comparison src/cpu/x86/vm/x86_64.ad @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3d62cb85208d
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 //
2 // Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 //
5 // This code is free software; you can redistribute it and/or modify it
6 // under the terms of the GNU General Public License version 2 only, as
7 // published by the Free Software Foundation.
8 //
9 // This code is distributed in the hope that it will be useful, but WITHOUT
10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 // version 2 for more details (a copy is included in the LICENSE file that
13 // accompanied this code).
14 //
15 // You should have received a copy of the GNU General Public License version
16 // 2 along with this work; if not, write to the Free Software Foundation,
17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 //
19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 // CA 95054 USA or visit www.sun.com if you need additional information or
21 // have any questions.
22 //
23 //
24
25 // AMD64 Architecture Description File
26
27 //----------REGISTER DEFINITION BLOCK------------------------------------------
28 // This information is used by the matcher and the register allocator to
29 // describe individual registers and classes of registers within the target
30 // archtecture.
31
32 register %{
33 //----------Architecture Description Register Definitions----------------------
34 // General Registers
35 // "reg_def" name ( register save type, C convention save type,
36 // ideal register type, encoding );
37 // Register Save Types:
38 //
39 // NS = No-Save: The register allocator assumes that these registers
40 // can be used without saving upon entry to the method, &
41 // that they do not need to be saved at call sites.
42 //
43 // SOC = Save-On-Call: The register allocator assumes that these registers
44 // can be used without saving upon entry to the method,
45 // but that they must be saved at call sites.
46 //
47 // SOE = Save-On-Entry: The register allocator assumes that these registers
48 // must be saved before using them upon entry to the
49 // method, but they do not need to be saved at call
50 // sites.
51 //
52 // AS = Always-Save: The register allocator assumes that these registers
53 // must be saved before using them upon entry to the
54 // method, & that they must be saved at call sites.
55 //
56 // Ideal Register Type is used to determine how to save & restore a
57 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
59 //
60 // The encoding number is the actual bit-pattern placed into the opcodes.
61
62 // General Registers
63 // R8-R15 must be encoded with REX. (RSP, RBP, RSI, RDI need REX when
64 // used as byte registers)
65
66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
69
70 reg_def RAX (SOC, SOC, Op_RegI, 0, rax->as_VMReg());
71 reg_def RAX_H(SOC, SOC, Op_RegI, 0, rax->as_VMReg()->next());
72
73 reg_def RCX (SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
74 reg_def RCX_H(SOC, SOC, Op_RegI, 1, rcx->as_VMReg()->next());
75
76 reg_def RDX (SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
77 reg_def RDX_H(SOC, SOC, Op_RegI, 2, rdx->as_VMReg()->next());
78
79 reg_def RBX (SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
80 reg_def RBX_H(SOC, SOE, Op_RegI, 3, rbx->as_VMReg()->next());
81
82 reg_def RSP (NS, NS, Op_RegI, 4, rsp->as_VMReg());
83 reg_def RSP_H(NS, NS, Op_RegI, 4, rsp->as_VMReg()->next());
84
85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
86 reg_def RBP (NS, SOE, Op_RegI, 5, rbp->as_VMReg());
87 reg_def RBP_H(NS, SOE, Op_RegI, 5, rbp->as_VMReg()->next());
88
89 #ifdef _WIN64
90
91 reg_def RSI (SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
92 reg_def RSI_H(SOC, SOE, Op_RegI, 6, rsi->as_VMReg()->next());
93
94 reg_def RDI (SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
95 reg_def RDI_H(SOC, SOE, Op_RegI, 7, rdi->as_VMReg()->next());
96
97 #else
98
99 reg_def RSI (SOC, SOC, Op_RegI, 6, rsi->as_VMReg());
100 reg_def RSI_H(SOC, SOC, Op_RegI, 6, rsi->as_VMReg()->next());
101
102 reg_def RDI (SOC, SOC, Op_RegI, 7, rdi->as_VMReg());
103 reg_def RDI_H(SOC, SOC, Op_RegI, 7, rdi->as_VMReg()->next());
104
105 #endif
106
107 reg_def R8 (SOC, SOC, Op_RegI, 8, r8->as_VMReg());
108 reg_def R8_H (SOC, SOC, Op_RegI, 8, r8->as_VMReg()->next());
109
110 reg_def R9 (SOC, SOC, Op_RegI, 9, r9->as_VMReg());
111 reg_def R9_H (SOC, SOC, Op_RegI, 9, r9->as_VMReg()->next());
112
113 reg_def R10 (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
115
116 reg_def R11 (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
118
119 reg_def R12 (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
121
122 reg_def R13 (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
124
125 reg_def R14 (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
127
128 reg_def R15 (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
130
131
132 // Floating Point Registers
133
134 // XMM registers. 128-bit registers or 4 words each, labeled (a)-d.
135 // Word a in each register holds a Float, words ab hold a Double. We
136 // currently do not use the SIMD capabilities, so registers cd are
137 // unused at the moment.
138 // XMM8-XMM15 must be encoded with REX.
139 // Linux ABI: No register preserved across function calls
140 // XMM0-XMM7 might hold parameters
141 // Windows ABI: XMM6-XMM15 preserved across function calls
142 // XMM0-XMM3 might hold parameters
143
144 reg_def XMM0 (SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
145 reg_def XMM0_H (SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
146
147 reg_def XMM1 (SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
148 reg_def XMM1_H (SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
149
150 reg_def XMM2 (SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
151 reg_def XMM2_H (SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
152
153 reg_def XMM3 (SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
154 reg_def XMM3_H (SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
155
156 reg_def XMM4 (SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
157 reg_def XMM4_H (SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
158
159 reg_def XMM5 (SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
160 reg_def XMM5_H (SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
161
162 #ifdef _WIN64
163
164 reg_def XMM6 (SOC, SOE, Op_RegF, 6, xmm6->as_VMReg());
165 reg_def XMM6_H (SOC, SOE, Op_RegF, 6, xmm6->as_VMReg()->next());
166
167 reg_def XMM7 (SOC, SOE, Op_RegF, 7, xmm7->as_VMReg());
168 reg_def XMM7_H (SOC, SOE, Op_RegF, 7, xmm7->as_VMReg()->next());
169
170 reg_def XMM8 (SOC, SOE, Op_RegF, 8, xmm8->as_VMReg());
171 reg_def XMM8_H (SOC, SOE, Op_RegF, 8, xmm8->as_VMReg()->next());
172
173 reg_def XMM9 (SOC, SOE, Op_RegF, 9, xmm9->as_VMReg());
174 reg_def XMM9_H (SOC, SOE, Op_RegF, 9, xmm9->as_VMReg()->next());
175
176 reg_def XMM10 (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
178
179 reg_def XMM11 (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
181
182 reg_def XMM12 (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
184
185 reg_def XMM13 (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
187
188 reg_def XMM14 (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
190
191 reg_def XMM15 (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
193
194 #else
195
196 reg_def XMM6 (SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
197 reg_def XMM6_H (SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
198
199 reg_def XMM7 (SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
200 reg_def XMM7_H (SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
201
202 reg_def XMM8 (SOC, SOC, Op_RegF, 8, xmm8->as_VMReg());
203 reg_def XMM8_H (SOC, SOC, Op_RegF, 8, xmm8->as_VMReg()->next());
204
205 reg_def XMM9 (SOC, SOC, Op_RegF, 9, xmm9->as_VMReg());
206 reg_def XMM9_H (SOC, SOC, Op_RegF, 9, xmm9->as_VMReg()->next());
207
208 reg_def XMM10 (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
210
211 reg_def XMM11 (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
213
214 reg_def XMM12 (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
216
217 reg_def XMM13 (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
219
220 reg_def XMM14 (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
222
223 reg_def XMM15 (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
225
226 #endif // _WIN64
227
228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
229
230 // Specify priority of register selection within phases of register
231 // allocation. Highest priority is first. A useful heuristic is to
232 // give registers a low priority when they are required by machine
233 // instructions, like EAX and EDX on I486, and choose no-save registers
234 // before save-on-call, & save-on-call before save-on-entry. Registers
235 // which participate in fixed calling sequences should come last.
236 // Registers which are used as pairs must fall on an even boundary.
237
238 alloc_class chunk0(R10, R10_H,
239 R11, R11_H,
240 R8, R8_H,
241 R9, R9_H,
242 R12, R12_H,
243 RCX, RCX_H,
244 RBX, RBX_H,
245 RDI, RDI_H,
246 RDX, RDX_H,
247 RSI, RSI_H,
248 RAX, RAX_H,
249 RBP, RBP_H,
250 R13, R13_H,
251 R14, R14_H,
252 R15, R15_H,
253 RSP, RSP_H);
254
255 // XXX probably use 8-15 first on Linux
256 alloc_class chunk1(XMM0, XMM0_H,
257 XMM1, XMM1_H,
258 XMM2, XMM2_H,
259 XMM3, XMM3_H,
260 XMM4, XMM4_H,
261 XMM5, XMM5_H,
262 XMM6, XMM6_H,
263 XMM7, XMM7_H,
264 XMM8, XMM8_H,
265 XMM9, XMM9_H,
266 XMM10, XMM10_H,
267 XMM11, XMM11_H,
268 XMM12, XMM12_H,
269 XMM13, XMM13_H,
270 XMM14, XMM14_H,
271 XMM15, XMM15_H);
272
273 alloc_class chunk2(RFLAGS);
274
275
276 //----------Architecture Description Register Classes--------------------------
277 // Several register classes are automatically defined based upon information in
278 // this architecture description.
279 // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ )
280 // 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ )
281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
283 //
284
285 // Class for all pointer registers (including RSP)
286 reg_class any_reg(RAX, RAX_H,
287 RDX, RDX_H,
288 RBP, RBP_H,
289 RDI, RDI_H,
290 RSI, RSI_H,
291 RCX, RCX_H,
292 RBX, RBX_H,
293 RSP, RSP_H,
294 R8, R8_H,
295 R9, R9_H,
296 R10, R10_H,
297 R11, R11_H,
298 R12, R12_H,
299 R13, R13_H,
300 R14, R14_H,
301 R15, R15_H);
302
303 // Class for all pointer registers except RSP
304 reg_class ptr_reg(RAX, RAX_H,
305 RDX, RDX_H,
306 RBP, RBP_H,
307 RDI, RDI_H,
308 RSI, RSI_H,
309 RCX, RCX_H,
310 RBX, RBX_H,
311 R8, R8_H,
312 R9, R9_H,
313 R10, R10_H,
314 R11, R11_H,
315 R12, R12_H,
316 R13, R13_H,
317 R14, R14_H);
318
319 // Class for all pointer registers except RAX and RSP
320 reg_class ptr_no_rax_reg(RDX, RDX_H,
321 RBP, RBP_H,
322 RDI, RDI_H,
323 RSI, RSI_H,
324 RCX, RCX_H,
325 RBX, RBX_H,
326 R8, R8_H,
327 R9, R9_H,
328 R10, R10_H,
329 R11, R11_H,
330 R12, R12_H,
331 R13, R13_H,
332 R14, R14_H);
333
334 reg_class ptr_no_rbp_reg(RDX, RDX_H,
335 RAX, RAX_H,
336 RDI, RDI_H,
337 RSI, RSI_H,
338 RCX, RCX_H,
339 RBX, RBX_H,
340 R8, R8_H,
341 R9, R9_H,
342 R10, R10_H,
343 R11, R11_H,
344 R12, R12_H,
345 R13, R13_H,
346 R14, R14_H);
347
348 // Class for all pointer registers except RAX, RBX and RSP
349 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
350 RBP, RBP_H,
351 RDI, RDI_H,
352 RSI, RSI_H,
353 RCX, RCX_H,
354 R8, R8_H,
355 R9, R9_H,
356 R10, R10_H,
357 R11, R11_H,
358 R12, R12_H,
359 R13, R13_H,
360 R14, R14_H);
361
362 // Singleton class for RAX pointer register
363 reg_class ptr_rax_reg(RAX, RAX_H);
364
365 // Singleton class for RBX pointer register
366 reg_class ptr_rbx_reg(RBX, RBX_H);
367
368 // Singleton class for RSI pointer register
369 reg_class ptr_rsi_reg(RSI, RSI_H);
370
371 // Singleton class for RDI pointer register
372 reg_class ptr_rdi_reg(RDI, RDI_H);
373
374 // Singleton class for RBP pointer register
375 reg_class ptr_rbp_reg(RBP, RBP_H);
376
377 // Singleton class for stack pointer
378 reg_class ptr_rsp_reg(RSP, RSP_H);
379
380 // Singleton class for TLS pointer
381 reg_class ptr_r15_reg(R15, R15_H);
382
383 // Class for all long registers (except RSP)
384 reg_class long_reg(RAX, RAX_H,
385 RDX, RDX_H,
386 RBP, RBP_H,
387 RDI, RDI_H,
388 RSI, RSI_H,
389 RCX, RCX_H,
390 RBX, RBX_H,
391 R8, R8_H,
392 R9, R9_H,
393 R10, R10_H,
394 R11, R11_H,
395 R12, R12_H,
396 R13, R13_H,
397 R14, R14_H);
398
399 // Class for all long registers except RAX, RDX (and RSP)
400 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
401 RDI, RDI_H,
402 RSI, RSI_H,
403 RCX, RCX_H,
404 RBX, RBX_H,
405 R8, R8_H,
406 R9, R9_H,
407 R10, R10_H,
408 R11, R11_H,
409 R12, R12_H,
410 R13, R13_H,
411 R14, R14_H);
412
413 // Class for all long registers except RCX (and RSP)
414 reg_class long_no_rcx_reg(RBP, RBP_H,
415 RDI, RDI_H,
416 RSI, RSI_H,
417 RAX, RAX_H,
418 RDX, RDX_H,
419 RBX, RBX_H,
420 R8, R8_H,
421 R9, R9_H,
422 R10, R10_H,
423 R11, R11_H,
424 R12, R12_H,
425 R13, R13_H,
426 R14, R14_H);
427
428 // Class for all long registers except RAX (and RSP)
429 reg_class long_no_rax_reg(RBP, RBP_H,
430 RDX, RDX_H,
431 RDI, RDI_H,
432 RSI, RSI_H,
433 RCX, RCX_H,
434 RBX, RBX_H,
435 R8, R8_H,
436 R9, R9_H,
437 R10, R10_H,
438 R11, R11_H,
439 R12, R12_H,
440 R13, R13_H,
441 R14, R14_H);
442
443 // Singleton class for RAX long register
444 reg_class long_rax_reg(RAX, RAX_H);
445
446 // Singleton class for RCX long register
447 reg_class long_rcx_reg(RCX, RCX_H);
448
449 // Singleton class for RDX long register
450 reg_class long_rdx_reg(RDX, RDX_H);
451
452 // Class for all int registers (except RSP)
453 reg_class int_reg(RAX,
454 RDX,
455 RBP,
456 RDI,
457 RSI,
458 RCX,
459 RBX,
460 R8,
461 R9,
462 R10,
463 R11,
464 R12,
465 R13,
466 R14);
467
468 // Class for all int registers except RCX (and RSP)
469 reg_class int_no_rcx_reg(RAX,
470 RDX,
471 RBP,
472 RDI,
473 RSI,
474 RBX,
475 R8,
476 R9,
477 R10,
478 R11,
479 R12,
480 R13,
481 R14);
482
483 // Class for all int registers except RAX, RDX (and RSP)
484 reg_class int_no_rax_rdx_reg(RBP,
485 RDI
486 RSI,
487 RCX,
488 RBX,
489 R8,
490 R9,
491 R10,
492 R11,
493 R12,
494 R13,
495 R14);
496
497 // Singleton class for RAX int register
498 reg_class int_rax_reg(RAX);
499
500 // Singleton class for RBX int register
501 reg_class int_rbx_reg(RBX);
502
503 // Singleton class for RCX int register
504 reg_class int_rcx_reg(RCX);
505
506 // Singleton class for RCX int register
507 reg_class int_rdx_reg(RDX);
508
509 // Singleton class for RCX int register
510 reg_class int_rdi_reg(RDI);
511
512 // Singleton class for instruction pointer
513 // reg_class ip_reg(RIP);
514
515 // Singleton class for condition codes
516 reg_class int_flags(RFLAGS);
517
518 // Class for all float registers
519 reg_class float_reg(XMM0,
520 XMM1,
521 XMM2,
522 XMM3,
523 XMM4,
524 XMM5,
525 XMM6,
526 XMM7,
527 XMM8,
528 XMM9,
529 XMM10,
530 XMM11,
531 XMM12,
532 XMM13,
533 XMM14,
534 XMM15);
535
536 // Class for all double registers
537 reg_class double_reg(XMM0, XMM0_H,
538 XMM1, XMM1_H,
539 XMM2, XMM2_H,
540 XMM3, XMM3_H,
541 XMM4, XMM4_H,
542 XMM5, XMM5_H,
543 XMM6, XMM6_H,
544 XMM7, XMM7_H,
545 XMM8, XMM8_H,
546 XMM9, XMM9_H,
547 XMM10, XMM10_H,
548 XMM11, XMM11_H,
549 XMM12, XMM12_H,
550 XMM13, XMM13_H,
551 XMM14, XMM14_H,
552 XMM15, XMM15_H);
553 %}
554
555
556 //----------SOURCE BLOCK-------------------------------------------------------
557 // This is a block of C++ code which provides values, functions, and
558 // definitions necessary in the rest of the architecture description
559 source %{
560 #define RELOC_IMM64 Assembler::imm64_operand
561 #define RELOC_DISP32 Assembler::disp32_operand
562
563 #define __ _masm.
564
565 // !!!!! Special hack to get all types of calls to specify the byte offset
566 // from the start of the call to the point where the return address
567 // will point.
568 int MachCallStaticJavaNode::ret_addr_offset()
569 {
570 return 5; // 5 bytes from start of call to where return address points
571 }
572
573 int MachCallDynamicJavaNode::ret_addr_offset()
574 {
575 return 15; // 15 bytes from start of call to where return address points
576 }
577
578 // In os_cpu .ad file
579 // int MachCallRuntimeNode::ret_addr_offset()
580
581 // Indicate if the safepoint node needs the polling page as an input.
582 // Since amd64 does not have absolute addressing but RIP-relative
583 // addressing and the polling page is within 2G, it doesn't.
584 bool SafePointNode::needs_polling_address_input()
585 {
586 return false;
587 }
588
589 //
590 // Compute padding required for nodes which need alignment
591 //
592
593 // The address of the call instruction needs to be 4-byte aligned to
594 // ensure that it does not span a cache line so that it can be patched.
595 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
596 {
597 current_offset += 1; // skip call opcode byte
598 return round_to(current_offset, alignment_required()) - current_offset;
599 }
600
601 // The address of the call instruction needs to be 4-byte aligned to
602 // ensure that it does not span a cache line so that it can be patched.
