_for_region(i);
    MemRegion mr(bottom, bottom + HeapRegion::GrainWords);

    hr->initialize(mr);
    insert_into_free_list(at(i));
  }
}

uint HeapRegionManager::expand_by(uint num_regions) {
  return expand_at(0, num_regions);
}

uint HeapRegionManager::expand_at(uint start, uint num_regions) {
  if (num_regions == 0) {
    return 0;
  }

  uint cur = start;
  uint idx_last_found = 0;
  uint num_last_found = 0;

  uint expanded = 0;

  while (expanded < num_regions &&
         (num_last_found = find_unavailable_from_idx(cur, &idx_last_found)) > 0) {
    uint to_expand = MIN2(num_regions - expanded, num_last_found);
    make_regions_available(idx_last_found, to_expand);
    expanded += to_expand;
    cur = idx_last_found + num_last_found + 1;
  }

  verify_optional();
  return expanded;
}

uint HeapRegionManager::find_contiguous(size_t num, bool empty_only) {
  uint found = 0;
  size_t length_found = 0;
  uint cur = 0;

  while (length_found < num && cur < max_length()) {
    HeapRegion* hr = _regions.get_by_index(cur);
    if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) {
      // This region is a potential candidate for allocation into.
      length_found++;
    } else {
      // This region is not a candidate. The next region is the next possible one.
      found = cur + 1;
      length_found = 0;
    }
    cur++;
  }

  if (length_found == num) {
    for (uint i = found; i < (found + num); i++) {
      HeapRegion* hr = _regions.get_by_index(i);
      // sanity check
      guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()),
                err_msg("Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT
                        " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr)));
    }
    return found;
  } else {
    return G1_NO_HRM_INDEX;
  }
}

HeapRegion* HeapRegionManager::next_region_in_heap(const HeapRegion* r) const {
  guarantee(r != NULL, "Start region must be a valid region");
  guarantee(is_available(r->hrm_index()), err_msg("Trying to iterate starting from region %u which is not in the heap", r->hrm_index()));
  for (uint i = r->hrm_index() + 1; i < _allocated_heapregions_length; i++) {
    HeapRegion* hr = _regions.get_by_index(i);
    if (is_available(i)) {
      return hr;
    }
  }
  return NULL;
}

void HeapRegionManager::iterate(HeapRegionClosure* blk) const {
  uint len = max_length();

  for (uint i = 0; i < len; i++) {
    if (!is_available(i)) {
      continue;
    }
    guarantee(at(i) != NULL, err_msg("Tried to access region %u that has a NULL HeapRegion*", i));
    bool res = blk->doHeapRegion(at(i));
    if (res) {
      blk->incomplete();
      return;
    }
  }
}

uint HeapRegionManager::find_unavailable_from_idx(uint start_idx, uint* res_idx) const {
  guarantee(res_idx != NULL, "checking");
  guarantee(start_idx <= (max_length() + 1), "checking");

  uint num_regions = 0;

  uint cur = start_idx;
  while (cur < max_length() && is_available(cur)) {
    cur++;
  }
  if (cur == max_length()) {
    return num_regions;
  }
  *res_idx = cur;
  while (cur < max_length() && !is_available(cur)) {
    cur++;
  }
  num_regions = cur - *res_idx;
#ifdef ASSERT
  for (uint i = *res_idx; i < (*res_idx + num_regions); i++) {
    assert(!is_available(i), "just checking");
  }
  assert(cur == max_length() || num_regions == 0 || is_available(cur),
         err_msg("The region at the current position %u must be available or at the end of the heap.", cur));
#endif
  return num_regions;
}

uint HeapRegionManager::start_region_for_worker(uint worker_i, uint num_workers, uint num_regions) const {
  return num_regions * worker_i / num_workers;
}

void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, uint num_workers, jint claim_value) const {
  const uint start_index = start_region_for_worker(worker_id, num_workers, _allocated_heapregions_length);

  // Every worker will actually look at all regions, skipping over regions that
  // are currently not committed.
  // This also (potentially) iterates over regions newly allocated during GC. This
  // is no problem except for some extra work.
  for (uint count = 0; count < _allocated_heapregions_length; count++) {
    const uint index = (start_index + count) % _allocated_heapregions_length;
    assert(0 <= index && index < _allocated_heapregions_length, "sanity");
    // Skip over unavailable regions
    if (!is_available(index)) {
      continue;
    }
    HeapRegion* r = _regions.get_by_index(index);
    // We'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed.
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
    if (!r->claimHeapRegion(claim_value)) {
      continue;
    }
    // Success!
    if (r->startsHumongous()) {
      // If the region is "starts humongous" we'll iterate over its
      // "continues humongous" first; in fact we'll do them
      // first. The order is important. In one case, calling the
      // closure on the "starts humongous" region might de-allocate
      // and clear all its "continues humongous" regions and, as a
      // result, we might end up processing them twice. So, we'll do
      // them first (note: most closures will ignore them anyway) and
      // then we'll do the "starts humongous" region.
      for (uint ch_index = index + 1; ch_index < index + r->region_num(); ch_index++) {
        HeapRegion* chr = _regions.get_by_index(ch_index);

