comparison src/cpu/sparc/vm/assembler_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_assembler_sparc.cpp.incl"
27
28 // Implementation of Address
29
30 Address::Address( addr_type t, int which ) {
31 switch (t) {
32 case extra_in_argument:
33 case extra_out_argument:
34 _base = t == extra_in_argument ? FP : SP;
35 _hi = 0;
36 // Warning: In LP64 mode, _disp will occupy more than 10 bits.
37 // This is inconsistent with the other constructors but op
38 // codes such as ld or ldx, only access disp() to get their
39 // simm13 argument.
40 _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
41 break;
42 default:
43 ShouldNotReachHere();
44 break;
45 }
46 }
47
48 static const char* argumentNames[][2] = {
49 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
50 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
51 {"A(n>9)","P(n>9)"}
52 };
53
54 const char* Argument::name() const {
55 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
56 int num = number();
57 if (num >= nofArgs) num = nofArgs - 1;
58 return argumentNames[num][is_in() ? 1 : 0];
59 }
60
61 void Assembler::print_instruction(int inst) {
62 const char* s;
63 switch (inv_op(inst)) {
64 default: s = "????"; break;
65 case call_op: s = "call"; break;
66 case branch_op:
67 switch (inv_op2(inst)) {
68 case bpr_op2: s = "bpr"; break;
69 case fb_op2: s = "fb"; break;
70 case fbp_op2: s = "fbp"; break;
71 case br_op2: s = "br"; break;
72 case bp_op2: s = "bp"; break;
73 case cb_op2: s = "cb"; break;
74 default: s = "????"; break;
75 }
76 }
77 ::tty->print("%s", s);
78 }
79
80
81 // Patch instruction inst at offset inst_pos to refer to dest_pos
82 // and return the resulting instruction.
83 // We should have pcs, not offsets, but since all is relative, it will work out
84 // OK.
85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
86
87 int m; // mask for displacement field
88 int v; // new value for displacement field
89 const int word_aligned_ones = -4;
90 switch (inv_op(inst)) {
91 default: ShouldNotReachHere();
92 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
93 case branch_op:
94 switch (inv_op2(inst)) {
95 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
96 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
97 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
98 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
99 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
100 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
101 default: ShouldNotReachHere();
102 }
103 }
104 return inst & ~m | v;
105 }
106
107 // Return the offset of the branch destionation of instruction inst
108 // at offset pos.
109 // Should have pcs, but since all is relative, it works out.
110 int Assembler::branch_destination(int inst, int pos) {
111 int r;
112 switch (inv_op(inst)) {
113 default: ShouldNotReachHere();
114 case call_op: r = inv_wdisp(inst, pos, 30); break;
115 case branch_op:
116 switch (inv_op2(inst)) {
117 case bpr_op2: r = inv_wdisp16(inst, pos); break;
118 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
119 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
120 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
121 case br_op2: r = inv_wdisp( inst, pos, 22); break;
122 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
123 default: ShouldNotReachHere();
124 }
125 }
126 return r;
127 }
128
129 int AbstractAssembler::code_fill_byte() {
130 return 0x00; // illegal instruction 0x00000000
131 }
132
133 // Generate a bunch 'o stuff (including v9's
134 #ifndef PRODUCT
135 void Assembler::test_v9() {
136 add( G0, G1, G2 );
137 add( G3, 0, G4 );
138
139 addcc( G5, G6, G7 );
140 addcc( I0, 1, I1 );
141 addc( I2, I3, I4 );
142 addc( I5, -1, I6 );
143 addccc( I7, L0, L1 );
144 addccc( L2, (1 << 12) - 2, L3 );
145
146 Label lbl1, lbl2, lbl3;
147
148 bind(lbl1);
149
150 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
151 delayed()->nop();
152 bpr( rc_lez, false, pt, L5, lbl1);
153 delayed()->nop();
154
155 fb( f_never, true, pc() + 4, relocInfo::none);
156 delayed()->nop();
157 fb( f_notEqual, false, lbl2 );
158 delayed()->nop();
159
160 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
161 delayed()->nop();
162 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
163 delayed()->nop();
164
165 br( equal, true, pc() + 1024, relocInfo::none);
166 delayed()->nop();
167 br( lessEqual, false, lbl1 );
168 delayed()->nop();
169 br( never, false, lbl1 );
170 delayed()->nop();
171
172 bp( less, true, icc, pn, pc(), relocInfo::none);
173 delayed()->nop();
174 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
175 delayed()->nop();
176
177 call( pc(), relocInfo::none);
178 delayed()->nop();
179 call( lbl3 );
180 delayed()->nop();
181
182
183 casa( L6, L7, O0 );
184 casxa( O1, O2, O3, 0 );
185
186 udiv( O4, O5, O7 );
187 udiv( G0, (1 << 12) - 1, G1 );
188 sdiv( G1, G2, G3 );
189 sdiv( G4, -((1 << 12) - 1), G5 );
190 udivcc( G6, G7, I0 );
191 udivcc( I1, -((1 << 12) - 2), I2 );
192 sdivcc( I3, I4, I5 );
193 sdivcc( I6, -((1 << 12) - 0), I7 );
194
195 done();
196 retry();
197
198 fadd( FloatRegisterImpl::S, F0, F1, F2 );
199 fsub( FloatRegisterImpl::D, F34, F0, F62 );
200
201 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
202 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
203
204 ftox( FloatRegisterImpl::D, F2, F4 );
205 ftoi( FloatRegisterImpl::Q, F4, F8 );
206
207 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
208
209 fxtof( FloatRegisterImpl::S, F4, F5 );
210 fitof( FloatRegisterImpl::D, F6, F8 );
211
212 fmov( FloatRegisterImpl::Q, F16, F20 );
213 fneg( FloatRegisterImpl::S, F6, F7 );
214 fabs( FloatRegisterImpl::D, F10, F12 );
215
216 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
217 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
218 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
219
220 fsqrt( FloatRegisterImpl::S, F13, F14 );
221
222 flush( L0, L1 );
223 flush( L2, -1 );
224
225 flushw();
226
227 illtrap( (1 << 22) - 2);
228
229 impdep1( 17, (1 << 19) - 1 );
230 impdep2( 3, 0 );
231
232 jmpl( L3, L4, L5 );
233 delayed()->nop();
234 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
235 delayed()->nop();
236
237
238 ldf( FloatRegisterImpl::S, O0, O1, F15 );
239 ldf( FloatRegisterImpl::D, O2, -1, F14 );
240
241
242 ldfsr( O3, O4 );
243 ldfsr( O5, -1 );
244 ldxfsr( O6, O7 );
245 ldxfsr( I0, -1 );
246
247 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
248 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
249
250 ldsb( I4, I5, I6 );
251 ldsb( I7, -1, G0 );
252 ldsh( G1, G3, G4 );
253 ldsh( G5, -1, G6 );
254 ldsw( G7, L0, L1 );
255 ldsw( L2, -1, L3 );
256 ldub( L4, L5, L6 );
257 ldub( L7, -1, O0 );
258 lduh( O1, O2, O3 );
259 lduh( O4, -1, O5 );
260 lduw( O6, O7, G0 );
261 lduw( G1, -1, G2 );
262 ldx( G3, G4, G5 );
263 ldx( G6, -1, G7 );
264 ldd( I0, I1, I2 );
265 ldd( I3, -1, I4 );
266
267 ldsba( I5, I6, 2, I7 );
268 ldsba( L0, -1, L1 );
269 ldsha( L2, L3, 3, L4 );
270 ldsha( L5, -1, L6 );
271 ldswa( L7, O0, (1 << 8) - 1, O1 );
272 ldswa( O2, -1, O3 );
273 lduba( O4, O5, 0, O6 );
274 lduba( O7, -1, I0 );
275 lduha( I1, I2, 1, I3 );
276 lduha( I4, -1, I5 );
277 lduwa( I6, I7, 2, L0 );
278 lduwa( L1, -1, L2 );
279 ldxa( L3, L4, 3, L5 );
280 ldxa( L6, -1, L7 );
281 ldda( G0, G1, 4, G2 );
282 ldda( G3, -1, G4 );
283
284 ldstub( G5, G6, G7 );
285 ldstub( O0, -1, O1 );
286
287 ldstuba( O2, O3, 5, O4 );
288 ldstuba( O5, -1, O6 );
289
290 and3( I0, L0, O0 );
291 and3( G7, -1, O7 );
292 andcc( L2, I2, G2 );
293 andcc( L4, -1, G4 );
294 andn( I5, I6, I7 );
295 andn( I6, -1, I7 );
296 andncc( I5, I6, I7 );
297 andncc( I7, -1, I6 );
298 or3( I5, I6, I7 );
299 or3( I7, -1, I6 );
300 orcc( I5, I6, I7 );
301 orcc( I7, -1, I6 );
302 orn( I5, I6, I7 );
303 orn( I7, -1, I6 );
304 orncc( I5, I6, I7 );
305 orncc( I7, -1, I6 );
306 xor3( I5, I6, I7 );
307 xor3( I7, -1, I6 );
308 xorcc( I5, I6, I7 );
309 xorcc( I7, -1, I6 );
310 xnor( I5, I6, I7 );
311 xnor( I7, -1, I6 );
312 xnorcc( I5, I6, I7 );
313 xnorcc( I7, -1, I6 );
314
315 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
316 membar( StoreStore );
317 membar( LoadStore );
318 membar( StoreLoad );
319 membar( LoadLoad );
320 membar( Sync );
321 membar( MemIssue );
322 membar( Lookaside );
323
324 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
325 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
326
327 movcc( overflowClear, false, icc, I6, L4 );
328 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
329
330 movr( rc_nz, I5, I6, I7 );
331 movr( rc_gz, L1, -1, L2 );
332
333 mulx( I5, I6, I7 );
334 mulx( I7, -1, I6 );
335 sdivx( I5, I6, I7 );
336 sdivx( I7, -1, I6 );
337 udivx( I5, I6, I7 );
338 udivx( I7, -1, I6 );
339
340 umul( I5, I6, I7 );
341 umul( I7, -1, I6 );
342 smul( I5, I6, I7 );
343 smul( I7, -1, I6 );
344 umulcc( I5, I6, I7 );
345 umulcc( I7, -1, I6 );
346 smulcc( I5, I6, I7 );
347 smulcc( I7, -1, I6 );
348
349 mulscc( I5, I6, I7 );
350 mulscc( I7, -1, I6 );
351
352 nop();
353
354
355 popc( G0, G1);
356 popc( -1, G2);
357
358 prefetch( L1, L2, severalReads );
359 prefetch( L3, -1, oneRead );
360 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
361 prefetcha( G2, -1, oneWrite );
362
363 rett( I7, I7);
364 delayed()->nop();
365 rett( G0, -1, relocInfo::none);
366 delayed()->nop();
367
368 save( I5, I6, I7 );
369 save( I7, -1, I6 );
370 restore( I5, I6, I7 );
371 restore( I7, -1, I6 );
372
373 saved();
374 restored();
375
376 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
377
378 sll( I5, I6, I7 );
379 sll( I7, 31, I6 );
380 srl( I5, I6, I7 );
381 srl( I7, 0, I6 );
382 sra( I5, I6, I7 );
383 sra( I7, 30, I6 );
384 sllx( I5, I6, I7 );
385 sllx( I7, 63, I6 );
386 srlx( I5, I6, I7 );
387 srlx( I7, 0, I6 );
388 srax( I5, I6, I7 );
389 srax( I7, 62, I6 );
390
391 sir( -1 );
392
393 stbar();
394
395 stf( FloatRegisterImpl::Q, F40, G0, I7 );
396 stf( FloatRegisterImpl::S, F18, I3, -1 );
397
398 stfsr( L1, L2 );
399 stfsr( I7, -1 );
400 stxfsr( I6, I5 );
401 stxfsr( L4, -1 );
402
403 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
404 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
405
406 stb( L5, O2, I7 );
407 stb( I7, I6, -1 );
408 sth( L5, O2, I7 );
409 sth( I7, I6, -1 );
410 stw( L5, O2, I7 );
411 stw( I7, I6, -1 );
412 stx( L5, O2, I7 );
413 stx( I7, I6, -1 );
414 std( L5, O2, I7 );
415 std( I7, I6, -1 );
416
417 stba( L5, O2, I7, 8 );
418 stba( I7, I6, -1 );
419 stha( L5, O2, I7, 9 );
420 stha( I7, I6, -1 );
421 stwa( L5, O2, I7, 0 );
422 stwa( I7, I6, -1 );
423 stxa( L5, O2, I7, 11 );
424 stxa( I7, I6, -1 );
425 stda( L5, O2, I7, 12 );
426 stda( I7, I6, -1 );
427
428 sub( I5, I6, I7 );
429 sub( I7, -1, I6 );
430 subcc( I5, I6, I7 );
431 subcc( I7, -1, I6 );
432 subc( I5, I6, I7 );
433 subc( I7, -1, I6 );
434 subccc( I5, I6, I7 );
435 subccc( I7, -1, I6 );
436
437 swap( I5, I6, I7 );
438 swap( I7, -1, I6 );
439
440 swapa( G0, G1, 13, G2 );
441 swapa( I7, -1, I6 );
442
443 taddcc( I5, I6, I7 );
444 taddcc( I7, -1, I6 );
445 taddcctv( I5, I6, I7 );
446 taddcctv( I7, -1, I6 );
447
448 tsubcc( I5, I6, I7 );
449 tsubcc( I7, -1, I6 );
450 tsubcctv( I5, I6, I7 );
451 tsubcctv( I7, -1, I6 );
452
453 trap( overflowClear, xcc, G0, G1 );
454 trap( lessEqual, icc, I7, 17 );
455
456 bind(lbl2);
457 bind(lbl3);
458
459 code()->decode();
460 }
461
462 // Generate a bunch 'o stuff unique to V8
463 void Assembler::test_v8_onlys() {
464 Label lbl1;
465
466 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
467 delayed()->nop();
468 cb( cp_never, true, lbl1);
469 delayed()->nop();
470
471 cpop1(1, 2, 3, 4);
472 cpop2(5, 6, 7, 8);
473
474 ldc( I0, I1, 31);
475 ldc( I2, -1, 0);
476
477 lddc( I4, I4, 30);
478 lddc( I6, 0, 1 );
479
480 ldcsr( L0, L1, 0);
481 ldcsr( L1, (1 << 12) - 1, 17 );
482
483 stc( 31, L4, L5);
484 stc( 30, L6, -(1 << 12) );
485
486 stdc( 0, L7, G0);
487 stdc( 1, G1, 0 );
488
489 stcsr( 16, G2, G3);
490 stcsr( 17, G4, 1 );
491
492 stdcq( 4, G5, G6);
493 stdcq( 5, G7, -1 );
494
495 bind(lbl1);
496
497 code()->decode();
498 }
499 #endif
500
501 // Implementation of MacroAssembler
502
503 void MacroAssembler::null_check(Register reg, int offset) {
504 if (needs_explicit_null_check((intptr_t)offset)) {
505 // provoke OS NULL exception if reg = NULL by
506 // accessing M[reg] w/o changing any registers
507 ld_ptr(reg, 0, G0);
508 }
509 else {
510 // nothing to do, (later) access of M[reg + offset]
511 // will provoke OS NULL exception if reg = NULL
512 }
513 }
514
515 // Ring buffer jumps
516
517 #ifndef PRODUCT
518 void MacroAssembler::ret( bool trace ) { if (trace) {
519 mov(I7, O7); // traceable register
520 JMP(O7, 2 * BytesPerInstWord);
521 } else {
522 jmpl( I7, 2 * BytesPerInstWord, G0 );
523 }
524 }
525
526 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
527 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
528 #endif /* PRODUCT */
529
530
531 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
532 assert_not_delayed();
533 // This can only be traceable if r1 & r2 are visible after a window save
534 if (TraceJumps) {
535 #ifndef PRODUCT
536 save_frame(0);
537 verify_thread();
538 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
539 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
540 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
541 add(O2, O1, O1);
542
543 add(r1->after_save(), r2->after_save(), O2);
544 set((intptr_t)file, O3);
545 set(line, O4);
546 Label L;
547 // get nearby pc, store jmp target
548 call(L, relocInfo::none); // No relocation for call to pc+0x8
549 delayed()->st(O2, O1, 0);
550 bind(L);
551
552 // store nearby pc
553 st(O7, O1, sizeof(intptr_t));
554 // store file
555 st(O3, O1, 2*sizeof(intptr_t));
556 // store line
557 st(O4, O1, 3*sizeof(intptr_t));
558 add(O0, 1, O0);
559 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
560 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
561 restore();
562 #endif /* PRODUCT */
563 }
564 jmpl(r1, r2, G0);
565 }
566 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
567 assert_not_delayed();
568 // This can only be traceable if r1 is visible after a window save
569 if (TraceJumps) {
570 #ifndef PRODUCT
571 save_frame(0);
572 verify_thread();
573 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
574 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
575 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
576 add(O2, O1, O1);
577
578 add(r1->after_save(), offset, O2);
579 set((intptr_t)file, O3);
580 set(line, O4);
581 Label L;
582 // get nearby pc, store jmp target
583 call(L, relocInfo::none); // No relocation for call to pc+0x8
584 delayed()->st(O2, O1, 0);
585 bind(L);
586
587 // store nearby pc
588 st(O7, O1, sizeof(intptr_t));
589 // store file
590 st(O3, O1, 2*sizeof(intptr_t));
591 // store line
592 st(O4, O1, 3*sizeof(intptr_t));
593 add(O0, 1, O0);
594 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
595 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
596 restore();
597 #endif /* PRODUCT */
598 }
599 jmp(r1, offset);
600 }
601
602 // This code sequence is relocatable to any address, even on LP64.
