comparison src/cpu/x86/vm/cppInterpreter_x86.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children dc7f315e41f7
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_cppInterpreter_x86.cpp.incl"
27
28 #ifdef CC_INTERP
29
30 // Routine exists to make tracebacks look decent in debugger
31 // while we are recursed in the frame manager/c++ interpreter.
32 // We could use an address in the frame manager but having
33 // frames look natural in the debugger is a plus.
34 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
35 {
36 //
37 ShouldNotReachHere();
38 }
39
40
41 #define __ _masm->
42 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
43
44 Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
45 // c++ interpreter entry point this holds that entry point label.
46
47 // NEEDED for JVMTI?
48 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
49
50 static address unctrap_frame_manager_entry = NULL;
51
52 static address deopt_frame_manager_return_atos = NULL;
53 static address deopt_frame_manager_return_btos = NULL;
54 static address deopt_frame_manager_return_itos = NULL;
55 static address deopt_frame_manager_return_ltos = NULL;
56 static address deopt_frame_manager_return_ftos = NULL;
57 static address deopt_frame_manager_return_dtos = NULL;
58 static address deopt_frame_manager_return_vtos = NULL;
59
60 int AbstractInterpreter::BasicType_as_index(BasicType type) {
61 int i = 0;
62 switch (type) {
63 case T_BOOLEAN: i = 0; break;
64 case T_CHAR : i = 1; break;
65 case T_BYTE : i = 2; break;
66 case T_SHORT : i = 3; break;
67 case T_INT : i = 4; break;
68 case T_VOID : i = 5; break;
69 case T_FLOAT : i = 8; break;
70 case T_LONG : i = 9; break;
71 case T_DOUBLE : i = 6; break;
72 case T_OBJECT : // fall through
73 case T_ARRAY : i = 7; break;
74 default : ShouldNotReachHere();
75 }
76 assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
77 return i;
78 }
79
80 // Is this pc anywhere within code owned by the interpreter?
81 // This only works for pc that might possibly be exposed to frame
82 // walkers. It clearly misses all of the actual c++ interpreter
83 // implementation
84 bool CppInterpreter::contains(address pc) {
85 return (_code->contains(pc) ||
86 pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
87 }
88
89
90 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
91 const Register state = rsi; // current activation object, valid on entry
92 address entry = __ pc();
93 switch (type) {
94 case T_BOOLEAN: __ c2bool(rax); break;
95 case T_CHAR : __ andl(rax, 0xFFFF); break;
96 case T_BYTE : __ sign_extend_byte (rax); break;
97 case T_SHORT : __ sign_extend_short(rax); break;
98 case T_VOID : // fall thru
99 case T_LONG : // fall thru
100 case T_INT : /* nothing to do */ break;
101 case T_DOUBLE :
102 case T_FLOAT :
103 { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
104 __ popl(t); // remove return address first
105 __ pop_dtos_to_rsp();
106 // Must return a result for interpreter or compiler. In SSE
107 // mode, results are returned in xmm0 and the FPU stack must
108 // be empty.
109 if (type == T_FLOAT && UseSSE >= 1) {
110 // Load ST0
111 __ fld_d(Address(rsp, 0));
112 // Store as float and empty fpu stack
113 __ fstp_s(Address(rsp, 0));
114 // and reload
115 __ movflt(xmm0, Address(rsp, 0));
116 } else if (type == T_DOUBLE && UseSSE >= 2 ) {
117 __ movdbl(xmm0, Address(rsp, 0));
118 } else {
119 // restore ST0
120 __ fld_d(Address(rsp, 0));
121 }
122 // and pop the temp
123 __ addl(rsp, 2 * wordSize);
124 __ pushl(t); // restore return address
125 }
126 break;
127 case T_OBJECT :
128 // retrieve result from frame
129 __ movl(rax, STATE(_oop_temp));
130 // and verify it
131 __ verify_oop(rax);
132 break;
133 default : ShouldNotReachHere();
134 }
135 __ ret(0); // return from result handler
136 return entry;
137 }
138
139 // tosca based result to c++ interpreter stack based result.
140 // Result goes to top of native stack.
141
142 #undef EXTEND // SHOULD NOT BE NEEDED
143 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
144 // A result is in the tosca (abi result) from either a native method call or compiled
145 // code. Place this result on the java expression stack so C++ interpreter can use it.
146 address entry = __ pc();
147
148 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
149 __ popl(t); // remove return address first
150 switch (type) {
151 case T_VOID:
152 break;
153 case T_BOOLEAN:
154 #ifdef EXTEND
155 __ c2bool(rax);
156 #endif
157 __ pushl(rax);
158 break;
159 case T_CHAR :
160 #ifdef EXTEND
161 __ andl(rax, 0xFFFF);
162 #endif
163 __ pushl(rax);
164 break;
165 case T_BYTE :
166 #ifdef EXTEND
167 __ sign_extend_byte (rax);
168 #endif
169 __ pushl(rax);
170 break;
171 case T_SHORT :
172 #ifdef EXTEND
173 __ sign_extend_short(rax);
174 #endif
175 __ pushl(rax);
176 break;
177 case T_LONG :
178 __ pushl(rdx);
179 __ pushl(rax);
180 break;
181 case T_INT :
182 __ pushl(rax);
183 break;
184 case T_FLOAT :
185 // Result is in ST(0)
186 if ( UseSSE < 1) {
187 __ push(ftos); // and save it
188 } else {
189 __ subl(rsp, wordSize);
190 __ movflt(Address(rsp, 0), xmm0);
191 }
192 break;
193 case T_DOUBLE :
194 if ( UseSSE < 2 ) {
195 __ push(dtos); // put ST0 on java stack
196 } else {
197 __ subl(rsp, 2*wordSize);
198 __ movdbl(Address(rsp, 0), xmm0);
199 }
200 break;
201 case T_OBJECT :
202 __ verify_oop(rax); // verify it
203 __ pushl(rax);
204 break;
205 default : ShouldNotReachHere();
206 }
207 __ jmp(t); // return from result handler
208 return entry;
209 }
210
211 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
212 // A result is in the java expression stack of the interpreted method that has just
213 // returned. Place this result on the java expression stack of the caller.
214 //
215 // The current interpreter activation in rsi is for the method just returning its
216 // result. So we know that the result of this method is on the top of the current
217 // execution stack (which is pre-pushed) and will be return to the top of the caller
218 // stack. The top of the callers stack is the bottom of the locals of the current
219 // activation.
220 // Because of the way activation are managed by the frame manager the value of rsp is
221 // below both the stack top of the current activation and naturally the stack top
222 // of the calling activation. This enable this routine to leave the return address
223 // to the frame manager on the stack and do a vanilla return.
224 //
225 // On entry: rsi - interpreter state of activation returning a (potential) result
226 // On Return: rsi - unchanged
227 // rax - new stack top for caller activation (i.e. activation in _prev_link)
228 //
229 // Can destroy rdx, rcx.
230 //
231
232 address entry = __ pc();
233 const Register state = rsi; // current activation object, valid on entry
234 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
235 switch (type) {
236 case T_VOID:
237 __ movl(rax, STATE(_locals)); // pop parameters get new stack value
238 __ addl(rax, wordSize); // account for prepush before we return
239 break;
240 case T_FLOAT :
241 case T_BOOLEAN:
242 case T_CHAR :
243 case T_BYTE :
244 case T_SHORT :
245 case T_INT :
246 // 1 word result
247 __ movl(rdx, STATE(_stack));
248 __ movl(rax, STATE(_locals)); // address for result
249 __ movl(rdx, Address(rdx, wordSize)); // get result
250 __ movl(Address(rax, 0), rdx); // and store it
251 break;
252 case T_LONG :
253 case T_DOUBLE :
254 // return top two words on current expression stack to caller's expression stack
255 // The caller's expression stack is adjacent to the current frame manager's intepretState
256 // except we allocated one extra word for this intepretState so we won't overwrite it
257 // when we return a two word result.
258
259 __ movl(rax, STATE(_locals)); // address for result
260 __ movl(rcx, STATE(_stack));
261 __ subl(rax, wordSize); // need addition word besides locals[0]
262 __ movl(rdx, Address(rcx, 2*wordSize)); // get result word
263 __ movl(Address(rax, wordSize), rdx); // and store it
264 __ movl(rdx, Address(rcx, wordSize)); // get result word
265 __ movl(Address(rax, 0), rdx); // and store it
266 break;
267 case T_OBJECT :
268 __ movl(rdx, STATE(_stack));
269 __ movl(rax, STATE(_locals)); // address for result
270 __ movl(rdx, Address(rdx, wordSize)); // get result
271 __ verify_oop(rdx); // verify it
272 __ movl(Address(rax, 0), rdx); // and store it
273 break;
274 default : ShouldNotReachHere();
275 }
276 __ ret(0);
277 return entry;
278 }
279
280 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
281 // A result is in the java expression stack of the interpreted method that has just
282 // returned. Place this result in the native abi that the caller expects.
283 //
284 // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
285 // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
286 // and so rather than return result onto caller's java expression stack we return the
287 // result in the expected location based on the native abi.