603 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
604 {
605 current_offset += 11; // skip movq instruction + call opcode byte
606 return round_to(current_offset, alignment_required()) - current_offset;
607 }
608
609 #ifndef PRODUCT
610 void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
611 {
612 st->print("INT3");
613 }
614 #endif
615
616 // EMIT_RM()
617 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
618 {
619 unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
620 *(cbuf.code_end()) = c;
621 cbuf.set_code_end(cbuf.code_end() + 1);
622 }
623
624 // EMIT_CC()
625 void emit_cc(CodeBuffer &cbuf, int f1, int f2)
626 {
627 unsigned char c = (unsigned char) (f1 | f2);
628 *(cbuf.code_end()) = c;
629 cbuf.set_code_end(cbuf.code_end() + 1);
630 }
631
632 // EMIT_OPCODE()
633 void emit_opcode(CodeBuffer &cbuf, int code)
634 {
635 *(cbuf.code_end()) = (unsigned char) code;
636 cbuf.set_code_end(cbuf.code_end() + 1);
637 }
638
639 // EMIT_OPCODE() w/ relocation information
640 void emit_opcode(CodeBuffer &cbuf,
641 int code, relocInfo::relocType reloc, int offset, int format)
642 {
643 cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
644 emit_opcode(cbuf, code);
645 }
646
647 // EMIT_D8()
648 void emit_d8(CodeBuffer &cbuf, int d8)
649 {
650 *(cbuf.code_end()) = (unsigned char) d8;
651 cbuf.set_code_end(cbuf.code_end() + 1);
652 }
653
654 // EMIT_D16()
655 void emit_d16(CodeBuffer &cbuf, int d16)
656 {
657 *((short *)(cbuf.code_end())) = d16;
658 cbuf.set_code_end(cbuf.code_end() + 2);
659 }
660
661 // EMIT_D32()
662 void emit_d32(CodeBuffer &cbuf, int d32)
663 {
664 *((int *)(cbuf.code_end())) = d32;
665 cbuf.set_code_end(cbuf.code_end() + 4);
666 }
667
668 // EMIT_D64()
669 void emit_d64(CodeBuffer &cbuf, int64_t d64)
670 {
671 *((int64_t*) (cbuf.code_end())) = d64;
672 cbuf.set_code_end(cbuf.code_end() + 8);
673 }
674
675 // emit 32 bit value and construct relocation entry from relocInfo::relocType
676 void emit_d32_reloc(CodeBuffer& cbuf,
677 int d32,
678 relocInfo::relocType reloc,
679 int format)
680 {
681 assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
682 cbuf.relocate(cbuf.inst_mark(), reloc, format);
683
684 *((int*) (cbuf.code_end())) = d32;
685 cbuf.set_code_end(cbuf.code_end() + 4);
686 }
687
688 // emit 32 bit value and construct relocation entry from RelocationHolder
689 void emit_d32_reloc(CodeBuffer& cbuf,
690 int d32,
691 RelocationHolder const& rspec,
692 int format)
693 {
694 #ifdef ASSERT
695 if (rspec.reloc()->type() == relocInfo::oop_type &&
696 d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
697 assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
698 }
699 #endif
700 cbuf.relocate(cbuf.inst_mark(), rspec, format);
701
702 *((int* )(cbuf.code_end())) = d32;
703 cbuf.set_code_end(cbuf.code_end() + 4);
704 }
705
706 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
707 address next_ip = cbuf.code_end() + 4;
708 emit_d32_reloc(cbuf, (int) (addr - next_ip),
709 external_word_Relocation::spec(addr),
710 RELOC_DISP32);
711 }
712
713
714 // emit 64 bit value and construct relocation entry from relocInfo::relocType
715 void emit_d64_reloc(CodeBuffer& cbuf,
716 int64_t d64,
717 relocInfo::relocType reloc,
718 int format)
719 {
720 cbuf.relocate(cbuf.inst_mark(), reloc, format);
721
722 *((int64_t*) (cbuf.code_end())) = d64;
723 cbuf.set_code_end(cbuf.code_end() + 8);
724 }
725
726 // emit 64 bit value and construct relocation entry from RelocationHolder
727 void emit_d64_reloc(CodeBuffer& cbuf,
728 int64_t d64,
729 RelocationHolder const& rspec,
730 int format)
731 {
732 #ifdef ASSERT
733 if (rspec.reloc()->type() == relocInfo::oop_type &&
734 d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
735 assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
736 "cannot embed non-perm oops in code");
737 }
738 #endif
739 cbuf.relocate(cbuf.inst_mark(), rspec, format);
740
741 *((int64_t*) (cbuf.code_end())) = d64;
742 cbuf.set_code_end(cbuf.code_end() + 8);
743 }
744
745 // Access stack slot for load or store
746 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
747 {
748 emit_opcode(cbuf, opcode); // (e.g., FILD [RSP+src])
749 if (-0x80 <= disp && disp < 0x80) {
750 emit_rm(cbuf, 0x01, rm_field, RSP_enc); // R/M byte
751 emit_rm(cbuf, 0x00, RSP_enc, RSP_enc); // SIB byte
752 emit_d8(cbuf, disp); // Displacement // R/M byte
753 } else {
754 emit_rm(cbuf, 0x02, rm_field, RSP_enc); // R/M byte
755 emit_rm(cbuf, 0x00, RSP_enc, RSP_enc); // SIB byte
756 emit_d32(cbuf, disp); // Displacement // R/M byte
757 }
758 }
759
760 // rRegI ereg, memory mem) %{ // emit_reg_mem
761 void encode_RegMem(CodeBuffer &cbuf,
762 int reg,
763 int base, int index, int scale, int disp, bool disp_is_oop)
764 {
765 assert(!disp_is_oop, "cannot have disp");
766 int regenc = reg & 7;
767 int baseenc = base & 7;
768 int indexenc = index & 7;
769
770 // There is no index & no scale, use form without SIB byte
771 if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
772 // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
773 if (disp == 0 && base != RBP_enc && base != R13_enc) {
774 emit_rm(cbuf, 0x0, regenc, baseenc); // *
775 } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
776 // If 8-bit displacement, mode 0x1
777 emit_rm(cbuf, 0x1, regenc, baseenc); // *
778 emit_d8(cbuf, disp);
779 } else {
780 // If 32-bit displacement
781 if (base == -1) { // Special flag for absolute address
782 emit_rm(cbuf, 0x0, regenc, 0x5); // *
783 if (disp_is_oop) {
784 emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
785 } else {
786 emit_d32(cbuf, disp);
787 }
788 } else {
789 // Normal base + offset
790 emit_rm(cbuf, 0x2, regenc, baseenc); // *
791 if (disp_is_oop) {
792 emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
793 } else {
794 emit_d32(cbuf, disp);
795 }
796 }
797 }
798 } else {
799 // Else, encode with the SIB byte
800 // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
801 if (disp == 0 && base != RBP_enc && base != R13_enc) {
802 // If no displacement
803 emit_rm(cbuf, 0x0, regenc, 0x4); // *
804 emit_rm(cbuf, scale, indexenc, baseenc);
805 } else {
806 if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
807 // If 8-bit displacement, mode 0x1
808 emit_rm(cbuf, 0x1, regenc, 0x4); // *
809 emit_rm(cbuf, scale, indexenc, baseenc);
810 emit_d8(cbuf, disp);
811 } else {
812 // If 32-bit displacement
813 if (base == 0x04 ) {
814 emit_rm(cbuf, 0x2, regenc, 0x4);
815 emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
816 } else {
817 emit_rm(cbuf, 0x2, regenc, 0x4);
818 emit_rm(cbuf, scale, indexenc, baseenc); // *
819 }
820 if (disp_is_oop) {
821 emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
822 } else {
823 emit_d32(cbuf, disp);
824 }
825 }
826 }
827 }
828 }
829
830 void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
831 {
832 if (dstenc != srcenc) {
833 if (dstenc < 8) {
834 if (srcenc >= 8) {
835 emit_opcode(cbuf, Assembler::REX_B);
836 srcenc -= 8;
837 }
838 } else {
839 if (srcenc < 8) {
840 emit_opcode(cbuf, Assembler::REX_R);
841 } else {
842 emit_opcode(cbuf, Assembler::REX_RB);
843 srcenc -= 8;
844 }
845 dstenc -= 8;
846 }
847
848 emit_opcode(cbuf, 0x8B);
849 emit_rm(cbuf, 0x3, dstenc, srcenc);
850 }
851 }
852
853 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
854 if( dst_encoding == src_encoding ) {
855 // reg-reg copy, use an empty encoding
856 } else {
857 MacroAssembler _masm(&cbuf);
858
859 __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
860 }
861 }
862
863
864 //=============================================================================
865 #ifndef PRODUCT
866 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
867 {
868 Compile* C = ra_->C;
869
870 int framesize = C->frame_slots() << LogBytesPerInt;
871 assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
872 // Remove wordSize for return adr already pushed
873 // and another for the RBP we are going to save
874 framesize -= 2*wordSize;
875 bool need_nop = true;
876
877 // Calls to C2R adapters often do not accept exceptional returns.
878 // We require that their callers must bang for them. But be
879 // careful, because some VM calls (such as call site linkage) can
880 // use several kilobytes of stack. But the stack safety zone should
881 // account for that. See bugs 4446381, 4468289, 4497237.
882 if (C->need_stack_bang(framesize)) {
883 st->print_cr("# stack bang"); st->print("\t");
884 need_nop = false;
885 }
886 st->print_cr("pushq rbp"); st->print("\t");
887
888 if (VerifyStackAtCalls) {
889 // Majik cookie to verify stack depth
890 st->print_cr("pushq 0xffffffffbadb100d"
891 "\t# Majik cookie for stack depth check");
892 st->print("\t");
893 framesize -= wordSize; // Remove 2 for cookie
894 need_nop = false;
895 }
896
897 if (framesize) {
898 st->print("subq rsp, #%d\t# Create frame", framesize);
899 if (framesize < 0x80 && need_nop) {
900 st->print("\n\tnop\t# nop for patch_verified_entry");
901 }
902 }
903 }
904 #endif
905
906 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
907 {
908 Compile* C = ra_->C;
909
910 // WARNING: Initial instruction MUST be 5 bytes or longer so that
911 // NativeJump::patch_verified_entry will be able to patch out the entry
912 // code safely. The fldcw is ok at 6 bytes, the push to verify stack
913 // depth is ok at 5 bytes, the frame allocation can be either 3 or
914 // 6 bytes. So if we don't do the fldcw or the push then we must
915 // use the 6 byte frame allocation even if we have no frame. :-(
916 // If method sets FPU control word do it now
917
918 int framesize = C->frame_slots() << LogBytesPerInt;
919 assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
920 // Remove wordSize for return adr already pushed
921 // and another for the RBP we are going to save
922 framesize -= 2*wordSize;
923 bool need_nop = true;
924
925 // Calls to C2R adapters often do not accept exceptional returns.
926 // We require that their callers must bang for them. But be
927 // careful, because some VM calls (such as call site linkage) can
928 // use several kilobytes of stack. But the stack safety zone should
929 // account for that. See bugs 4446381, 4468289, 4497237.
930 if (C->need_stack_bang(framesize)) {
931 MacroAssembler masm(&cbuf);
932 masm.generate_stack_overflow_check(framesize);
933 need_nop = false;
934 }
935
936 // We always push rbp so that on return to interpreter rbp will be
937 // restored correctly and we can correct the stack.
938 emit_opcode(cbuf, 0x50 | RBP_enc);
939
940 if (VerifyStackAtCalls) {
941 // Majik cookie to verify stack depth
942 emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
943 emit_d32(cbuf, 0xbadb100d);
944 framesize -= wordSize; // Remove 2 for cookie
945 need_nop = false;
946 }
947
948 if (framesize) {
949 emit_opcode(cbuf, Assembler::REX_W);
950 if (framesize < 0x80) {
951 emit_opcode(cbuf, 0x83); // sub SP,#framesize
952 emit_rm(cbuf, 0x3, 0x05, RSP_enc);
953 emit_d8(cbuf, framesize);
954 if (need_nop) {
955 emit_opcode(cbuf, 0x90); // nop
956 }
957 } else {
958 emit_opcode(cbuf, 0x81); // sub SP,#framesize
959 emit_rm(cbuf, 0x3, 0x05, RSP_enc);
960 emit_d32(cbuf, framesize);
961 }
962 }
963
964 C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
965
966 #ifdef ASSERT
967 if (VerifyStackAtCalls) {
968 Label L;
969 MacroAssembler masm(&cbuf);
970 masm.pushq(rax);
971 masm.movq(rax, rsp);
972 masm.andq(rax, StackAlignmentInBytes-1);
973 masm.cmpq(rax, StackAlignmentInBytes-wordSize);
974 masm.popq(rax);
975 masm.jcc(Assembler::equal, L);
976 masm.stop("Stack is not properly aligned!");
977 masm.bind(L);
978 }
979 #endif
980 }
981
982 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
983 {
984 return MachNode::size(ra_); // too many variables; just compute it
985 // the hard way
986 }
987
988 int MachPrologNode::reloc() const
989 {
990 return 0; // a large enough number
991 }
992
993 //=============================================================================
994 #ifndef PRODUCT
995 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
996 {
997 Compile* C = ra_->C;
998 int framesize = C->frame_slots() << LogBytesPerInt;
999 assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
1000 // Remove word for return adr already pushed
1001 // and RBP
1002 framesize -= 2*wordSize;
1003
1004 if (framesize) {
1005 st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
1006 st->print("\t");
1007 }
1008
1009 st->print_cr("popq\trbp");
1010 if (do_polling() && C->is_method_compilation()) {
1011 st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
1012 "# Safepoint: poll for GC");
1013 st->print("\t");
1014 }
1015 }
1016 #endif
1017
1018 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1019 {
1020 Compile* C = ra_->C;
1021 int framesize = C->frame_slots() << LogBytesPerInt;
1022 assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
1023 // Remove word for return adr already pushed
1024 // and RBP
1025 framesize -= 2*wordSize;
1026
1027 // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
1028
1029 if (framesize) {
1030 emit_opcode(cbuf, Assembler::REX_W);
1031 if (framesize < 0x80) {
1032 emit_opcode(cbuf, 0x83); // addq rsp, #framesize
1033 emit_rm(cbuf, 0x3, 0x00, RSP_enc);
1034 emit_d8(cbuf, framesize);
1035 } else {
1036 emit_opcode(cbuf, 0x81); // addq rsp, #framesize
1037 emit_rm(cbuf, 0x3, 0x00, RSP_enc);
1038 emit_d32(cbuf, framesize);
1039 }
1040 }
1041
1042 // popq rbp
1043 emit_opcode(cbuf, 0x58 | RBP_enc);
1044
1045 if (do_polling() && C->is_method_compilation()) {
1046 // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
1047 // XXX reg_mem doesn't support RIP-relative addressing yet
1048 cbuf.set_inst_mark();
1049 cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
1050 emit_opcode(cbuf, 0x85); // testl
1051 emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
1052 // cbuf.inst_mark() is beginning of instruction
1053 emit_d32_reloc(cbuf, os::get_polling_page());
1054 // relocInfo::poll_return_type,
1055 }
1056 }
1057
1058 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
1059 {
1060 Compile* C = ra_->C;
1061 int framesize = C->frame_slots() << LogBytesPerInt;
1062 assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
1063 // Remove word for return adr already pushed
1064 // and RBP
1065 framesize -= 2*wordSize;
1066
1067 uint size = 0;
1068
1069 if (do_polling() && C->is_method_compilation()) {
1070 size += 6;
1071 }
1072
1073 // count popq rbp
1074 size++;
1075
1076 if (framesize) {
1077 if (framesize < 0x80) {
1078 size += 4;
1079 } else if (framesize) {
1080 size += 7;
1081 }
1082 }
1083
1084 return size;
1085 }
1086
1087 int MachEpilogNode::reloc() const
1088 {
1089 return 2; // a large enough number
1090 }
1091
1092 const Pipeline* MachEpilogNode::pipeline() const
1093 {
1094 return MachNode::pipeline_class();
1095 }
1096
1097 int MachEpilogNode::safepoint_offset() const
1098 {
1099 return 0;
1100 }
1101
1102 //=============================================================================
1103
1104 enum RC {
1105 rc_bad,
1106 rc_int,
1107 rc_float,
1108 rc_stack
1109 };
1110
1111 static enum RC rc_class(OptoReg::Name reg)
1112 {
1113 if( !OptoReg::is_valid(reg) ) return rc_bad;
1114
1115 if (OptoReg::is_stack(reg)) return rc_stack;
1116
1117 VMReg r = OptoReg::as_VMReg(reg);
1118
1119 if (r->is_Register()) return rc_int;
1120
1121 assert(r->is_XMMRegister(), "must be");
1122 return rc_float;
1123 }
1124
1125 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1126 PhaseRegAlloc* ra_,
1127 bool do_size,
1128 outputStream* st) const
1129 {
1130
1131 // Get registers to move
1132 OptoReg::Name src_second = ra_->get_reg_second(in(1));
1133 OptoReg::Name src_first = ra_->get_reg_first(in(1));
1134 OptoReg::Name dst_second = ra_->get_reg_second(this);
1135 OptoReg::Name dst_first = ra_->get_reg_first(this);
1136
1137 enum RC src_second_rc = rc_class(src_second);
1138 enum RC src_first_rc = rc_class(src_first);
1139 enum RC dst_second_rc = rc_class(dst_second);
1140 enum RC dst_first_rc = rc_class(dst_first);
1141
1142 assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1143 "must move at least 1 register" );
1144
1145 if (src_first == dst_first && src_second == dst_second) {
1146 // Self copy, no move
1147 return 0;
1148 } else if (src_first_rc == rc_stack) {
1149 // mem ->
1150 if (dst_first_rc == rc_stack) {
1151 // mem -> mem
1152 assert(src_second != dst_first, "overlap");
1153 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1154 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1155 // 64-bit
1156 int src_offset = ra_->reg2offset(src_first);
1157 int dst_offset = ra_->reg2offset(dst_first);
1158 if (cbuf) {
1159 emit_opcode(*cbuf, 0xFF);
1160 encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
1161
1162 emit_opcode(*cbuf, 0x8F);
1163 encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
1164
1165 #ifndef PRODUCT
1166 } else if (!do_size) {
1167 st->print("pushq [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1168 "popq [rsp + #%d]",
1169 src_offset,
1170 dst_offset);
1171 #endif
1172 }
1173 return
1174 3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
1175 3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
1176 } else {
1177 // 32-bit
1178 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1179 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1180 // No pushl/popl, so:
1181 int src_offset = ra_->reg2offset(src_first);
1182 int dst_offset = ra_->reg2offset(dst_first);
1183 if (cbuf) {
1184 emit_opcode(*cbuf, Assembler::REX_W);
1185 emit_opcode(*cbuf, 0x89);
1186 emit_opcode(*cbuf, 0x44);
1187 emit_opcode(*cbuf, 0x24);
1188 emit_opcode(*cbuf, 0xF8);
1189
1190 emit_opcode(*cbuf, 0x8B);
1191 encode_RegMem(*cbuf,
1192 RAX_enc,
1193 RSP_enc, 0x4, 0, src_offset,
1194 false);
1195
1196 emit_opcode(*cbuf, 0x89);
1197 encode_RegMem(*cbuf,
1198 RAX_enc,
1199 RSP_enc, 0x4, 0, dst_offset,
1200 false);
1201
1202 emit_opcode(*cbuf, Assembler::REX_W);