603 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
604 assert_not_delayed();
605 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
606 // variable length instruction streams.
607 sethi(a, /*ForceRelocatable=*/ true);
608 if (TraceJumps) {
609 #ifndef PRODUCT
610 // Must do the add here so relocation can find the remainder of the
611 // value to be relocated.
612 add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
613 save_frame(0);
614 verify_thread();
615 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
616 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
617 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
618 add(O2, O1, O1);
619
620 set((intptr_t)file, O3);
621 set(line, O4);
622 Label L;
623
624 // get nearby pc, store jmp target
625 call(L, relocInfo::none); // No relocation for call to pc+0x8
626 delayed()->st(a.base()->after_save(), O1, 0);
627 bind(L);
628
629 // store nearby pc
630 st(O7, O1, sizeof(intptr_t));
631 // store file
632 st(O3, O1, 2*sizeof(intptr_t));
633 // store line
634 st(O4, O1, 3*sizeof(intptr_t));
635 add(O0, 1, O0);
636 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
637 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
638 restore();
639 jmpl(a.base(), G0, d);
640 #else
641 jmpl(a, d, offset);
642 #endif /* PRODUCT */
643 } else {
644 jmpl(a, d, offset);
645 }
646 }
647
648 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
649 jumpl( a, G0, offset, file, line );
650 }
651
652
653 // Convert to C varargs format
654 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
655 // spill register-resident args to their memory slots
656 // (SPARC calling convention requires callers to have already preallocated these)
657 // Note that the inArg might in fact be an outgoing argument,
658 // if a leaf routine or stub does some tricky argument shuffling.
659 // This routine must work even though one of the saved arguments
660 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
661 for (Argument savePtr = inArg;
662 savePtr.is_register();
663 savePtr = savePtr.successor()) {
664 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
665 }
666 // return the address of the first memory slot
667 add(inArg.address_in_frame(), d);
668 }
669
670 // Conditional breakpoint (for assertion checks in assembly code)
671 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
672 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
673 }
674
675 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
676 void MacroAssembler::breakpoint_trap() {
677 trap(ST_RESERVED_FOR_USER_0);
678 }
679
680 // flush windows (except current) using flushw instruction if avail.
681 void MacroAssembler::flush_windows() {
682 if (VM_Version::v9_instructions_work()) flushw();
683 else flush_windows_trap();
684 }
685
686 // Write serialization page so VM thread can do a pseudo remote membar
687 // We use the current thread pointer to calculate a thread specific
688 // offset to write to within the page. This minimizes bus traffic
689 // due to cache line collision.
690 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
691 Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
692 srl(thread, os::get_serialize_page_shift_count(), tmp2);
693 if (Assembler::is_simm13(os::vm_page_size())) {
694 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
695 }
696 else {
697 set((os::vm_page_size() - sizeof(int)), tmp1);
698 and3(tmp2, tmp1, tmp2);
699 }
700 load_address(mem_serialize_page);
701 st(G0, tmp1, tmp2);
702 }
703
704
705
706 void MacroAssembler::enter() {
707 Unimplemented();
708 }
709
710 void MacroAssembler::leave() {
711 Unimplemented();
712 }
713
714 void MacroAssembler::mult(Register s1, Register s2, Register d) {
715 if(VM_Version::v9_instructions_work()) {
716 mulx (s1, s2, d);
717 } else {
718 smul (s1, s2, d);
719 }
720 }
721
722 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
723 if(VM_Version::v9_instructions_work()) {
724 mulx (s1, simm13a, d);
725 } else {
726 smul (s1, simm13a, d);
727 }
728 }
729
730
731 #ifdef ASSERT
732 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
733 const Register s1 = G3_scratch;
734 const Register s2 = G4_scratch;
735 Label get_psr_test;
736 // Get the condition codes the V8 way.
737 read_ccr_trap(s1);
738 mov(ccr_save, s2);
739 // This is a test of V8 which has icc but not xcc
740 // so mask off the xcc bits
741 and3(s2, 0xf, s2);
742 // Compare condition codes from the V8 and V9 ways.
743 subcc(s2, s1, G0);
744 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
745 delayed()->breakpoint_trap();
746 bind(get_psr_test);
747 }
748
749 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
750 const Register s1 = G3_scratch;
751 const Register s2 = G4_scratch;
752 Label set_psr_test;
753 // Write out the saved condition codes the V8 way
754 write_ccr_trap(ccr_save, s1, s2);
755 // Read back the condition codes using the V9 instruction
756 rdccr(s1);
757 mov(ccr_save, s2);
758 // This is a test of V8 which has icc but not xcc
759 // so mask off the xcc bits
760 and3(s2, 0xf, s2);
761 and3(s1, 0xf, s1);
762 // Compare the V8 way with the V9 way.
763 subcc(s2, s1, G0);
764 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
765 delayed()->breakpoint_trap();
766 bind(set_psr_test);
767 }
768 #else
769 #define read_ccr_v8_assert(x)
770 #define write_ccr_v8_assert(x)
771 #endif // ASSERT
772
773 void MacroAssembler::read_ccr(Register ccr_save) {
774 if (VM_Version::v9_instructions_work()) {
775 rdccr(ccr_save);
776 // Test code sequence used on V8. Do not move above rdccr.
777 read_ccr_v8_assert(ccr_save);
778 } else {
779 read_ccr_trap(ccr_save);
780 }
781 }
782
783 void MacroAssembler::write_ccr(Register ccr_save) {
784 if (VM_Version::v9_instructions_work()) {
785 // Test code sequence used on V8. Do not move below wrccr.
786 write_ccr_v8_assert(ccr_save);
787 wrccr(ccr_save);
788 } else {
789 const Register temp_reg1 = G3_scratch;
790 const Register temp_reg2 = G4_scratch;
791 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
792 }
793 }
794
795
796 // Calls to C land
797
798 #ifdef ASSERT
799 // a hook for debugging
800 static Thread* reinitialize_thread() {
801 return ThreadLocalStorage::thread();
802 }
803 #else
804 #define reinitialize_thread ThreadLocalStorage::thread
805 #endif
806
807 #ifdef ASSERT
808 address last_get_thread = NULL;
809 #endif
810
811 // call this when G2_thread is not known to be valid
812 void MacroAssembler::get_thread() {
813 save_frame(0); // to avoid clobbering O0
814 mov(G1, L0); // avoid clobbering G1
815 mov(G5_method, L1); // avoid clobbering G5
816 mov(G3, L2); // avoid clobbering G3 also
817 mov(G4, L5); // avoid clobbering G4
818 #ifdef ASSERT
819 Address last_get_thread_addr(L3, (address)&last_get_thread);
820 sethi(last_get_thread_addr);
821 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
822 st_ptr(L4, last_get_thread_addr);
823 #endif
824 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
825 delayed()->nop();
826 mov(L0, G1);
827 mov(L1, G5_method);
828 mov(L2, G3);
829 mov(L5, G4);
830 restore(O0, 0, G2_thread);
831 }
832
833 static Thread* verify_thread_subroutine(Thread* gthread_value) {
834 Thread* correct_value = ThreadLocalStorage::thread();
835 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
836 return correct_value;
837 }
838
839 void MacroAssembler::verify_thread() {
840 if (VerifyThread) {
841 // NOTE: this chops off the heads of the 64-bit O registers.
842 #ifdef CC_INTERP
843 save_frame(0);
844 #else
845 // make sure G2_thread contains the right value
846 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
847 mov(G1, L1); // avoid clobbering G1
848 // G2 saved below
849 mov(G3, L3); // avoid clobbering G3
850 mov(G4, L4); // avoid clobbering G4
851 mov(G5_method, L5); // avoid clobbering G5_method
852 #endif /* CC_INTERP */
853 #if defined(COMPILER2) && !defined(_LP64)
854 // Save & restore possible 64-bit Long arguments in G-regs
855 srlx(G1,32,L0);
856 srlx(G4,32,L6);
857 #endif
858 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
859 delayed()->mov(G2_thread, O0);
860
861 mov(L1, G1); // Restore G1
862 // G2 restored below
863 mov(L3, G3); // restore G3
864 mov(L4, G4); // restore G4
865 mov(L5, G5_method); // restore G5_method
866 #if defined(COMPILER2) && !defined(_LP64)
867 // Save & restore possible 64-bit Long arguments in G-regs
868 sllx(L0,32,G2); // Move old high G1 bits high in G2
869 sllx(G1, 0,G1); // Clear current high G1 bits
870 or3 (G1,G2,G1); // Recover 64-bit G1
871 sllx(L6,32,G2); // Move old high G4 bits high in G2
872 sllx(G4, 0,G4); // Clear current high G4 bits
873 or3 (G4,G2,G4); // Recover 64-bit G4
874 #endif
875 restore(O0, 0, G2_thread);
876 }
877 }
878
879
880 void MacroAssembler::save_thread(const Register thread_cache) {
881 verify_thread();
882 if (thread_cache->is_valid()) {
883 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
884 mov(G2_thread, thread_cache);
885 }
886 if (VerifyThread) {
887 // smash G2_thread, as if the VM were about to anyway
888 set(0x67676767, G2_thread);
889 }
890 }
891
892
893 void MacroAssembler::restore_thread(const Register thread_cache) {
894 if (thread_cache->is_valid()) {
895 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
896 mov(thread_cache, G2_thread);
897 verify_thread();
898 } else {
899 // do it the slow way
900 get_thread();
901 }
902 }
903
904
905 // %%% maybe get rid of [re]set_last_Java_frame
906 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
907 assert_not_delayed();
908 Address flags(G2_thread,
909 0,
910 in_bytes(JavaThread::frame_anchor_offset()) +
911 in_bytes(JavaFrameAnchor::flags_offset()));
912 Address pc_addr(G2_thread,
913 0,
914 in_bytes(JavaThread::last_Java_pc_offset()));
915
916 // Always set last_Java_pc and flags first because once last_Java_sp is visible
917 // has_last_Java_frame is true and users will look at the rest of the fields.