288 // On entry: rsi - interpreter state of activation returning a (potential) result
289 // On Return: rsi - unchanged
290 // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
291
292 address entry = __ pc();
293 const Register state = rsi; // current activation object, valid on entry
294 switch (type) {
295 case T_VOID:
296 break;
297 case T_BOOLEAN:
298 case T_CHAR :
299 case T_BYTE :
300 case T_SHORT :
301 case T_INT :
302 __ movl(rdx, STATE(_stack)); // get top of stack
303 __ movl(rax, Address(rdx, wordSize)); // get result word 1
304 break;
305 case T_LONG :
306 __ movl(rdx, STATE(_stack)); // get top of stack
307 __ movl(rax, Address(rdx, wordSize)); // get result low word
308 __ movl(rdx, Address(rdx, 2*wordSize)); // get result high word
309 break;
310 break;
311 case T_FLOAT :
312 __ movl(rdx, STATE(_stack)); // get top of stack
313 if ( UseSSE >= 1) {
314 __ movflt(xmm0, Address(rdx, wordSize));
315 } else {
316 __ fld_s(Address(rdx, wordSize)); // pushd float result
317 }
318 break;
319 case T_DOUBLE :
320 __ movl(rdx, STATE(_stack)); // get top of stack
321 if ( UseSSE > 1) {
322 __ movdbl(xmm0, Address(rdx, wordSize));
323 } else {
324 __ fld_d(Address(rdx, wordSize)); // push double result
325 }
326 break;
327 case T_OBJECT :
328 __ movl(rdx, STATE(_stack)); // get top of stack
329 __ movl(rax, Address(rdx, wordSize)); // get result word 1
330 __ verify_oop(rax); // verify it
331 break;
332 default : ShouldNotReachHere();
333 }
334 __ ret(0);
335 return entry;
336 }
337
338 address CppInterpreter::return_entry(TosState state, int length) {
339 // make it look good in the debugger
340 return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
341 }
342
343 address CppInterpreter::deopt_entry(TosState state, int length) {
344 address ret = NULL;
345 if (length != 0) {
346 switch (state) {
347 case atos: ret = deopt_frame_manager_return_atos; break;
348 case btos: ret = deopt_frame_manager_return_btos; break;
349 case ctos:
350 case stos:
351 case itos: ret = deopt_frame_manager_return_itos; break;
352 case ltos: ret = deopt_frame_manager_return_ltos; break;
353 case ftos: ret = deopt_frame_manager_return_ftos; break;
354 case dtos: ret = deopt_frame_manager_return_dtos; break;
355 case vtos: ret = deopt_frame_manager_return_vtos; break;
356 }
357 } else {
358 ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
359 }
360 assert(ret != NULL, "Not initialized");
361 return ret;
362 }
363
364 // C++ Interpreter
365 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
366 const Register locals,
367 const Register sender_sp,
368 bool native) {
369
370 // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
371 // a static method). "state" contains any previous frame manager state which we must save a link
372 // to in the newly generated state object. On return "state" is a pointer to the newly allocated
373 // state object. We must allocate and initialize a new interpretState object and the method
374 // expression stack. Because the returned result (if any) of the method will be placed on the caller's
375 // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
376 // be sure to leave space on the caller's stack so that this result will not overwrite values when
377 // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
378 // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
379 // non-product builds and initialize this last local with the previous interpreterState as
380 // this makes things look real nice in the debugger.
381
382 // State on entry
383 // Assumes locals == &locals[0]
384 // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
385 // Assumes rax = return address
386 // rcx == senders_sp
387 // rbx == method
388 // Modifies rcx, rdx, rax
389 // Returns:
390 // state == address of new interpreterState
391 // rsp == bottom of method's expression stack.
392
393 const Address const_offset (rbx, methodOopDesc::const_offset());
394
395
396 // On entry sp is the sender's sp. This includes the space for the arguments
397 // that the sender pushed. If the sender pushed no args (a static) and the
398 // caller returns a long then we need two words on the sender's stack which
399 // are not present (although when we return a restore full size stack the
400 // space will be present). If we didn't allocate two words here then when
401 // we "push" the result of the caller's stack we would overwrite the return
402 // address and the saved rbp. Not good. So simply allocate 2 words now
403 // just to be safe. This is the "static long no_params() method" issue.
404 // See Lo.java for a testcase.
405 // We don't need this for native calls because they return result in
406 // register and the stack is expanded in the caller before we store
407 // the results on the stack.
408
409 if (!native) {
410 #ifdef PRODUCT
411 __ subl(rsp, 2*wordSize);
412 #else /* PRODUCT */
413 __ pushl((int)NULL);
414 __ pushl(state); // make it look like a real argument
415 #endif /* PRODUCT */
416 }
417
418 // Now that we are assure of space for stack result, setup typical linkage
419
420 __ pushl(rax);
421 __ enter();
422
423 __ movl(rax, state); // save current state
424
425 __ leal(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
426 __ movl(state, rsp);
427
428 // rsi == state/locals rax == prevstate
429
430 // initialize the "shadow" frame so that use since C++ interpreter not directly
431 // recursive. Simpler to recurse but we can't trim expression stack as we call
432 // new methods.
433 __ movl(STATE(_locals), locals); // state->_locals = locals()
434 __ movl(STATE(_self_link), state); // point to self
435 __ movl(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state)
436 __ movl(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp
437 __ get_thread(rax); // get vm's javathread*
438 __ movl(STATE(_thread), rax); // state->_bcp = codes()
439 __ movl(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
440 __ leal(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
441 if (native) {
442 __ movl(STATE(_bcp), (intptr_t)NULL); // state->_bcp = NULL
443 } else {
444 __ movl(STATE(_bcp), rdx); // state->_bcp = codes()
445 }
446 __ xorl(rdx, rdx);
447 __ movl(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native)
448 __ movl(STATE(_mdx), rdx); // state->_mdx = NULL
449 __ movl(rdx, Address(rbx, methodOopDesc::constants_offset()));
450 __ movl(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
451 __ movl(STATE(_constants), rdx); // state->_constants = constants()
452
453 __ movl(STATE(_method), rbx); // state->_method = method()
454 __ movl(STATE(_msg), (int) BytecodeInterpreter::method_entry); // state->_msg = initial method entry
455 __ movl(STATE(_result._to_call._callee), (int) NULL); // state->_result._to_call._callee_callee = NULL
456
457
458 __ movl(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0]
459 // entries run from -1..x where &monitor[x] ==
460
461 {
462 // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
463 // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
464 // immediately.
465
466 // synchronize method
467 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
468 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
469 Label not_synced;
470
471 __ movl(rax, access_flags);
472 __ testl(rax, JVM_ACC_SYNCHRONIZED);
473 __ jcc(Assembler::zero, not_synced);
474
475 // Allocate initial monitor and pre initialize it
476 // get synchronization object
477
478 Label done;
479 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
480 __ movl(rax, access_flags);
481 __ testl(rax, JVM_ACC_STATIC);
482 __ movl(rax, Address(locals, 0)); // get receiver (assume this is frequent case)
483 __ jcc(Assembler::zero, done);
484 __ movl(rax, Address(rbx, methodOopDesc::constants_offset()));
485 __ movl(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
486 __ movl(rax, Address(rax, mirror_offset));
487 __ bind(done);
488 // add space for monitor & lock
489 __ subl(rsp, entry_size); // add space for a monitor entry
490 __ movl(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
491 __ bind(not_synced);
492 }
493
494 __ movl(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count])
495 if (native) {
496 __ movl(STATE(_stack), rsp); // set current expression stack tos
497 __ movl(STATE(_stack_limit), rsp);
498 } else {
499 __ subl(rsp, wordSize); // pre-push stack
500 __ movl(STATE(_stack), rsp); // set current expression stack tos
501
502 // compute full expression stack limit
503
504 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
505 __ load_unsigned_word(rdx, size_of_stack); // get size of expression stack in words
506 __ negl(rdx); // so we can subtract in next step
507 // Allocate expression stack
508 __ leal(rsp, Address(rsp, rdx, Address::times_4));
509 __ movl(STATE(_stack_limit), rsp);
510 }
511
512 }
513
514 // Helpers for commoning out cases in the various type of method entries.
515 //
516
517 // increment invocation count & check for overflow
518 //
519 // Note: checking for negative value instead of overflow
520 // so we have a 'sticky' overflow test
521 //
522 // rbx,: method
523 // rcx: invocation counter
524 //
525 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
526
527 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
528 const Address backedge_counter (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
529
530 if (ProfileInterpreter) { // %%% Merge this into methodDataOop
531 __ increment(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
532 }
533 // Update standard invocation counters
534 __ movl(rax, backedge_counter); // load backedge counter
535
536 __ increment(rcx, InvocationCounter::count_increment);
537 __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
538
539 __ movl(invocation_counter, rcx); // save invocation count
540 __ addl(rcx, rax); // add both counters
541
542 // profile_method is non-null only for interpreted method so
543 // profile_method != NULL == !native_call
544 // BytecodeInterpreter only calls for native so code is elided.
545
546 __ cmp32(rcx,
547 ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
548 __ jcc(Assembler::aboveEqual, *overflow);
549
550 }
551
552 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
553
554 // C++ interpreter on entry
555 // rsi - new interpreter state pointer
556 // rbp - interpreter frame pointer
557 // rbx - method
558
559 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
560 // rbx, - method
561 // rcx - rcvr (assuming there is one)
562 // top of stack return address of interpreter caller
563 // rsp - sender_sp
564
565 // C++ interpreter only
566 // rsi - previous interpreter state pointer
567
568 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
569
570 // InterpreterRuntime::frequency_counter_overflow takes one argument
571 // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
572 // The call returns the address of the verified entry point for the method or NULL
573 // if the compilation did not complete (either went background or bailed out).
574 __ movl(rax, (int)false);
575 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
576
577 // for c++ interpreter can rsi really be munged?
578 __ leal(rsi, Address(rbp, -sizeof(BytecodeInterpreter))); // restore state
579 __ movl(rbx, Address(rsi, byte_offset_of(BytecodeInterpreter, _method))); // restore method
580 __ movl(rdi, Address(rsi, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer
581
582 // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
583 // and jump to the interpreted entry.
584 __ jmp(*do_continue, relocInfo::none);
585
586 }
587
588 void InterpreterGenerator::generate_stack_overflow_check(void) {
589 // see if we've got enough room on the stack for locals plus overhead.
590 // the expression stack grows down incrementally, so the normal guard
591 // page mechanism will work for that.