1203 emit_opcode(*cbuf, 0x8B);
1204 emit_opcode(*cbuf, 0x44);
1205 emit_opcode(*cbuf, 0x24);
1206 emit_opcode(*cbuf, 0xF8);
1207
1208 #ifndef PRODUCT
1209 } else if (!do_size) {
1210 st->print("movq [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1211 "movl rax, [rsp + #%d]\n\t"
1212 "movl [rsp + #%d], rax\n\t"
1213 "movq rax, [rsp - #8]",
1214 src_offset,
1215 dst_offset);
1216 #endif
1217 }
1218 return
1219 5 + // movq
1220 3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
1221 3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
1222 5; // movq
1223 }
1224 } else if (dst_first_rc == rc_int) {
1225 // mem -> gpr
1226 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1227 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1228 // 64-bit
1229 int offset = ra_->reg2offset(src_first);
1230 if (cbuf) {
1231 if (Matcher::_regEncode[dst_first] < 8) {
1232 emit_opcode(*cbuf, Assembler::REX_W);
1233 } else {
1234 emit_opcode(*cbuf, Assembler::REX_WR);
1235 }
1236 emit_opcode(*cbuf, 0x8B);
1237 encode_RegMem(*cbuf,
1238 Matcher::_regEncode[dst_first],
1239 RSP_enc, 0x4, 0, offset,
1240 false);
1241 #ifndef PRODUCT
1242 } else if (!do_size) {
1243 st->print("movq %s, [rsp + #%d]\t# spill",
1244 Matcher::regName[dst_first],
1245 offset);
1246 #endif
1247 }
1248 return
1249 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
1250 } else {
1251 // 32-bit
1252 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1253 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1254 int offset = ra_->reg2offset(src_first);
1255 if (cbuf) {
1256 if (Matcher::_regEncode[dst_first] >= 8) {
1257 emit_opcode(*cbuf, Assembler::REX_R);
1258 }
1259 emit_opcode(*cbuf, 0x8B);
1260 encode_RegMem(*cbuf,
1261 Matcher::_regEncode[dst_first],
1262 RSP_enc, 0x4, 0, offset,
1263 false);
1264 #ifndef PRODUCT
1265 } else if (!do_size) {
1266 st->print("movl %s, [rsp + #%d]\t# spill",
1267 Matcher::regName[dst_first],
1268 offset);
1269 #endif
1270 }
1271 return
1272 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1273 ((Matcher::_regEncode[dst_first] < 8)
1274 ? 3
1275 : 4); // REX
1276 }
1277 } else if (dst_first_rc == rc_float) {
1278 // mem-> xmm
1279 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1280 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1281 // 64-bit
1282 int offset = ra_->reg2offset(src_first);
1283 if (cbuf) {
1284 emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
1285 if (Matcher::_regEncode[dst_first] >= 8) {
1286 emit_opcode(*cbuf, Assembler::REX_R);
1287 }
1288 emit_opcode(*cbuf, 0x0F);
1289 emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
1290 encode_RegMem(*cbuf,
1291 Matcher::_regEncode[dst_first],
1292 RSP_enc, 0x4, 0, offset,
1293 false);
1294 #ifndef PRODUCT
1295 } else if (!do_size) {
1296 st->print("%s %s, [rsp + #%d]\t# spill",
1297 UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1298 Matcher::regName[dst_first],
1299 offset);
1300 #endif
1301 }
1302 return
1303 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1304 ((Matcher::_regEncode[dst_first] < 8)
1305 ? 5
1306 : 6); // REX
1307 } else {
1308 // 32-bit
1309 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1310 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1311 int offset = ra_->reg2offset(src_first);
1312 if (cbuf) {
1313 emit_opcode(*cbuf, 0xF3);
1314 if (Matcher::_regEncode[dst_first] >= 8) {
1315 emit_opcode(*cbuf, Assembler::REX_R);
1316 }
1317 emit_opcode(*cbuf, 0x0F);
1318 emit_opcode(*cbuf, 0x10);
1319 encode_RegMem(*cbuf,
1320 Matcher::_regEncode[dst_first],
1321 RSP_enc, 0x4, 0, offset,
1322 false);
1323 #ifndef PRODUCT
1324 } else if (!do_size) {
1325 st->print("movss %s, [rsp + #%d]\t# spill",
1326 Matcher::regName[dst_first],
1327 offset);
1328 #endif
1329 }
1330 return
1331 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1332 ((Matcher::_regEncode[dst_first] < 8)
1333 ? 5
1334 : 6); // REX
1335 }
1336 }
1337 } else if (src_first_rc == rc_int) {
1338 // gpr ->
1339 if (dst_first_rc == rc_stack) {
1340 // gpr -> mem
1341 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1342 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1343 // 64-bit
1344 int offset = ra_->reg2offset(dst_first);
1345 if (cbuf) {
1346 if (Matcher::_regEncode[src_first] < 8) {
1347 emit_opcode(*cbuf, Assembler::REX_W);
1348 } else {
1349 emit_opcode(*cbuf, Assembler::REX_WR);
1350 }
1351 emit_opcode(*cbuf, 0x89);
1352 encode_RegMem(*cbuf,
1353 Matcher::_regEncode[src_first],
1354 RSP_enc, 0x4, 0, offset,
1355 false);
1356 #ifndef PRODUCT
1357 } else if (!do_size) {
1358 st->print("movq [rsp + #%d], %s\t# spill",
1359 offset,
1360 Matcher::regName[src_first]);
1361 #endif
1362 }
1363 return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
1364 } else {
1365 // 32-bit
1366 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1367 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1368 int offset = ra_->reg2offset(dst_first);
1369 if (cbuf) {
1370 if (Matcher::_regEncode[src_first] >= 8) {
1371 emit_opcode(*cbuf, Assembler::REX_R);
1372 }
1373 emit_opcode(*cbuf, 0x89);
1374 encode_RegMem(*cbuf,
1375 Matcher::_regEncode[src_first],
1376 RSP_enc, 0x4, 0, offset,
1377 false);
1378 #ifndef PRODUCT
1379 } else if (!do_size) {
1380 st->print("movl [rsp + #%d], %s\t# spill",
1381 offset,
1382 Matcher::regName[src_first]);
1383 #endif
1384 }
1385 return
1386 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1387 ((Matcher::_regEncode[src_first] < 8)
1388 ? 3
1389 : 4); // REX
1390 }
1391 } else if (dst_first_rc == rc_int) {
1392 // gpr -> gpr
1393 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1394 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1395 // 64-bit
1396 if (cbuf) {
1397 if (Matcher::_regEncode[dst_first] < 8) {
1398 if (Matcher::_regEncode[src_first] < 8) {
1399 emit_opcode(*cbuf, Assembler::REX_W);
1400 } else {
1401 emit_opcode(*cbuf, Assembler::REX_WB);
1402 }
1403 } else {
1404 if (Matcher::_regEncode[src_first] < 8) {
1405 emit_opcode(*cbuf, Assembler::REX_WR);
1406 } else {
1407 emit_opcode(*cbuf, Assembler::REX_WRB);
1408 }
1409 }
1410 emit_opcode(*cbuf, 0x8B);
1411 emit_rm(*cbuf, 0x3,
1412 Matcher::_regEncode[dst_first] & 7,
1413 Matcher::_regEncode[src_first] & 7);
1414 #ifndef PRODUCT
1415 } else if (!do_size) {
1416 st->print("movq %s, %s\t# spill",
1417 Matcher::regName[dst_first],
1418 Matcher::regName[src_first]);
1419 #endif
1420 }
1421 return 3; // REX
1422 } else {
1423 // 32-bit
1424 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1425 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1426 if (cbuf) {
1427 if (Matcher::_regEncode[dst_first] < 8) {
1428 if (Matcher::_regEncode[src_first] >= 8) {
1429 emit_opcode(*cbuf, Assembler::REX_B);
1430 }
1431 } else {
1432 if (Matcher::_regEncode[src_first] < 8) {
1433 emit_opcode(*cbuf, Assembler::REX_R);
1434 } else {
1435 emit_opcode(*cbuf, Assembler::REX_RB);
1436 }
1437 }
1438 emit_opcode(*cbuf, 0x8B);
1439 emit_rm(*cbuf, 0x3,
1440 Matcher::_regEncode[dst_first] & 7,
1441 Matcher::_regEncode[src_first] & 7);
1442 #ifndef PRODUCT
1443 } else if (!do_size) {
1444 st->print("movl %s, %s\t# spill",
1445 Matcher::regName[dst_first],
1446 Matcher::regName[src_first]);
1447 #endif
1448 }
1449 return
1450 (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1451 ? 2
1452 : 3; // REX
1453 }
1454 } else if (dst_first_rc == rc_float) {
1455 // gpr -> xmm
1456 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1457 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1458 // 64-bit
1459 if (cbuf) {
1460 emit_opcode(*cbuf, 0x66);
1461 if (Matcher::_regEncode[dst_first] < 8) {
1462 if (Matcher::_regEncode[src_first] < 8) {
1463 emit_opcode(*cbuf, Assembler::REX_W);
1464 } else {
1465 emit_opcode(*cbuf, Assembler::REX_WB);
1466 }
1467 } else {
1468 if (Matcher::_regEncode[src_first] < 8) {
1469 emit_opcode(*cbuf, Assembler::REX_WR);
1470 } else {
1471 emit_opcode(*cbuf, Assembler::REX_WRB);
1472 }
1473 }
1474 emit_opcode(*cbuf, 0x0F);
1475 emit_opcode(*cbuf, 0x6E);
1476 emit_rm(*cbuf, 0x3,
1477 Matcher::_regEncode[dst_first] & 7,
1478 Matcher::_regEncode[src_first] & 7);
1479 #ifndef PRODUCT
1480 } else if (!do_size) {
1481 st->print("movdq %s, %s\t# spill",
1482 Matcher::regName[dst_first],
1483 Matcher::regName[src_first]);
1484 #endif
1485 }
1486 return 5; // REX
1487 } else {
1488 // 32-bit
1489 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1490 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1491 if (cbuf) {
1492 emit_opcode(*cbuf, 0x66);
1493 if (Matcher::_regEncode[dst_first] < 8) {
1494 if (Matcher::_regEncode[src_first] >= 8) {
1495 emit_opcode(*cbuf, Assembler::REX_B);
1496 }
1497 } else {
1498 if (Matcher::_regEncode[src_first] < 8) {
1499 emit_opcode(*cbuf, Assembler::REX_R);
1500 } else {
1501 emit_opcode(*cbuf, Assembler::REX_RB);
1502 }
1503 }
1504 emit_opcode(*cbuf, 0x0F);
1505 emit_opcode(*cbuf, 0x6E);
1506 emit_rm(*cbuf, 0x3,
1507 Matcher::_regEncode[dst_first] & 7,
1508 Matcher::_regEncode[src_first] & 7);
1509 #ifndef PRODUCT
1510 } else if (!do_size) {
1511 st->print("movdl %s, %s\t# spill",
1512 Matcher::regName[dst_first],
1513 Matcher::regName[src_first]);
1514 #endif
1515 }
1516 return
1517 (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1518 ? 4
1519 : 5; // REX
1520 }
1521 }
1522 } else if (src_first_rc == rc_float) {
1523 // xmm ->
1524 if (dst_first_rc == rc_stack) {
1525 // xmm -> mem
1526 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1527 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1528 // 64-bit
1529 int offset = ra_->reg2offset(dst_first);
1530 if (cbuf) {
1531 emit_opcode(*cbuf, 0xF2);
1532 if (Matcher::_regEncode[src_first] >= 8) {
1533 emit_opcode(*cbuf, Assembler::REX_R);
1534 }
1535 emit_opcode(*cbuf, 0x0F);
1536 emit_opcode(*cbuf, 0x11);
1537 encode_RegMem(*cbuf,
1538 Matcher::_regEncode[src_first],
1539 RSP_enc, 0x4, 0, offset,
1540 false);
1541 #ifndef PRODUCT
1542 } else if (!do_size) {
1543 st->print("movsd [rsp + #%d], %s\t# spill",
1544 offset,
1545 Matcher::regName[src_first]);
1546 #endif
1547 }
1548 return
1549 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1550 ((Matcher::_regEncode[src_first] < 8)
1551 ? 5
1552 : 6); // REX
1553 } else {
1554 // 32-bit
1555 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1556 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1557 int offset = ra_->reg2offset(dst_first);
1558 if (cbuf) {
1559 emit_opcode(*cbuf, 0xF3);
1560 if (Matcher::_regEncode[src_first] >= 8) {
1561 emit_opcode(*cbuf, Assembler::REX_R);
1562 }
1563 emit_opcode(*cbuf, 0x0F);
1564 emit_opcode(*cbuf, 0x11);
1565 encode_RegMem(*cbuf,
1566 Matcher::_regEncode[src_first],
1567 RSP_enc, 0x4, 0, offset,
1568 false);
1569 #ifndef PRODUCT
1570 } else if (!do_size) {
1571 st->print("movss [rsp + #%d], %s\t# spill",
1572 offset,
1573 Matcher::regName[src_first]);
1574 #endif
1575 }
1576 return
1577 ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
1578 ((Matcher::_regEncode[src_first] < 8)
1579 ? 5
1580 : 6); // REX
1581 }
1582 } else if (dst_first_rc == rc_int) {
1583 // xmm -> gpr
1584 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1585 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1586 // 64-bit
1587 if (cbuf) {
1588 emit_opcode(*cbuf, 0x66);
1589 if (Matcher::_regEncode[dst_first] < 8) {
1590 if (Matcher::_regEncode[src_first] < 8) {
1591 emit_opcode(*cbuf, Assembler::REX_W);
1592 } else {
1593 emit_opcode(*cbuf, Assembler::REX_WR); // attention!
1594 }
1595 } else {
1596 if (Matcher::_regEncode[src_first] < 8) {
1597 emit_opcode(*cbuf, Assembler::REX_WB); // attention!
1598 } else {
1599 emit_opcode(*cbuf, Assembler::REX_WRB);
1600 }
1601 }
1602 emit_opcode(*cbuf, 0x0F);
1603 emit_opcode(*cbuf, 0x7E);
1604 emit_rm(*cbuf, 0x3,
1605 Matcher::_regEncode[dst_first] & 7,
1606 Matcher::_regEncode[src_first] & 7);
1607 #ifndef PRODUCT
1608 } else if (!do_size) {
1609 st->print("movdq %s, %s\t# spill",
1610 Matcher::regName[dst_first],
1611 Matcher::regName[src_first]);
1612 #endif
1613 }
1614 return 5; // REX
1615 } else {
1616 // 32-bit
1617 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1618 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1619 if (cbuf) {
1620 emit_opcode(*cbuf, 0x66);
1621 if (Matcher::_regEncode[dst_first] < 8) {
1622 if (Matcher::_regEncode[src_first] >= 8) {
1623 emit_opcode(*cbuf, Assembler::REX_R); // attention!
1624 }
1625 } else {
1626 if (Matcher::_regEncode[src_first] < 8) {
1627 emit_opcode(*cbuf, Assembler::REX_B); // attention!
1628 } else {
1629 emit_opcode(*cbuf, Assembler::REX_RB);
1630 }
1631 }
1632 emit_opcode(*cbuf, 0x0F);
1633 emit_opcode(*cbuf, 0x7E);
1634 emit_rm(*cbuf, 0x3,
1635 Matcher::_regEncode[dst_first] & 7,
1636 Matcher::_regEncode[src_first] & 7);
1637 #ifndef PRODUCT
1638 } else if (!do_size) {
1639 st->print("movdl %s, %s\t# spill",
1640 Matcher::regName[dst_first],
1641 Matcher::regName[src_first]);
1642 #endif
1643 }
1644 return
1645 (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1646 ? 4
1647 : 5; // REX
1648 }
1649 } else if (dst_first_rc == rc_float) {
1650 // xmm -> xmm
1651 if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1652 (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1653 // 64-bit
1654 if (cbuf) {
1655 emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
1656 if (Matcher::_regEncode[dst_first] < 8) {
1657 if (Matcher::_regEncode[src_first] >= 8) {
1658 emit_opcode(*cbuf, Assembler::REX_B);
1659 }
1660 } else {
1661 if (Matcher::_regEncode[src_first] < 8) {
1662 emit_opcode(*cbuf, Assembler::REX_R);
1663 } else {
1664 emit_opcode(*cbuf, Assembler::REX_RB);
1665 }
1666 }
1667 emit_opcode(*cbuf, 0x0F);
1668 emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
1669 emit_rm(*cbuf, 0x3,
1670 Matcher::_regEncode[dst_first] & 7,
1671 Matcher::_regEncode[src_first] & 7);
1672 #ifndef PRODUCT
1673 } else if (!do_size) {
1674 st->print("%s %s, %s\t# spill",
1675 UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1676 Matcher::regName[dst_first],
1677 Matcher::regName[src_first]);
1678 #endif
1679 }
1680 return
1681 (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1682 ? 4
1683 : 5; // REX
1684 } else {
1685 // 32-bit
1686 assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1687 assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1688 if (cbuf) {
1689 if (!UseXmmRegToRegMoveAll)
1690 emit_opcode(*cbuf, 0xF3);
1691 if (Matcher::_regEncode[dst_first] < 8) {
1692 if (Matcher::_regEncode[src_first] >= 8) {
1693 emit_opcode(*cbuf, Assembler::REX_B);
1694 }
1695 } else {
1696 if (Matcher::_regEncode[src_first] < 8) {
1697 emit_opcode(*cbuf, Assembler::REX_R);
1698 } else {
1699 emit_opcode(*cbuf, Assembler::REX_RB);
1700 }
1701 }
1702 emit_opcode(*cbuf, 0x0F);
1703 emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
1704 emit_rm(*cbuf, 0x3,
1705 Matcher::_regEncode[dst_first] & 7,
1706 Matcher::_regEncode[src_first] & 7);
1707 #ifndef PRODUCT
1708 } else if (!do_size) {
1709 st->print("%s %s, %s\t# spill",
1710 UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1711 Matcher::regName[dst_first],
1712 Matcher::regName[src_first]);
1713 #endif
1714 }
1715 return
1716 (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
1717 ? (UseXmmRegToRegMoveAll ? 3 : 4)
1718 : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
1719 }
1720 }
1721 }
1722
1723 assert(0," foo ");
1724 Unimplemented();
1725
1726 return 0;
1727 }
1728
1729 #ifndef PRODUCT
1730 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
1731 {
1732 implementation(NULL, ra_, false, st);
1733 }
1734 #endif
1735
1736 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
1737 {
1738 implementation(&cbuf, ra_, false, NULL);
1739 }
1740
1741 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
1742 {
1743 return implementation(NULL, ra_, true, NULL);
1744 }
1745
1746 //=============================================================================
1747 #ifndef PRODUCT
1748 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
1749 {
1750 st->print("nop \t# %d bytes pad for loops and calls", _count);
1751 }
1752 #endif
1753
1754 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
1755 {
1756 MacroAssembler _masm(&cbuf);
1757 __ nop(_count);
1758 }
1759
1760 uint MachNopNode::size(PhaseRegAlloc*) const
1761 {
1762 return _count;
1763 }
1764
1765
1766 //=============================================================================
1767 #ifndef PRODUCT
1768 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1769 {
1770 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1771 int reg = ra_->get_reg_first(this);
1772 st->print("leaq %s, [rsp + #%d]\t# box lock",
1773 Matcher::regName[reg], offset);
1774 }
1775 #endif
1776
1777 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1778 {
1779 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1780 int reg = ra_->get_encode(this);
1781 if (offset >= 0x80) {
1782 emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1783 emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
1784 emit_rm(cbuf, 0x2, reg & 7, 0x04);
1785 emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1786 emit_d32(cbuf, offset);
1787 } else {
1788 emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1789 emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset]
1790 emit_rm(cbuf, 0x1, reg & 7, 0x04);
1791 emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1792 emit_d8(cbuf, offset);
1793 }
1794 }
1795
1796 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1797 {
1798 int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1799 return (offset < 0x80) ? 5 : 8; // REX
1800 }
1801
1802 //=============================================================================
1803
1804 // emit call stub, compiled java to interpreter
1805 void emit_java_to_interp(CodeBuffer& cbuf)
1806 {
1807 // Stub is fixed up when the corresponding call is converted from
1808 // calling compiled code to calling interpreted code.