918 // (Note: flags should always be zero before we get here so doesn't need to be set.)
919
920 #ifdef ASSERT
921 // Verify that flags was zeroed on return to Java
922 Label PcOk;
923 save_frame(0); // to avoid clobbering O0
924 ld_ptr(pc_addr, L0);
925 tst(L0);
926 #ifdef _LP64
927 brx(Assembler::zero, false, Assembler::pt, PcOk);
928 #else
929 br(Assembler::zero, false, Assembler::pt, PcOk);
930 #endif // _LP64
931 delayed() -> nop();
932 stop("last_Java_pc not zeroed before leaving Java");
933 bind(PcOk);
934
935 // Verify that flags was zeroed on return to Java
936 Label FlagsOk;
937 ld(flags, L0);
938 tst(L0);
939 br(Assembler::zero, false, Assembler::pt, FlagsOk);
940 delayed() -> restore();
941 stop("flags not zeroed before leaving Java");
942 bind(FlagsOk);
943 #endif /* ASSERT */
944 //
945 // When returning from calling out from Java mode the frame anchor's last_Java_pc
946 // will always be set to NULL. It is set here so that if we are doing a call to
947 // native (not VM) that we capture the known pc and don't have to rely on the
948 // native call having a standard frame linkage where we can find the pc.
949
950 if (last_Java_pc->is_valid()) {
951 st_ptr(last_Java_pc, pc_addr);
952 }
953
954 #ifdef _LP64
955 #ifdef ASSERT
956 // Make sure that we have an odd stack
957 Label StackOk;
958 andcc(last_java_sp, 0x01, G0);
959 br(Assembler::notZero, false, Assembler::pt, StackOk);
960 delayed() -> nop();
961 stop("Stack Not Biased in set_last_Java_frame");
962 bind(StackOk);
963 #endif // ASSERT
964 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
965 add( last_java_sp, STACK_BIAS, G4_scratch );
966 st_ptr(G4_scratch, Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
967 #else
968 st_ptr(last_java_sp, Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
969 #endif // _LP64
970 }
971
972 void MacroAssembler::reset_last_Java_frame(void) {
973 assert_not_delayed();
974
975 Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
976 Address pc_addr(G2_thread,
977 0,
978 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
979 Address flags(G2_thread,
980 0,
981 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
982
983 #ifdef ASSERT
984 // check that it WAS previously set
985 #ifdef CC_INTERP
986 save_frame(0);
987 #else
988 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
989 #endif /* CC_INTERP */
990 ld_ptr(sp_addr, L0);
991 tst(L0);
992 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
993 restore();
994 #endif // ASSERT
995
996 st_ptr(G0, sp_addr);
997 // Always return last_Java_pc to zero
998 st_ptr(G0, pc_addr);
999 // Always null flags after return to Java
1000 st(G0, flags);
1001 }
1002
1003
1004 void MacroAssembler::call_VM_base(
1005 Register oop_result,
1006 Register thread_cache,
1007 Register last_java_sp,
1008 address entry_point,
1009 int number_of_arguments,
1010 bool check_exceptions)
1011 {
1012 assert_not_delayed();
1013
1014 // determine last_java_sp register
1015 if (!last_java_sp->is_valid()) {
1016 last_java_sp = SP;
1017 }
1018 // debugging support
1019 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
1020
1021 // 64-bit last_java_sp is biased!
1022 set_last_Java_frame(last_java_sp, noreg);
1023 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
1024 save_thread(thread_cache);
1025 // do the call
1026 call(entry_point, relocInfo::runtime_call_type);
1027 if (!VerifyThread)
1028 delayed()->mov(G2_thread, O0); // pass thread as first argument
1029 else
1030 delayed()->nop(); // (thread already passed)
1031 restore_thread(thread_cache);
1032 reset_last_Java_frame();
1033
1034 // check for pending exceptions. use Gtemp as scratch register.
1035 if (check_exceptions) {
1036 check_and_forward_exception(Gtemp);
1037 }
1038
1039 // get oop result if there is one and reset the value in the thread
1040 if (oop_result->is_valid()) {
1041 get_vm_result(oop_result);
1042 }
1043 }
1044
1045 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1046 {
1047 Label L;
1048
1049 check_and_handle_popframe(scratch_reg);
1050 check_and_handle_earlyret(scratch_reg);
1051
1052 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1053 ld_ptr(exception_addr, scratch_reg);
1054 br_null(scratch_reg,false,pt,L);
1055 delayed()->nop();
1056 // we use O7 linkage so that forward_exception_entry has the issuing PC
1057 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1058 delayed()->nop();
1059 bind(L);
1060 }
1061
1062
1063 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1064 }
1065
1066
1067 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1068 }
1069
1070
1071 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1072 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1073 }
1074
1075
1076 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1077 // O0 is reserved for the thread
1078 mov(arg_1, O1);
1079 call_VM(oop_result, entry_point, 1, check_exceptions);
1080 }
1081
1082
1083 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1084 // O0 is reserved for the thread
1085 mov(arg_1, O1);
1086 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1087 call_VM(oop_result, entry_point, 2, check_exceptions);
1088 }
1089
1090
1091 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1092 // O0 is reserved for the thread
1093 mov(arg_1, O1);
1094 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1095 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1096 call_VM(oop_result, entry_point, 3, check_exceptions);
1097 }
1098
1099
1100
1101 // Note: The following call_VM overloadings are useful when a "save"
1102 // has already been performed by a stub, and the last Java frame is
1103 // the previous one. In that case, last_java_sp must be passed as FP
1104 // instead of SP.
1105
1106
1107 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1108 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1109 }
1110
1111
1112 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1113 // O0 is reserved for the thread
1114 mov(arg_1, O1);
1115 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1116 }
1117
1118
1119 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1120 // O0 is reserved for the thread
1121 mov(arg_1, O1);
1122 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1123 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1124 }
1125
1126
1127 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1128 // O0 is reserved for the thread
1129 mov(arg_1, O1);
1130 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1131 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1132 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1133 }
1134
1135
1136
1137 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1138 assert_not_delayed();
1139 save_thread(thread_cache);
1140 // do the call
1141 call(entry_point, relocInfo::runtime_call_type);
1142 delayed()->nop();
1143 restore_thread(thread_cache);
1144 }
1145
1146
1147 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1148 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1149 }
1150
1151
1152 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1153 mov(arg_1, O0);
1154 call_VM_leaf(thread_cache, entry_point, 1);
1155 }
1156
1157
1158 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1159 mov(arg_1, O0);
1160 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1161 call_VM_leaf(thread_cache, entry_point, 2);
1162 }
1163
1164
1165 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1166 mov(arg_1, O0);
1167 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1168 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1169 call_VM_leaf(thread_cache, entry_point, 3);
1170 }
1171
1172
1173 void MacroAssembler::get_vm_result(Register oop_result) {
1174 verify_thread();
1175 Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1176 ld_ptr( vm_result_addr, oop_result);
1177 st_ptr(G0, vm_result_addr);
1178 verify_oop(oop_result);
1179 }
1180
1181
1182 void MacroAssembler::get_vm_result_2(Register oop_result) {
1183 verify_thread();
1184 Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
1185 ld_ptr(vm_result_addr_2, oop_result);
1186 st_ptr(G0, vm_result_addr_2);
1187 verify_oop(oop_result);
1188 }
1189
1190
1191 // We require that C code which does not return a value in vm_result will
1192 // leave it undisturbed.
1193 void MacroAssembler::set_vm_result(Register oop_result) {
1194 verify_thread();
1195 Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
1196 verify_oop(oop_result);
1197
1198 # ifdef ASSERT
1199 // Check that we are not overwriting any other oop.
1200 #ifdef CC_INTERP
1201 save_frame(0);
1202 #else
1203 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
1204 #endif /* CC_INTERP */
1205 ld_ptr(vm_result_addr, L0);
1206 tst(L0);
1207 restore();
1208 breakpoint_trap(notZero, Assembler::ptr_cc);
1209 // }
1210 # endif
1211
1212 st_ptr(oop_result, vm_result_addr);
1213 }
1214
1215
1216 void MacroAssembler::store_check(Register tmp, Register obj) {
1217 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1218
1219 /* $$$ This stuff needs to go into one of the BarrierSet generator
1220 functions. (The particular barrier sets will have to be friends of
1221 MacroAssembler, I guess.) */
1222 BarrierSet* bs = Universe::heap()->barrier_set();
1223 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
1224 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1225 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1226 #ifdef _LP64
1227 srlx(obj, CardTableModRefBS::card_shift, obj);
1228 #else
1229 srl(obj, CardTableModRefBS::card_shift, obj);
1230 #endif
1231 assert( tmp != obj, "need separate temp reg");
1232 Address rs(tmp, (address)ct->byte_map_base);
1233 load_address(rs);
1234 stb(G0, rs.base(), obj);
1235 }
1236
1237 void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
1238 store_check(tmp, obj);
1239 }
1240
1241 // %%% Note: The following six instructions have been moved,
1242 // unchanged, from assembler_sparc.inline.hpp.
1243 // They will be refactored at a later date.
1244
1245 void MacroAssembler::sethi(intptr_t imm22a,
1246 Register d,
1247 bool ForceRelocatable,
1248 RelocationHolder const& rspec) {
1249 Address adr( d, (address)imm22a, rspec );
1250 MacroAssembler::sethi( adr, ForceRelocatable );
1251 }
1252
1253
1254 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
1255 address save_pc;
1256 int shiftcnt;
1257 // if addr of local, do not need to load it
1258 assert(a.base() != FP && a.base() != SP, "just use ld or st for locals");
1259 #ifdef _LP64
1260 # ifdef CHECK_DELAY
1261 assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1262 # endif
1263 v9_dep();
1264 // ForceRelocatable = 1;
1265 save_pc = pc();
1266 if (a.hi32() == 0 && a.low32() >= 0) {
1267 Assembler::sethi(a.low32(), a.base(), a.rspec());
1268 }
1269 else if (a.hi32() == -1) {
1270 Assembler::sethi(~a.low32(), a.base(), a.rspec());
1271 xor3(a.base(), ~low10(~0), a.base());
1272 }
1273 else {
1274 Assembler::sethi(a.hi32(), a.base(), a.rspec() ); // 22
1275 if ( a.hi32() & 0x3ff ) // Any bits?
1276 or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
1277 if ( a.low32() & 0xFFFFFC00 ) { // done?
1278 if( (a.low32() >> 20) & 0xfff ) { // Any bits set?
1279 sllx(a.base(), 12, a.base()); // Make room for next 12 bits
1280 or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
1281 shiftcnt = 0; // We already shifted
1282 }
1283 else
1284 shiftcnt = 12;
1285 if( (a.low32() >> 10) & 0x3ff ) {
1286 sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
1287 or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
1288 shiftcnt = 0;
1289 }
1290 else
1291 shiftcnt = 10;
1292 sllx(a.base(), shiftcnt+10 , a.base()); // Shift leaving disp field 0'd
1293 }
1294 else
1295 sllx( a.base(), 32, a.base() );
1296 }
1297 // Pad out the instruction sequence so it can be
1298 // patched later.
1299 if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
1300 a.rtype() != relocInfo::runtime_call_type) ) {
1301 while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
1302 nop();
1303 }
1304 #else
1305 Assembler::sethi(a.hi(), a.base(), a.rspec());
1306 #endif
1307
1308 }
1309
1310 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1311 #ifdef _LP64
1312 if (worst_case) return 7;
1313 intptr_t iaddr = (intptr_t)a;
1314 int hi32 = (int)(iaddr >> 32);
1315 int lo32 = (int)(iaddr);
1316 int inst_count;
1317 if (hi32 == 0 && lo32 >= 0)
1318 inst_count = 1;
1319 else if (hi32 == -1)
1320 inst_count = 2;
1321 else {
1322 inst_count = 2;
1323 if ( hi32 & 0x3ff )
1324 inst_count++;
1325 if ( lo32 & 0xFFFFFC00 ) {
1326 if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1327 if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1328 }
1329 }
1330 return BytesPerInstWord * inst_count;
1331 #else
1332 return BytesPerInstWord;
1333 #endif
1334 }
1335
1336 int MacroAssembler::worst_case_size_of_set() {
1337 return size_of_sethi(NULL, true) + 1;
1338 }
1339
1340 void MacroAssembler::set(intptr_t value, Register d,
1341 RelocationHolder const& rspec) {
1342 Address val( d, (address)value, rspec);
1343
1344 if ( rspec.type() == relocInfo::none ) {
1345 // can optimize
1346 if (-4096 <= value && value <= 4095) {
1347 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1348 return;
1349 }
1350 if (inv_hi22(hi22(value)) == value) {
1351 sethi(val);
1352 return;
1353 }
1354 }
1355 assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
1356 sethi( val );
1357 if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
1358 add( d, value & 0x3ff, d, rspec);
1359 }
1360 }
1361
1362 void MacroAssembler::setsw(int value, Register d,
1363 RelocationHolder const& rspec) {
1364 Address val( d, (address)value, rspec);
1365 if ( rspec.type() == relocInfo::none ) {
1366 // can optimize
1367 if (-4096 <= value && value <= 4095) {
1368 or3(G0, value, d);
1369 return;
1370 }
1371 if (inv_hi22(hi22(value)) == value) {
1372 sethi( val );
1373 #ifndef _LP64
1374 if ( value < 0 ) {
1375 assert_not_delayed();
1376 sra (d, G0, d);
1377 }
1378 #endif
1379 return;
1380 }
1381 }
1382 assert_not_delayed();
1383 sethi( val );
1384 add( d, value & 0x3ff, d, rspec);
1385
1386 // (A negative value could be loaded in 2 insns with sethi/xor,
1387 // but it would take a more complex relocation.)