592 //
593 // Registers live on entry:
594 //
595 // Asm interpreter
596 // rdx: number of additional locals this frame needs (what we must check)
597 // rbx,: methodOop
598
599 // C++ Interpreter
600 // rsi: previous interpreter frame state object
601 // rdi: &locals[0]
602 // rcx: # of locals
603 // rdx: number of additional locals this frame needs (what we must check)
604 // rbx: methodOop
605
606 // destroyed on exit
607 // rax,
608
609 // NOTE: since the additional locals are also always pushed (wasn't obvious in
610 // generate_method_entry) so the guard should work for them too.
611 //
612
613 // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
614 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
615
616 // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
617 // be sure to change this if you add/subtract anything to/from the overhead area
618 const int overhead_size = (int)sizeof(BytecodeInterpreter);
619
620 const int page_size = os::vm_page_size();
621
622 Label after_frame_check;
623
624 // compute rsp as if this were going to be the last frame on
625 // the stack before the red zone
626
627 Label after_frame_check_pop;
628
629 // save rsi == caller's bytecode ptr (c++ previous interp. state)
630 // QQQ problem here?? rsi overload????
631 __ pushl(rsi);
632
633 const Register thread = rsi;
634
635 __ get_thread(thread);
636
637 const Address stack_base(thread, Thread::stack_base_offset());
638 const Address stack_size(thread, Thread::stack_size_offset());
639
640 // locals + overhead, in bytes
641 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
642 // Always give one monitor to allow us to start interp if sync method.
643 // Any additional monitors need a check when moving the expression stack
644 const one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
645 __ load_unsigned_word(rax, size_of_stack); // get size of expression stack in words
646 __ leal(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor));
647 __ leal(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
648
649 #ifdef ASSERT
650 Label stack_base_okay, stack_size_okay;
651 // verify that thread stack base is non-zero
652 __ cmpl(stack_base, 0);
653 __ jcc(Assembler::notEqual, stack_base_okay);
654 __ stop("stack base is zero");
655 __ bind(stack_base_okay);
656 // verify that thread stack size is non-zero
657 __ cmpl(stack_size, 0);
658 __ jcc(Assembler::notEqual, stack_size_okay);
659 __ stop("stack size is zero");
660 __ bind(stack_size_okay);
661 #endif
662
663 // Add stack base to locals and subtract stack size
664 __ addl(rax, stack_base);
665 __ subl(rax, stack_size);
666
667 // We should have a magic number here for the size of the c++ interpreter frame.
668 // We can't actually tell this ahead of time. The debug version size is around 3k
669 // product is 1k and fastdebug is 4k
670 const int slop = 6 * K;
671
672 // Use the maximum number of pages we might bang.
673 const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
674 (StackRedPages+StackYellowPages);
675 // Only need this if we are stack banging which is temporary while
676 // we're debugging.
677 __ addl(rax, slop + 2*max_pages * page_size);
678
679 // check against the current stack bottom
680 __ cmpl(rsp, rax);
681 __ jcc(Assembler::above, after_frame_check_pop);
682
683 __ popl(rsi); // get saved bcp / (c++ prev state ).
684
685 // throw exception return address becomes throwing pc
686 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
687
688 // all done with frame size check
689 __ bind(after_frame_check_pop);
690 __ popl(rsi);
691
692 __ bind(after_frame_check);
693 }
694
695 // Find preallocated monitor and lock method (C++ interpreter)
696 // rbx - methodOop
697 //
698 void InterpreterGenerator::lock_method(void) {
699 // assumes state == rsi == pointer to current interpreterState
700 // minimally destroys rax, rdx, rdi
701 //
702 // synchronize method
703 const Register state = rsi;
704 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
705 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
706
707 // find initial monitor i.e. monitors[-1]
708 __ movl(rdx, STATE(_monitor_base)); // get monitor bottom limit
709 __ subl(rdx, entry_size); // point to initial monitor
710
711 #ifdef ASSERT
712 { Label L;
713 __ movl(rax, access_flags);
714 __ testl(rax, JVM_ACC_SYNCHRONIZED);
715 __ jcc(Assembler::notZero, L);
716 __ stop("method doesn't need synchronization");
717 __ bind(L);
718 }
719 #endif // ASSERT
720 // get synchronization object
721 { Label done;
722 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
723 __ movl(rax, access_flags);
724 __ movl(rdi, STATE(_locals)); // prepare to get receiver (assume common case)
725 __ testl(rax, JVM_ACC_STATIC);
726 __ movl(rax, Address(rdi, 0)); // get receiver (assume this is frequent case)
727 __ jcc(Assembler::zero, done);
728 __ movl(rax, Address(rbx, methodOopDesc::constants_offset()));
729 __ movl(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
730 __ movl(rax, Address(rax, mirror_offset));
731 __ bind(done);
732 }
733 #ifdef ASSERT
734 { Label L;
735 __ cmpl(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // correct object?
736 __ jcc(Assembler::equal, L);
737 __ stop("wrong synchronization lobject");
738 __ bind(L);
739 }
740 #endif // ASSERT
741 // can destroy rax, rdx, rcx, and (via call_VM) rdi!
742 __ lock_object(rdx);
743 }
744
745 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
746
747 address InterpreterGenerator::generate_accessor_entry(void) {
748
749 // rbx,: methodOop
750 // rcx: receiver (preserve for slow entry into asm interpreter)
751
752 // rsi: senderSP must preserved for slow path, set SP to it on fast path
753
754 Label xreturn_path;
755
756 // do fastpath for resolved accessor methods
757 if (UseFastAccessorMethods) {
758
759 address entry_point = __ pc();
760
761 Label slow_path;
762 // If we need a safepoint check, generate full interpreter entry.
763 ExternalAddress state(SafepointSynchronize::address_of_state());
764 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
765 SafepointSynchronize::_not_synchronized);
766
767 __ jcc(Assembler::notEqual, slow_path);
768 // ASM/C++ Interpreter
769 // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
770 // Note: We can only use this code if the getfield has been resolved
771 // and if we don't have a null-pointer exception => check for
772 // these conditions first and use slow path if necessary.
773 // rbx,: method
774 // rcx: receiver
775 __ movl(rax, Address(rsp, wordSize));
776
777 // check if local 0 != NULL and read field
778 __ testl(rax, rax);
779 __ jcc(Assembler::zero, slow_path);
780
781 __ movl(rdi, Address(rbx, methodOopDesc::constants_offset()));
782 // read first instruction word and extract bytecode @ 1 and index @ 2
783 __ movl(rdx, Address(rbx, methodOopDesc::const_offset()));
784 __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
785 // Shift codes right to get the index on the right.
786 // The bytecode fetched looks like <index><0xb4><0x2a>
787 __ shrl(rdx, 2*BitsPerByte);
788 __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
789 __ movl(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
790
791 // rax,: local 0
792 // rbx,: method
793 // rcx: receiver - do not destroy since it is needed for slow path!
794 // rcx: scratch
795 // rdx: constant pool cache index
796 // rdi: constant pool cache
797 // rsi: sender sp
798
799 // check if getfield has been resolved and read constant pool cache entry
800 // check the validity of the cache entry by testing whether _indices field
801 // contains Bytecode::_getfield in b1 byte.
802 assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
803 __ movl(rcx,
804 Address(rdi,
805 rdx,
806 Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
807 __ shrl(rcx, 2*BitsPerByte);
808 __ andl(rcx, 0xFF);
809 __ cmpl(rcx, Bytecodes::_getfield);
810 __ jcc(Assembler::notEqual, slow_path);
811
812 // Note: constant pool entry is not valid before bytecode is resolved
813 __ movl(rcx,
814 Address(rdi,
815 rdx,
816 Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
817 __ movl(rdx,
818 Address(rdi,
819 rdx,
820 Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
821
822 Label notByte, notShort, notChar;
823 const Address field_address (rax, rcx, Address::times_1);
824
825 // Need to differentiate between igetfield, agetfield, bgetfield etc.
826 // because they are different sizes.
827 // Use the type from the constant pool cache
828 __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
829 // Make sure we don't need to mask rdx for tosBits after the above shift
830 ConstantPoolCacheEntry::verify_tosBits();
831 __ cmpl(rdx, btos);
832 __ jcc(Assembler::notEqual, notByte);
833 __ load_signed_byte(rax, field_address);
834 __ jmp(xreturn_path);
835
836 __ bind(notByte);
837 __ cmpl(rdx, stos);
838 __ jcc(Assembler::notEqual, notShort);
839 __ load_signed_word(rax, field_address);
840 __ jmp(xreturn_path);
841
842 __ bind(notShort);
843 __ cmpl(rdx, ctos);
844 __ jcc(Assembler::notEqual, notChar);
845 __ load_unsigned_word(rax, field_address);
846 __ jmp(xreturn_path);
847
848 __ bind(notChar);
849 #ifdef ASSERT
850 Label okay;
851 __ cmpl(rdx, atos);
852 __ jcc(Assembler::equal, okay);
853 __ cmpl(rdx, itos);
854 __ jcc(Assembler::equal, okay);
855 __ stop("what type is this?");
856 __ bind(okay);
857 #endif // ASSERT
858 // All the rest are a 32 bit wordsize
859 __ movl(rax, field_address);
860
861 __ bind(xreturn_path);
862
863 // _ireturn/_areturn
864 __ popl(rdi); // get return address
865 __ movl(rsp, rsi); // set sp to sender sp
866 __ jmp(rdi);
867
868 // generate a vanilla interpreter entry as the slow path
869 __ bind(slow_path);
870 // We will enter c++ interpreter looking like it was
871 // called by the call_stub this will cause it to return
872 // a tosca result to the invoker which might have been
873 // the c++ interpreter itself.