1809 // movq rbx, 0
1810 // jmp -5 # to self
1811
1812 address mark = cbuf.inst_mark(); // get mark within main instrs section
1813
1814 // Note that the code buffer's inst_mark is always relative to insts.
1815 // That's why we must use the macroassembler to generate a stub.
1816 MacroAssembler _masm(&cbuf);
1817
1818 address base =
1819 __ start_a_stub(Compile::MAX_stubs_size);
1820 if (base == NULL) return; // CodeBuffer::expand failed
1821 // static stub relocation stores the instruction address of the call
1822 __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
1823 // static stub relocation also tags the methodOop in the code-stream.
1824 __ movoop(rbx, (jobject) NULL); // method is zapped till fixup time
1825 __ jump(RuntimeAddress(__ pc()));
1826
1827 // Update current stubs pointer and restore code_end.
1828 __ end_a_stub();
1829 }
1830
1831 // size of call stub, compiled java to interpretor
1832 uint size_java_to_interp()
1833 {
1834 return 15; // movq (1+1+8); jmp (1+4)
1835 }
1836
1837 // relocation entries for call stub, compiled java to interpretor
1838 uint reloc_java_to_interp()
1839 {
1840 return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
1841 }
1842
1843 //=============================================================================
1844 #ifndef PRODUCT
1845 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1846 {
1847 st->print_cr("cmpq rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
1848 "# Inline cache check", oopDesc::klass_offset_in_bytes());
1849 st->print_cr("\tjne SharedRuntime::_ic_miss_stub");
1850 st->print_cr("\tnop");
1851 if (!OptoBreakpoint) {
1852 st->print_cr("\tnop");
1853 }
1854 }
1855 #endif
1856
1857 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1858 {
1859 MacroAssembler masm(&cbuf);
1860 #ifdef ASSERT
1861 uint code_size = cbuf.code_size();
1862 #endif
1863 masm.cmpq(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1864
1865 masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1866
1867 /* WARNING these NOPs are critical so that verified entry point is properly
1868 aligned for patching by NativeJump::patch_verified_entry() */
1869 int nops_cnt = 1;
1870 if (!OptoBreakpoint) {
1871 // Leave space for int3
1872 nops_cnt += 1;
1873 }
1874 masm.nop(nops_cnt);
1875
1876 assert(cbuf.code_size() - code_size == size(ra_),
1877 "checking code size of inline cache node");
1878 }
1879
1880 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1881 {
1882 return OptoBreakpoint ? 11 : 12;
1883 }
1884
1885
1886 //=============================================================================
1887 uint size_exception_handler()
1888 {
1889 // NativeCall instruction size is the same as NativeJump.
1890 // Note that this value is also credited (in output.cpp) to
1891 // the size of the code section.
1892 return NativeJump::instruction_size;
1893 }
1894
1895 // Emit exception handler code.
1896 int emit_exception_handler(CodeBuffer& cbuf)
1897 {
1898
1899 // Note that the code buffer's inst_mark is always relative to insts.
1900 // That's why we must use the macroassembler to generate a handler.
1901 MacroAssembler _masm(&cbuf);
1902 address base =
1903 __ start_a_stub(size_exception_handler());
1904 if (base == NULL) return 0; // CodeBuffer::expand failed
1905 int offset = __ offset();
1906 __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1907 assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1908 __ end_a_stub();
1909 return offset;
1910 }
1911
1912 uint size_deopt_handler()
1913 {
1914 // three 5 byte instructions
1915 return 15;
1916 }
1917
1918 // Emit deopt handler code.
1919 int emit_deopt_handler(CodeBuffer& cbuf)
1920 {
1921
1922 // Note that the code buffer's inst_mark is always relative to insts.
1923 // That's why we must use the macroassembler to generate a handler.
1924 MacroAssembler _masm(&cbuf);
1925 address base =
1926 __ start_a_stub(size_deopt_handler());
1927 if (base == NULL) return 0; // CodeBuffer::expand failed
1928 int offset = __ offset();
1929 address the_pc = (address) __ pc();
1930 Label next;
1931 // push a "the_pc" on the stack without destroying any registers
1932 // as they all may be live.
1933
1934 // push address of "next"
1935 __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
1936 __ bind(next);
1937 // adjust it so it matches "the_pc"
1938 __ subq(Address(rsp, 0), __ offset() - offset);
1939 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1940 assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1941 __ end_a_stub();
1942 return offset;
1943 }
1944
1945 static void emit_double_constant(CodeBuffer& cbuf, double x) {
1946 int mark = cbuf.insts()->mark_off();
1947 MacroAssembler _masm(&cbuf);
1948 address double_address = __ double_constant(x);
1949 cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
1950 emit_d32_reloc(cbuf,
1951 (int) (double_address - cbuf.code_end() - 4),
1952 internal_word_Relocation::spec(double_address),
1953 RELOC_DISP32);
1954 }
1955
1956 static void emit_float_constant(CodeBuffer& cbuf, float x) {
1957 int mark = cbuf.insts()->mark_off();
1958 MacroAssembler _masm(&cbuf);
1959 address float_address = __ float_constant(x);
1960 cbuf.insts()->set_mark_off(mark); // preserve mark across masm shift
1961 emit_d32_reloc(cbuf,
1962 (int) (float_address - cbuf.code_end() - 4),
1963 internal_word_Relocation::spec(float_address),
1964 RELOC_DISP32);
1965 }
1966
1967
1968 int Matcher::regnum_to_fpu_offset(int regnum)
1969 {
1970 return regnum - 32; // The FP registers are in the second chunk
1971 }
1972
1973 // This is UltraSparc specific, true just means we have fast l2f conversion
1974 const bool Matcher::convL2FSupported(void) {
1975 return true;
1976 }
1977
1978 // Vector width in bytes
1979 const uint Matcher::vector_width_in_bytes(void) {
1980 return 8;
1981 }
1982
1983 // Vector ideal reg
1984 const uint Matcher::vector_ideal_reg(void) {
1985 return Op_RegD;
1986 }
1987
1988 // Is this branch offset short enough that a short branch can be used?
1989 //
1990 // NOTE: If the platform does not provide any short branch variants, then
1991 // this method should return false for offset 0.
1992 bool Matcher::is_short_branch_offset(int offset)
1993 {
1994 return -0x80 <= offset && offset < 0x80;
1995 }
1996
1997 const bool Matcher::isSimpleConstant64(jlong value) {
1998 // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1999 //return value == (int) value; // Cf. storeImmL and immL32.
2000
2001 // Probably always true, even if a temp register is required.
2002 return true;
2003 }
2004
2005 // The ecx parameter to rep stosq for the ClearArray node is in words.
2006 const bool Matcher::init_array_count_is_in_bytes = false;
2007
2008 // Threshold size for cleararray.
2009 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2010
2011 // Should the Matcher clone shifts on addressing modes, expecting them
2012 // to be subsumed into complex addressing expressions or compute them
2013 // into registers? True for Intel but false for most RISCs
2014 const bool Matcher::clone_shift_expressions = true;
2015
2016 // Is it better to copy float constants, or load them directly from
2017 // memory? Intel can load a float constant from a direct address,
2018 // requiring no extra registers. Most RISCs will have to materialize
2019 // an address into a register first, so they would do better to copy
2020 // the constant from stack.
2021 const bool Matcher::rematerialize_float_constants = true; // XXX
2022
2023 // If CPU can load and store mis-aligned doubles directly then no
2024 // fixup is needed. Else we split the double into 2 integer pieces
2025 // and move it piece-by-piece. Only happens when passing doubles into
2026 // C code as the Java calling convention forces doubles to be aligned.
2027 const bool Matcher::misaligned_doubles_ok = true;
2028
2029 // No-op on amd64
2030 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
2031
2032 // Advertise here if the CPU requires explicit rounding operations to
2033 // implement the UseStrictFP mode.
2034 const bool Matcher::strict_fp_requires_explicit_rounding = true;
2035
2036 // Do floats take an entire double register or just half?
2037 const bool Matcher::float_in_double = true;
2038 // Do ints take an entire long register or just half?
2039 const bool Matcher::int_in_long = true;
2040
2041 // Return whether or not this register is ever used as an argument.
2042 // This function is used on startup to build the trampoline stubs in
2043 // generateOptoStub. Registers not mentioned will be killed by the VM
2044 // call in the trampoline, and arguments in those registers not be
2045 // available to the callee.
2046 bool Matcher::can_be_java_arg(int reg)
2047 {
2048 return
2049 reg == RDI_num || reg == RDI_H_num ||
2050 reg == RSI_num || reg == RSI_H_num ||
2051 reg == RDX_num || reg == RDX_H_num ||
2052 reg == RCX_num || reg == RCX_H_num ||
2053 reg == R8_num || reg == R8_H_num ||
2054 reg == R9_num || reg == R9_H_num ||
2055 reg == XMM0_num || reg == XMM0_H_num ||
2056 reg == XMM1_num || reg == XMM1_H_num ||
2057 reg == XMM2_num || reg == XMM2_H_num ||
2058 reg == XMM3_num || reg == XMM3_H_num ||
2059 reg == XMM4_num || reg == XMM4_H_num ||
2060 reg == XMM5_num || reg == XMM5_H_num ||
2061 reg == XMM6_num || reg == XMM6_H_num ||
2062 reg == XMM7_num || reg == XMM7_H_num;
2063 }
2064
2065 bool Matcher::is_spillable_arg(int reg)
2066 {
2067 return can_be_java_arg(reg);
2068 }
2069
2070 // Register for DIVI projection of divmodI
2071 RegMask Matcher::divI_proj_mask() {
2072 return INT_RAX_REG_mask;
2073 }
2074
2075 // Register for MODI projection of divmodI
2076 RegMask Matcher::modI_proj_mask() {
2077 return INT_RDX_REG_mask;
2078 }
2079
2080 // Register for DIVL projection of divmodL
2081 RegMask Matcher::divL_proj_mask() {
2082 return LONG_RAX_REG_mask;
2083 }
2084
2085 // Register for MODL projection of divmodL
2086 RegMask Matcher::modL_proj_mask() {
2087 return LONG_RDX_REG_mask;
2088 }
2089
2090 %}
2091
2092 //----------ENCODING BLOCK-----------------------------------------------------
2093 // This block specifies the encoding classes used by the compiler to
2094 // output byte streams. Encoding classes are parameterized macros
2095 // used by Machine Instruction Nodes in order to generate the bit
2096 // encoding of the instruction. Operands specify their base encoding
2097 // interface with the interface keyword. There are currently
2098 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
2099 // COND_INTER. REG_INTER causes an operand to generate a function
2100 // which returns its register number when queried. CONST_INTER causes
2101 // an operand to generate a function which returns the value of the
2102 // constant when queried. MEMORY_INTER causes an operand to generate
2103 // four functions which return the Base Register, the Index Register,
2104 // the Scale Value, and the Offset Value of the operand when queried.
2105 // COND_INTER causes an operand to generate six functions which return
2106 // the encoding code (ie - encoding bits for the instruction)
2107 // associated with each basic boolean condition for a conditional
2108 // instruction.
2109 //
2110 // Instructions specify two basic values for encoding. Again, a
2111 // function is available to check if the constant displacement is an
2112 // oop. They use the ins_encode keyword to specify their encoding
2113 // classes (which must be a sequence of enc_class names, and their
2114 // parameters, specified in the encoding block), and they use the
2115 // opcode keyword to specify, in order, their primary, secondary, and
2116 // tertiary opcode. Only the opcode sections which a particular
2117 // instruction needs for encoding need to be specified.
2118 encode %{
2119 // Build emit functions for each basic byte or larger field in the
2120 // intel encoding scheme (opcode, rm, sib, immediate), and call them
2121 // from C++ code in the enc_class source block. Emit functions will
2122 // live in the main source block for now. In future, we can
2123 // generalize this by adding a syntax that specifies the sizes of
2124 // fields in an order, so that the adlc can build the emit functions
2125 // automagically
2126
2127 // Emit primary opcode
2128 enc_class OpcP
2129 %{
2130 emit_opcode(cbuf, $primary);
2131 %}
2132
2133 // Emit secondary opcode
2134 enc_class OpcS
2135 %{
2136 emit_opcode(cbuf, $secondary);
2137 %}
2138
2139 // Emit tertiary opcode
2140 enc_class OpcT
2141 %{
2142 emit_opcode(cbuf, $tertiary);
2143 %}
2144
2145 // Emit opcode directly
2146 enc_class Opcode(immI d8)
2147 %{
2148 emit_opcode(cbuf, $d8$$constant);
2149 %}
2150
2151 // Emit size prefix
2152 enc_class SizePrefix
2153 %{
2154 emit_opcode(cbuf, 0x66);
2155 %}
2156
2157 enc_class reg(rRegI reg)
2158 %{
2159 emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
2160 %}
2161
2162 enc_class reg_reg(rRegI dst, rRegI src)
2163 %{
2164 emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
2165 %}
2166
2167 enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
2168 %{
2169 emit_opcode(cbuf, $opcode$$constant);
2170 emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
2171 %}
2172
2173 enc_class cmpfp_fixup()
2174 %{
2175 // jnp,s exit
2176 emit_opcode(cbuf, 0x7B);
2177 emit_d8(cbuf, 0x0A);
2178
2179 // pushfq
2180 emit_opcode(cbuf, 0x9C);
2181
2182 // andq $0xffffff2b, (%rsp)
2183 emit_opcode(cbuf, Assembler::REX_W);
2184 emit_opcode(cbuf, 0x81);
2185 emit_opcode(cbuf, 0x24);
2186 emit_opcode(cbuf, 0x24);
2187 emit_d32(cbuf, 0xffffff2b);
2188
2189 // popfq
2190 emit_opcode(cbuf, 0x9D);
2191
2192 // nop (target for branch to avoid branch to branch)
2193 emit_opcode(cbuf, 0x90);
2194 %}
2195
2196 enc_class cmpfp3(rRegI dst)
2197 %{
2198 int dstenc = $dst$$reg;
2199
2200 // movl $dst, -1
2201 if (dstenc >= 8) {
2202 emit_opcode(cbuf, Assembler::REX_B);
2203 }
2204 emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2205 emit_d32(cbuf, -1);
2206
2207 // jp,s done
2208 emit_opcode(cbuf, 0x7A);
2209 emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
2210
2211 // jb,s done
2212 emit_opcode(cbuf, 0x72);
2213 emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2214
2215 // setne $dst
2216 if (dstenc >= 4) {
2217 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2218 }
2219 emit_opcode(cbuf, 0x0F);
2220 emit_opcode(cbuf, 0x95);
2221 emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2222
2223 // movzbl $dst, $dst
2224 if (dstenc >= 4) {
2225 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2226 }
2227 emit_opcode(cbuf, 0x0F);
2228 emit_opcode(cbuf, 0xB6);
2229 emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2230 %}
2231
2232 enc_class cdql_enc(no_rax_rdx_RegI div)
2233 %{
2234 // Full implementation of Java idiv and irem; checks for
2235 // special case as described in JVM spec., p.243 & p.271.
2236 //
2237 // normal case special case
2238 //
2239 // input : rax: dividend min_int
2240 // reg: divisor -1
2241 //
2242 // output: rax: quotient (= rax idiv reg) min_int
2243 // rdx: remainder (= rax irem reg) 0
2244 //
2245 // Code sequnce:
2246 //
2247 // 0: 3d 00 00 00 80 cmp $0x80000000,%eax
2248 // 5: 75 07/08 jne e <normal>
2249 // 7: 33 d2 xor %edx,%edx
2250 // [div >= 8 -> offset + 1]
2251 // [REX_B]
2252 // 9: 83 f9 ff cmp $0xffffffffffffffff,$div
2253 // c: 74 03/04 je 11 <done>
2254 // 000000000000000e <normal>:
2255 // e: 99 cltd
2256 // [div >= 8 -> offset + 1]
2257 // [REX_B]
2258 // f: f7 f9 idiv $div
2259 // 0000000000000011 <done>:
2260
2261 // cmp $0x80000000,%eax
2262 emit_opcode(cbuf, 0x3d);
2263 emit_d8(cbuf, 0x00);
2264 emit_d8(cbuf, 0x00);
2265 emit_d8(cbuf, 0x00);
2266 emit_d8(cbuf, 0x80);
2267
2268 // jne e <normal>
2269 emit_opcode(cbuf, 0x75);
2270 emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
2271
2272 // xor %edx,%edx
2273 emit_opcode(cbuf, 0x33);
2274 emit_d8(cbuf, 0xD2);
2275
2276 // cmp $0xffffffffffffffff,%ecx
2277 if ($div$$reg >= 8) {
2278 emit_opcode(cbuf, Assembler::REX_B);
2279 }
2280 emit_opcode(cbuf, 0x83);
2281 emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
2282 emit_d8(cbuf, 0xFF);
2283
2284 // je 11 <done>
2285 emit_opcode(cbuf, 0x74);
2286 emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
2287
2288 // <normal>
2289 // cltd
2290 emit_opcode(cbuf, 0x99);
2291
2292 // idivl (note: must be emitted by the user of this rule)
2293 // <done>
2294 %}
2295
2296 enc_class cdqq_enc(no_rax_rdx_RegL div)
2297 %{
2298 // Full implementation of Java ldiv and lrem; checks for
2299 // special case as described in JVM spec., p.243 & p.271.