1388 #ifndef _LP64
1389 if ( value < 0)
1390 sra(d, G0, d);
1391 #endif
1392 }
1393
1394 // %%% End of moved six set instructions.
1395
1396
1397 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1398 assert_not_delayed();
1399 v9_dep();
1400
1401 int hi = (int)(value >> 32);
1402 int lo = (int)(value & ~0);
1403 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1404 if (Assembler::is_simm13(lo) && value == lo) {
1405 or3(G0, lo, d);
1406 } else if (hi == 0) {
1407 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
1408 if (low10(lo) != 0)
1409 or3(d, low10(lo), d);
1410 }
1411 else if (hi == -1) {
1412 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
1413 xor3(d, low10(lo) ^ ~low10(~0), d);
1414 }
1415 else if (lo == 0) {
1416 if (Assembler::is_simm13(hi)) {
1417 or3(G0, hi, d);
1418 } else {
1419 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
1420 if (low10(hi) != 0)
1421 or3(d, low10(hi), d);
1422 }
1423 sllx(d, 32, d);
1424 }
1425 else {
1426 Assembler::sethi(hi, tmp);
1427 Assembler::sethi(lo, d); // macro assembler version sign-extends
1428 if (low10(hi) != 0)
1429 or3 (tmp, low10(hi), tmp);
1430 if (low10(lo) != 0)
1431 or3 ( d, low10(lo), d);
1432 sllx(tmp, 32, tmp);
1433 or3 (d, tmp, d);
1434 }
1435 }
1436
1437 // compute size in bytes of sparc frame, given
1438 // number of extraWords
1439 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1440
1441 int nWords = frame::memory_parameter_word_sp_offset;
1442
1443 nWords += extraWords;
1444
1445 if (nWords & 1) ++nWords; // round up to double-word
1446
1447 return nWords * BytesPerWord;
1448 }
1449
1450
1451 // save_frame: given number of "extra" words in frame,
1452 // issue approp. save instruction (p 200, v8 manual)
1453
1454 void MacroAssembler::save_frame(int extraWords = 0) {
1455 int delta = -total_frame_size_in_bytes(extraWords);
1456 if (is_simm13(delta)) {
1457 save(SP, delta, SP);
1458 } else {
1459 set(delta, G3_scratch);
1460 save(SP, G3_scratch, SP);
1461 }
1462 }
1463
1464
1465 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1466 if (is_simm13(-size_in_bytes)) {
1467 save(SP, -size_in_bytes, SP);
1468 } else {
1469 set(-size_in_bytes, G3_scratch);
1470 save(SP, G3_scratch, SP);
1471 }
1472 }
1473
1474
1475 void MacroAssembler::save_frame_and_mov(int extraWords,
1476 Register s1, Register d1,
1477 Register s2, Register d2) {
1478 assert_not_delayed();
1479
1480 // The trick here is to use precisely the same memory word
1481 // that trap handlers also use to save the register.
1482 // This word cannot be used for any other purpose, but
1483 // it works fine to save the register's value, whether or not
1484 // an interrupt flushes register windows at any given moment!
1485 Address s1_addr;
1486 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1487 s1_addr = s1->address_in_saved_window();
1488 st_ptr(s1, s1_addr);
1489 }
1490
1491 Address s2_addr;
1492 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1493 s2_addr = s2->address_in_saved_window();
1494 st_ptr(s2, s2_addr);
1495 }
1496
1497 save_frame(extraWords);
1498
1499 if (s1_addr.base() == SP) {
1500 ld_ptr(s1_addr.after_save(), d1);
1501 } else if (s1->is_valid()) {
1502 mov(s1->after_save(), d1);
1503 }
1504
1505 if (s2_addr.base() == SP) {
1506 ld_ptr(s2_addr.after_save(), d2);
1507 } else if (s2->is_valid()) {
1508 mov(s2->after_save(), d2);
1509 }
1510 }
1511
1512
1513 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
1514 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1515 int oop_index = oop_recorder()->allocate_index(obj);
1516 return Address(d, address(obj), oop_Relocation::spec(oop_index));
1517 }
1518
1519
1520 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
1521 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1522 int oop_index = oop_recorder()->find_index(obj);
1523 return Address(d, address(obj), oop_Relocation::spec(oop_index));
1524 }
1525
1526
1527 void MacroAssembler::align(int modulus) {
1528 while (offset() % modulus != 0) nop();
1529 }
1530
1531
1532 void MacroAssembler::safepoint() {
1533 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1534 }
1535
1536
1537 void RegistersForDebugging::print(outputStream* s) {
1538 int j;
1539 for ( j = 0; j < 8; ++j )
1540 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1541 else s->print_cr( "fp = 0x%.16lx", i[j]);
1542 s->cr();
1543
1544 for ( j = 0; j < 8; ++j )
1545 s->print_cr("l%d = 0x%.16lx", j, l[j]);
1546 s->cr();
1547
1548 for ( j = 0; j < 8; ++j )
1549 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1550 else s->print_cr( "sp = 0x%.16lx", o[j]);
1551 s->cr();
1552
1553 for ( j = 0; j < 8; ++j )
1554 s->print_cr("g%d = 0x%.16lx", j, g[j]);
1555 s->cr();
1556
1557 // print out floats with compression
1558 for (j = 0; j < 32; ) {
1559 jfloat val = f[j];
1560 int last = j;
1561 for ( ; last+1 < 32; ++last ) {
1562 char b1[1024], b2[1024];
1563 sprintf(b1, "%f", val);
1564 sprintf(b2, "%f", f[last+1]);
1565 if (strcmp(b1, b2))
1566 break;
1567 }
1568 s->print("f%d", j);
1569 if ( j != last ) s->print(" - f%d", last);
1570 s->print(" = %f", val);
1571 s->fill_to(25);
1572 s->print_cr(" (0x%x)", val);
1573 j = last + 1;
1574 }
1575 s->cr();
1576
1577 // and doubles (evens only)
1578 for (j = 0; j < 32; ) {
1579 jdouble val = d[j];
1580 int last = j;
1581 for ( ; last+1 < 32; ++last ) {
1582 char b1[1024], b2[1024];
1583 sprintf(b1, "%f", val);
1584 sprintf(b2, "%f", d[last+1]);
1585 if (strcmp(b1, b2))
1586 break;
1587 }
1588 s->print("d%d", 2 * j);
1589 if ( j != last ) s->print(" - d%d", last);
1590 s->print(" = %f", val);
1591 s->fill_to(30);
1592 s->print("(0x%x)", *(int*)&val);
1593 s->fill_to(42);
1594 s->print_cr("(0x%x)", *(1 + (int*)&val));
1595 j = last + 1;
1596 }
1597 s->cr();
1598 }
1599
1600 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1601 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1602 a->flush_windows();
1603 int i;
1604 for (i = 0; i < 8; ++i) {
1605 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
1606 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
1607 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1608 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1609 }
1610 for (i = 0; i < 32; ++i) {
1611 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1612 }
1613 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1614 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1615 }
1616 }
1617
1618 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1619 for (int i = 1; i < 8; ++i) {
1620 a->ld_ptr(r, g_offset(i), as_gRegister(i));
1621 }
1622 for (int j = 0; j < 32; ++j) {
1623 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1624 }
1625 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1626 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1627 }
1628 }
1629
1630
1631 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1632 void MacroAssembler::push_fTOS() {
1633 // %%%%%% need to implement this
1634 }
1635
1636 // pops double TOS element from CPU stack and pushes on FPU stack
1637 void MacroAssembler::pop_fTOS() {
1638 // %%%%%% need to implement this
1639 }
1640
1641 void MacroAssembler::empty_FPU_stack() {
1642 // %%%%%% need to implement this
1643 }
1644
1645 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1646 // plausibility check for oops
1647 if (!VerifyOops) return;
1648
1649 if (reg == G0) return; // always NULL, which is always an oop
1650
1651 char buffer[16];
1652 sprintf(buffer, "%d", line);
1653 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1654 char * real_msg = new char[len];
1655 sprintf(real_msg, "%s (%s:%d)", msg, file, line);
1656
1657 // Call indirectly to solve generation ordering problem
1658 Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1659
1660 // Make some space on stack above the current register window.
1661 // Enough to hold 8 64-bit registers.
1662 add(SP,-8*8,SP);
1663
1664 // Save some 64-bit registers; a normal 'save' chops the heads off
1665 // of 64-bit longs in the 32-bit build.
1666 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1667 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1668 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1669 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1670
1671 set((intptr_t)real_msg, O1);
1672 // Load address to call to into O7
1673 load_ptr_contents(a, O7);
1674 // Register call to verify_oop_subroutine
1675 callr(O7, G0);
1676 delayed()->nop();
1677 // recover frame size
1678 add(SP, 8*8,SP);
1679 }
1680
1681 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1682 // plausibility check for oops
1683 if (!VerifyOops) return;
1684
1685 char buffer[64];
1686 sprintf(buffer, "%d", line);
1687 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1688 sprintf(buffer, " at SP+%d ", addr.disp());
1689 len += strlen(buffer);
1690 char * real_msg = new char[len];
1691 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1692
1693 // Call indirectly to solve generation ordering problem
1694 Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
1695
1696 // Make some space on stack above the current register window.
1697 // Enough to hold 8 64-bit registers.
1698 add(SP,-8*8,SP);
1699
1700 // Save some 64-bit registers; a normal 'save' chops the heads off
1701 // of 64-bit longs in the 32-bit build.
1702 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1703 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1704 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1705 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1706
1707 set((intptr_t)real_msg, O1);
1708 // Load address to call to into O7
1709 load_ptr_contents(a, O7);
1710 // Register call to verify_oop_subroutine
1711 callr(O7, G0);
1712 delayed()->nop();
1713 // recover frame size
1714 add(SP, 8*8,SP);
1715 }
1716
1717 // side-door communication with signalHandler in os_solaris.cpp
1718 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1719
1720 // This macro is expanded just once; it creates shared code. Contract:
1721 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
1722 // registers, including flags. May not use a register 'save', as this blows
1723 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
1724 // call.
1725 void MacroAssembler::verify_oop_subroutine() {
1726 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1727
1728 // Leaf call; no frame.
1729 Label succeed, fail, null_or_fail;
1730
1731 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1732 // O0 is now the oop to be checked. O7 is the return address.
1733 Register O0_obj = O0;
1734
1735 // Save some more registers for temps.
1736 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1737 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1738 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1739 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1740
1741 // Save flags
1742 Register O5_save_flags = O5;
1743 rdccr( O5_save_flags );
1744
1745 { // count number of verifies
1746 Register O2_adr = O2;
1747 Register O3_accum = O3;
1748 Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
1749 sethi(count_addr);
1750 ld(count_addr, O3_accum);
1751 inc(O3_accum);
1752 st(O3_accum, count_addr);
1753 }
1754
1755 Register O2_mask = O2;
1756 Register O3_bits = O3;
1757 Register O4_temp = O4;
1758
1759 // mark lower end of faulting range
1760 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1761 _verify_oop_implicit_branch[0] = pc();
1762
1763 // We can't check the mark oop because it could be in the process of
1764 // locking or unlocking while this is running.
1765 set(Universe::verify_oop_mask (), O2_mask);
1766 set(Universe::verify_oop_bits (), O3_bits);
1767
1768 // assert((obj & oop_mask) == oop_bits);
1769 and3(O0_obj, O2_mask, O4_temp);
1770 cmp(O4_temp, O3_bits);
1771 brx(notEqual, false, pn, null_or_fail);
1772 delayed()->nop();
1773
1774 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1775 // the null_or_fail case is useless; must test for null separately
1776 br_null(O0_obj, false, pn, succeed);
1777 delayed()->nop();
1778 }
1779
1780 // Check the klassOop of this object for being in the right area of memory.
1781 // Cannot do the load in the delay above slot in case O0 is null
1782 ld_ptr(Address(O0_obj, 0, oopDesc::klass_offset_in_bytes()), O0_obj);
1783 // assert((klass & klass_mask) == klass_bits);
1784 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1785 set(Universe::verify_klass_mask(), O2_mask);
1786 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1787 set(Universe::verify_klass_bits(), O3_bits);
1788 and3(O0_obj, O2_mask, O4_temp);
1789 cmp(O4_temp, O3_bits);
1790 brx(notEqual, false, pn, fail);
1791 // Check the klass's klass
1792 delayed()->ld_ptr(Address(O0_obj, 0, oopDesc::klass_offset_in_bytes()), O0_obj);
1793 and3(O0_obj, O2_mask, O4_temp);
1794 cmp(O4_temp, O3_bits);
1795 brx(notEqual, false, pn, fail);
1796 delayed()->wrccr( O5_save_flags ); // Restore CCR's
1797
1798 // mark upper end of faulting range
1799 _verify_oop_implicit_branch[1] = pc();
1800
1801 //-----------------------
1802 // all tests pass
1803 bind(succeed);
1804
1805 // Restore prior 64-bit registers
1806 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1807 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1808 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1809 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1810 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1811 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1812
1813 retl(); // Leaf return; restore prior O7 in delay slot
1814 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1815
1816 //-----------------------
1817 bind(null_or_fail); // nulls are less common but OK
1818 br_null(O0_obj, false, pt, succeed);
1819 delayed()->wrccr( O5_save_flags ); // Restore CCR's
1820
1821 //-----------------------
1822 // report failure:
1823 bind(fail);
1824 _verify_oop_implicit_branch[2] = pc();
1825
1826 wrccr( O5_save_flags ); // Restore CCR's
1827
1828 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1829
1830 // stop_subroutine expects message pointer in I1.