874
875 __ jmp(fast_accessor_slow_entry_path);
876 return entry_point;
877
878 } else {
879 return NULL;
880 }
881
882 }
883
884 //
885 // C++ Interpreter stub for calling a native method.
886 // This sets up a somewhat different looking stack for calling the native method
887 // than the typical interpreter frame setup but still has the pointer to
888 // an interpreter state.
889 //
890
891 address InterpreterGenerator::generate_native_entry(bool synchronized) {
892 // determine code generation flags
893 bool inc_counter = UseCompiler || CountCompiledCalls;
894
895 // rbx: methodOop
896 // rcx: receiver (unused)
897 // rsi: previous interpreter state (if called from C++ interpreter) must preserve
898 // in any case. If called via c1/c2/call_stub rsi is junk (to use) but harmless
899 // to save/restore.
900 address entry_point = __ pc();
901
902 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
903 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
904 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
905 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
906
907 // rsi == state/locals rdi == prevstate
908 const Register state = rsi;
909 const Register locals = rdi;
910
911 // get parameter size (always needed)
912 __ load_unsigned_word(rcx, size_of_parameters);
913
914 // rbx: methodOop
915 // rcx: size of parameters
916 __ popl(rax); // get return address
917 // for natives the size of locals is zero
918
919 // compute beginning of parameters /locals
920 __ leal(locals, Address(rsp, rcx, Address::times_4, -wordSize));
921
922 // initialize fixed part of activation frame
923
924 // Assumes rax = return address
925
926 // allocate and initialize new interpreterState and method expression stack
927 // IN(locals) -> locals
928 // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
929 // destroys rax, rcx, rdx
930 // OUT (state) -> new interpreterState
931 // OUT(rsp) -> bottom of methods expression stack
932
933 // save sender_sp
934 __ movl(rcx, rsi);
935 // start with NULL previous state
936 __ movl(state, 0);
937 generate_compute_interpreter_state(state, locals, rcx, true);
938
939 #ifdef ASSERT
940 { Label L;
941 __ movl(rax, STATE(_stack_base));
942 __ cmpl(rax, rsp);
943 __ jcc(Assembler::equal, L);
944 __ stop("broken stack frame setup in interpreter");
945 __ bind(L);
946 }
947 #endif
948
949 if (inc_counter) __ movl(rcx, invocation_counter); // (pre-)fetch invocation count
950
951 __ movl(rax, STATE(_thread)); // get thread
952 // Since at this point in the method invocation the exception handler
953 // would try to exit the monitor of synchronized methods which hasn't
954 // been entered yet, we set the thread local variable
955 // _do_not_unlock_if_synchronized to true. The remove_activation will
956 // check this flag.
957
958 const Address do_not_unlock_if_synchronized(rax,
959 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
960 __ movbool(do_not_unlock_if_synchronized, true);
961
962 // make sure method is native & not abstract
963 #ifdef ASSERT
964 __ movl(rax, access_flags);
965 {
966 Label L;
967 __ testl(rax, JVM_ACC_NATIVE);
968 __ jcc(Assembler::notZero, L);
969 __ stop("tried to execute non-native method as native");
970 __ bind(L);
971 }
972 { Label L;
973 __ testl(rax, JVM_ACC_ABSTRACT);
974 __ jcc(Assembler::zero, L);
975 __ stop("tried to execute abstract method in interpreter");
976 __ bind(L);
977 }
978 #endif
979
980
981 // increment invocation count & check for overflow
982 Label invocation_counter_overflow;
983 if (inc_counter) {
984 generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
985 }
986
987 Label continue_after_compile;
988
989 __ bind(continue_after_compile);
990
991 bang_stack_shadow_pages(true);
992
993 // reset the _do_not_unlock_if_synchronized flag
994 __ movl(rax, STATE(_thread)); // get thread
995 __ movbool(do_not_unlock_if_synchronized, false);
996
997
998 // check for synchronized native methods
999 //
1000 // Note: This must happen *after* invocation counter check, since
1001 // when overflow happens, the method should not be locked.
1002 if (synchronized) {
1003 // potentially kills rax, rcx, rdx, rdi
1004 lock_method();
1005 } else {
1006 // no synchronization necessary
1007 #ifdef ASSERT
1008 { Label L;
1009 __ movl(rax, access_flags);
1010 __ testl(rax, JVM_ACC_SYNCHRONIZED);
1011 __ jcc(Assembler::zero, L);
1012 __ stop("method needs synchronization");
1013 __ bind(L);
1014 }
1015 #endif
1016 }
1017
1018 // start execution
1019
1020 // jvmti support
1021 __ notify_method_entry();
1022
1023 // work registers
1024 const Register method = rbx;
1025 const Register thread = rdi;
1026 const Register t = rcx;
1027
1028 // allocate space for parameters
1029 __ movl(method, STATE(_method));
1030 __ verify_oop(method);
1031 __ load_unsigned_word(t, Address(method, methodOopDesc::size_of_parameters_offset()));
1032 __ shll(t, 2);
1033 __ addl(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
1034 __ subl(rsp, t);
1035 __ andl(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1036
1037 // get signature handler
1038 Label pending_exception_present;
1039
1040 { Label L;
1041 __ movl(t, Address(method, methodOopDesc::signature_handler_offset()));
1042 __ testl(t, t);
1043 __ jcc(Assembler::notZero, L);
1044 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1045 __ movl(method, STATE(_method));
1046 __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
1047 __ jcc(Assembler::notEqual, pending_exception_present);
1048 __ verify_oop(method);
1049 __ movl(t, Address(method, methodOopDesc::signature_handler_offset()));
1050 __ bind(L);
1051 }
1052 #ifdef ASSERT
1053 {
1054 Label L;
1055 __ pushl(t);
1056 __ get_thread(t); // get vm's javathread*
1057 __ cmpl(t, STATE(_thread));
1058 __ jcc(Assembler::equal, L);
1059 __ int3();
1060 __ bind(L);
1061 __ popl(t);
1062 }
1063 #endif //
1064
1065 // call signature handler
1066 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
1067 assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
1068 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t , "adjust this code");
1069 // The generated handlers do not touch RBX (the method oop).
1070 // However, large signatures cannot be cached and are generated
1071 // each time here. The slow-path generator will blow RBX
1072 // sometime, so we must reload it after the call.
1073 __ movl(rdi, STATE(_locals)); // get the from pointer
1074 __ call(t);
1075 __ movl(method, STATE(_method));
1076 __ verify_oop(method);
1077
1078 // result handler is in rax
1079 // set result handler
1080 __ movl(STATE(_result_handler), rax);
1081
1082 // pass mirror handle if static call
1083 { Label L;
1084 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1085 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1086 __ testl(t, JVM_ACC_STATIC);
1087 __ jcc(Assembler::zero, L);
1088 // get mirror
1089 __ movl(t, Address(method, methodOopDesc:: constants_offset()));
1090 __ movl(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1091 __ movl(t, Address(t, mirror_offset));
1092 // copy mirror into activation object
1093 __ movl(STATE(_oop_temp), t);
1094 // pass handle to mirror
1095 __ leal(t, STATE(_oop_temp));
1096 __ movl(Address(rsp, wordSize), t);
1097 __ bind(L);
1098 }
1099 #ifdef ASSERT
1100 {
1101 Label L;
1102 __ pushl(t);
1103 __ get_thread(t); // get vm's javathread*
1104 __ cmpl(t, STATE(_thread));
1105 __ jcc(Assembler::equal, L);
1106 __ int3();
1107 __ bind(L);
1108 __ popl(t);
1109 }
1110 #endif //
1111
1112 // get native function entry point
1113 { Label L;
1114 __ movl(rax, Address(method, methodOopDesc::native_function_offset()));
1115 __ testl(rax, rax);
1116 __ jcc(Assembler::notZero, L);
1117 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1118 __ movl(method, STATE(_method));
1119 __ verify_oop(method);
1120 __ movl(rax, Address(method, methodOopDesc::native_function_offset()));
1121 __ bind(L);
1122 }
1123
1124 // pass JNIEnv
1125 __ movl(thread, STATE(_thread)); // get thread
1126 __ leal(t, Address(thread, JavaThread::jni_environment_offset()));
1127 __ movl(Address(rsp, 0), t);
1128 #ifdef ASSERT
1129 {
1130 Label L;
1131 __ pushl(t);
1132 __ get_thread(t); // get vm's javathread*
1133 __ cmpl(t, STATE(_thread));
1134 __ jcc(Assembler::equal, L);
1135 __ int3();
1136 __ bind(L);
1137 __ popl(t);
1138 }
1139 #endif //
1140
1141 #ifdef ASSERT
1142 { Label L;
1143 __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1144 __ cmpl(t, _thread_in_Java);
1145 __ jcc(Assembler::equal, L);
1146 __ stop("Wrong thread state in native stub");
1147 __ bind(L);
1148 }
1149 #endif
1150
1151 // Change state to native (we save the return address in the thread, since it might not
1152 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1153 // points into the right code segment. It does not have to be the correct return pc.
1154
1155 __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1156
1157 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1158
1159 __ call(rax);
1160
1161 // result potentially in rdx:rax or ST0
1162 __ movl(method, STATE(_method));
1163 __ movl(thread, STATE(_thread)); // get thread
1164
1165 // The potential result is in ST(0) & rdx:rax
1166 // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1167 // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1168 // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1169 // be destroyed.
1170 // It is safe to do these pushes because state is _thread_in_native and return address will be found
1171 // via _last_native_pc and not via _last_jave_sp
1172
1173 // Must save the value of ST(0) since it could be destroyed before we get to result handler
1174 { Label Lpush, Lskip;
1175 ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1176 ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1177 __ cmpptr(STATE(_result_handler), float_handler.addr());
1178 __ jcc(Assembler::equal, Lpush);
1179 __ cmpptr(STATE(_result_handler), double_handler.addr());
1180 __ jcc(Assembler::notEqual, Lskip);
1181 __ bind(Lpush);
1182 __ push(dtos);
1183 __ bind(Lskip);
1184 }
1185
1186 __ push(ltos); // save rax:rdx for potential use by result handler.