2300 //
2301 // normal case special case
2302 //
2303 // input : rax: dividend min_long
2304 // reg: divisor -1
2305 //
2306 // output: rax: quotient (= rax idiv reg) min_long
2307 // rdx: remainder (= rax irem reg) 0
2308 //
2309 // Code sequnce:
2310 //
2311 // 0: 48 ba 00 00 00 00 00 mov $0x8000000000000000,%rdx
2312 // 7: 00 00 80
2313 // a: 48 39 d0 cmp %rdx,%rax
2314 // d: 75 08 jne 17 <normal>
2315 // f: 33 d2 xor %edx,%edx
2316 // 11: 48 83 f9 ff cmp $0xffffffffffffffff,$div
2317 // 15: 74 05 je 1c <done>
2318 // 0000000000000017 <normal>:
2319 // 17: 48 99 cqto
2320 // 19: 48 f7 f9 idiv $div
2321 // 000000000000001c <done>:
2322
2323 // mov $0x8000000000000000,%rdx
2324 emit_opcode(cbuf, Assembler::REX_W);
2325 emit_opcode(cbuf, 0xBA);
2326 emit_d8(cbuf, 0x00);
2327 emit_d8(cbuf, 0x00);
2328 emit_d8(cbuf, 0x00);
2329 emit_d8(cbuf, 0x00);
2330 emit_d8(cbuf, 0x00);
2331 emit_d8(cbuf, 0x00);
2332 emit_d8(cbuf, 0x00);
2333 emit_d8(cbuf, 0x80);
2334
2335 // cmp %rdx,%rax
2336 emit_opcode(cbuf, Assembler::REX_W);
2337 emit_opcode(cbuf, 0x39);
2338 emit_d8(cbuf, 0xD0);
2339
2340 // jne 17 <normal>
2341 emit_opcode(cbuf, 0x75);
2342 emit_d8(cbuf, 0x08);
2343
2344 // xor %edx,%edx
2345 emit_opcode(cbuf, 0x33);
2346 emit_d8(cbuf, 0xD2);
2347
2348 // cmp $0xffffffffffffffff,$div
2349 emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
2350 emit_opcode(cbuf, 0x83);
2351 emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
2352 emit_d8(cbuf, 0xFF);
2353
2354 // je 1e <done>
2355 emit_opcode(cbuf, 0x74);
2356 emit_d8(cbuf, 0x05);
2357
2358 // <normal>
2359 // cqto
2360 emit_opcode(cbuf, Assembler::REX_W);
2361 emit_opcode(cbuf, 0x99);
2362
2363 // idivq (note: must be emitted by the user of this rule)
2364 // <done>
2365 %}
2366
2367 // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
2368 enc_class OpcSE(immI imm)
2369 %{
2370 // Emit primary opcode and set sign-extend bit
2371 // Check for 8-bit immediate, and set sign extend bit in opcode
2372 if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2373 emit_opcode(cbuf, $primary | 0x02);
2374 } else {
2375 // 32-bit immediate
2376 emit_opcode(cbuf, $primary);
2377 }
2378 %}
2379
2380 enc_class OpcSErm(rRegI dst, immI imm)
2381 %{
2382 // OpcSEr/m
2383 int dstenc = $dst$$reg;
2384 if (dstenc >= 8) {
2385 emit_opcode(cbuf, Assembler::REX_B);
2386 dstenc -= 8;
2387 }
2388 // Emit primary opcode and set sign-extend bit
2389 // Check for 8-bit immediate, and set sign extend bit in opcode
2390 if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2391 emit_opcode(cbuf, $primary | 0x02);
2392 } else {
2393 // 32-bit immediate
2394 emit_opcode(cbuf, $primary);
2395 }
2396 // Emit r/m byte with secondary opcode, after primary opcode.
2397 emit_rm(cbuf, 0x3, $secondary, dstenc);
2398 %}
2399
2400 enc_class OpcSErm_wide(rRegL dst, immI imm)
2401 %{
2402 // OpcSEr/m
2403 int dstenc = $dst$$reg;
2404 if (dstenc < 8) {
2405 emit_opcode(cbuf, Assembler::REX_W);
2406 } else {
2407 emit_opcode(cbuf, Assembler::REX_WB);
2408 dstenc -= 8;
2409 }
2410 // Emit primary opcode and set sign-extend bit
2411 // Check for 8-bit immediate, and set sign extend bit in opcode
2412 if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2413 emit_opcode(cbuf, $primary | 0x02);
2414 } else {
2415 // 32-bit immediate
2416 emit_opcode(cbuf, $primary);
2417 }
2418 // Emit r/m byte with secondary opcode, after primary opcode.
2419 emit_rm(cbuf, 0x3, $secondary, dstenc);
2420 %}
2421
2422 enc_class Con8or32(immI imm)
2423 %{
2424 // Check for 8-bit immediate, and set sign extend bit in opcode
2425 if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2426 $$$emit8$imm$$constant;
2427 } else {
2428 // 32-bit immediate
2429 $$$emit32$imm$$constant;
2430 }
2431 %}
2432
2433 enc_class Lbl(label labl)
2434 %{
2435 // JMP, CALL
2436 Label* l = $labl$$label;
2437 emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
2438 %}
2439
2440 enc_class LblShort(label labl)
2441 %{
2442 // JMP, CALL
2443 Label* l = $labl$$label;
2444 int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
2445 assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
2446 emit_d8(cbuf, disp);
2447 %}
2448
2449 enc_class opc2_reg(rRegI dst)
2450 %{
2451 // BSWAP
2452 emit_cc(cbuf, $secondary, $dst$$reg);
2453 %}
2454
2455 enc_class opc3_reg(rRegI dst)
2456 %{
2457 // BSWAP
2458 emit_cc(cbuf, $tertiary, $dst$$reg);
2459 %}
2460
2461 enc_class reg_opc(rRegI div)
2462 %{
2463 // INC, DEC, IDIV, IMOD, JMP indirect, ...
2464 emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2465 %}
2466
2467 enc_class Jcc(cmpOp cop, label labl)
2468 %{
2469 // JCC
2470 Label* l = $labl$$label;
2471 $$$emit8$primary;
2472 emit_cc(cbuf, $secondary, $cop$$cmpcode);
2473 emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
2474 %}
2475
2476 enc_class JccShort (cmpOp cop, label labl)
2477 %{
2478 // JCC
2479 Label *l = $labl$$label;
2480 emit_cc(cbuf, $primary, $cop$$cmpcode);
2481 int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
2482 assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
2483 emit_d8(cbuf, disp);
2484 %}
2485
2486 enc_class enc_cmov(cmpOp cop)
2487 %{
2488 // CMOV
2489 $$$emit8$primary;
2490 emit_cc(cbuf, $secondary, $cop$$cmpcode);
2491 %}
2492
2493 enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
2494 %{
2495 // Invert sense of branch from sense of cmov
2496 emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
2497 emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
2498 ? (UseXmmRegToRegMoveAll ? 3 : 4)
2499 : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
2500 // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
2501 if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
2502 if ($dst$$reg < 8) {
2503 if ($src$$reg >= 8) {
2504 emit_opcode(cbuf, Assembler::REX_B);
2505 }
2506 } else {
2507 if ($src$$reg < 8) {
2508 emit_opcode(cbuf, Assembler::REX_R);
2509 } else {
2510 emit_opcode(cbuf, Assembler::REX_RB);
2511 }
2512 }
2513 emit_opcode(cbuf, 0x0F);
2514 emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
2515 emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
2516 %}
2517
2518 enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
2519 %{
2520 // Invert sense of branch from sense of cmov
2521 emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
2522 emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
2523
2524 // UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
2525 emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
2526 if ($dst$$reg < 8) {
2527 if ($src$$reg >= 8) {
2528 emit_opcode(cbuf, Assembler::REX_B);
2529 }
2530 } else {
2531 if ($src$$reg < 8) {
2532 emit_opcode(cbuf, Assembler::REX_R);
2533 } else {
2534 emit_opcode(cbuf, Assembler::REX_RB);
2535 }
2536 }
2537 emit_opcode(cbuf, 0x0F);
2538 emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
2539 emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
2540 %}
2541
2542 enc_class enc_PartialSubtypeCheck()
2543 %{
2544 Register Rrdi = as_Register(RDI_enc); // result register
2545 Register Rrax = as_Register(RAX_enc); // super class
2546 Register Rrcx = as_Register(RCX_enc); // killed
2547 Register Rrsi = as_Register(RSI_enc); // sub class
2548 Label hit, miss;
2549
2550 MacroAssembler _masm(&cbuf);
2551 // Compare super with sub directly, since super is not in its own SSA.
2552 // The compiler used to emit this test, but we fold it in here,
2553 // to allow platform-specific tweaking on sparc.
2554 __ cmpq(Rrax, Rrsi);
2555 __ jcc(Assembler::equal, hit);
2556 #ifndef PRODUCT
2557 __ lea(Rrcx, ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
2558 __ incrementl(Address(Rrcx, 0));
2559 #endif //PRODUCT
2560 __ movq(Rrdi, Address(Rrsi,
2561 sizeof(oopDesc) +
2562 Klass::secondary_supers_offset_in_bytes()));
2563 __ movl(Rrcx, Address(Rrdi, arrayOopDesc::length_offset_in_bytes()));
2564 __ addq(Rrdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
2565 __ repne_scan();
2566 __ jcc(Assembler::notEqual, miss);
2567 __ movq(Address(Rrsi,
2568 sizeof(oopDesc) +
2569 Klass::secondary_super_cache_offset_in_bytes()),
2570 Rrax);
2571 __ bind(hit);
2572 if ($primary) {
2573 __ xorq(Rrdi, Rrdi);
2574 }
2575 __ bind(miss);
2576 %}
2577
2578 enc_class Java_To_Interpreter(method meth)
2579 %{
2580 // CALL Java_To_Interpreter
2581 // This is the instruction starting address for relocation info.
2582 cbuf.set_inst_mark();
2583 $$$emit8$primary;
2584 // CALL directly to the runtime
2585 emit_d32_reloc(cbuf,
2586 (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
2587 runtime_call_Relocation::spec(),
2588 RELOC_DISP32);
2589 %}
2590
2591 enc_class Java_Static_Call(method meth)
2592 %{
2593 // JAVA STATIC CALL
2594 // CALL to fixup routine. Fixup routine uses ScopeDesc info to
2595 // determine who we intended to call.
2596 cbuf.set_inst_mark();
2597 $$$emit8$primary;
2598
2599 if (!_method) {
2600 emit_d32_reloc(cbuf,
2601 (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
2602 runtime_call_Relocation::spec(),
2603 RELOC_DISP32);
2604 } else if (_optimized_virtual) {
2605 emit_d32_reloc(cbuf,
2606 (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
2607 opt_virtual_call_Relocation::spec(),
2608 RELOC_DISP32);
2609 } else {
2610 emit_d32_reloc(cbuf,
2611 (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
2612 static_call_Relocation::spec(),
2613 RELOC_DISP32);
2614 }
2615 if (_method) {
2616 // Emit stub for static call
2617 emit_java_to_interp(cbuf);
2618 }
2619 %}
2620
2621 enc_class Java_Dynamic_Call(method meth)
2622 %{
2623 // JAVA DYNAMIC CALL
2624 // !!!!!
2625 // Generate "movq rax, -1", placeholder instruction to load oop-info
2626 // emit_call_dynamic_prologue( cbuf );
2627 cbuf.set_inst_mark();
2628
2629 // movq rax, -1
2630 emit_opcode(cbuf, Assembler::REX_W);
2631 emit_opcode(cbuf, 0xB8 | RAX_enc);
2632 emit_d64_reloc(cbuf,
2633 (int64_t) Universe::non_oop_word(),
2634 oop_Relocation::spec_for_immediate(), RELOC_IMM64);
2635 address virtual_call_oop_addr = cbuf.inst_mark();
2636 // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine
2637 // who we intended to call.
2638 cbuf.set_inst_mark();
2639 $$$emit8$primary;
2640 emit_d32_reloc(cbuf,
2641 (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
2642 virtual_call_Relocation::spec(virtual_call_oop_addr),
2643 RELOC_DISP32);
2644 %}
2645
2646 enc_class Java_Compiled_Call(method meth)
2647 %{
2648 // JAVA COMPILED CALL
2649 int disp = in_bytes(methodOopDesc:: from_compiled_offset());
2650
2651 // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2652 // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2653
2654 // callq *disp(%rax)
2655 cbuf.set_inst_mark();
2656 $$$emit8$primary;
2657 if (disp < 0x80) {
2658 emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2659 emit_d8(cbuf, disp); // Displacement
2660 } else {
2661 emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2662 emit_d32(cbuf, disp); // Displacement
2663 }
2664 %}
2665
2666 enc_class reg_opc_imm(rRegI dst, immI8 shift)
2667 %{
2668 // SAL, SAR, SHR
2669 int dstenc = $dst$$reg;
2670 if (dstenc >= 8) {
2671 emit_opcode(cbuf, Assembler::REX_B);
2672 dstenc -= 8;
2673 }
2674 $$$emit8$primary;
2675 emit_rm(cbuf, 0x3, $secondary, dstenc);
2676 $$$emit8$shift$$constant;
2677 %}
2678
2679 enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2680 %{
2681 // SAL, SAR, SHR
2682 int dstenc = $dst$$reg;
2683 if (dstenc < 8) {
2684 emit_opcode(cbuf, Assembler::REX_W);
2685 } else {
2686 emit_opcode(cbuf, Assembler::REX_WB);
2687 dstenc -= 8;
2688 }
2689 $$$emit8$primary;
2690 emit_rm(cbuf, 0x3, $secondary, dstenc);
2691 $$$emit8$shift$$constant;
2692 %}
2693
2694 enc_class load_immI(rRegI dst, immI src)
2695 %{
2696 int dstenc = $dst$$reg;
2697 if (dstenc >= 8) {
2698 emit_opcode(cbuf, Assembler::REX_B);
2699 dstenc -= 8;
2700 }
2701 emit_opcode(cbuf, 0xB8 | dstenc);
2702 $$$emit32$src$$constant;
2703 %}
2704
2705 enc_class load_immL(rRegL dst, immL src)
2706 %{
2707 int dstenc = $dst$$reg;
2708 if (dstenc < 8) {
2709 emit_opcode(cbuf, Assembler::REX_W);
2710 } else {
2711 emit_opcode(cbuf, Assembler::REX_WB);
2712 dstenc -= 8;
2713 }
2714 emit_opcode(cbuf, 0xB8 | dstenc);
2715 emit_d64(cbuf, $src$$constant);
2716 %}
2717
2718 enc_class load_immUL32(rRegL dst, immUL32 src)
2719 %{
2720 // same as load_immI, but this time we care about zeroes in the high word
2721 int dstenc = $dst$$reg;
2722 if (dstenc >= 8) {
2723 emit_opcode(cbuf, Assembler::REX_B);
2724 dstenc -= 8;
2725 }
2726 emit_opcode(cbuf, 0xB8 | dstenc);
2727 $$$emit32$src$$constant;
2728 %}
2729
2730 enc_class load_immL32(rRegL dst, immL32 src)
2731 %{
2732 int dstenc = $dst$$reg;
2733 if (dstenc < 8) {
2734 emit_opcode(cbuf, Assembler::REX_W);
2735 } else {
2736 emit_opcode(cbuf, Assembler::REX_WB);
2737 dstenc -= 8;
2738 }
2739 emit_opcode(cbuf, 0xC7);
2740 emit_rm(cbuf, 0x03, 0x00, dstenc);
2741 $$$emit32$src$$constant;
2742 %}
2743
2744 enc_class load_immP31(rRegP dst, immP32 src)
2745 %{
2746 // same as load_immI, but this time we care about zeroes in the high word
2747 int dstenc = $dst$$reg;
2748 if (dstenc >= 8) {
2749 emit_opcode(cbuf, Assembler::REX_B);
2750 dstenc -= 8;
2751 }
2752 emit_opcode(cbuf, 0xB8 | dstenc);
2753 $$$emit32$src$$constant;
2754 %}
2755
2756 enc_class load_immP(rRegP dst, immP src)
2757 %{
2758 int dstenc = $dst$$reg;
2759 if (dstenc < 8) {
2760 emit_opcode(cbuf, Assembler::REX_W);
2761 } else {
2762 emit_opcode(cbuf, Assembler::REX_WB);
2763 dstenc -= 8;
2764 }
2765 emit_opcode(cbuf, 0xB8 | dstenc);
2766 // This next line should be generated from ADLC
2767 if ($src->constant_is_oop()) {
2768 emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
2769 } else {
2770 emit_d64(cbuf, $src$$constant);
2771 }
2772 %}
2773
2774 enc_class load_immF(regF dst, immF con)
2775 %{
2776 // XXX reg_mem doesn't support RIP-relative addressing yet
2777 emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
2778 emit_float_constant(cbuf, $con$$constant);
2779 %}
2780
2781 enc_class load_immD(regD dst, immD con)
2782 %{
2783 // XXX reg_mem doesn't support RIP-relative addressing yet
2784 emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
2785 emit_double_constant(cbuf, $con$$constant);
2786 %}
2787
2788 enc_class load_conF (regF dst, immF con) %{ // Load float constant
2789 emit_opcode(cbuf, 0xF3);
2790 if ($dst$$reg >= 8) {
2791 emit_opcode(cbuf, Assembler::REX_R);
2792 }
2793 emit_opcode(cbuf, 0x0F);
2794 emit_opcode(cbuf, 0x10);
2795 emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
2796 emit_float_constant(cbuf, $con$$constant);
2797 %}
2798
2799 enc_class load_conD (regD dst, immD con) %{ // Load double constant
2800 // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
2801 emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2802 if ($dst$$reg >= 8) {
2803 emit_opcode(cbuf, Assembler::REX_R);
2804 }
2805 emit_opcode(cbuf, 0x0F);
2806 emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2807 emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
2808 emit_double_constant(cbuf, $con$$constant);
2809 %}
2810
2811 // Encode a reg-reg copy. If it is useless, then empty encoding.
2812 enc_class enc_copy(rRegI dst, rRegI src)
2813 %{
2814 encode_copy(cbuf, $dst$$reg, $src$$reg);
2815 %}
2816
2817 // Encode xmm reg-reg copy. If it is useless, then empty encoding.
2818 enc_class enc_CopyXD( RegD dst, RegD src ) %{
2819 encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2820 %}
2821
2822 enc_class enc_copy_always(rRegI dst, rRegI src)
2823 %{
2824 int srcenc = $src$$reg;
2825 int dstenc = $dst$$reg;
2826
2827 if (dstenc < 8) {
2828 if (srcenc >= 8) {
2829 emit_opcode(cbuf, Assembler::REX_B);
2830 srcenc -= 8;
2831 }
2832 } else {
2833 if (srcenc < 8) {
2834 emit_opcode(cbuf, Assembler::REX_R);
2835 } else {
2836 emit_opcode(cbuf, Assembler::REX_RB);
2837 srcenc -= 8;
2838 }
2839 dstenc -= 8;
2840 }
2841
2842 emit_opcode(cbuf, 0x8B);
2843 emit_rm(cbuf, 0x3, dstenc, srcenc);
2844 %}
2845
2846 enc_class enc_copy_wide(rRegL dst, rRegL src)
2847 %{
2848 int srcenc = $src$$reg;
2849 int dstenc = $dst$$reg;
2850
2851 if (dstenc != srcenc) {
2852 if (dstenc < 8) {
2853 if (srcenc < 8) {
2854 emit_opcode(cbuf, Assembler::REX_W);
2855 } else {
2856 emit_opcode(cbuf, Assembler::REX_WB);
2857 srcenc -= 8;
2858 }
2859 } else {
2860 if (srcenc < 8) {
2861 emit_opcode(cbuf, Assembler::REX_WR);
2862 } else {
2863 emit_opcode(cbuf, Assembler::REX_WRB);
2864 srcenc -= 8;
2865 }
2866 dstenc -= 8;
2867 }
2868 emit_opcode(cbuf, 0x8B);
2869 emit_rm(cbuf, 0x3, dstenc, srcenc);
2870 }
2871 %}
2872
2873 enc_class Con32(immI src)
2874 %{
2875 // Output immediate
2876 $$$emit32$src$$constant;
2877 %}
2878
2879 enc_class Con64(immL src)
2880 %{
2881 // Output immediate
2882 emit_d64($src$$constant);
2883 %}
2884
2885 enc_class Con32F_as_bits(immF src)
2886 %{
2887 // Output Float immediate bits
2888 jfloat jf = $src$$constant;
2889 jint jf_as_bits = jint_cast(jf);
2890 emit_d32(cbuf, jf_as_bits);
2891 %}
2892
2893 enc_class Con16(immI src)
2894 %{
2895 // Output immediate
2896 $$$emit16$src$$constant;
2897 %}
2898
2899 // How is this different from Con32??? XXX
2900 enc_class Con_d32(immI src)
2901 %{
2902 emit_d32(cbuf,$src$$constant);
2903 %}
2904
2905 enc_class conmemref (rRegP t1) %{ // Con32(storeImmI)
2906 // Output immediate memory reference
2907 emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2908 emit_d32(cbuf, 0x00);
2909 %}
2910
2911 enc_class jump_enc(rRegL switch_val, rRegI dest) %{
2912 MacroAssembler masm(&cbuf);
2913
2914 Register switch_reg = as_Register($switch_val$$reg);
2915 Register dest_reg = as_Register($dest$$reg);
2916 address table_base = masm.address_table_constant(_index2label);
2917
2918 // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
2919 // to do that and the compiler is using that register as one it can allocate.