1831 mov(I1, O1);
1832
1833 // Restore prior 64-bit registers
1834 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1835 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1836 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1837 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1838 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1839 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1840
1841 // factor long stop-sequence into subroutine to save space
1842 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1843
1844 // call indirectly to solve generation ordering problem
1845 Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1846 load_ptr_contents(a, O5);
1847 jmpl(O5, 0, O7);
1848 delayed()->nop();
1849 }
1850
1851
1852 void MacroAssembler::stop(const char* msg) {
1853 // save frame first to get O7 for return address
1854 // add one word to size in case struct is odd number of words long
1855 // It must be doubleword-aligned for storing doubles into it.
1856
1857 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1858
1859 // stop_subroutine expects message pointer in I1.
1860 set((intptr_t)msg, O1);
1861
1862 // factor long stop-sequence into subroutine to save space
1863 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1864
1865 // call indirectly to solve generation ordering problem
1866 Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
1867 load_ptr_contents(a, O5);
1868 jmpl(O5, 0, O7);
1869 delayed()->nop();
1870
1871 breakpoint_trap(); // make stop actually stop rather than writing
1872 // unnoticeable results in the output files.
1873
1874 // restore(); done in callee to save space!
1875 }
1876
1877
1878 void MacroAssembler::warn(const char* msg) {
1879 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1880 RegistersForDebugging::save_registers(this);
1881 mov(O0, L0);
1882 set((intptr_t)msg, O0);
1883 call( CAST_FROM_FN_PTR(address, warning) );
1884 delayed()->nop();
1885 // ret();
1886 // delayed()->restore();
1887 RegistersForDebugging::restore_registers(this, L0);
1888 restore();
1889 }
1890
1891
1892 void MacroAssembler::untested(const char* what) {
1893 // We must be able to turn interactive prompting off
1894 // in order to run automated test scripts on the VM
1895 // Use the flag ShowMessageBoxOnError
1896
1897 char* b = new char[1024];
1898 sprintf(b, "untested: %s", what);
1899
1900 if ( ShowMessageBoxOnError ) stop(b);
1901 else warn(b);
1902 }
1903
1904
1905 void MacroAssembler::stop_subroutine() {
1906 RegistersForDebugging::save_registers(this);
1907
1908 // for the sake of the debugger, stick a PC on the current frame
1909 // (this assumes that the caller has performed an extra "save")
1910 mov(I7, L7);
1911 add(O7, -7 * BytesPerInt, I7);
1912
1913 save_frame(); // one more save to free up another O7 register
1914 mov(I0, O1); // addr of reg save area
1915
1916 // We expect pointer to message in I1. Caller must set it up in O1
1917 mov(I1, O0); // get msg
1918 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1919 delayed()->nop();
1920
1921 restore();
1922
1923 RegistersForDebugging::restore_registers(this, O0);
1924
1925 save_frame(0);
1926 call(CAST_FROM_FN_PTR(address,breakpoint));
1927 delayed()->nop();
1928 restore();
1929
1930 mov(L7, I7);
1931 retl();
1932 delayed()->restore(); // see stop above
1933 }
1934
1935
1936 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1937 if ( ShowMessageBoxOnError ) {
1938 JavaThreadState saved_state = JavaThread::current()->thread_state();
1939 JavaThread::current()->set_thread_state(_thread_in_vm);
1940 {
1941 // In order to get locks work, we need to fake a in_VM state
1942 ttyLocker ttyl;
1943 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1944 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1945 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1946 }
1947 if (os::message_box(msg, "Execution stopped, print registers?"))
1948 regs->print(::tty);
1949 }
1950 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1951 }
1952 else
1953 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1954 assert(false, "error");
1955 }
1956
1957
1958 #ifndef PRODUCT
1959 void MacroAssembler::test() {
1960 ResourceMark rm;
1961
1962 CodeBuffer cb("test", 10000, 10000);
1963 MacroAssembler* a = new MacroAssembler(&cb);
1964 VM_Version::allow_all();
1965 a->test_v9();
1966 a->test_v8_onlys();
1967 VM_Version::revert();
1968
1969 StubRoutines::Sparc::test_stop_entry()();
1970 }
1971 #endif
1972
1973
1974 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1975 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1976 Label no_extras;
1977 br( negative, true, pt, no_extras ); // if neg, clear reg
1978 delayed()->set( 0, Rresult); // annuled, so only if taken
1979 bind( no_extras );
1980 }
1981
1982
1983 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1984 #ifdef _LP64
1985 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1986 #else
1987 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1988 #endif
1989 bclr(1, Rresult);
1990 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
1991 }
1992
1993
1994 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1995 calc_frame_size(Rextra_words, Rresult);
1996 neg(Rresult);
1997 save(SP, Rresult, SP);
1998 }
1999
2000
2001 // ---------------------------------------------------------
2002 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2003 switch (c) {
2004 /*case zero: */
2005 case Assembler::equal: return Assembler::rc_z;
2006 case Assembler::lessEqual: return Assembler::rc_lez;
2007 case Assembler::less: return Assembler::rc_lz;
2008 /*case notZero:*/
2009 case Assembler::notEqual: return Assembler::rc_nz;
2010 case Assembler::greater: return Assembler::rc_gz;
2011 case Assembler::greaterEqual: return Assembler::rc_gez;
2012 }
2013 ShouldNotReachHere();
2014 return Assembler::rc_z;
2015 }
2016
2017 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
2018 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2019 tst(s1);
2020 br (c, a, p, L);
2021 }
2022
2023
2024 // Compares a pointer register with zero and branches on null.
2025 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2026 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2027 assert_not_delayed();
2028 #ifdef _LP64
2029 bpr( rc_z, a, p, s1, L );
2030 #else
2031 tst(s1);
2032 br ( zero, a, p, L );
2033 #endif
2034 }
2035
2036 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2037 assert_not_delayed();
2038 #ifdef _LP64
2039 bpr( rc_nz, a, p, s1, L );
2040 #else
2041 tst(s1);
2042 br ( notZero, a, p, L );
2043 #endif
2044 }
2045
2046
2047 // instruction sequences factored across compiler & interpreter
2048
2049
2050 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2051 Register Rb_hi, Register Rb_low,
2052 Register Rresult) {
2053
2054 Label check_low_parts, done;
2055
2056 cmp(Ra_hi, Rb_hi ); // compare hi parts
2057 br(equal, true, pt, check_low_parts);
2058 delayed()->cmp(Ra_low, Rb_low); // test low parts
2059
2060 // And, with an unsigned comparison, it does not matter if the numbers
2061 // are negative or not.
2062 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2063 // The second one is bigger (unsignedly).
2064
2065 // Other notes: The first move in each triplet can be unconditional
2066 // (and therefore probably prefetchable).
2067 // And the equals case for the high part does not need testing,
2068 // since that triplet is reached only after finding the high halves differ.
2069
2070 if (VM_Version::v9_instructions_work()) {
2071
2072 mov ( -1, Rresult);
2073 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
2074 }
2075 else {
2076 br(less, true, pt, done); delayed()-> set(-1, Rresult);
2077 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2078 }
2079
2080 bind( check_low_parts );
2081
2082 if (VM_Version::v9_instructions_work()) {
2083 mov( -1, Rresult);
2084 movcc(equal, false, icc, 0, Rresult);
2085 movcc(greaterUnsigned, false, icc, 1, Rresult);
2086 }
2087 else {
2088 set(-1, Rresult);
2089 br(equal, true, pt, done); delayed()->set( 0, Rresult);
2090 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2091 }
2092 bind( done );
2093 }
2094
2095 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2096 subcc( G0, Rlow, Rlow );
2097 subc( G0, Rhi, Rhi );
2098 }
2099
2100 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
2101 Register Rcount,
2102 Register Rout_high, Register Rout_low,
2103 Register Rtemp ) {
2104
2105
2106 Register Ralt_count = Rtemp;
2107 Register Rxfer_bits = Rtemp;
2108
2109 assert( Ralt_count != Rin_high
2110 && Ralt_count != Rin_low
2111 && Ralt_count != Rcount
2112 && Rxfer_bits != Rin_low
2113 && Rxfer_bits != Rin_high
2114 && Rxfer_bits != Rcount
2115 && Rxfer_bits != Rout_low
2116 && Rout_low != Rin_high,
2117 "register alias checks");
2118
2119 Label big_shift, done;
2120
2121 // This code can be optimized to use the 64 bit shifts in V9.
2122 // Here we use the 32 bit shifts.
2123
2124 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2125 subcc(Rcount, 31, Ralt_count);
2126 br(greater, true, pn, big_shift);
2127 delayed()->
2128 dec(Ralt_count);
2129
2130 // shift < 32 bits, Ralt_count = Rcount-31
2131
2132 // We get the transfer bits by shifting right by 32-count the low
2133 // register. This is done by shifting right by 31-count and then by one
2134 // more to take care of the special (rare) case where count is zero
2135 // (shifting by 32 would not work).
2136
2137 neg( Ralt_count );
2138
2139 // The order of the next two instructions is critical in the case where
2140 // Rin and Rout are the same and should not be reversed.
2141
2142 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
2143 if (Rcount != Rout_low) {
2144 sll( Rin_low, Rcount, Rout_low ); // low half
2145 }
2146 sll( Rin_high, Rcount, Rout_high );
2147 if (Rcount == Rout_low) {
2148 sll( Rin_low, Rcount, Rout_low ); // low half
2149 }
2150 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
2151 ba (false, done);
2152 delayed()->
2153 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
2154
2155 // shift >= 32 bits, Ralt_count = Rcount-32
2156 bind(big_shift);
2157 sll( Rin_low, Ralt_count, Rout_high );
2158 clr( Rout_low );
2159
2160 bind(done);
2161 }
2162
2163
2164 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
2165 Register Rcount,
2166 Register Rout_high, Register Rout_low,
2167 Register Rtemp ) {
2168
2169 Register Ralt_count = Rtemp;
2170 Register Rxfer_bits = Rtemp;
2171
2172 assert( Ralt_count != Rin_high
2173 && Ralt_count != Rin_low
2174 && Ralt_count != Rcount
2175 && Rxfer_bits != Rin_low
2176 && Rxfer_bits != Rin_high
2177 && Rxfer_bits != Rcount
2178 && Rxfer_bits != Rout_high
2179 && Rout_high != Rin_low,
2180 "register alias checks");
2181
2182 Label big_shift, done;
2183
2184 // This code can be optimized to use the 64 bit shifts in V9.
2185 // Here we use the 32 bit shifts.
2186
2187 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2188 subcc(Rcount, 31, Ralt_count);
2189 br(greater, true, pn, big_shift);
2190 delayed()->dec(Ralt_count);
2191
2192 // shift < 32 bits, Ralt_count = Rcount-31
2193
2194 // We get the transfer bits by shifting left by 32-count the high
2195 // register. This is done by shifting left by 31-count and then by one
2196 // more to take care of the special (rare) case where count is zero
2197 // (shifting by 32 would not work).
2198
2199 neg( Ralt_count );
2200 if (Rcount != Rout_low) {
2201 srl( Rin_low, Rcount, Rout_low );
2202 }
2203
2204 // The order of the next two instructions is critical in the case where
2205 // Rin and Rout are the same and should not be reversed.
2206
2207 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
2208 sra( Rin_high, Rcount, Rout_high ); // high half
2209 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
2210 if (Rcount == Rout_low) {
2211 srl( Rin_low, Rcount, Rout_low );
2212 }
2213 ba (false, done);
2214 delayed()->
2215 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
2216
2217 // shift >= 32 bits, Ralt_count = Rcount-32
2218 bind(big_shift);
2219
2220 sra( Rin_high, Ralt_count, Rout_low );
2221 sra( Rin_high, 31, Rout_high ); // sign into hi
2222
2223 bind( done );
2224 }
2225
2226
2227
2228 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
2229 Register Rcount,
2230 Register Rout_high, Register Rout_low,
2231 Register Rtemp ) {
2232
2233 Register Ralt_count = Rtemp;
2234 Register Rxfer_bits = Rtemp;
2235
2236 assert( Ralt_count != Rin_high
2237 && Ralt_count != Rin_low
2238 && Ralt_count != Rcount
2239 && Rxfer_bits != Rin_low
2240 && Rxfer_bits != Rin_high
2241 && Rxfer_bits != Rcount
2242 && Rxfer_bits != Rout_high
2243 && Rout_high != Rin_low,
2244 "register alias checks");
2245
2246 Label big_shift, done;
2247
2248 // This code can be optimized to use the 64 bit shifts in V9.
2249 // Here we use the 32 bit shifts.
2250
2251 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
2252 subcc(Rcount, 31, Ralt_count);
2253 br(greater, true, pn, big_shift);
2254 delayed()->dec(Ralt_count);
2255
2256 // shift < 32 bits, Ralt_count = Rcount-31
2257
2258 // We get the transfer bits by shifting left by 32-count the high
2259 // register. This is done by shifting left by 31-count and then by one
2260 // more to take care of the special (rare) case where count is zero
2261 // (shifting by 32 would not work).
2262
2263 neg( Ralt_count );
2264 if (Rcount != Rout_low) {
2265 srl( Rin_low, Rcount, Rout_low );
2266 }
2267
2268 // The order of the next two instructions is critical in the case where
2269 // Rin and Rout are the same and should not be reversed.