1187
1188 // Either restore the MXCSR register after returning from the JNI Call
1189 // or verify that it wasn't changed.
1190 if (VM_Version::supports_sse()) {
1191 if (RestoreMXCSROnJNICalls) {
1192 __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1193 }
1194 else if (CheckJNICalls ) {
1195 __ call(RuntimeAddress(StubRoutines::i486::verify_mxcsr_entry()));
1196 }
1197 }
1198
1199 // Either restore the x87 floating pointer control word after returning
1200 // from the JNI call or verify that it wasn't changed.
1201 if (CheckJNICalls) {
1202 __ call(RuntimeAddress(StubRoutines::i486::verify_fpu_cntrl_wrd_entry()));
1203 }
1204
1205
1206 // change thread state
1207 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1208 if(os::is_MP()) {
1209 // Write serialization page so VM thread can do a pseudo remote membar.
1210 // We use the current thread pointer to calculate a thread specific
1211 // offset to write to within the page. This minimizes bus traffic
1212 // due to cache line collision.
1213 __ serialize_memory(thread, rcx);
1214 }
1215
1216 // check for safepoint operation in progress and/or pending suspend requests
1217 { Label Continue;
1218
1219 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1220 SafepointSynchronize::_not_synchronized);
1221
1222 // threads running native code and they are expected to self-suspend
1223 // when leaving the _thread_in_native state. We need to check for
1224 // pending suspend requests here.
1225 Label L;
1226 __ jcc(Assembler::notEqual, L);
1227 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1228 __ jcc(Assembler::equal, Continue);
1229 __ bind(L);
1230
1231 // Don't use call_VM as it will see a possible pending exception and forward it
1232 // and never return here preventing us from clearing _last_native_pc down below.
1233 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1234 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1235 // by hand.
1236 //
1237 __ pushl(thread);
1238 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1239 JavaThread::check_special_condition_for_native_trans)));
1240 __ increment(rsp, wordSize);
1241
1242 __ movl(method, STATE(_method));
1243 __ verify_oop(method);
1244 __ movl(thread, STATE(_thread)); // get thread
1245
1246 __ bind(Continue);
1247 }
1248
1249 // change thread state
1250 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1251
1252 __ reset_last_Java_frame(thread, true, true);
1253
1254 // reset handle block
1255 __ movl(t, Address(thread, JavaThread::active_handles_offset()));
1256 __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1257
1258 // If result was an oop then unbox and save it in the frame
1259 { Label L;
1260 Label no_oop, store_result;
1261 ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1262 __ cmpptr(STATE(_result_handler), oop_handler.addr());
1263 __ jcc(Assembler::notEqual, no_oop);
1264 __ pop(ltos);
1265 __ testl(rax, rax);
1266 __ jcc(Assembler::zero, store_result);
1267 // unbox
1268 __ movl(rax, Address(rax, 0));
1269 __ bind(store_result);
1270 __ movl(STATE(_oop_temp), rax);
1271 // keep stack depth as expected by pushing oop which will eventually be discarded
1272 __ push(ltos);
1273 __ bind(no_oop);
1274 }
1275
1276 {
1277 Label no_reguard;
1278 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1279 __ jcc(Assembler::notEqual, no_reguard);
1280
1281 __ pushad();
1282 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1283 __ popad();
1284
1285 __ bind(no_reguard);
1286 }
1287
1288
1289 // QQQ Seems like for native methods we simply return and the caller will see the pending
1290 // exception and do the right thing. Certainly the interpreter will, don't know about
1291 // compiled methods.
1292 // Seems that the answer to above is no this is wrong. The old code would see the exception
1293 // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1294 // This seems wrong need to investigate the spec.
1295
1296 // handle exceptions (exception handling will handle unlocking!)
1297 { Label L;
1298 __ cmpl(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
1299 __ jcc(Assembler::zero, L);
1300 __ bind(pending_exception_present);
1301
1302 // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1303 // return and let caller deal with exception. This skips the unlocking here which
1304 // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1305 // Note: must preverve method in rbx
1306 //
1307
1308 // remove activation
1309
1310 __ movl(t, STATE(_sender_sp));
1311 __ leave(); // remove frame anchor
1312 __ popl(rdi); // get return address
1313 __ movl(state, STATE(_prev_link)); // get previous state for return
1314 __ movl(rsp, t); // set sp to sender sp
1315 __ pushl(rdi); // [ush throwing pc
1316 // The skips unlocking!! This seems to be what asm interpreter does but seems
1317 // very wrong. Not clear if this violates the spec.
1318 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1319 __ bind(L);
1320 }
1321
1322 // do unlocking if necessary
1323 { Label L;
1324 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1325 __ testl(t, JVM_ACC_SYNCHRONIZED);
1326 __ jcc(Assembler::zero, L);
1327 // the code below should be shared with interpreter macro assembler implementation
1328 { Label unlock;
1329 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1330 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1331 __ movl(rdx, STATE(_monitor_base));
1332 __ subl(rdx, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor
1333
1334 __ movl(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
1335 __ testl(t, t);
1336 __ jcc(Assembler::notZero, unlock);
1337
1338 // Entry already unlocked, need to throw exception
1339 __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1340 __ should_not_reach_here();
1341
1342 __ bind(unlock);
1343 __ unlock_object(rdx);
1344 // unlock can blow rbx so restore it for path that needs it below
1345 __ movl(method, STATE(_method));
1346 }
1347 __ bind(L);
1348 }
1349
1350 // jvmti support
1351 // Note: This must happen _after_ handling/throwing any exceptions since
1352 // the exception handler code notifies the runtime of method exits
1353 // too. If this happens before, method entry/exit notifications are
1354 // not properly paired (was bug - gri 11/22/99).
1355 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1356
1357 // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1358 __ pop(ltos); // restore rax/rdx floating result if present still on stack
1359 __ movl(t, STATE(_result_handler)); // get result handler
1360 __ call(t); // call result handler to convert to tosca form
1361
1362 // remove activation
1363
1364 __ movl(t, STATE(_sender_sp));
1365
1366 __ leave(); // remove frame anchor
1367 __ popl(rdi); // get return address
1368 __ movl(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller)
1369 __ movl(rsp, t); // set sp to sender sp
1370 __ jmp(rdi);
1371
1372 // invocation counter overflow
1373 if (inc_counter) {
1374 // Handle overflow of counter and compile method
1375 __ bind(invocation_counter_overflow);
1376 generate_counter_overflow(&continue_after_compile);
1377 }
1378
1379 return entry_point;
1380 }
1381
1382 // Generate entries that will put a result type index into rcx
1383 void CppInterpreterGenerator::generate_deopt_handling() {
1384
1385 const Register state = rsi;
1386 Label return_from_deopt_common;
1387
1388 // Generate entries that will put a result type index into rcx
1389 // deopt needs to jump to here to enter the interpreter (return a result)
1390 deopt_frame_manager_return_atos = __ pc();
1391
1392 // rax is live here
1393 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index
1394 __ jmp(return_from_deopt_common);
1395
1396
1397 // deopt needs to jump to here to enter the interpreter (return a result)
1398 deopt_frame_manager_return_btos = __ pc();
1399
1400 // rax is live here
1401 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index
1402 __ jmp(return_from_deopt_common);
1403
1404 // deopt needs to jump to here to enter the interpreter (return a result)
1405 deopt_frame_manager_return_itos = __ pc();
1406
1407 // rax is live here
1408 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index
1409 __ jmp(return_from_deopt_common);
1410
1411 // deopt needs to jump to here to enter the interpreter (return a result)
1412
1413 deopt_frame_manager_return_ltos = __ pc();
1414 // rax,rdx are live here
1415 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index
1416 __ jmp(return_from_deopt_common);
1417
1418 // deopt needs to jump to here to enter the interpreter (return a result)
1419
1420 deopt_frame_manager_return_ftos = __ pc();
1421 // st(0) is live here
1422 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
1423 __ jmp(return_from_deopt_common);
1424
1425 // deopt needs to jump to here to enter the interpreter (return a result)
1426 deopt_frame_manager_return_dtos = __ pc();
1427
1428 // st(0) is live here
1429 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
1430 __ jmp(return_from_deopt_common);
1431
1432 // deopt needs to jump to here to enter the interpreter (return a result)
1433 deopt_frame_manager_return_vtos = __ pc();
1434
1435 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1436
1437 // Deopt return common
1438 // an index is present in rcx that lets us move any possible result being
1439 // return to the interpreter's stack
1440 //
1441 // Because we have a full sized interpreter frame on the youngest
1442 // activation the stack is pushed too deep to share the tosca to
1443 // stack converters directly. We shrink the stack to the desired
1444 // amount and then push result and then re-extend the stack.
1445 // We could have the code in size_activation layout a short
1446 // frame for the top activation but that would look different
1447 // than say sparc (which needs a full size activation because
1448 // the windows are in the way. Really it could be short? QQQ
1449 //
1450 __ bind(return_from_deopt_common);
1451
1452 __ leal(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1453
1454 // setup rsp so we can push the "result" as needed.