2920 // So we build it all by hand.
2921 // Address index(noreg, switch_reg, Address::times_1);
2922 // ArrayAddress dispatch(table, index);
2923
2924 Address dispatch(dest_reg, switch_reg, Address::times_1);
2925
2926 masm.lea(dest_reg, InternalAddress(table_base));
2927 masm.jmp(dispatch);
2928 %}
2929
2930 enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
2931 MacroAssembler masm(&cbuf);
2932
2933 Register switch_reg = as_Register($switch_val$$reg);
2934 Register dest_reg = as_Register($dest$$reg);
2935 address table_base = masm.address_table_constant(_index2label);
2936
2937 // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
2938 // to do that and the compiler is using that register as one it can allocate.
2939 // So we build it all by hand.
2940 // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
2941 // ArrayAddress dispatch(table, index);
2942
2943 Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
2944
2945 masm.lea(dest_reg, InternalAddress(table_base));
2946 masm.jmp(dispatch);
2947 %}
2948
2949 enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
2950 MacroAssembler masm(&cbuf);
2951
2952 Register switch_reg = as_Register($switch_val$$reg);
2953 Register dest_reg = as_Register($dest$$reg);
2954 address table_base = masm.address_table_constant(_index2label);
2955
2956 // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
2957 // to do that and the compiler is using that register as one it can allocate.
2958 // So we build it all by hand.
2959 // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
2960 // ArrayAddress dispatch(table, index);
2961
2962 Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
2963 masm.lea(dest_reg, InternalAddress(table_base));
2964 masm.jmp(dispatch);
2965
2966 %}
2967
2968 enc_class lock_prefix()
2969 %{
2970 if (os::is_MP()) {
2971 emit_opcode(cbuf, 0xF0); // lock
2972 }
2973 %}
2974
2975 enc_class REX_mem(memory mem)
2976 %{
2977 if ($mem$$base >= 8) {
2978 if ($mem$$index < 8) {
2979 emit_opcode(cbuf, Assembler::REX_B);
2980 } else {
2981 emit_opcode(cbuf, Assembler::REX_XB);
2982 }
2983 } else {
2984 if ($mem$$index >= 8) {
2985 emit_opcode(cbuf, Assembler::REX_X);
2986 }
2987 }
2988 %}
2989
2990 enc_class REX_mem_wide(memory mem)
2991 %{
2992 if ($mem$$base >= 8) {
2993 if ($mem$$index < 8) {
2994 emit_opcode(cbuf, Assembler::REX_WB);
2995 } else {
2996 emit_opcode(cbuf, Assembler::REX_WXB);
2997 }
2998 } else {
2999 if ($mem$$index < 8) {
3000 emit_opcode(cbuf, Assembler::REX_W);
3001 } else {
3002 emit_opcode(cbuf, Assembler::REX_WX);
3003 }
3004 }
3005 %}
3006
3007 // for byte regs
3008 enc_class REX_breg(rRegI reg)
3009 %{
3010 if ($reg$$reg >= 4) {
3011 emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
3012 }
3013 %}
3014
3015 // for byte regs
3016 enc_class REX_reg_breg(rRegI dst, rRegI src)
3017 %{
3018 if ($dst$$reg < 8) {
3019 if ($src$$reg >= 4) {
3020 emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
3021 }
3022 } else {
3023 if ($src$$reg < 8) {
3024 emit_opcode(cbuf, Assembler::REX_R);
3025 } else {
3026 emit_opcode(cbuf, Assembler::REX_RB);
3027 }
3028 }
3029 %}
3030
3031 // for byte regs
3032 enc_class REX_breg_mem(rRegI reg, memory mem)
3033 %{
3034 if ($reg$$reg < 8) {
3035 if ($mem$$base < 8) {
3036 if ($mem$$index >= 8) {
3037 emit_opcode(cbuf, Assembler::REX_X);
3038 } else if ($reg$$reg >= 4) {
3039 emit_opcode(cbuf, Assembler::REX);
3040 }
3041 } else {
3042 if ($mem$$index < 8) {
3043 emit_opcode(cbuf, Assembler::REX_B);
3044 } else {
3045 emit_opcode(cbuf, Assembler::REX_XB);
3046 }
3047 }
3048 } else {
3049 if ($mem$$base < 8) {
3050 if ($mem$$index < 8) {
3051 emit_opcode(cbuf, Assembler::REX_R);
3052 } else {
3053 emit_opcode(cbuf, Assembler::REX_RX);
3054 }
3055 } else {
3056 if ($mem$$index < 8) {
3057 emit_opcode(cbuf, Assembler::REX_RB);
3058 } else {
3059 emit_opcode(cbuf, Assembler::REX_RXB);
3060 }
3061 }
3062 }
3063 %}
3064
3065 enc_class REX_reg(rRegI reg)
3066 %{
3067 if ($reg$$reg >= 8) {
3068 emit_opcode(cbuf, Assembler::REX_B);
3069 }
3070 %}
3071
3072 enc_class REX_reg_wide(rRegI reg)
3073 %{
3074 if ($reg$$reg < 8) {
3075 emit_opcode(cbuf, Assembler::REX_W);
3076 } else {
3077 emit_opcode(cbuf, Assembler::REX_WB);
3078 }
3079 %}
3080
3081 enc_class REX_reg_reg(rRegI dst, rRegI src)
3082 %{
3083 if ($dst$$reg < 8) {
3084 if ($src$$reg >= 8) {
3085 emit_opcode(cbuf, Assembler::REX_B);
3086 }
3087 } else {
3088 if ($src$$reg < 8) {
3089 emit_opcode(cbuf, Assembler::REX_R);
3090 } else {
3091 emit_opcode(cbuf, Assembler::REX_RB);
3092 }
3093 }
3094 %}
3095
3096 enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
3097 %{
3098 if ($dst$$reg < 8) {
3099 if ($src$$reg < 8) {
3100 emit_opcode(cbuf, Assembler::REX_W);
3101 } else {
3102 emit_opcode(cbuf, Assembler::REX_WB);
3103 }
3104 } else {
3105 if ($src$$reg < 8) {
3106 emit_opcode(cbuf, Assembler::REX_WR);
3107 } else {
3108 emit_opcode(cbuf, Assembler::REX_WRB);
3109 }
3110 }
3111 %}
3112
3113 enc_class REX_reg_mem(rRegI reg, memory mem)
3114 %{
3115 if ($reg$$reg < 8) {
3116 if ($mem$$base < 8) {
3117 if ($mem$$index >= 8) {
3118 emit_opcode(cbuf, Assembler::REX_X);
3119 }
3120 } else {
3121 if ($mem$$index < 8) {
3122 emit_opcode(cbuf, Assembler::REX_B);
3123 } else {
3124 emit_opcode(cbuf, Assembler::REX_XB);
3125 }
3126 }
3127 } else {
3128 if ($mem$$base < 8) {
3129 if ($mem$$index < 8) {
3130 emit_opcode(cbuf, Assembler::REX_R);
3131 } else {
3132 emit_opcode(cbuf, Assembler::REX_RX);
3133 }
3134 } else {
3135 if ($mem$$index < 8) {
3136 emit_opcode(cbuf, Assembler::REX_RB);
3137 } else {
3138 emit_opcode(cbuf, Assembler::REX_RXB);
3139 }
3140 }
3141 }
3142 %}
3143
3144 enc_class REX_reg_mem_wide(rRegL reg, memory mem)
3145 %{
3146 if ($reg$$reg < 8) {
3147 if ($mem$$base < 8) {
3148 if ($mem$$index < 8) {
3149 emit_opcode(cbuf, Assembler::REX_W);
3150 } else {
3151 emit_opcode(cbuf, Assembler::REX_WX);
3152 }
3153 } else {
3154 if ($mem$$index < 8) {
3155 emit_opcode(cbuf, Assembler::REX_WB);
3156 } else {
3157 emit_opcode(cbuf, Assembler::REX_WXB);
3158 }
3159 }
3160 } else {
3161 if ($mem$$base < 8) {
3162 if ($mem$$index < 8) {
3163 emit_opcode(cbuf, Assembler::REX_WR);
3164 } else {
3165 emit_opcode(cbuf, Assembler::REX_WRX);
3166 }
3167 } else {
3168 if ($mem$$index < 8) {
3169 emit_opcode(cbuf, Assembler::REX_WRB);
3170 } else {
3171 emit_opcode(cbuf, Assembler::REX_WRXB);
3172 }
3173 }
3174 }
3175 %}
3176
3177 enc_class reg_mem(rRegI ereg, memory mem)
3178 %{
3179 // High registers handle in encode_RegMem
3180 int reg = $ereg$$reg;
3181 int base = $mem$$base;
3182 int index = $mem$$index;
3183 int scale = $mem$$scale;
3184 int disp = $mem$$disp;
3185 bool disp_is_oop = $mem->disp_is_oop();
3186
3187 encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
3188 %}
3189
3190 enc_class RM_opc_mem(immI rm_opcode, memory mem)
3191 %{
3192 int rm_byte_opcode = $rm_opcode$$constant;
3193
3194 // High registers handle in encode_RegMem
3195 int base = $mem$$base;
3196 int index = $mem$$index;
3197 int scale = $mem$$scale;
3198 int displace = $mem$$disp;
3199
3200 bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
3201 // working with static
3202 // globals
3203 encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
3204 disp_is_oop);
3205 %}
3206
3207 enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
3208 %{
3209 int reg_encoding = $dst$$reg;
3210 int base = $src0$$reg; // 0xFFFFFFFF indicates no base
3211 int index = 0x04; // 0x04 indicates no index
3212 int scale = 0x00; // 0x00 indicates no scale
3213 int displace = $src1$$constant; // 0x00 indicates no displacement
3214 bool disp_is_oop = false;
3215 encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
3216 disp_is_oop);
3217 %}
3218
3219 enc_class neg_reg(rRegI dst)
3220 %{
3221 int dstenc = $dst$$reg;
3222 if (dstenc >= 8) {
3223 emit_opcode(cbuf, Assembler::REX_B);
3224 dstenc -= 8;
3225 }
3226 // NEG $dst
3227 emit_opcode(cbuf, 0xF7);
3228 emit_rm(cbuf, 0x3, 0x03, dstenc);
3229 %}
3230
3231 enc_class neg_reg_wide(rRegI dst)
3232 %{
3233 int dstenc = $dst$$reg;
3234 if (dstenc < 8) {
3235 emit_opcode(cbuf, Assembler::REX_W);
3236 } else {
3237 emit_opcode(cbuf, Assembler::REX_WB);
3238 dstenc -= 8;
3239 }
3240 // NEG $dst
3241 emit_opcode(cbuf, 0xF7);
3242 emit_rm(cbuf, 0x3, 0x03, dstenc);
3243 %}
3244
3245 enc_class setLT_reg(rRegI dst)
3246 %{
3247 int dstenc = $dst$$reg;
3248 if (dstenc >= 8) {
3249 emit_opcode(cbuf, Assembler::REX_B);
3250 dstenc -= 8;
3251 } else if (dstenc >= 4) {
3252 emit_opcode(cbuf, Assembler::REX);
3253 }
3254 // SETLT $dst
3255 emit_opcode(cbuf, 0x0F);
3256 emit_opcode(cbuf, 0x9C);
3257 emit_rm(cbuf, 0x3, 0x0, dstenc);
3258 %}
3259
3260 enc_class setNZ_reg(rRegI dst)
3261 %{
3262 int dstenc = $dst$$reg;
3263 if (dstenc >= 8) {
3264 emit_opcode(cbuf, Assembler::REX_B);
3265 dstenc -= 8;
3266 } else if (dstenc >= 4) {
3267 emit_opcode(cbuf, Assembler::REX);
3268 }
3269 // SETNZ $dst
3270 emit_opcode(cbuf, 0x0F);
3271 emit_opcode(cbuf, 0x95);
3272 emit_rm(cbuf, 0x3, 0x0, dstenc);
3273 %}
3274
3275 enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
3276 rcx_RegI tmp)
3277 %{
3278 // cadd_cmpLT
3279
3280 int tmpReg = $tmp$$reg;
3281
3282 int penc = $p$$reg;
3283 int qenc = $q$$reg;
3284 int yenc = $y$$reg;
3285
3286 // subl $p,$q
3287 if (penc < 8) {
3288 if (qenc >= 8) {
3289 emit_opcode(cbuf, Assembler::REX_B);
3290 }
3291 } else {
3292 if (qenc < 8) {
3293 emit_opcode(cbuf, Assembler::REX_R);
3294 } else {
3295 emit_opcode(cbuf, Assembler::REX_RB);
3296 }
3297 }
3298 emit_opcode(cbuf, 0x2B);
3299 emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
3300
3301 // sbbl $tmp, $tmp
3302 emit_opcode(cbuf, 0x1B);
3303 emit_rm(cbuf, 0x3, tmpReg, tmpReg);
3304
3305 // andl $tmp, $y
3306 if (yenc >= 8) {
3307 emit_opcode(cbuf, Assembler::REX_B);
3308 }
3309 emit_opcode(cbuf, 0x23);
3310 emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
3311
3312 // addl $p,$tmp
3313 if (penc >= 8) {
3314 emit_opcode(cbuf, Assembler::REX_R);
3315 }
3316 emit_opcode(cbuf, 0x03);
3317 emit_rm(cbuf, 0x3, penc & 7, tmpReg);
3318 %}
3319
3320 // Compare the lonogs and set -1, 0, or 1 into dst
3321 enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
3322 %{
3323 int src1enc = $src1$$reg;
3324 int src2enc = $src2$$reg;
3325 int dstenc = $dst$$reg;
3326
3327 // cmpq $src1, $src2
3328 if (src1enc < 8) {
3329 if (src2enc < 8) {
3330 emit_opcode(cbuf, Assembler::REX_W);
3331 } else {
3332 emit_opcode(cbuf, Assembler::REX_WB);
3333 }
3334 } else {
3335 if (src2enc < 8) {
3336 emit_opcode(cbuf, Assembler::REX_WR);
3337 } else {
3338 emit_opcode(cbuf, Assembler::REX_WRB);
3339 }
3340 }
3341 emit_opcode(cbuf, 0x3B);
3342 emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
3343
3344 // movl $dst, -1
3345 if (dstenc >= 8) {
3346 emit_opcode(cbuf, Assembler::REX_B);
3347 }
3348 emit_opcode(cbuf, 0xB8 | (dstenc & 7));
3349 emit_d32(cbuf, -1);
3350
3351 // jl,s done
3352 emit_opcode(cbuf, 0x7C);
3353 emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
3354
3355 // setne $dst
3356 if (dstenc >= 4) {
3357 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
3358 }
3359 emit_opcode(cbuf, 0x0F);
3360 emit_opcode(cbuf, 0x95);
3361 emit_opcode(cbuf, 0xC0 | (dstenc & 7));
3362
3363 // movzbl $dst, $dst
3364 if (dstenc >= 4) {
3365 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
3366 }
3367 emit_opcode(cbuf, 0x0F);
3368 emit_opcode(cbuf, 0xB6);
3369 emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
3370 %}
3371
3372 enc_class Push_ResultXD(regD dst) %{
3373 int dstenc = $dst$$reg;
3374
3375 store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
3376
3377 // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
3378 emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
3379 if (dstenc >= 8) {
3380 emit_opcode(cbuf, Assembler::REX_R);
3381 }
3382 emit_opcode (cbuf, 0x0F );
3383 emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
3384 encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
3385
3386 // add rsp,8
3387 emit_opcode(cbuf, Assembler::REX_W);
3388 emit_opcode(cbuf,0x83);
3389 emit_rm(cbuf,0x3, 0x0, RSP_enc);
3390 emit_d8(cbuf,0x08);
3391 %}
3392
3393 enc_class Push_SrcXD(regD src) %{
3394 int srcenc = $src$$reg;
3395
3396 // subq rsp,#8
3397 emit_opcode(cbuf, Assembler::REX_W);
3398 emit_opcode(cbuf, 0x83);
3399 emit_rm(cbuf, 0x3, 0x5, RSP_enc);
3400 emit_d8(cbuf, 0x8);
3401
3402 // movsd [rsp],src
3403 emit_opcode(cbuf, 0xF2);
3404 if (srcenc >= 8) {
3405 emit_opcode(cbuf, Assembler::REX_R);
3406 }
3407 emit_opcode(cbuf, 0x0F);
3408 emit_opcode(cbuf, 0x11);
3409 encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
3410
3411 // fldd [rsp]
3412 emit_opcode(cbuf, 0x66);
3413 emit_opcode(cbuf, 0xDD);
3414 encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
3415 %}
3416
3417
3418 enc_class movq_ld(regD dst, memory mem) %{
3419 MacroAssembler _masm(&cbuf);
3420 Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3421 __ movq(as_XMMRegister($dst$$reg), madr);
3422 %}
3423
3424 enc_class movq_st(memory mem, regD src) %{
3425 MacroAssembler _masm(&cbuf);
3426 Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3427 __ movq(madr, as_XMMRegister($src$$reg));
3428 %}
3429
3430 enc_class pshufd_8x8(regF dst, regF src) %{
3431 MacroAssembler _masm(&cbuf);
3432
3433 encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3434 __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3435 __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3436 %}
3437
3438 enc_class pshufd_4x16(regF dst, regF src) %{
3439 MacroAssembler _masm(&cbuf);
3440
3441 __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3442 %}
3443
3444 enc_class pshufd(regD dst, regD src, int mode) %{
3445 MacroAssembler _masm(&cbuf);
3446
3447 __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3448 %}
3449
3450 enc_class pxor(regD dst, regD src) %{
3451 MacroAssembler _masm(&cbuf);
3452
3453 __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3454 %}
3455
3456 enc_class mov_i2x(regD dst, rRegI src) %{
3457 MacroAssembler _masm(&cbuf);
3458
3459 __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3460 %}
3461
3462 // obj: object to lock
3463 // box: box address (header location) -- killed
3464 // tmp: rax -- killed
3465 // scr: rbx -- killed
3466 //
3467 // What follows is a direct transliteration of fast_lock() and fast_unlock()
3468 // from i486.ad. See that file for comments.