2270
2271 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
2272 srl( Rin_high, Rcount, Rout_high ); // high half
2273 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
2274 if (Rcount == Rout_low) {
2275 srl( Rin_low, Rcount, Rout_low );
2276 }
2277 ba (false, done);
2278 delayed()->
2279 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
2280
2281 // shift >= 32 bits, Ralt_count = Rcount-32
2282 bind(big_shift);
2283
2284 srl( Rin_high, Ralt_count, Rout_low );
2285 clr( Rout_high );
2286
2287 bind( done );
2288 }
2289
2290 #ifdef _LP64
2291 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2292 cmp(Ra, Rb);
2293 mov( -1, Rresult);
2294 movcc(equal, false, xcc, 0, Rresult);
2295 movcc(greater, false, xcc, 1, Rresult);
2296 }
2297 #endif
2298
2299
2300 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2301 FloatRegister Fa, FloatRegister Fb,
2302 Register Rresult) {
2303
2304 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2305
2306 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
2307 Condition eq = f_equal;
2308 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
2309
2310 if (VM_Version::v9_instructions_work()) {
2311
2312 mov( -1, Rresult );
2313 movcc( eq, true, fcc0, 0, Rresult );
2314 movcc( gt, true, fcc0, 1, Rresult );
2315
2316 } else {
2317 Label done;
2318
2319 set( -1, Rresult );
2320 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2321 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
2322 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
2323
2324 bind (done);
2325 }
2326 }
2327
2328
2329 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2330 {
2331 if (VM_Version::v9_instructions_work()) {
2332 Assembler::fneg(w, s, d);
2333 } else {
2334 if (w == FloatRegisterImpl::S) {
2335 Assembler::fneg(w, s, d);
2336 } else if (w == FloatRegisterImpl::D) {
2337 // number() does a sanity check on the alignment.
2338 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2339 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2340
2341 Assembler::fneg(FloatRegisterImpl::S, s, d);
2342 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2343 } else {
2344 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2345
2346 // number() does a sanity check on the alignment.
2347 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2348 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2349
2350 Assembler::fneg(FloatRegisterImpl::S, s, d);
2351 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2352 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2353 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2354 }
2355 }
2356 }
2357
2358 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2359 {
2360 if (VM_Version::v9_instructions_work()) {
2361 Assembler::fmov(w, s, d);
2362 } else {
2363 if (w == FloatRegisterImpl::S) {
2364 Assembler::fmov(w, s, d);
2365 } else if (w == FloatRegisterImpl::D) {
2366 // number() does a sanity check on the alignment.
2367 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2368 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2369
2370 Assembler::fmov(FloatRegisterImpl::S, s, d);
2371 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2372 } else {
2373 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2374
2375 // number() does a sanity check on the alignment.
2376 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2377 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2378
2379 Assembler::fmov(FloatRegisterImpl::S, s, d);
2380 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2381 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2382 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2383 }
2384 }
2385 }
2386
2387 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2388 {
2389 if (VM_Version::v9_instructions_work()) {
2390 Assembler::fabs(w, s, d);
2391 } else {
2392 if (w == FloatRegisterImpl::S) {
2393 Assembler::fabs(w, s, d);
2394 } else if (w == FloatRegisterImpl::D) {
2395 // number() does a sanity check on the alignment.
2396 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2397 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2398
2399 Assembler::fabs(FloatRegisterImpl::S, s, d);
2400 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2401 } else {
2402 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2403
2404 // number() does a sanity check on the alignment.
2405 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2406 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2407
2408 Assembler::fabs(FloatRegisterImpl::S, s, d);
2409 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2410 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2411 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2412 }
2413 }
2414 }
2415
2416 void MacroAssembler::save_all_globals_into_locals() {
2417 mov(G1,L1);
2418 mov(G2,L2);
2419 mov(G3,L3);
2420 mov(G4,L4);
2421 mov(G5,L5);
2422 mov(G6,L6);
2423 mov(G7,L7);
2424 }
2425
2426 void MacroAssembler::restore_globals_from_locals() {
2427 mov(L1,G1);
2428 mov(L2,G2);
2429 mov(L3,G3);
2430 mov(L4,G4);
2431 mov(L5,G5);
2432 mov(L6,G6);
2433 mov(L7,G7);
2434 }
2435
2436 // Use for 64 bit operation.
2437 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2438 {
2439 // store ptr_reg as the new top value
2440 #ifdef _LP64
2441 casx(top_ptr_reg, top_reg, ptr_reg);
2442 #else
2443 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2444 #endif // _LP64
2445 }
2446
2447 // [RGV] This routine does not handle 64 bit operations.
2448 // use casx_under_lock() or casx directly!!!
2449 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2450 {
2451 // store ptr_reg as the new top value
2452 if (VM_Version::v9_instructions_work()) {
2453 cas(top_ptr_reg, top_reg, ptr_reg);
2454 } else {
2455
2456 // If the register is not an out nor global, it is not visible
2457 // after the save. Allocate a register for it, save its
2458 // value in the register save area (the save may not flush
2459 // registers to the save area).
2460
2461 Register top_ptr_reg_after_save;
2462 Register top_reg_after_save;
2463 Register ptr_reg_after_save;
2464
2465 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2466 top_ptr_reg_after_save = top_ptr_reg->after_save();
2467 } else {
2468 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2469 top_ptr_reg_after_save = L0;
2470 st(top_ptr_reg, reg_save_addr);
2471 }
2472
2473 if (top_reg->is_out() || top_reg->is_global()) {
2474 top_reg_after_save = top_reg->after_save();
2475 } else {
2476 Address reg_save_addr = top_reg->address_in_saved_window();
2477 top_reg_after_save = L1;
2478 st(top_reg, reg_save_addr);
2479 }
2480
2481 if (ptr_reg->is_out() || ptr_reg->is_global()) {
2482 ptr_reg_after_save = ptr_reg->after_save();
2483 } else {
2484 Address reg_save_addr = ptr_reg->address_in_saved_window();
2485 ptr_reg_after_save = L2;
2486 st(ptr_reg, reg_save_addr);
2487 }
2488
2489 const Register& lock_reg = L3;
2490 const Register& lock_ptr_reg = L4;
2491 const Register& value_reg = L5;
2492 const Register& yield_reg = L6;
2493 const Register& yieldall_reg = L7;
2494
2495 save_frame();
2496
2497 if (top_ptr_reg_after_save == L0) {
2498 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2499 }
2500
2501 if (top_reg_after_save == L1) {
2502 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2503 }
2504
2505 if (ptr_reg_after_save == L2) {
2506 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2507 }
2508
2509 Label(retry_get_lock);
2510 Label(not_same);
2511 Label(dont_yield);
2512
2513 assert(lock_addr, "lock_address should be non null for v8");
2514 set((intptr_t)lock_addr, lock_ptr_reg);
2515 // Initialize yield counter
2516 mov(G0,yield_reg);
2517 mov(G0, yieldall_reg);
2518 set(StubRoutines::Sparc::locked, lock_reg);
2519
2520 bind(retry_get_lock);
2521 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2522 br(Assembler::less, false, Assembler::pt, dont_yield);
2523 delayed()->nop();
2524
2525 if(use_call_vm) {
2526 Untested("Need to verify global reg consistancy");
2527 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2528 } else {
2529 // Save the regs and make space for a C call
2530 save(SP, -96, SP);
2531 save_all_globals_into_locals();
2532 call(CAST_FROM_FN_PTR(address,os::yield_all));
2533 delayed()->mov(yieldall_reg, O0);
2534 restore_globals_from_locals();
2535 restore();
2536 }
2537
2538 // reset the counter
2539 mov(G0,yield_reg);
2540 add(yieldall_reg, 1, yieldall_reg);
2541
2542 bind(dont_yield);
2543 // try to get lock
2544 swap(lock_ptr_reg, 0, lock_reg);
2545
2546 // did we get the lock?
2547 cmp(lock_reg, StubRoutines::Sparc::unlocked);
2548 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2549 delayed()->add(yield_reg,1,yield_reg);
2550
2551 // yes, got lock. do we have the same top?
2552 ld(top_ptr_reg_after_save, 0, value_reg);
2553 cmp(value_reg, top_reg_after_save);
2554 br(Assembler::notEqual, false, Assembler::pn, not_same);
2555 delayed()->nop();
2556
2557 // yes, same top.
2558 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2559 membar(Assembler::StoreStore);
2560
2561 bind(not_same);
2562 mov(value_reg, ptr_reg_after_save);
2563 st(lock_reg, lock_ptr_reg, 0); // unlock
2564
2565 restore();
2566 }
2567 }
2568
2569 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2570 Label& done, Label* slow_case,
2571 BiasedLockingCounters* counters) {
2572 assert(UseBiasedLocking, "why call this otherwise?");
2573
2574 if (PrintBiasedLockingStatistics) {
2575 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2576 if (counters == NULL)
2577 counters = BiasedLocking::counters();
2578 }
2579
2580 Label cas_label;
2581
2582 // Biased locking
2583 // See whether the lock is currently biased toward our thread and
2584 // whether the epoch is still valid
2585 // Note that the runtime guarantees sufficient alignment of JavaThread
2586 // pointers to allow age to be placed into low bits
2587 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2588 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2589 cmp(temp_reg, markOopDesc::biased_lock_pattern);
2590 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
2591
2592 delayed()->ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2593 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2594 or3(G2_thread, temp_reg, temp_reg);
2595 xor3(mark_reg, temp_reg, temp_reg);
2596 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2597 if (counters != NULL) {
2598 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2599 // Reload mark_reg as we may need it later
2600 ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
2601 }
2602 brx(Assembler::equal, true, Assembler::pt, done);
2603 delayed()->nop();
2604
2605 Label try_revoke_bias;
2606 Label try_rebias;
2607 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
2608 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2609
2610 // At this point we know that the header has the bias pattern and
2611 // that we are not the bias owner in the current epoch. We need to
2612 // figure out more details about the state of the header in order to
2613 // know what operations can be legally performed on the object's
2614 // header.
2615
2616 // If the low three bits in the xor result aren't clear, that means
2617 // the prototype header is no longer biased and we have to revoke
2618 // the bias on this object.
2619 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2620 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2621
2622 // Biasing is still enabled for this data type. See whether the
2623 // epoch of the current bias is still valid, meaning that the epoch
2624 // bits of the mark word are equal to the epoch bits of the
2625 // prototype header. (Note that the prototype header's epoch bits
2626 // only change at a safepoint.) If not, attempt to rebias the object
2627 // toward the current thread. Note that we must be absolutely sure
2628 // that the current epoch is invalid in order to do this because
2629 // otherwise the manipulations it performs on the mark word are
2630 // illegal.
2631 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2632 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2633
2634 // The epoch of the current bias is still valid but we know nothing
2635 // about the owner; it might be set or it might be clear. Try to
2636 // acquire the bias of the object using an atomic operation. If this
2637 // fails we will go in to the runtime to revoke the object's bias.
2638 // Note that we first construct the presumed unbiased header so we
2639 // don't accidentally blow away another thread's valid bias.
2640 delayed()->and3(mark_reg,
2641 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2642 mark_reg);
2643 or3(G2_thread, mark_reg, temp_reg);
2644 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2645 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2646 // If the biasing toward our thread failed, this means that
2647 // another thread succeeded in biasing it toward itself and we
2648 // need to revoke that bias. The revocation will occur in the
2649 // interpreter runtime in the slow case.
2650 cmp(mark_reg, temp_reg);
2651 if (counters != NULL) {
2652 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2653 }
2654 if (slow_case != NULL) {
2655 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2656 delayed()->nop();
2657 }
2658 br(Assembler::always, false, Assembler::pt, done);
2659 delayed()->nop();
2660
2661 bind(try_rebias);
2662 // At this point we know the epoch has expired, meaning that the
2663 // current "bias owner", if any, is actually invalid. Under these
2664 // circumstances _only_, we are allowed to use the current header's
2665 // value as the comparison value when doing the cas to acquire the
2666 // bias in the current epoch. In other words, we allow transfer of
2667 // the bias from one thread to another directly in this situation.
2668 //
2669 // FIXME: due to a lack of registers we currently blow away the age
2670 // bits in this situation. Should attempt to preserve them.
2671 ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2672 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2673 or3(G2_thread, temp_reg, temp_reg);
2674 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2675 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2676 // If the biasing toward our thread failed, this means that
2677 // another thread succeeded in biasing it toward itself and we
2678 // need to revoke that bias. The revocation will occur in the
2679 // interpreter runtime in the slow case.
2680 cmp(mark_reg, temp_reg);
2681 if (counters != NULL) {
2682 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2683 }
2684 if (slow_case != NULL) {
2685 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2686 delayed()->nop();
2687 }
2688 br(Assembler::always, false, Assembler::pt, done);
2689 delayed()->nop();
2690
2691 bind(try_revoke_bias);
2692 // The prototype mark in the klass doesn't have the bias bit set any
2693 // more, indicating that objects of this data type are not supposed
2694 // to be biased any more. We are going to try to reset the mark of
2695 // this object to the prototype value and fall through to the
2696 // CAS-based locking scheme. Note that if our CAS fails, it means
2697 // that another thread raced us for the privilege of revoking the
2698 // bias of this particular object, so it's okay to continue in the
2699 // normal locking code.
2700 //
2701 // FIXME: due to a lack of registers we currently blow away the age
2702 // bits in this situation. Should attempt to preserve them.
2703 ld_ptr(Address(obj_reg, 0, oopDesc::klass_offset_in_bytes()), temp_reg);
2704 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
2705 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
2706 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2707 // Fall through to the normal CAS-based lock, because no matter what
2708 // the result of the above CAS, some thread must have succeeded in
2709 // removing the bias bit from the object's header.
2710 if (counters != NULL) {
2711 cmp(mark_reg, temp_reg);
2712 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2713 }
2714
2715 bind(cas_label);
2716 }
2717
2718 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2719 bool allow_delay_slot_filling) {
2720 // Check for biased locking unlock case, which is a no-op
2721 // Note: we do not have to check the thread ID for two reasons.