        assert(chr->continuesHumongous(), "Must be humongous region");
        assert(chr->humongous_start_region() == r,
               err_msg("Must work on humongous continuation of the original start region "
                       PTR_FORMAT ", but is " PTR_FORMAT, p2i(r), p2i(chr)));
        assert(chr->claim_value() != claim_value,
               "Must not have been claimed yet because claiming of humongous continuation first claims the start region");

        bool claim_result = chr->claimHeapRegion(claim_value);
        // We should always be able to claim it; no one else should
        // be trying to claim this region.
        guarantee(claim_result, "We should always be able to claim the continuesHumongous part of the humongous object");

        bool res2 = blk->doHeapRegion(chr);
        if (res2) {
          return;
        }

        // Right now, this holds (i.e., no closure that actually
        // does something with "continues humongous" regions
        // clears them). We might have to weaken it in the future,
        // but let's leave these two asserts here for extra safety.
        assert(chr->continuesHumongous(), "should still be the case");
        assert(chr->humongous_start_region() == r, "sanity");
      }
    }

    bool res = blk->doHeapRegion(r);
    if (res) {
      return;
    }
  }
}

uint HeapRegionManager::shrink_by(uint num_regions_to_remove) {
  assert(length() > 0, "the region sequence should not be empty");
  assert(length() <= _allocated_heapregions_length, "invariant");
  assert(_allocated_heapregions_length > 0, "we should have at least one region committed");
  assert(num_regions_to_remove < length(), "We should never remove all regions");

  if (num_regions_to_remove == 0) {
    return 0;
  }

  uint removed = 0;
  uint cur = _allocated_heapregions_length - 1;
  uint idx_last_found = 0;
  uint num_last_found = 0;

  while ((removed < num_regions_to_remove) &&
      (num_last_found = find_empty_from_idx_reverse(cur, &idx_last_found)) > 0) {
    uint to_remove = MIN2(num_regions_to_remove - removed, num_last_found);

    uncommit_regions(idx_last_found + num_last_found - to_remove, to_remove);

    cur -= num_last_found;
    removed += to_remove;
  }

  verify_optional();

  return removed;
}

uint HeapRegionManager::find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const {
  guarantee(start_idx < _allocated_heapregions_length, "checking");
  guarantee(res_idx != NULL, "checking");

  uint num_regions_found = 0;

  jlong cur = start_idx;
  while (cur != -1 && !(is_available(cur) && at(cur)->is_empty())) {
    cur--;
  }
  if (cur == -1) {
    return num_regions_found;
  }
  jlong old_cur = cur;
  // cur indexes the first empty region
  while (cur != -1 && is_available(cur) && at(cur)->is_empty()) {
    cur--;
  }
  *res_idx = cur + 1;
  num_regions_found = old_cur - cur;

#ifdef ASSERT
  for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) {
    assert(at(i)->is_empty(), "just checking");
  }
#endif
  return num_regions_found;
}

void HeapRegionManager::verify() {
  guarantee(length() <= _allocated_heapregions_length,
            err_msg("invariant: _length: %u _allocated_length: %u",
                    length(), _allocated_heapregions_length));
  guarantee(_allocated_heapregions_length <= max_length(),
            err_msg("invariant: _allocated_length: %u _max_length: %u",
                    _allocated_heapregions_length, max_length()));

  bool prev_committed = true;
  uint num_committed = 0;
  HeapWord* prev_end = heap_bottom();
  for (uint i = 0; i < _allocated_heapregions_length; i++) {
    if (!is_available(i)) {
      prev_committed = false;
      continue;
    }
    num_committed++;
    HeapRegion* hr = _regions.get_by_index(i);
    guarantee(hr != NULL, err_msg("invariant: i: %u", i));
    guarantee(!prev_committed || hr->bottom() == prev_end,
              err_msg("invariant i: %u "HR_FORMAT" prev_end: "PTR_FORMAT,
                      i, HR_FORMAT_PARAMS(hr), p2i(prev_end)));
    guarantee(hr->hrm_index() == i,
              err_msg("invariant: i: %u hrm_index(): %u", i, hr->hrm_index()));
    // Asserts will fire if i is >= _length
    HeapWord* addr = hr->bottom();
    guarantee(addr_to_region(addr) == hr, "sanity");
    // We cannot check whether the region is part of a particular set: at the time
    // this method may be called, we have only completed allocation of the regions,
    // but not put into a region set.
    prev_committed = true;
    if (hr->startsHumongous()) {
      prev_end = hr->orig_end();
    } else {
      prev_end = hr->end();
    }
  }
  for (uint i = _allocated_heapregions_length; i < max_length(); i++) {
    guarantee(_regions.get_by_index(i) == NULL, err_msg("invariant i: %u", i));
  }

  guarantee(num_committed == _num_committed, err_msg("Found %u committed regions, but should be %u", num_committed, _num_committed));
  _free_list.verify();
}

#ifndef PRODUCT
void HeapRegionManager::verify_optional() {
  verify();
}
#endif // PRODUCT