1455 __ movl(rsp, STATE(_stack)); // trim stack (is prepushed)
1456 __ addl(rsp, wordSize); // undo prepush
1457
1458 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1459 // Address index(noreg, rcx, Address::times_4);
1460 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_4)));
1461 // __ movl(rcx, Address(noreg, rcx, Address::times_4, int(AbstractInterpreter::_tosca_to_stack)));
1462 __ call(rcx); // call result converter
1463
1464 __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1465 __ leal(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
1466 __ movl(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
1467 // result if any on stack already )
1468 __ movl(rsp, STATE(_stack_limit)); // restore expression stack to full depth
1469 }
1470
1471 // Generate the code to handle a more_monitors message from the c++ interpreter
1472 void CppInterpreterGenerator::generate_more_monitors() {
1473
1474 const Register state = rsi;
1475
1476 Label entry, loop;
1477 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1478 // 1. compute new pointers // rsp: old expression stack top
1479 __ movl(rdx, STATE(_stack_base)); // rdx: old expression stack bottom
1480 __ subl(rsp, entry_size); // move expression stack top limit
1481 __ subl(STATE(_stack), entry_size); // update interpreter stack top
1482 __ movl(STATE(_stack_limit), rsp); // inform interpreter
1483 __ subl(rdx, entry_size); // move expression stack bottom
1484 __ movl(STATE(_stack_base), rdx); // inform interpreter
1485 __ movl(rcx, STATE(_stack)); // set start value for copy loop
1486 __ jmp(entry);
1487 // 2. move expression stack contents
1488 __ bind(loop);
1489 __ movl(rbx, Address(rcx, entry_size)); // load expression stack word from old location
1490 __ movl(Address(rcx, 0), rbx); // and store it at new location
1491 __ addl(rcx, wordSize); // advance to next word
1492 __ bind(entry);
1493 __ cmpl(rcx, rdx); // check if bottom reached
1494 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
1495 // now zero the slot so we can find it.
1496 __ movl(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
1497 __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1498 }
1499
1500
1501 // Initial entry to C++ interpreter from the call_stub.
1502 // This entry point is called the frame manager since it handles the generation
1503 // of interpreter activation frames via requests directly from the vm (via call_stub)
1504 // and via requests from the interpreter. The requests from the call_stub happen
1505 // directly thru the entry point. Requests from the interpreter happen via returning
1506 // from the interpreter and examining the message the interpreter has returned to
1507 // the frame manager. The frame manager can take the following requests:
1508
1509 // NO_REQUEST - error, should never happen.
1510 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1511 // allocate a new monitor.
1512 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1513 // happens during entry during the entry via the call stub.
1514 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1515 //
1516 // Arguments:
1517 //
1518 // rbx: methodOop
1519 // rcx: receiver - unused (retrieved from stack as needed)
1520 // rsi: previous frame manager state (NULL from the call_stub/c1/c2)
1521 //
1522 //
1523 // Stack layout at entry
1524 //
1525 // [ return address ] <--- rsp
1526 // [ parameter n ]
1527 // ...
1528 // [ parameter 1 ]
1529 // [ expression stack ]
1530 //
1531 //
1532 // We are free to blow any registers we like because the call_stub which brought us here
1533 // initially has preserved the callee save registers already.
1534 //
1535 //
1536
1537 static address interpreter_frame_manager = NULL;
1538
1539 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1540
1541 // rbx: methodOop
1542 // rsi: sender sp
1543
1544 // Because we redispatch "recursive" interpreter entries thru this same entry point
1545 // the "input" register usage is a little strange and not what you expect coming
1546 // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1547 // state are NULL but on "recursive" dispatches they are what you'd expect.
1548 // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1549
1550
1551 // A single frame manager is plenty as we don't specialize for synchronized. We could and
1552 // the code is pretty much ready. Would need to change the test below and for good measure
1553 // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1554 // routines. Not clear this is worth it yet.
1555
1556 if (interpreter_frame_manager) return interpreter_frame_manager;
1557
1558 address entry_point = __ pc();
1559
1560 // Fast accessor methods share this entry point.
1561 // This works because frame manager is in the same codelet
1562 if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1563
1564 Label dispatch_entry_2;
1565 __ movl(rcx, rsi);
1566 __ movl(rsi, 0); // no current activation
1567
1568 __ jmp(dispatch_entry_2);
1569
1570 const Register state = rsi; // current activation object, valid on entry
1571 const Register locals = rdi;
1572
1573 Label re_dispatch;
1574
1575 __ bind(re_dispatch);
1576
1577 // save sender sp (doesn't include return address
1578 __ leal(rcx, Address(rsp, wordSize));
1579
1580 __ bind(dispatch_entry_2);
1581
1582 // save sender sp
1583 __ pushl(rcx);
1584
1585 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1586 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
1587 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
1588
1589 // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1590 // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1591 // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1592
1593 // get parameter size (always needed)
1594 __ load_unsigned_word(rcx, size_of_parameters);
1595
1596 // rbx: methodOop
1597 // rcx: size of parameters
1598 __ load_unsigned_word(rdx, size_of_locals); // get size of locals in words
1599
1600 __ subl(rdx, rcx); // rdx = no. of additional locals
1601
1602 // see if we've got enough room on the stack for locals plus overhead.
1603 generate_stack_overflow_check(); // C++
1604
1605 // c++ interpreter does not use stack banging or any implicit exceptions
1606 // leave for now to verify that check is proper.
1607 bang_stack_shadow_pages(false);
1608
1609
1610
1611 // compute beginning of parameters (rdi)
1612 __ leal(locals, Address(rsp, rcx, Address::times_4, wordSize));
1613
1614 // save sender's sp
1615 // __ movl(rcx, rsp);
1616
1617 // get sender's sp
1618 __ popl(rcx);
1619
1620 // get return address
1621 __ popl(rax);
1622
1623 // rdx - # of additional locals
1624 // allocate space for locals
1625 // explicitly initialize locals
1626 {
1627 Label exit, loop;
1628 __ testl(rdx, rdx);
1629 __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1630 __ bind(loop);
1631 __ pushl((int)NULL); // initialize local variables
1632 __ decrement(rdx); // until everything initialized
1633 __ jcc(Assembler::greater, loop);
1634 __ bind(exit);
1635 }
1636
1637
1638 // Assumes rax = return address
1639
1640 // allocate and initialize new interpreterState and method expression stack
1641 // IN(locals) -> locals
1642 // IN(state) -> any current interpreter activation
1643 // destroys rax, rcx, rdx, rdi
1644 // OUT (state) -> new interpreterState
1645 // OUT(rsp) -> bottom of methods expression stack
1646
1647 generate_compute_interpreter_state(state, locals, rcx, false);
1648
1649 // Call interpreter
1650
1651 Label call_interpreter;
1652 __ bind(call_interpreter);
1653
1654 // c++ interpreter does not use stack banging or any implicit exceptions
1655 // leave for now to verify that check is proper.
1656 bang_stack_shadow_pages(false);
1657
1658
1659 // Call interpreter enter here if message is
1660 // set and we know stack size is valid
1661
1662 Label call_interpreter_2;
1663
1664 __ bind(call_interpreter_2);
1665
1666 {
1667 const Register thread = rcx;
1668
1669 __ pushl(state); // push arg to interpreter
1670 __ movl(thread, STATE(_thread));
1671
1672 // We can setup the frame anchor with everything we want at this point
1673 // as we are thread_in_Java and no safepoints can occur until we go to
1674 // vm mode. We do have to clear flags on return from vm but that is it
1675 //
1676 __ movl(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1677 __ movl(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1678
1679 // Call the interpreter
1680
1681 RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1682 RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1683
1684 __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1685 __ popl(rax); // discard parameter to run
1686 //
1687 // state is preserved since it is callee saved
1688 //
1689
1690 // reset_last_Java_frame
1691
1692 __ movl(thread, STATE(_thread));
1693 __ reset_last_Java_frame(thread, true, true);
1694 }
1695
1696 // examine msg from interpreter to determine next action
1697
1698 __ movl(rdx, STATE(_msg)); // Get new message
1699
1700 Label call_method;
1701 Label return_from_interpreted_method;
1702 Label throw_exception;
1703 Label bad_msg;
1704 Label do_OSR;
1705
1706 __ cmpl(rdx, (int)BytecodeInterpreter::call_method);
1707 __ jcc(Assembler::equal, call_method);
1708 __ cmpl(rdx, (int)BytecodeInterpreter::return_from_method);
1709 __ jcc(Assembler::equal, return_from_interpreted_method);
1710 __ cmpl(rdx, (int)BytecodeInterpreter::do_osr);
1711 __ jcc(Assembler::equal, do_OSR);
1712 __ cmpl(rdx, (int)BytecodeInterpreter::throwing_exception);
1713 __ jcc(Assembler::equal, throw_exception);
1714 __ cmpl(rdx, (int)BytecodeInterpreter::more_monitors);
1715 __ jcc(Assembler::notEqual, bad_msg);
1716
1717 // Allocate more monitor space, shuffle expression stack....
1718
1719 generate_more_monitors();
1720
1721 __ jmp(call_interpreter);
1722
1723 // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1724 unctrap_frame_manager_entry = __ pc();
1725 //
1726 // Load the registers we need.
1727 __ leal(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1728 __ movl(rsp, STATE(_stack_limit)); // restore expression stack to full depth
1729 __ jmp(call_interpreter_2);
1730
1731
1732
1733 //=============================================================================
1734 // Returning from a compiled method into a deopted method. The bytecode at the
1735 // bcp has completed. The result of the bytecode is in the native abi (the tosca
1736 // for the template based interpreter). Any stack space that was used by the
1737 // bytecode that has completed has been removed (e.g. parameters for an invoke)
1738 // so all that we have to do is place any pending result on the expression stack
1739 // and resume execution on the next bytecode.
1740
1741
1742 generate_deopt_handling();
1743 __ jmp(call_interpreter);
1744
1745
1746 // Current frame has caught an exception we need to dispatch to the
1747 // handler. We can get here because a native interpreter frame caught
1748 // an exception in which case there is no handler and we must rethrow
1749 // If it is a vanilla interpreted frame the we simply drop into the
1750 // interpreter and let it do the lookup.