2722 // First, the interpreter checks for IllegalMonitorStateException at
2723 // a higher level. Second, if the bias was revoked while we held the
2724 // lock, the object could not be rebiased toward another thread, so
2725 // the bias bit would be clear.
2726 ld_ptr(mark_addr, temp_reg);
2727 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2728 cmp(temp_reg, markOopDesc::biased_lock_pattern);
2729 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2730 delayed();
2731 if (!allow_delay_slot_filling) {
2732 nop();
2733 }
2734 }
2735
2736
2737 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
2738 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
2739
2740 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
2741 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
2742 }
2743
2744
2745
2746 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
2747 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
2748 // The code could be tightened up considerably.
2749 //
2750 // box->dhw disposition - post-conditions at DONE_LABEL.
2751 // - Successful inflated lock: box->dhw != 0.
2752 // Any non-zero value suffices.
2753 // Consider G2_thread, rsp, boxReg, or unused_mark()
2754 // - Successful Stack-lock: box->dhw == mark.
2755 // box->dhw must contain the displaced mark word value
2756 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2757 // The slow-path fast_enter() and slow_enter() operators
2758 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
2759 // - Biased: box->dhw is undefined
2760 //
2761 // SPARC refworkload performance - specifically jetstream and scimark - are
2762 // extremely sensitive to the size of the code emitted by compiler_lock_object
2763 // and compiler_unlock_object. Critically, the key factor is code size, not path
2764 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2765 // effect).
2766
2767
2768 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
2769 BiasedLockingCounters* counters) {
2770 Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2771
2772 verify_oop(Roop);
2773 Label done ;
2774
2775 if (counters != NULL) {
2776 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2777 }
2778
2779 if (EmitSync & 1) {
2780 mov (3, Rscratch) ;
2781 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2782 cmp (SP, G0) ;
2783 return ;
2784 }
2785
2786 if (EmitSync & 2) {
2787
2788 // Fetch object's markword
2789 ld_ptr(mark_addr, Rmark);
2790
2791 if (UseBiasedLocking) {
2792 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2793 }
2794
2795 // Save Rbox in Rscratch to be used for the cas operation
2796 mov(Rbox, Rscratch);
2797
2798 // set Rmark to markOop | markOopDesc::unlocked_value
2799 or3(Rmark, markOopDesc::unlocked_value, Rmark);
2800
2801 // Initialize the box. (Must happen before we update the object mark!)
2802 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2803
2804 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2805 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2806 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
2807 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
2808
2809 // if compare/exchange succeeded we found an unlocked object and we now have locked it
2810 // hence we are done
2811 cmp(Rmark, Rscratch);
2812 #ifdef _LP64
2813 sub(Rscratch, STACK_BIAS, Rscratch);
2814 #endif
2815 brx(Assembler::equal, false, Assembler::pt, done);
2816 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
2817
2818 // we did not find an unlocked object so see if this is a recursive case
2819 // sub(Rscratch, SP, Rscratch);
2820 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2821 andcc(Rscratch, 0xfffff003, Rscratch);
2822 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2823 bind (done) ;
2824 return ;
2825 }
2826
2827 Label Egress ;
2828
2829 if (EmitSync & 256) {
2830 Label IsInflated ;
2831
2832 ld_ptr (mark_addr, Rmark); // fetch obj->mark
2833 // Triage: biased, stack-locked, neutral, inflated
2834 if (UseBiasedLocking) {
2835 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2836 // Invariant: if control reaches this point in the emitted stream
2837 // then Rmark has not been modified.
2838 }
2839
2840 // Store mark into displaced mark field in the on-stack basic-lock "box"
2841 // Critically, this must happen before the CAS
2842 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2843 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2844 andcc (Rmark, 2, G0) ;
2845 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2846 delayed() ->
2847
2848 // Try stack-lock acquisition.
2849 // Beware: the 1st instruction is in a delay slot
2850 mov (Rbox, Rscratch);
2851 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
2852 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2853 casn (mark_addr.base(), Rmark, Rscratch) ;
2854 cmp (Rmark, Rscratch);
2855 brx (Assembler::equal, false, Assembler::pt, done);
2856 delayed()->sub(Rscratch, SP, Rscratch);
2857
2858 // Stack-lock attempt failed - check for recursive stack-lock.
2859 // See the comments below about how we might remove this case.
2860 #ifdef _LP64
2861 sub (Rscratch, STACK_BIAS, Rscratch);
2862 #endif
2863 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2864 andcc (Rscratch, 0xfffff003, Rscratch);
2865 br (Assembler::always, false, Assembler::pt, done) ;
2866 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2867
2868 bind (IsInflated) ;
2869 if (EmitSync & 64) {
2870 // If m->owner != null goto IsLocked
2871 // Pessimistic form: Test-and-CAS vs CAS
2872 // The optimistic form avoids RTS->RTO cache line upgrades.
2873 ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2874 andcc (Rscratch, Rscratch, G0) ;
2875 brx (Assembler::notZero, false, Assembler::pn, done) ;
2876 delayed()->nop() ;
2877 // m->owner == null : it's unlocked.
2878 }
2879
2880 // Try to CAS m->owner from null to Self
2881 // Invariant: if we acquire the lock then _recursions should be 0.
2882 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2883 mov (G2_thread, Rscratch) ;
2884 casn (Rmark, G0, Rscratch) ;
2885 cmp (Rscratch, G0) ;
2886 // Intentional fall-through into done
2887 } else {
2888 // Aggressively avoid the Store-before-CAS penalty
2889 // Defer the store into box->dhw until after the CAS
2890 Label IsInflated, Recursive ;
2891
2892 // Anticipate CAS -- Avoid RTS->RTO upgrade
2893 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2894
2895 ld_ptr (mark_addr, Rmark); // fetch obj->mark
2896 // Triage: biased, stack-locked, neutral, inflated
2897
2898 if (UseBiasedLocking) {
2899 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2900 // Invariant: if control reaches this point in the emitted stream
2901 // then Rmark has not been modified.
2902 }
2903 andcc (Rmark, 2, G0) ;
2904 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
2905 delayed()-> // Beware - dangling delay-slot
2906
2907 // Try stack-lock acquisition.
2908 // Transiently install BUSY (0) encoding in the mark word.
2909 // if the CAS of 0 into the mark was successful then we execute:
2910 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
2911 // ST obj->mark = box -- overwrite transient 0 value
2912 // This presumes TSO, of course.
2913
2914 mov (0, Rscratch) ;
2915 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
2916 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
2917 casn (mark_addr.base(), Rmark, Rscratch) ;
2918 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
2919 cmp (Rscratch, Rmark) ;
2920 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
2921 delayed() ->
2922 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2923 if (counters != NULL) {
2924 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2925 }
2926 br (Assembler::always, false, Assembler::pt, done);
2927 delayed() ->
2928 st_ptr (Rbox, mark_addr) ;
2929
2930 bind (Recursive) ;
2931 // Stack-lock attempt failed - check for recursive stack-lock.
2932 // Tests show that we can remove the recursive case with no impact
2933 // on refworkload 0.83. If we need to reduce the size of the code
2934 // emitted by compiler_lock_object() the recursive case is perfect
2935 // candidate.
2936 //
2937 // A more extreme idea is to always inflate on stack-lock recursion.
2938 // This lets us eliminate the recursive checks in compiler_lock_object
2939 // and compiler_unlock_object and the (box->dhw == 0) encoding.
2940 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2941 // and showed a performance *increase*. In the same experiment I eliminated
2942 // the fast-path stack-lock code from the interpreter and always passed
2943 // control to the "slow" operators in synchronizer.cpp.
2944
2945 // RScratch contains the fetched obj->mark value from the failed CASN.
2946 #ifdef _LP64
2947 sub (Rscratch, STACK_BIAS, Rscratch);
2948 #endif
2949 sub(Rscratch, SP, Rscratch);
2950 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2951 andcc (Rscratch, 0xfffff003, Rscratch);
2952 if (counters != NULL) {
2953 // Accounting needs the Rscratch register
2954 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2955 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2956 br (Assembler::always, false, Assembler::pt, done) ;
2957 delayed()->nop() ;
2958 } else {
2959 br (Assembler::always, false, Assembler::pt, done) ;
2960 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2961 }
2962
2963 bind (IsInflated) ;
2964 if (EmitSync & 64) {
2965 // If m->owner != null goto IsLocked
2966 // Test-and-CAS vs CAS
2967 // Pessimistic form avoids futile (doomed) CAS attempts
2968 // The optimistic form avoids RTS->RTO cache line upgrades.
2969 ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
2970 andcc (Rscratch, Rscratch, G0) ;
2971 brx (Assembler::notZero, false, Assembler::pn, done) ;
2972 delayed()->nop() ;
2973 // m->owner == null : it's unlocked.
2974 }
2975
2976 // Try to CAS m->owner from null to Self
2977 // Invariant: if we acquire the lock then _recursions should be 0.
2978 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
2979 mov (G2_thread, Rscratch) ;
2980 casn (Rmark, G0, Rscratch) ;
2981 cmp (Rscratch, G0) ;
2982 // ST box->displaced_header = NonZero.
2983 // Any non-zero value suffices:
2984 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2985 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2986 // Intentional fall-through into done
2987 }
2988
2989 bind (done) ;
2990 }
2991
2992 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
2993 Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
2994
2995 Label done ;
2996
2997 if (EmitSync & 4) {
2998 cmp (SP, G0) ;
2999 return ;
3000 }
3001
3002 if (EmitSync & 8) {
3003 if (UseBiasedLocking) {
3004 biased_locking_exit(mark_addr, Rscratch, done);
3005 }
3006
3007 // Test first if it is a fast recursive unlock
3008 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3009 cmp(Rmark, G0);
3010 brx(Assembler::equal, false, Assembler::pt, done);
3011 delayed()->nop();
3012
3013 // Check if it is still a light weight lock, this is is true if we see
3014 // the stack address of the basicLock in the markOop of the object
3015 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3016 casx_under_lock(mark_addr.base(), Rbox, Rmark,
3017 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3018 br (Assembler::always, false, Assembler::pt, done);
3019 delayed()->cmp(Rbox, Rmark);
3020 bind (done) ;
3021 return ;
3022 }
3023
3024 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3025 // is too large performance rolls abruptly off a cliff.
3026 // This could be related to inlining policies, code cache management, or
3027 // I$ effects.
3028 Label LStacked ;
3029
3030 if (UseBiasedLocking) {
3031 // TODO: eliminate redundant LDs of obj->mark
3032 biased_locking_exit(mark_addr, Rscratch, done);
3033 }
3034
3035 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3036 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3037 andcc (Rscratch, Rscratch, G0);
3038 brx (Assembler::zero, false, Assembler::pn, done);
3039 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
3040 andcc (Rmark, 2, G0) ;
3041 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
3042 delayed()-> nop() ;
3043
3044 // It's inflated
3045 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3046 // the ST of 0 into _owner which releases the lock. This prevents loads
3047 // and stores within the critical section from reordering (floating)
3048 // past the store that releases the lock. But TSO is a strong memory model
3049 // and that particular flavor of barrier is a noop, so we can safely elide it.
3050 // Note that we use 1-0 locking by default for the inflated case. We
3051 // close the resultant (and rare) race by having contented threads in
3052 // monitorenter periodically poll _owner.
3053 ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
3054 ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
3055 xor3 (Rscratch, G2_thread, Rscratch) ;
3056 orcc (Rbox, Rscratch, Rbox) ;
3057 brx (Assembler::notZero, false, Assembler::pn, done) ;
3058 delayed()->
3059 ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
3060 ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
3061 orcc (Rbox, Rscratch, G0) ;
3062 if (EmitSync & 65536) {
3063 Label LSucc ;
3064 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
3065 delayed()->nop() ;
3066 br (Assembler::always, false, Assembler::pt, done) ;
3067 delayed()->
3068 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3069
3070 bind (LSucc) ;
3071 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3072 if (os::is_MP()) { membar (StoreLoad) ; }
3073 ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
3074 andcc (Rscratch, Rscratch, G0) ;
3075 brx (Assembler::notZero, false, Assembler::pt, done) ;
3076 delayed()-> andcc (G0, G0, G0) ;
3077 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3078 mov (G2_thread, Rscratch) ;
3079 casn (Rmark, G0, Rscratch) ;
3080 cmp (Rscratch, G0) ;
3081 // invert icc.zf and goto done
3082 brx (Assembler::notZero, false, Assembler::pt, done) ;
3083 delayed() -> cmp (G0, G0) ;
3084 br (Assembler::always, false, Assembler::pt, done);
3085 delayed() -> cmp (G0, 1) ;
3086 } else {
3087 brx (Assembler::notZero, false, Assembler::pn, done) ;
3088 delayed()->nop() ;
3089 br (Assembler::always, false, Assembler::pt, done) ;
3090 delayed()->
3091 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3092 }
3093
3094 bind (LStacked) ;
3095 // Consider: we could replace the expensive CAS in the exit
3096 // path with a simple ST of the displaced mark value fetched from
3097 // the on-stack basiclock box. That admits a race where a thread T2
3098 // in the slow lock path -- inflating with monitor M -- could race a
3099 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3100 // More precisely T1 in the stack-lock unlock path could "stomp" the
3101 // inflated mark value M installed by T2, resulting in an orphan
3102 // object monitor M and T2 becoming stranded. We can remedy that situation
3103 // by having T2 periodically poll the object's mark word using timed wait
3104 // operations. If T2 discovers that a stomp has occurred it vacates
3105 // the monitor M and wakes any other threads stranded on the now-orphan M.
3106 // In addition the monitor scavenger, which performs deflation,
3107 // would also need to check for orpan monitors and stranded threads.