3469 // TODO: where possible switch from movq (r, 0) to movl(r,0) and
3470 // use the shorter encoding. (Movl clears the high-order 32-bits).
3471
3472
3473 enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
3474 %{
3475 Register objReg = as_Register((int)$obj$$reg);
3476 Register boxReg = as_Register((int)$box$$reg);
3477 Register tmpReg = as_Register($tmp$$reg);
3478 Register scrReg = as_Register($scr$$reg);
3479 MacroAssembler masm(&cbuf);
3480
3481 // Verify uniqueness of register assignments -- necessary but not sufficient
3482 assert (objReg != boxReg && objReg != tmpReg &&
3483 objReg != scrReg && tmpReg != scrReg, "invariant") ;
3484
3485 if (_counters != NULL) {
3486 masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3487 }
3488 if (EmitSync & 1) {
3489 masm.movptr (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
3490 masm.cmpq (rsp, 0) ;
3491 } else
3492 if (EmitSync & 2) {
3493 Label DONE_LABEL;
3494 if (UseBiasedLocking) {
3495 // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3496 masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3497 }
3498 masm.movl(tmpReg, 0x1);
3499 masm.orq(tmpReg, Address(objReg, 0));
3500 masm.movq(Address(boxReg, 0), tmpReg);
3501 if (os::is_MP()) {
3502 masm.lock();
3503 }
3504 masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
3505 masm.jcc(Assembler::equal, DONE_LABEL);
3506
3507 // Recursive locking
3508 masm.subq(tmpReg, rsp);
3509 masm.andq(tmpReg, 7 - os::vm_page_size());
3510 masm.movq(Address(boxReg, 0), tmpReg);
3511
3512 masm.bind(DONE_LABEL);
3513 masm.nop(); // avoid branch to branch
3514 } else {
3515 Label DONE_LABEL, IsInflated, Egress;
3516
3517 masm.movq (tmpReg, Address(objReg, 0)) ;
3518 masm.testq (tmpReg, 0x02) ; // inflated vs stack-locked|neutral|biased
3519 masm.jcc (Assembler::notZero, IsInflated) ;
3520
3521 // it's stack-locked, biased or neutral
3522 // TODO: optimize markword triage order to reduce the number of
3523 // conditional branches in the most common cases.
3524 // Beware -- there's a subtle invariant that fetch of the markword
3525 // at [FETCH], below, will never observe a biased encoding (*101b).
3526 // If this invariant is not held we'll suffer exclusion (safety) failure.
3527
3528 if (UseBiasedLocking) {
3529 masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
3530 masm.movq (tmpReg, Address(objReg, 0)) ; // [FETCH]
3531 }
3532
3533 masm.orq (tmpReg, 1) ;
3534 masm.movq (Address(boxReg, 0), tmpReg) ;
3535 if (os::is_MP()) { masm.lock(); }
3536 masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
3537 if (_counters != NULL) {
3538 masm.cond_inc32(Assembler::equal,
3539 ExternalAddress((address) _counters->fast_path_entry_count_addr()));
3540 }
3541 masm.jcc (Assembler::equal, DONE_LABEL);
3542
3543 // Recursive locking
3544 masm.subq (tmpReg, rsp);
3545 masm.andq (tmpReg, 7 - os::vm_page_size());
3546 masm.movq (Address(boxReg, 0), tmpReg);
3547 if (_counters != NULL) {
3548 masm.cond_inc32(Assembler::equal,
3549 ExternalAddress((address) _counters->fast_path_entry_count_addr()));
3550 }
3551 masm.jmp (DONE_LABEL) ;
3552
3553 masm.bind (IsInflated) ;
3554 // It's inflated
3555
3556 // TODO: someday avoid the ST-before-CAS penalty by
3557 // relocating (deferring) the following ST.
3558 // We should also think about trying a CAS without having
3559 // fetched _owner. If the CAS is successful we may
3560 // avoid an RTO->RTS upgrade on the $line.
3561 masm.movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
3562
3563 masm.movq (boxReg, tmpReg) ;
3564 masm.movq (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3565 masm.testq (tmpReg, tmpReg) ;
3566 masm.jcc (Assembler::notZero, DONE_LABEL) ;
3567
3568 // It's inflated and appears unlocked
3569 if (os::is_MP()) { masm.lock(); }
3570 masm.cmpxchgq(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3571 // Intentional fall-through into DONE_LABEL ...
3572
3573 masm.bind (DONE_LABEL) ;
3574 masm.nop () ; // avoid jmp to jmp
3575 }
3576 %}
3577
3578 // obj: object to unlock
3579 // box: box address (displaced header location), killed
3580 // RBX: killed tmp; cannot be obj nor box
3581 enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
3582 %{
3583
3584 Register objReg = as_Register($obj$$reg);
3585 Register boxReg = as_Register($box$$reg);
3586 Register tmpReg = as_Register($tmp$$reg);
3587 MacroAssembler masm(&cbuf);
3588
3589 if (EmitSync & 4) {
3590 masm.cmpq (rsp, 0) ;
3591 } else
3592 if (EmitSync & 8) {
3593 Label DONE_LABEL;
3594 if (UseBiasedLocking) {
3595 masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3596 }
3597
3598 // Check whether the displaced header is 0
3599 //(=> recursive unlock)
3600 masm.movq(tmpReg, Address(boxReg, 0));
3601 masm.testq(tmpReg, tmpReg);
3602 masm.jcc(Assembler::zero, DONE_LABEL);
3603
3604 // If not recursive lock, reset the header to displaced header
3605 if (os::is_MP()) {
3606 masm.lock();
3607 }
3608 masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
3609 masm.bind(DONE_LABEL);
3610 masm.nop(); // avoid branch to branch
3611 } else {
3612 Label DONE_LABEL, Stacked, CheckSucc ;
3613
3614 if (UseBiasedLocking) {
3615 masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3616 }
3617
3618 masm.movq (tmpReg, Address(objReg, 0)) ;
3619 masm.cmpq (Address(boxReg, 0), (int)NULL_WORD) ;
3620 masm.jcc (Assembler::zero, DONE_LABEL) ;
3621 masm.testq (tmpReg, 0x02) ;
3622 masm.jcc (Assembler::zero, Stacked) ;
3623
3624 // It's inflated
3625 masm.movq (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3626 masm.xorq (boxReg, r15_thread) ;
3627 masm.orq (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3628 masm.jcc (Assembler::notZero, DONE_LABEL) ;
3629 masm.movq (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
3630 masm.orq (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
3631 masm.jcc (Assembler::notZero, CheckSucc) ;
3632 masm.mov64 (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
3633 masm.jmp (DONE_LABEL) ;
3634
3635 if ((EmitSync & 65536) == 0) {
3636 Label LSuccess, LGoSlowPath ;
3637 masm.bind (CheckSucc) ;
3638 masm.cmpq (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
3639 masm.jcc (Assembler::zero, LGoSlowPath) ;
3640
3641 // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
3642 // the explicit ST;MEMBAR combination, but masm doesn't currently support
3643 // "ANDQ M,IMM". Don't use MFENCE here. lock:add to TOS, xchg, etc
3644 // are all faster when the write buffer is populated.
3645 masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
3646 if (os::is_MP()) {
3647 masm.lock () ; masm.addq (Address(rsp, 0), 0) ;
3648 }
3649 masm.cmpq (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
3650 masm.jcc (Assembler::notZero, LSuccess) ;
3651
3652 masm.movptr (boxReg, (int)NULL_WORD) ; // box is really EAX
3653 if (os::is_MP()) { masm.lock(); }
3654 masm.cmpxchgq (r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3655 masm.jcc (Assembler::notEqual, LSuccess) ;
3656 // Intentional fall-through into slow-path
3657
3658 masm.bind (LGoSlowPath) ;
3659 masm.orl (boxReg, 1) ; // set ICC.ZF=0 to indicate failure
3660 masm.jmp (DONE_LABEL) ;
3661
3662 masm.bind (LSuccess) ;
3663 masm.testl (boxReg, 0) ; // set ICC.ZF=1 to indicate success
3664 masm.jmp (DONE_LABEL) ;
3665 }
3666
3667 masm.bind (Stacked) ;
3668 masm.movq (tmpReg, Address (boxReg, 0)) ; // re-fetch
3669 if (os::is_MP()) { masm.lock(); }
3670 masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
3671
3672 if (EmitSync & 65536) {
3673 masm.bind (CheckSucc) ;
3674 }
3675 masm.bind(DONE_LABEL);
3676 if (EmitSync & 32768) {
3677 masm.nop(); // avoid branch to branch
3678 }
3679 }
3680 %}
3681
3682 enc_class enc_String_Compare()
3683 %{
3684 Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
3685 POP_LABEL, DONE_LABEL, CONT_LABEL,
3686 WHILE_HEAD_LABEL;
3687 MacroAssembler masm(&cbuf);
3688
3689 // Get the first character position in both strings
3690 // [8] char array, [12] offset, [16] count
3691 int value_offset = java_lang_String::value_offset_in_bytes();
3692 int offset_offset = java_lang_String::offset_offset_in_bytes();
3693 int count_offset = java_lang_String::count_offset_in_bytes();
3694 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3695
3696 masm.movq(rax, Address(rsi, value_offset));
3697 masm.movl(rcx, Address(rsi, offset_offset));
3698 masm.leaq(rax, Address(rax, rcx, Address::times_2, base_offset));
3699 masm.movq(rbx, Address(rdi, value_offset));
3700 masm.movl(rcx, Address(rdi, offset_offset));
3701 masm.leaq(rbx, Address(rbx, rcx, Address::times_2, base_offset));
3702
3703 // Compute the minimum of the string lengths(rsi) and the
3704 // difference of the string lengths (stack)
3705
3706 masm.movl(rdi, Address(rdi, count_offset));
3707 masm.movl(rsi, Address(rsi, count_offset));
3708 masm.movl(rcx, rdi);
3709 masm.subl(rdi, rsi);
3710 masm.pushq(rdi);
3711 masm.cmovl(Assembler::lessEqual, rsi, rcx);
3712
3713 // Is the minimum length zero?
3714 masm.bind(RCX_GOOD_LABEL);
3715 masm.testl(rsi, rsi);
3716 masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3717
3718 // Load first characters
3719 masm.load_unsigned_word(rcx, Address(rbx, 0));
3720 masm.load_unsigned_word(rdi, Address(rax, 0));
3721
3722 // Compare first characters
3723 masm.subl(rcx, rdi);
3724 masm.jcc(Assembler::notZero, POP_LABEL);
3725 masm.decrementl(rsi);
3726 masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3727
3728 {
3729 // Check after comparing first character to see if strings are equivalent
3730 Label LSkip2;
3731 // Check if the strings start at same location
3732 masm.cmpq(rbx, rax);
3733 masm.jcc(Assembler::notEqual, LSkip2);
3734
3735 // Check if the length difference is zero (from stack)
3736 masm.cmpl(Address(rsp, 0), 0x0);
3737 masm.jcc(Assembler::equal, LENGTH_DIFF_LABEL);
3738
3739 // Strings might not be equivalent
3740 masm.bind(LSkip2);
3741 }
3742
3743 // Shift RAX and RBX to the end of the arrays, negate min
3744 masm.leaq(rax, Address(rax, rsi, Address::times_2, 2));
3745 masm.leaq(rbx, Address(rbx, rsi, Address::times_2, 2));
3746 masm.negq(rsi);
3747
3748 // Compare the rest of the characters
3749 masm.bind(WHILE_HEAD_LABEL);
3750 masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
3751 masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
3752 masm.subl(rcx, rdi);
3753 masm.jcc(Assembler::notZero, POP_LABEL);
3754 masm.incrementq(rsi);
3755 masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
3756
3757 // Strings are equal up to min length. Return the length difference.
3758 masm.bind(LENGTH_DIFF_LABEL);
3759 masm.popq(rcx);
3760 masm.jmp(DONE_LABEL);
3761
3762 // Discard the stored length difference
3763 masm.bind(POP_LABEL);
3764 masm.addq(rsp, 8);
3765
3766 // That's it
3767 masm.bind(DONE_LABEL);
3768 %}
3769
3770 enc_class enc_rethrow()
3771 %{
3772 cbuf.set_inst_mark();
3773 emit_opcode(cbuf, 0xE9); // jmp entry
3774 emit_d32_reloc(cbuf,
3775 (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
3776 runtime_call_Relocation::spec(),
3777 RELOC_DISP32);
3778 %}
3779
3780 enc_class absF_encoding(regF dst)
3781 %{
3782 int dstenc = $dst$$reg;
3783 address signmask_address = (address) StubRoutines::amd64::float_sign_mask();
3784
3785 cbuf.set_inst_mark();
3786 if (dstenc >= 8) {
3787 emit_opcode(cbuf, Assembler::REX_R);
3788 dstenc -= 8;
3789 }
3790 // XXX reg_mem doesn't support RIP-relative addressing yet
3791 emit_opcode(cbuf, 0x0F);
3792 emit_opcode(cbuf, 0x54);
3793 emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
3794 emit_d32_reloc(cbuf, signmask_address);
3795 %}
3796
3797 enc_class absD_encoding(regD dst)
3798 %{
3799 int dstenc = $dst$$reg;
3800 address signmask_address = (address) StubRoutines::amd64::double_sign_mask();
3801
3802 cbuf.set_inst_mark();
3803 emit_opcode(cbuf, 0x66);
3804 if (dstenc >= 8) {
3805 emit_opcode(cbuf, Assembler::REX_R);
3806 dstenc -= 8;
3807 }
3808 // XXX reg_mem doesn't support RIP-relative addressing yet
3809 emit_opcode(cbuf, 0x0F);
3810 emit_opcode(cbuf, 0x54);
3811 emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
3812 emit_d32_reloc(cbuf, signmask_address);
3813 %}
3814
3815 enc_class negF_encoding(regF dst)
3816 %{
3817 int dstenc = $dst$$reg;
3818 address signflip_address = (address) StubRoutines::amd64::float_sign_flip();
3819
3820 cbuf.set_inst_mark();
3821 if (dstenc >= 8) {
3822 emit_opcode(cbuf, Assembler::REX_R);
3823 dstenc -= 8;
3824 }
3825 // XXX reg_mem doesn't support RIP-relative addressing yet
3826 emit_opcode(cbuf, 0x0F);
3827 emit_opcode(cbuf, 0x57);
3828 emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
3829 emit_d32_reloc(cbuf, signflip_address);
3830 %}
3831
3832 enc_class negD_encoding(regD dst)
3833 %{
3834 int dstenc = $dst$$reg;
3835 address signflip_address = (address) StubRoutines::amd64::double_sign_flip();
3836
3837 cbuf.set_inst_mark();
3838 emit_opcode(cbuf, 0x66);
3839 if (dstenc >= 8) {
3840 emit_opcode(cbuf, Assembler::REX_R);
3841 dstenc -= 8;
3842 }
3843 // XXX reg_mem doesn't support RIP-relative addressing yet
3844 emit_opcode(cbuf, 0x0F);
3845 emit_opcode(cbuf, 0x57);
3846 emit_rm(cbuf, 0x0, dstenc, 0x5); // 00 reg 101
3847 emit_d32_reloc(cbuf, signflip_address);
3848 %}
3849
3850 enc_class f2i_fixup(rRegI dst, regF src)
3851 %{
3852 int dstenc = $dst$$reg;
3853 int srcenc = $src$$reg;
3854
3855 // cmpl $dst, #0x80000000
3856 if (dstenc >= 8) {
3857 emit_opcode(cbuf, Assembler::REX_B);
3858 }
3859 emit_opcode(cbuf, 0x81);
3860 emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
3861 emit_d32(cbuf, 0x80000000);
3862
3863 // jne,s done
3864 emit_opcode(cbuf, 0x75);
3865 if (srcenc < 8 && dstenc < 8) {
3866 emit_d8(cbuf, 0xF);
3867 } else if (srcenc >= 8 && dstenc >= 8) {
3868 emit_d8(cbuf, 0x11);
3869 } else {
3870 emit_d8(cbuf, 0x10);
3871 }
3872
3873 // subq rsp, #8
3874 emit_opcode(cbuf, Assembler::REX_W);
3875 emit_opcode(cbuf, 0x83);
3876 emit_rm(cbuf, 0x3, 0x5, RSP_enc);
3877 emit_d8(cbuf, 8);
3878
3879 // movss [rsp], $src
3880 emit_opcode(cbuf, 0xF3);
3881 if (srcenc >= 8) {
3882 emit_opcode(cbuf, Assembler::REX_R);
3883 }
3884 emit_opcode(cbuf, 0x0F);
3885 emit_opcode(cbuf, 0x11);
3886 encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
3887
3888 // call f2i_fixup
3889 cbuf.set_inst_mark();
3890 emit_opcode(cbuf, 0xE8);
3891 emit_d32_reloc(cbuf,
3892 (int)
3893 (StubRoutines::amd64::f2i_fixup() - cbuf.code_end() - 4),
3894 runtime_call_Relocation::spec(),
3895 RELOC_DISP32);
3896
3897 // popq $dst
3898 if (dstenc >= 8) {
3899 emit_opcode(cbuf, Assembler::REX_B);
3900 }
3901 emit_opcode(cbuf, 0x58 | (dstenc & 7));
3902
3903 // done:
3904 %}
3905
3906 enc_class f2l_fixup(rRegL dst, regF src)
3907 %{
3908 int dstenc = $dst$$reg;
3909 int srcenc = $src$$reg;
3910 address const_address = (address) StubRoutines::amd64::double_sign_flip();
3911
3912 // cmpq $dst, [0x8000000000000000]
3913 cbuf.set_inst_mark();
3914 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
3915 emit_opcode(cbuf, 0x39);
3916 // XXX reg_mem doesn't support RIP-relative addressing yet
3917 emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
3918 emit_d32_reloc(cbuf, const_address);
3919
3920
3921 // jne,s done
3922 emit_opcode(cbuf, 0x75);
3923 if (srcenc < 8 && dstenc < 8) {
3924 emit_d8(cbuf, 0xF);
3925 } else if (srcenc >= 8 && dstenc >= 8) {
3926 emit_d8(cbuf, 0x11);
3927 } else {
3928 emit_d8(cbuf, 0x10);
3929 }
3930
3931 // subq rsp, #8
3932 emit_opcode(cbuf, Assembler::REX_W);
3933 emit_opcode(cbuf, 0x83);
3934 emit_rm(cbuf, 0x3, 0x5, RSP_enc);
3935 emit_d8(cbuf, 8);
3936
3937 // movss [rsp], $src
3938 emit_opcode(cbuf, 0xF3);
3939 if (srcenc >= 8) {
3940 emit_opcode(cbuf, Assembler::REX_R);
3941 }
3942 emit_opcode(cbuf, 0x0F);
3943 emit_opcode(cbuf, 0x11);
3944 encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
3945
3946 // call f2l_fixup
3947 cbuf.set_inst_mark();
3948 emit_opcode(cbuf, 0xE8);
3949 emit_d32_reloc(cbuf,
3950 (int)
3951 (StubRoutines::amd64::f2l_fixup() - cbuf.code_end() - 4),
3952 runtime_call_Relocation::spec(),
3953 RELOC_DISP32);
3954
3955 // popq $dst
3956 if (dstenc >= 8) {
3957 emit_opcode(cbuf, Assembler::REX_B);
3958 }
3959 emit_opcode(cbuf, 0x58 | (dstenc & 7));
3960
3961 // done:
3962 %}
3963
3964 enc_class d2i_fixup(rRegI dst, regD src)
3965 %{
3966 int dstenc = $dst$$reg;
3967 int srcenc = $src$$reg;
3968
3969 // cmpl $dst, #0x80000000
3970 if (dstenc >= 8) {
3971 emit_opcode(cbuf, Assembler::REX_B);
3972 }
3973 emit_opcode(cbuf, 0x81);
3974 emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
3975 emit_d32(cbuf, 0x80000000);
3976
3977 // jne,s done
3978 emit_opcode(cbuf, 0x75);
3979 if (srcenc < 8 && dstenc < 8) {
3980 emit_d8(cbuf, 0xF);
3981 } else if (srcenc >= 8 && dstenc >= 8) {
3982 emit_d8(cbuf, 0x11);
3983 } else {
3984 emit_d8(cbuf, 0x10);
3985 }
3986
3987 // subq rsp, #8
3988 emit_opcode(cbuf, Assembler::REX_W);
3989 emit_opcode(cbuf, 0x83);
3990 emit_rm(cbuf, 0x3, 0x5, RSP_enc);
3991 emit_d8(cbuf, 8);
3992
3993 // movsd [rsp], $src
3994 emit_opcode(cbuf, 0xF2);
3995 if (srcenc >= 8) {
3996 emit_opcode(cbuf, Assembler::REX_R);
3997 }
3998 emit_opcode(cbuf, 0x0F);
3999 emit_opcode(cbuf, 0x11);
4000 encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
4001
4002 // call d2i_fixup
4003 cbuf.set_inst_mark();
4004 emit_opcode(cbuf, 0xE8);
4005 emit_d32_reloc(cbuf,
4006 (int)
4007 (StubRoutines::amd64::d2i_fixup() - cbuf.code_end() - 4),
4008 runtime_call_Relocation::spec(),
4009 RELOC_DISP32);
4010
4011 // popq $dst
4012 if (dstenc >= 8) {
4013 emit_opcode(cbuf, Assembler::REX_B);
4014 }
4015 emit_opcode(cbuf, 0x58 | (dstenc & 7));
4016
4017 // done:
4018 %}
4019
4020 enc_class d2l_fixup(rRegL dst, regD src)
4021 %{
4022 int dstenc = $dst$$reg;
4023 int srcenc = $src$$reg;
4024 address const_address = (address) StubRoutines::amd64::double_sign_flip();
4025
4026 // cmpq $dst, [0x8000000000000000]
4027 cbuf.set_inst_mark();
4028 emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
4029 emit_opcode(cbuf, 0x39);
4030 // XXX reg_mem doesn't support RIP-relative addressing yet
4031 emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
4032 emit_d32_reloc(cbuf, const_address);
4033
4034
4035 // jne,s done
4036 emit_opcode(cbuf, 0x75);
4037 if (srcenc < 8 && dstenc < 8) {
4038 emit_d8(cbuf, 0xF);
4039 } else if (srcenc >= 8 && dstenc >= 8) {
4040 emit_d8(cbuf, 0x11);
4041 } else {
4042 emit_d8(cbuf, 0x10);
4043 }
4044
4045 // subq rsp, #8
4046 emit_opcode(cbuf, Assembler::REX_W);
4047 emit_opcode(cbuf, 0x83);
4048 emit_rm(cbuf, 0x3, 0x5, RSP_enc);
4049 emit_d8(cbuf, 8);
4050
4051 // movsd [rsp], $src
4052 emit_opcode(cbuf, 0xF2);
4053 if (srcenc >= 8) {
4054 emit_opcode(cbuf, Assembler::REX_R);
4055 }
4056 emit_opcode(cbuf, 0x0F);
4057 emit_opcode(cbuf, 0x11);
4058 encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
4059
4060 // call d2l_fixup
4061 cbuf.set_inst_mark();
4062 emit_opcode(cbuf, 0xE8);
4063 emit_d32_reloc(cbuf,
4064 (int)
4065 (StubRoutines::amd64::d2l_fixup() - cbuf.code_end() - 4),
4066 runtime_call_Relocation::spec(),
4067 RELOC_DISP32);
4068
4069 // popq $dst
4070 if (dstenc >= 8) {
4071 emit_opcode(cbuf, Assembler::REX_B);
4072 }
4073 emit_opcode(cbuf, 0x58 | (dstenc & 7));
4074
4075 // done:
4076 %}
4077
4078 enc_class enc_membar_acquire
4079 %{
4080 // [jk] not needed currently, if you enable this and it really
4081 // emits code don't forget to the remove the "size(0)" line in
4082 // membar_acquire()
4083 // MacroAssembler masm(&cbuf);
4084 // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
4085 // Assembler::LoadLoad));
4086 %}
4087
4088 enc_class enc_membar_release
4089 %{
4090 // [jk] not needed currently, if you enable this and it really
4091 // emits code don't forget to the remove the "size(0)" line in
4092 // membar_release()
4093 // MacroAssembler masm(&cbuf);
4094 // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
4095 // Assembler::StoreStore));
4096 %}
4097
4098 enc_class enc_membar_volatile
4099 %{
4100 MacroAssembler masm(&cbuf);
4101 masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
4102 Assembler::StoreStore));
4103 %}
4104
4105 // Safepoint Poll. This polls the safepoint page, and causes an
4106 // exception if it is not readable. Unfortunately, it kills
4107 // RFLAGS in the process.