1751
1752 Interpreter::_rethrow_exception_entry = __ pc();
1753 // rax: exception
1754 // rdx: return address/pc that threw exception
1755
1756 Label return_with_exception;
1757 Label unwind_and_forward;
1758
1759 // restore state pointer.
1760 __ leal(state, Address(rbp, -sizeof(BytecodeInterpreter)));
1761
1762 __ movl(rbx, STATE(_method)); // get method
1763 __ movl(rcx, STATE(_thread)); // get thread
1764
1765 // Store exception with interpreter will expect it
1766 __ movl(Address(rcx, Thread::pending_exception_offset()), rax);
1767
1768 // is current frame vanilla or native?
1769
1770 __ movl(rdx, access_flags);
1771 __ testl(rdx, JVM_ACC_NATIVE);
1772 __ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly
1773
1774 // We drop thru to unwind a native interpreted frame with a pending exception
1775 // We jump here for the initial interpreter frame with exception pending
1776 // We unwind the current acivation and forward it to our caller.
1777
1778 __ bind(unwind_and_forward);
1779
1780 // unwind rbp, return stack to unextended value and re-push return address
1781
1782 __ movl(rcx, STATE(_sender_sp));
1783 __ leave();
1784 __ popl(rdx);
1785 __ movl(rsp, rcx);
1786 __ pushl(rdx);
1787 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1788
1789 // Return point from a call which returns a result in the native abi
1790 // (c1/c2/jni-native). This result must be processed onto the java
1791 // expression stack.
1792 //
1793 // A pending exception may be present in which case there is no result present
1794
1795 Label resume_interpreter;
1796 Label do_float;
1797 Label do_double;
1798 Label done_conv;
1799
1800 address compiled_entry = __ pc();
1801
1802 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1803 if (UseSSE < 2) {
1804 __ leal(state, Address(rbp, -sizeof(BytecodeInterpreter)));
1805 __ movl(rbx, STATE(_result._to_call._callee)); // get method just executed
1806 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1807 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
1808 __ jcc(Assembler::equal, do_float);
1809 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
1810 __ jcc(Assembler::equal, do_double);
1811 #ifdef COMPILER2
1812 __ empty_FPU_stack();
1813 #endif // COMPILER2
1814 __ jmp(done_conv);
1815
1816 __ bind(do_float);
1817 #ifdef COMPILER2
1818 for (int i = 1; i < 8; i++) {
1819 __ ffree(i);
1820 }
1821 #endif // COMPILER2
1822 __ jmp(done_conv);
1823 __ bind(do_double);
1824 #ifdef COMPILER2
1825 for (int i = 1; i < 8; i++) {
1826 __ ffree(i);
1827 }
1828 #endif // COMPILER2
1829 __ jmp(done_conv);
1830 } else {
1831 __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1832 __ jmp(done_conv);
1833 }
1834
1835 // emit a sentinel we can test for when converting an interpreter
1836 // entry point to a compiled entry point.
1837 __ a_long(Interpreter::return_sentinel);
1838 __ a_long((int)compiled_entry);
1839
1840 // Return point to interpreter from compiled/native method
1841
1842 InternalAddress return_from_native_method(__ pc());
1843
1844 __ bind(done_conv);
1845
1846
1847 // Result if any is in tosca. The java expression stack is in the state that the
1848 // calling convention left it (i.e. params may or may not be present)
1849 // Copy the result from tosca and place it on java expression stack.
1850
1851 // Restore rsi as compiled code may not preserve it
1852
1853 __ leal(state, Address(rbp, -sizeof(BytecodeInterpreter)));
1854
1855 // restore stack to what we had when we left (in case i2c extended it)
1856
1857 __ movl(rsp, STATE(_stack));
1858 __ leal(rsp, Address(rsp, wordSize));
1859
1860 // If there is a pending exception then we don't really have a result to process
1861
1862 __ movl(rcx, STATE(_thread)); // get thread
1863 __ cmpl(Address(rcx, Thread::pending_exception_offset()), (int)NULL);
1864 __ jcc(Assembler::notZero, return_with_exception);
1865
1866 // get method just executed
1867 __ movl(rbx, STATE(_result._to_call._callee));
1868
1869 // callee left args on top of expression stack, remove them
1870 __ load_unsigned_word(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
1871 __ leal(rsp, Address(rsp, rcx, Address::times_4));
1872
1873 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1874 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1875 // Address index(noreg, rax, Address::times_4);
1876 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_4)));
1877 // __ movl(rcx, Address(noreg, rcx, Address::times_4, int(AbstractInterpreter::_tosca_to_stack)));
1878 __ call(rcx); // call result converter
1879 __ jmp(resume_interpreter);
1880
1881 // An exception is being caught on return to a vanilla interpreter frame.
1882 // Empty the stack and resume interpreter
1883
1884 __ bind(return_with_exception);
1885
1886 // Exception present, empty stack
1887 __ movl(rsp, STATE(_stack_base));
1888 __ jmp(resume_interpreter);
1889
1890 // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1891 // interpreter call, or native) and unwind this interpreter activation.
1892 // All monitors should be unlocked.
1893
1894 __ bind(return_from_interpreted_method);
1895
1896 Label return_to_initial_caller;
1897
1898 __ movl(rbx, STATE(_method)); // get method just executed
1899 __ cmpl(STATE(_prev_link), (int)NULL); // returning from "recursive" interpreter call?
1900 __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
1901 __ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2)
1902
1903 // Copy result to callers java stack
1904 ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
1905 // Address index(noreg, rax, Address::times_4);
1906
1907 __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_4)));
1908 // __ movl(rax, Address(noreg, rax, Address::times_4, int(AbstractInterpreter::_stack_to_stack)));
1909 __ call(rax); // call result converter
1910
1911 Label unwind_recursive_activation;
1912 __ bind(unwind_recursive_activation);
1913
1914 // returning to interpreter method from "recursive" interpreter call
1915 // result converter left rax pointing to top of the java stack for method we are returning
1916 // to. Now all we must do is unwind the state from the completed call
1917
1918 __ movl(state, STATE(_prev_link)); // unwind state
1919 __ leave(); // pop the frame
1920 __ movl(rsp, rax); // unwind stack to remove args
1921
1922 // Resume the interpreter. The current frame contains the current interpreter
1923 // state object.
1924 //
1925
1926 __ bind(resume_interpreter);
1927
1928 // state == interpreterState object for method we are resuming
1929
1930 __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
1931 __ leal(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
1932 __ movl(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
1933 // result if any on stack already )
1934 __ movl(rsp, STATE(_stack_limit)); // restore expression stack to full depth
1935 __ jmp(call_interpreter_2); // No need to bang
1936
1937 // interpreter returning to native code (call_stub/c1/c2)
1938 // convert result and unwind initial activation
1939 // rax - result index
1940
1941 __ bind(return_to_initial_caller);
1942 ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
1943 // Address index(noreg, rax, Address::times_4);
1944
1945 __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_4)));
1946 __ call(rax); // call result converter
1947
1948 Label unwind_initial_activation;
1949 __ bind(unwind_initial_activation);
1950
1951 // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
1952
1953 /* Current stack picture
1954
1955 [ incoming parameters ]
1956 [ extra locals ]
1957 [ return address to CALL_STUB/C1/C2]
1958 fp -> [ CALL_STUB/C1/C2 fp ]
1959 BytecodeInterpreter object
1960 expression stack
1961 sp ->
1962
1963 */
1964
1965 // return restoring the stack to the original sender_sp value
1966
1967 __ movl(rcx, STATE(_sender_sp));
1968 __ leave();
1969 __ popl(rdi); // get return address
1970 // set stack to sender's sp
1971 __ movl(rsp, rcx);
1972 __ jmp(rdi); // return to call_stub
1973
1974 // OSR request, adjust return address to make current frame into adapter frame
1975 // and enter OSR nmethod
1976
1977 __ bind(do_OSR);
1978
1979 Label remove_initial_frame;
1980
1981 // We are going to pop this frame. Is there another interpreter frame underneath
1982 // it or is it callstub/compiled?
1983
1984 // Move buffer to the expected parameter location
1985 __ movl(rcx, STATE(_result._osr._osr_buf));
1986
1987 __ movl(rax, STATE(_result._osr._osr_entry));
1988
1989 __ cmpl(STATE(_prev_link), (int)NULL); // returning from "recursive" interpreter call?
1990 __ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2)
1991
1992 // __ movl(state, STATE(_prev_link)); // unwind state
1993 __ movl(rsi, STATE(_sender_sp)); // get sender's sp in expected register
1994 __ leave(); // pop the frame
1995 __ movl(rsp, rsi); // trim any stack expansion
1996
1997
1998 // We know we are calling compiled so push specialized return
1999 // method uses specialized entry, push a return so we look like call stub setup
2000 // this path will handle fact that result is returned in registers and not
2001 // on the java stack.
2002
2003 __ pushptr(return_from_native_method.addr());
2004
2005 __ jmp(rax);
2006
2007 __ bind(remove_initial_frame);
2008
2009 __ movl(rdx, STATE(_sender_sp));
2010 __ leave();
2011 // get real return
2012 __ popl(rsi);
2013 // set stack to sender's sp
2014 __ movl(rsp, rdx);
2015 // repush real return
2016 __ pushl(rsi);
2017 // Enter OSR nmethod
2018 __ jmp(rax);
2019
2020
2021
2022
2023 // Call a new method. All we do is (temporarily) trim the expression stack
2024 // push a return address to bring us back to here and leap to the new entry.