3108 //
3109 // Finally, inflation is also used when T2 needs to assign a hashCode
3110 // to O and O is stack-locked by T1. The "stomp" race could cause
3111 // an assigned hashCode value to be lost. We can avoid that condition
3112 // and provide the necessary hashCode stability invariants by ensuring
3113 // that hashCode generation is idempotent between copying GCs.
3114 // For example we could compute the hashCode of an object O as
3115 // O's heap address XOR some high quality RNG value that is refreshed
3116 // at GC-time. The monitor scavenger would install the hashCode
3117 // found in any orphan monitors. Again, the mechanism admits a
3118 // lost-update "stomp" WAW race but detects and recovers as needed.
3119 //
3120 // A prototype implementation showed excellent results, although
3121 // the scavenger and timeout code was rather involved.
3122
3123 casn (mark_addr.base(), Rbox, Rscratch) ;
3124 cmp (Rbox, Rscratch);
3125 // Intentional fall through into done ...
3126
3127 bind (done) ;
3128 }
3129
3130
3131
3132 void MacroAssembler::print_CPU_state() {
3133 // %%%%% need to implement this
3134 }
3135
3136 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3137 // %%%%% need to implement this
3138 }
3139
3140 void MacroAssembler::push_IU_state() {
3141 // %%%%% need to implement this
3142 }
3143
3144
3145 void MacroAssembler::pop_IU_state() {
3146 // %%%%% need to implement this
3147 }
3148
3149
3150 void MacroAssembler::push_FPU_state() {
3151 // %%%%% need to implement this
3152 }
3153
3154
3155 void MacroAssembler::pop_FPU_state() {
3156 // %%%%% need to implement this
3157 }
3158
3159
3160 void MacroAssembler::push_CPU_state() {
3161 // %%%%% need to implement this
3162 }
3163
3164
3165 void MacroAssembler::pop_CPU_state() {
3166 // %%%%% need to implement this
3167 }
3168
3169
3170
3171 void MacroAssembler::verify_tlab() {
3172 #ifdef ASSERT
3173 if (UseTLAB && VerifyOops) {
3174 Label next, next2, ok;
3175 Register t1 = L0;
3176 Register t2 = L1;
3177 Register t3 = L2;
3178
3179 save_frame(0);
3180 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3181 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3182 or3(t1, t2, t3);
3183 cmp(t1, t2);
3184 br(Assembler::greaterEqual, false, Assembler::pn, next);
3185 delayed()->nop();
3186 stop("assert(top >= start)");
3187 should_not_reach_here();
3188
3189 bind(next);
3190 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3191 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3192 or3(t3, t2, t3);
3193 cmp(t1, t2);
3194 br(Assembler::lessEqual, false, Assembler::pn, next2);
3195 delayed()->nop();
3196 stop("assert(top <= end)");
3197 should_not_reach_here();
3198
3199 bind(next2);
3200 and3(t3, MinObjAlignmentInBytesMask, t3);
3201 cmp(t3, 0);
3202 br(Assembler::lessEqual, false, Assembler::pn, ok);
3203 delayed()->nop();
3204 stop("assert(aligned)");
3205 should_not_reach_here();
3206
3207 bind(ok);
3208 restore();
3209 }
3210 #endif
3211 }
3212
3213
3214 void MacroAssembler::eden_allocate(
3215 Register obj, // result: pointer to object after successful allocation
3216 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
3217 int con_size_in_bytes, // object size in bytes if known at compile time
3218 Register t1, // temp register
3219 Register t2, // temp register
3220 Label& slow_case // continuation point if fast allocation fails
3221 ){
3222 // make sure arguments make sense
3223 assert_different_registers(obj, var_size_in_bytes, t1, t2);
3224 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3225 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3226
3227 // get eden boundaries
3228 // note: we need both top & top_addr!
3229 const Register top_addr = t1;
3230 const Register end = t2;
3231
3232 CollectedHeap* ch = Universe::heap();
3233 set((intx)ch->top_addr(), top_addr);
3234 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3235 ld_ptr(top_addr, delta, end);
3236 ld_ptr(top_addr, 0, obj);
3237
3238 // try to allocate
3239 Label retry;
3240 bind(retry);
3241 #ifdef ASSERT
3242 // make sure eden top is properly aligned
3243 {
3244 Label L;
3245 btst(MinObjAlignmentInBytesMask, obj);
3246 br(Assembler::zero, false, Assembler::pt, L);
3247 delayed()->nop();
3248 stop("eden top is not properly aligned");
3249 bind(L);
3250 }
3251 #endif // ASSERT
3252 const Register free = end;
3253 sub(end, obj, free); // compute amount of free space
3254 if (var_size_in_bytes->is_valid()) {
3255 // size is unknown at compile time
3256 cmp(free, var_size_in_bytes);
3257 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3258 delayed()->add(obj, var_size_in_bytes, end);
3259 } else {
3260 // size is known at compile time
3261 cmp(free, con_size_in_bytes);
3262 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3263 delayed()->add(obj, con_size_in_bytes, end);
3264 }
3265 // Compare obj with the value at top_addr; if still equal, swap the value of
3266 // end with the value at top_addr. If not equal, read the value at top_addr
3267 // into end.
3268 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3269 // if someone beat us on the allocation, try again, otherwise continue
3270 cmp(obj, end);
3271 brx(Assembler::notEqual, false, Assembler::pn, retry);
3272 delayed()->mov(end, obj); // nop if successfull since obj == end
3273
3274 #ifdef ASSERT
3275 // make sure eden top is properly aligned
3276 {
3277 Label L;
3278 const Register top_addr = t1;
3279
3280 set((intx)ch->top_addr(), top_addr);
3281 ld_ptr(top_addr, 0, top_addr);
3282 btst(MinObjAlignmentInBytesMask, top_addr);
3283 br(Assembler::zero, false, Assembler::pt, L);
3284 delayed()->nop();
3285 stop("eden top is not properly aligned");
3286 bind(L);
3287 }
3288 #endif // ASSERT
3289 }
3290
3291
3292 void MacroAssembler::tlab_allocate(
3293 Register obj, // result: pointer to object after successful allocation
3294 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
3295 int con_size_in_bytes, // object size in bytes if known at compile time
3296 Register t1, // temp register
3297 Label& slow_case // continuation point if fast allocation fails
3298 ){
3299 // make sure arguments make sense
3300 assert_different_registers(obj, var_size_in_bytes, t1);
3301 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3302 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3303
3304 const Register free = t1;
3305
3306 verify_tlab();
3307
3308 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3309
3310 // calculate amount of free space
3311 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3312 sub(free, obj, free);
3313
3314 Label done;
3315 if (var_size_in_bytes == noreg) {
3316 cmp(free, con_size_in_bytes);
3317 } else {
3318 cmp(free, var_size_in_bytes);
3319 }
3320 br(Assembler::less, false, Assembler::pn, slow_case);
3321 // calculate the new top pointer
3322 if (var_size_in_bytes == noreg) {
3323 delayed()->add(obj, con_size_in_bytes, free);
3324 } else {
3325 delayed()->add(obj, var_size_in_bytes, free);
3326 }
3327
3328 bind(done);
3329
3330 #ifdef ASSERT
3331 // make sure new free pointer is properly aligned
3332 {
3333 Label L;
3334 btst(MinObjAlignmentInBytesMask, free);
3335 br(Assembler::zero, false, Assembler::pt, L);
3336 delayed()->nop();
3337 stop("updated TLAB free is not properly aligned");
3338 bind(L);
3339 }
3340 #endif // ASSERT
3341
3342 // update the tlab top pointer
3343 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3344 verify_tlab();
3345 }
3346
3347
3348 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3349 Register top = O0;
3350 Register t1 = G1;
3351 Register t2 = G3;
3352 Register t3 = O1;
3353 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3354 Label do_refill, discard_tlab;
3355
3356 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3357 // No allocation in the shared eden.
3358 br(Assembler::always, false, Assembler::pt, slow_case);
3359 delayed()->nop();
3360 }
3361
3362 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3363 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3364 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3365
3366 // calculate amount of free space
3367 sub(t1, top, t1);
3368 srl_ptr(t1, LogHeapWordSize, t1);
3369
3370 // Retain tlab and allocate object in shared space if
3371 // the amount free in the tlab is too large to discard.
3372 cmp(t1, t2);
3373 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3374
3375 // increment waste limit to prevent getting stuck on this slow path
3376 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3377 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3378 if (TLABStats) {
3379 // increment number of slow_allocations
3380 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3381 add(t2, 1, t2);
3382 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3383 }
3384 br(Assembler::always, false, Assembler::pt, try_eden);
3385 delayed()->nop();
3386
3387 bind(discard_tlab);
3388 if (TLABStats) {
3389 // increment number of refills
3390 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3391 add(t2, 1, t2);
3392 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3393 // accumulate wastage
3394 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3395 add(t2, t1, t2);
3396 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3397 }
3398
3399 // if tlab is currently allocated (top or end != null) then
3400 // fill [top, end + alignment_reserve) with array object
3401 br_null(top, false, Assembler::pn, do_refill);
3402 delayed()->nop();
3403
3404 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3405 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3406 // set klass to intArrayKlass
3407 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3408 ld_ptr(t2, 0, t2);
3409 st_ptr(t2, top, oopDesc::klass_offset_in_bytes());
3410 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3411 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3412 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3413 st(t1, top, arrayOopDesc::length_offset_in_bytes());
3414 verify_oop(top);
3415
3416 // refill the tlab with an eden allocation
3417 bind(do_refill);
3418 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3419 sll_ptr(t1, LogHeapWordSize, t1);
3420 // add object_size ??
3421 eden_allocate(top, t1, 0, t2, t3, slow_case);
3422
3423 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3424 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3425 #ifdef ASSERT
3426 // check that tlab_size (t1) is still valid
3427 {
3428 Label ok;
3429 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3430 sll_ptr(t2, LogHeapWordSize, t2);
3431 cmp(t1, t2);
3432 br(Assembler::equal, false, Assembler::pt, ok);
3433 delayed()->nop();
3434 stop("assert(t1 == tlab_size)");
3435 should_not_reach_here();
3436
3437 bind(ok);
3438 }
3439 #endif // ASSERT
3440 add(top, t1, top); // t1 is tlab_size
3441 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3442 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3443 verify_tlab();
3444 br(Assembler::always, false, Assembler::pt, retry);
3445 delayed()->nop();
3446 }
3447
3448 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3449 switch (cond) {
3450 // Note some conditions are synonyms for others
3451 case Assembler::never: return Assembler::always;
3452 case Assembler::zero: return Assembler::notZero;
3453 case Assembler::lessEqual: return Assembler::greater;
3454 case Assembler::less: return Assembler::greaterEqual;
3455 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
3456 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
3457 case Assembler::negative: return Assembler::positive;
3458 case Assembler::overflowSet: return Assembler::overflowClear;
3459 case Assembler::always: return Assembler::never;
3460 case Assembler::notZero: return Assembler::zero;
3461 case Assembler::greater: return Assembler::lessEqual;
3462 case Assembler::greaterEqual: return Assembler::less;
3463 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
3464 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3465 case Assembler::positive: return Assembler::negative;
3466 case Assembler::overflowClear: return Assembler::overflowSet;
3467 }
3468
3469 ShouldNotReachHere(); return Assembler::overflowClear;
3470 }
3471
3472 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3473 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3474 Condition negated_cond = negate_condition(cond);
3475 Label L;
3476 brx(negated_cond, false, Assembler::pt, L);
3477 delayed()->nop();
3478 inc_counter(counter_ptr, Rtmp1, Rtmp2);
3479 bind(L);
3480 }
3481
3482 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
3483 Address counter_addr(Rtmp1, counter_ptr);
3484 load_contents(counter_addr, Rtmp2);
3485 inc(Rtmp2);
3486 store_contents(Rtmp2, counter_addr);
3487 }
3488
3489 SkipIfEqual::SkipIfEqual(
3490 MacroAssembler* masm, Register temp, const bool* flag_addr,
3491 Assembler::Condition condition) {
3492 _masm = masm;
3493 Address flag(temp, (address)flag_addr, relocInfo::none);
3494 _masm->sethi(flag);
3495 _masm->ldub(flag, temp);
3496 _masm->tst(temp);
3497 _masm->br(condition, false, Assembler::pt, _label);
3498 _masm->delayed()->nop();
3499 }
3500
3501 SkipIfEqual::~SkipIfEqual() {
3502 _masm->bind(_label);
3503 }
3504
3505
3506 // Writes to stack successive pages until offset reached to check for
3507 // stack overflow + shadow pages. This clobbers tsp and scratch.
3508 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3509 Register Rscratch) {
3510 // Use stack pointer in temp stack pointer
3511 mov(SP, Rtsp);
3512
3513 // Bang stack for total size given plus stack shadow page size.
3514 // Bang one page at a time because a large size can overflow yellow and
3515 // red zones (the bang will fail but stack overflow handling can't tell that
3516 // it was a stack overflow bang vs a regular segv).
3517 int offset = os::vm_page_size();
3518 Register Roffset = Rscratch;
3519
3520 Label loop;
3521 bind(loop);
3522 set((-offset)+STACK_BIAS, Rscratch);
3523 st(G0, Rtsp, Rscratch);
3524 set(offset, Roffset);
3525 sub(Rsize, Roffset, Rsize);
3526 cmp(Rsize, G0);
3527 br(Assembler::greater, false, Assembler::pn, loop);
3528 delayed()->sub(Rtsp, Roffset, Rtsp);
3529
3530 // Bang down shadow pages too.
3531 // The -1 because we already subtracted 1 page.
3532 for (int i = 0; i< StackShadowPages-1; i++) {
3533 set((-i*offset)+STACK_BIAS, Rscratch);
3534 st(G0, Rtsp, Rscratch);
3535 }
3536 }