2025
2026 __ bind(call_method);
2027
2028 // stack points to next free location and not top element on expression stack
2029 // method expects sp to be pointing to topmost element
2030
2031 __ movl(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top
2032 __ leal(rsp, Address(rsp, wordSize));
2033
2034 __ movl(rbx, STATE(_result._to_call._callee)); // get method to execute
2035
2036 // don't need a return address if reinvoking interpreter
2037
2038 // Make it look like call_stub calling conventions
2039
2040 // Get (potential) receiver
2041 __ load_unsigned_word(rcx, size_of_parameters); // get size of parameters in words
2042
2043 ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2044 __ pushptr(recursive.addr()); // make it look good in the debugger
2045
2046 InternalAddress entry(entry_point);
2047 __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2048 __ jcc(Assembler::equal, re_dispatch); // yes
2049
2050 __ popl(rax); // pop dummy address
2051
2052
2053 // get specialized entry
2054 __ movl(rax, STATE(_result._to_call._callee_entry_point));
2055 // set sender SP
2056 __ movl(rsi, rsp);
2057
2058 // method uses specialized entry, push a return so we look like call stub setup
2059 // this path will handle fact that result is returned in registers and not
2060 // on the java stack.
2061
2062 __ pushptr(return_from_native_method.addr());
2063
2064 __ jmp(rax);
2065
2066 __ bind(bad_msg);
2067 __ stop("Bad message from interpreter");
2068
2069 // Interpreted method "returned" with an exception pass it on...
2070 // Pass result, unwind activation and continue/return to interpreter/call_stub
2071 // We handle result (if any) differently based on return to interpreter or call_stub
2072
2073 Label unwind_initial_with_pending_exception;
2074
2075 __ bind(throw_exception);
2076 __ cmpl(STATE(_prev_link), (int)NULL); // returning from recursive interpreter call?
2077 __ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2)
2078 __ movl(rax, STATE(_locals)); // pop parameters get new stack value
2079 __ addl(rax, wordSize); // account for prepush before we return
2080 __ jmp(unwind_recursive_activation);
2081
2082 __ bind(unwind_initial_with_pending_exception);
2083
2084 // We will unwind the current (initial) interpreter frame and forward
2085 // the exception to the caller. We must put the exception in the
2086 // expected register and clear pending exception and then forward.
2087
2088 __ jmp(unwind_and_forward);
2089
2090 interpreter_frame_manager = entry_point;
2091 return entry_point;
2092 }
2093
2094 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2095 // determine code generation flags
2096 bool synchronized = false;
2097 address entry_point = NULL;
2098
2099 switch (kind) {
2100 case Interpreter::zerolocals : break;
2101 case Interpreter::zerolocals_synchronized: synchronized = true; break;
2102 case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
2103 case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
2104 case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
2105 case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
2106 case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
2107
2108 case Interpreter::java_lang_math_sin : // fall thru
2109 case Interpreter::java_lang_math_cos : // fall thru
2110 case Interpreter::java_lang_math_tan : // fall thru
2111 case Interpreter::java_lang_math_abs : // fall thru
2112 case Interpreter::java_lang_math_log : // fall thru
2113 case Interpreter::java_lang_math_log10 : // fall thru
2114 case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
2115 default : ShouldNotReachHere(); break;
2116 }
2117
2118 if (entry_point) return entry_point;
2119
2120 return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2121
2122 }
2123
2124 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2125 : CppInterpreterGenerator(code) {
2126 generate_all(); // down here so it can be "virtual"
2127 }
2128
2129 // Deoptimization helpers for C++ interpreter
2130
2131 // How much stack a method activation needs in words.
2132 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2133
2134 const int stub_code = 4; // see generate_call_stub
2135 // Save space for one monitor to get into the interpreted method in case
2136 // the method is synchronized
2137 int monitor_size = method->is_synchronized() ?
2138 1*frame::interpreter_frame_monitor_size() : 0;
2139
2140 // total static overhead size. Account for interpreter state object, return
2141 // address, saved rbp and 2 words for a "static long no_params() method" issue.
2142
2143 const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2144 ( frame::sender_sp_offset - frame::link_offset) + 2;
2145
2146 const int method_stack = (method->max_locals() + method->max_stack()) *
2147 Interpreter::stackElementWords();
2148 return overhead_size + method_stack + stub_code;
2149 }
2150
2151 // returns the activation size.
2152 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2153 return (extra_locals_size + // the addition space for locals
2154 2*BytesPerWord + // return address and saved rbp
2155 2*BytesPerWord + // "static long no_params() method" issue
2156 sizeof(BytecodeInterpreter) + // interpreterState
2157 monitor_size); // monitors
2158 }
2159
2160 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2161 frame* caller,
2162 frame* current,
2163 methodOop method,
2164 intptr_t* locals,
2165 intptr_t* stack,
2166 intptr_t* stack_base,
2167 intptr_t* monitor_base,
2168 intptr_t* frame_bottom,
2169 bool is_top_frame
2170 )
2171 {
2172 // What about any vtable?
2173 //
2174 to_fill->_thread = JavaThread::current();
2175 // This gets filled in later but make it something recognizable for now
2176 to_fill->_bcp = method->code_base();
2177 to_fill->_locals = locals;
2178 to_fill->_constants = method->constants()->cache();
2179 to_fill->_method = method;
2180 to_fill->_mdx = NULL;
2181 to_fill->_stack = stack;
2182 if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2183 to_fill->_msg = deopt_resume2;
2184 } else {
2185 to_fill->_msg = method_resume;
2186 }
2187 to_fill->_result._to_call._bcp_advance = 0;
2188 to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2189 to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2190 to_fill->_prev_link = NULL;
2191
2192 to_fill->_sender_sp = caller->unextended_sp();
2193
2194 if (caller->is_interpreted_frame()) {
2195 interpreterState prev = caller->get_interpreterState();
2196 to_fill->_prev_link = prev;
2197 // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2198 // Make the prev callee look proper
2199 prev->_result._to_call._callee = method;
2200 if (*prev->_bcp == Bytecodes::_invokeinterface) {
2201 prev->_result._to_call._bcp_advance = 5;
2202 } else {
2203 prev->_result._to_call._bcp_advance = 3;
2204 }
2205 }
2206 to_fill->_oop_temp = NULL;
2207 to_fill->_stack_base = stack_base;
2208 // Need +1 here because stack_base points to the word just above the first expr stack entry
2209 // and stack_limit is supposed to point to the word just below the last expr stack entry.
2210 // See generate_compute_interpreter_state.
2211 to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2212 to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2213
2214 to_fill->_self_link = to_fill;
2215 assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2216 "Stack top out of range");
2217 }
2218
2219 int AbstractInterpreter::layout_activation(methodOop method,
2220 int tempcount, //
2221 int popframe_extra_args,
2222 int moncount,
2223 int callee_param_count,
2224 int callee_locals,
2225 frame* caller,
2226 frame* interpreter_frame,
2227 bool is_top_frame) {
2228
2229 assert(popframe_extra_args == 0, "FIX ME");
2230 // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2231 // does as far as allocating an interpreter frame.
2232 // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2233 // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2234 // as determined by a previous call to this method.
2235 // It is also guaranteed to be walkable even though it is in a skeletal state
2236 // NOTE: return size is in words not bytes
2237 // NOTE: tempcount is the current size of the java expression stack. For top most
2238 // frames we will allocate a full sized expression stack and not the curback
2239 // version that non-top frames have.
2240
2241 // Calculate the amount our frame will be adjust by the callee. For top frame
2242 // this is zero.
2243
2244 // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2245 // calculates the extra locals based on itself. Not what the callee does
2246 // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2247 // as getting sender_sp correct.
2248
2249 int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2250 int monitor_size = sizeof(BasicObjectLock) * moncount;
2251
2252 // First calculate the frame size without any java expression stack
2253 int short_frame_size = size_activation_helper(extra_locals_size,
2254 monitor_size);
2255
2256 // Now with full size expression stack
2257 int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
2258
2259 // and now with only live portion of the expression stack
2260 short_frame_size = short_frame_size + tempcount * BytesPerWord;
2261
2262 // the size the activation is right now. Only top frame is full size
2263 int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2264
2265 if (interpreter_frame != NULL) {
2266 #ifdef ASSERT
2267 assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2268 #endif
2269
2270 // MUCHO HACK
2271
2272 intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2273
2274 /* Now fillin the interpreterState object */
2275
2276 // The state object is the first thing on the frame and easily located
2277
2278 interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2279
2280
2281 // Find the locals pointer. This is rather simple on x86 because there is no
2282 // confusing rounding at the callee to account for. We can trivially locate
2283 // our locals based on the current fp().
2284 // Note: the + 2 is for handling the "static long no_params() method" issue.
2285 // (too bad I don't really remember that issue well...)
2286
2287 intptr_t* locals;
2288 // If the caller is interpreted we need to make sure that locals points to the first
2289 // argument that the caller passed and not in an area where the stack might have been extended.
2290 // because the stack to stack to converter needs a proper locals value in order to remove the
2291 // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2292 // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2293 // adjust the stack?? HMMM QQQ
2294 //
2295 if (caller->is_interpreted_frame()) {
2296 // locals must agree with the caller because it will be used to set the
2297 // caller's tos when we return.
2298 interpreterState prev = caller->get_interpreterState();
2299 // stack() is prepushed.
2300 locals = prev->stack() + method->size_of_parameters();
2301 // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2302 if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2303 // os::breakpoint();
2304 }
2305 } else {
2306 // this is where a c2i would have placed locals (except for the +2)
2307 locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2308 }
2309
2310 intptr_t* monitor_base = (intptr_t*) cur_state;
2311 intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2312 /* +1 because stack is always prepushed */
2313 intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2314
2315
2316 BytecodeInterpreter::layout_interpreterState(cur_state,
2317 caller,
2318 interpreter_frame,
2319 method,
2320 locals,
2321 stack,
2322 stack_base,
2323 monitor_base,
2324 frame_bottom,
2325 is_top_frame);
2326
2327 // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2328 }
2329 return frame_size/BytesPerWord;
2330 }
2331
2332 #endif // CC_INTERP (all)