4108 enc_class enc_safepoint_poll
4109 %{
4110 // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
4111 // XXX reg_mem doesn't support RIP-relative addressing yet
4112 cbuf.set_inst_mark();
4113 cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
4114 emit_opcode(cbuf, 0x85); // testl
4115 emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
4116 // cbuf.inst_mark() is beginning of instruction
4117 emit_d32_reloc(cbuf, os::get_polling_page());
4118 // relocInfo::poll_type,
4119 %}
4120 %}
4121
4122
4123 //----------FRAME--------------------------------------------------------------
4124 // Definition of frame structure and management information.
4125 //
4126 // S T A C K L A Y O U T Allocators stack-slot number
4127 // | (to get allocators register number
4128 // G Owned by | | v add OptoReg::stack0())
4129 // r CALLER | |
4130 // o | +--------+ pad to even-align allocators stack-slot
4131 // w V | pad0 | numbers; owned by CALLER
4132 // t -----------+--------+----> Matcher::_in_arg_limit, unaligned
4133 // h ^ | in | 5
4134 // | | args | 4 Holes in incoming args owned by SELF
4135 // | | | | 3
4136 // | | +--------+
4137 // V | | old out| Empty on Intel, window on Sparc
4138 // | old |preserve| Must be even aligned.
4139 // | SP-+--------+----> Matcher::_old_SP, even aligned
4140 // | | in | 3 area for Intel ret address
4141 // Owned by |preserve| Empty on Sparc.
4142 // SELF +--------+
4143 // | | pad2 | 2 pad to align old SP
4144 // | +--------+ 1
4145 // | | locks | 0
4146 // | +--------+----> OptoReg::stack0(), even aligned
4147 // | | pad1 | 11 pad to align new SP
4148 // | +--------+
4149 // | | | 10
4150 // | | spills | 9 spills
4151 // V | | 8 (pad0 slot for callee)
4152 // -----------+--------+----> Matcher::_out_arg_limit, unaligned
4153 // ^ | out | 7
4154 // | | args | 6 Holes in outgoing args owned by CALLEE
4155 // Owned by +--------+
4156 // CALLEE | new out| 6 Empty on Intel, window on Sparc
4157 // | new |preserve| Must be even-aligned.
4158 // | SP-+--------+----> Matcher::_new_SP, even aligned
4159 // | | |
4160 //
4161 // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
4162 // known from SELF's arguments and the Java calling convention.
4163 // Region 6-7 is determined per call site.
4164 // Note 2: If the calling convention leaves holes in the incoming argument
4165 // area, those holes are owned by SELF. Holes in the outgoing area
4166 // are owned by the CALLEE. Holes should not be nessecary in the
4167 // incoming area, as the Java calling convention is completely under
4168 // the control of the AD file. Doubles can be sorted and packed to
4169 // avoid holes. Holes in the outgoing arguments may be nessecary for
4170 // varargs C calling conventions.
4171 // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
4172 // even aligned with pad0 as needed.
4173 // Region 6 is even aligned. Region 6-7 is NOT even aligned;
4174 // region 6-11 is even aligned; it may be padded out more so that
4175 // the region from SP to FP meets the minimum stack alignment.
4176 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
4177 // alignment. Region 11, pad1, may be dynamically extended so that
4178 // SP meets the minimum alignment.
4179
4180 frame
4181 %{
4182 // What direction does stack grow in (assumed to be same for C & Java)
4183 stack_direction(TOWARDS_LOW);
4184
4185 // These three registers define part of the calling convention
4186 // between compiled code and the interpreter.
4187 inline_cache_reg(RAX); // Inline Cache Register
4188 interpreter_method_oop_reg(RBX); // Method Oop Register when
4189 // calling interpreter
4190
4191 // Optional: name the operand used by cisc-spilling to access
4192 // [stack_pointer + offset]
4193 cisc_spilling_operand_name(indOffset32);
4194
4195 // Number of stack slots consumed by locking an object
4196 sync_stack_slots(2);
4197
4198 // Compiled code's Frame Pointer
4199 frame_pointer(RSP);
4200
4201 // Interpreter stores its frame pointer in a register which is
4202 // stored to the stack by I2CAdaptors.
4203 // I2CAdaptors convert from interpreted java to compiled java.
4204 interpreter_frame_pointer(RBP);
4205
4206 // Stack alignment requirement
4207 stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
4208
4209 // Number of stack slots between incoming argument block and the start of
4210 // a new frame. The PROLOG must add this many slots to the stack. The
4211 // EPILOG must remove this many slots. amd64 needs two slots for
4212 // return address.
4213 in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
4214
4215 // Number of outgoing stack slots killed above the out_preserve_stack_slots
4216 // for calls to C. Supports the var-args backing area for register parms.
4217 varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
4218
4219 // The after-PROLOG location of the return address. Location of
4220 // return address specifies a type (REG or STACK) and a number
4221 // representing the register number (i.e. - use a register name) or
4222 // stack slot.
4223 // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4224 // Otherwise, it is above the locks and verification slot and alignment word
4225 return_addr(STACK - 2 +
4226 round_to(2 + 2 * VerifyStackAtCalls +
4227 Compile::current()->fixed_slots(),
4228 WordsPerLong * 2));
4229
4230 // Body of function which returns an integer array locating
4231 // arguments either in registers or in stack slots. Passed an array
4232 // of ideal registers called "sig" and a "length" count. Stack-slot
4233 // offsets are based on outgoing arguments, i.e. a CALLER setting up
4234 // arguments for a CALLEE. Incoming stack arguments are
4235 // automatically biased by the preserve_stack_slots field above.
4236
4237 calling_convention
4238 %{
4239 // No difference between ingoing/outgoing just pass false
4240 SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4241 %}
4242
4243 c_calling_convention
4244 %{
4245 // This is obviously always outgoing
4246 (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4247 %}
4248
4249 // Location of compiled Java return values. Same as C for now.
4250 return_value
4251 %{
4252 assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
4253 "only return normal values");
4254
4255 static const int lo[Op_RegL + 1] = {
4256 0,
4257 0,
4258 RAX_num, // Op_RegI
4259 RAX_num, // Op_RegP
4260 XMM0_num, // Op_RegF
4261 XMM0_num, // Op_RegD
4262 RAX_num // Op_RegL
4263 };
4264 static const int hi[Op_RegL + 1] = {
4265 0,
4266 0,
4267 OptoReg::Bad, // Op_RegI
4268 RAX_H_num, // Op_RegP
4269 OptoReg::Bad, // Op_RegF
4270 XMM0_H_num, // Op_RegD
4271 RAX_H_num // Op_RegL
4272 };
4273
4274 return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
4275 %}
4276 %}
4277
4278 //----------ATTRIBUTES---------------------------------------------------------
4279 //----------Operand Attributes-------------------------------------------------
4280 op_attrib op_cost(0); // Required cost attribute
4281
4282 //----------Instruction Attributes---------------------------------------------
4283 ins_attrib ins_cost(100); // Required cost attribute
4284 ins_attrib ins_size(8); // Required size attribute (in bits)
4285 ins_attrib ins_pc_relative(0); // Required PC Relative flag
4286 ins_attrib ins_short_branch(0); // Required flag: is this instruction
4287 // a non-matching short branch variant
4288 // of some long branch?
4289 ins_attrib ins_alignment(1); // Required alignment attribute (must
4290 // be a power of 2) specifies the
4291 // alignment that some part of the
4292 // instruction (not necessarily the
4293 // start) requires. If > 1, a
4294 // compute_padding() function must be
4295 // provided for the instruction
4296
4297 //----------OPERANDS-----------------------------------------------------------
4298 // Operand definitions must precede instruction definitions for correct parsing
4299 // in the ADLC because operands constitute user defined types which are used in
4300 // instruction definitions.
4301
4302 //----------Simple Operands----------------------------------------------------
4303 // Immediate Operands
4304 // Integer Immediate
4305 operand immI()
4306 %{
4307 match(ConI);
4308
4309 op_cost(10);
4310 format %{ %}
4311 interface(CONST_INTER);
4312 %}
4313
4314 // Constant for test vs zero
4315 operand immI0()
4316 %{
4317 predicate(n->get_int() == 0);
4318 match(ConI);
4319
4320 op_cost(0);
4321 format %{ %}
4322 interface(CONST_INTER);
4323 %}
4324
4325 // Constant for increment
4326 operand immI1()
4327 %{
4328 predicate(n->get_int() == 1);
4329 match(ConI);
4330
4331 op_cost(0);
4332 format %{ %}
4333 interface(CONST_INTER);
4334 %}
4335
4336 // Constant for decrement
4337 operand immI_M1()
4338 %{
4339 predicate(n->get_int() == -1);
4340 match(ConI);
4341
4342 op_cost(0);
4343 format %{ %}
4344 interface(CONST_INTER);
4345 %}
4346
4347 // Valid scale values for addressing modes
4348 operand immI2()
4349 %{
4350 predicate(0 <= n->get_int() && (n->get_int() <= 3));
4351 match(ConI);
4352
4353 format %{ %}
4354 interface(CONST_INTER);
4355 %}
4356
4357 operand immI8()
4358 %{
4359 predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
4360 match(ConI);
4361
4362 op_cost(5);
4363 format %{ %}
4364 interface(CONST_INTER);
4365 %}
4366
4367 operand immI16()
4368 %{
4369 predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4370 match(ConI);
4371
4372 op_cost(10);
4373 format %{ %}
4374 interface(CONST_INTER);
4375 %}
4376
4377 // Constant for long shifts
4378 operand immI_32()
4379 %{
4380 predicate( n->get_int() == 32 );
4381 match(ConI);
4382
4383 op_cost(0);
4384 format %{ %}
4385 interface(CONST_INTER);
4386 %}
4387
4388 // Constant for long shifts
4389 operand immI_64()
4390 %{
4391 predicate( n->get_int() == 64 );
4392 match(ConI);
4393
4394 op_cost(0);
4395 format %{ %}
4396 interface(CONST_INTER);
4397 %}
4398
4399 // Pointer Immediate
4400 operand immP()
4401 %{
4402 match(ConP);
4403
4404 op_cost(10);
4405 format %{ %}
4406 interface(CONST_INTER);
4407 %}
4408
4409 // NULL Pointer Immediate
4410 operand immP0()
4411 %{
4412 predicate(n->get_ptr() == 0);
4413 match(ConP);
4414
4415 op_cost(5);
4416 format %{ %}
4417 interface(CONST_INTER);
4418 %}
4419
4420 // Unsigned 31-bit Pointer Immediate
4421 // Can be used in both 32-bit signed and 32-bit unsigned insns.
4422 // Works for nulls and markOops; not for relocatable (oop) pointers.
4423 operand immP31()
4424 %{
4425 predicate(!n->as_Type()->type()->isa_oopptr()
4426 && (n->get_ptr() >> 31) == 0);
4427 match(ConP);
4428
4429 op_cost(5);
4430 format %{ %}
4431 interface(CONST_INTER);
4432 %}
4433
4434 // Long Immediate
4435 operand immL()
4436 %{
4437 match(ConL);
4438
4439 op_cost(20);
4440 format %{ %}
4441 interface(CONST_INTER);
4442 %}
4443
4444 // Long Immediate 8-bit
4445 operand immL8()
4446 %{
4447 predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
4448 match(ConL);
4449
4450 op_cost(5);
4451 format %{ %}
4452 interface(CONST_INTER);
4453 %}
4454
4455 // Long Immediate 32-bit unsigned
4456 operand immUL32()
4457 %{
4458 predicate(n->get_long() == (unsigned int) (n->get_long()));
4459 match(ConL);
4460
4461 op_cost(10);
4462 format %{ %}
4463 interface(CONST_INTER);
4464 %}
4465
4466 // Long Immediate 32-bit signed
4467 operand immL32()
4468 %{
4469 predicate(n->get_long() == (int) (n->get_long()));
4470 match(ConL);
4471
4472 op_cost(15);
4473 format %{ %}
4474 interface(CONST_INTER);
4475 %}
4476
4477 // Long Immediate zero
4478 operand immL0()
4479 %{
4480 predicate(n->get_long() == 0L);
4481 match(ConL);
4482
4483 op_cost(10);
4484 format %{ %}
4485 interface(CONST_INTER);
4486 %}
4487
4488 // Constant for increment
4489 operand immL1()
4490 %{
4491 predicate(n->get_long() == 1);
4492 match(ConL);
4493
4494 format %{ %}
4495 interface(CONST_INTER);
4496 %}
4497
4498 // Constant for decrement
4499 operand immL_M1()
4500 %{
4501 predicate(n->get_long() == -1);
4502 match(ConL);
4503
4504 format %{ %}
4505 interface(CONST_INTER);
4506 %}
4507
4508 // Long Immediate: the value 10
4509 operand immL10()
4510 %{
4511 predicate(n->get_long() == 10);
4512 match(ConL);
4513
4514 format %{ %}
4515 interface(CONST_INTER);
4516 %}
4517
4518 // Long immediate from 0 to 127.
4519 // Used for a shorter form of long mul by 10.
4520 operand immL_127()
4521 %{
4522 predicate(0 <= n->get_long() && n->get_long() < 0x80);
4523 match(ConL);
4524
4525 op_cost(10);
4526 format %{ %}
4527 interface(CONST_INTER);
4528 %}
4529
4530 // Long Immediate: low 32-bit mask
4531 operand immL_32bits()
4532 %{
4533 predicate(n->get_long() == 0xFFFFFFFFL);
4534 match(ConL);
4535 op_cost(20);
4536
4537 format %{ %}
4538 interface(CONST_INTER);
4539 %}
4540
4541 // Float Immediate zero
4542 operand immF0()
4543 %{
4544 predicate(jint_cast(n->getf()) == 0);
4545 match(ConF);
4546
4547 op_cost(5);
4548 format %{ %}
4549 interface(CONST_INTER);
4550 %}
4551
4552 // Float Immediate
4553 operand immF()
4554 %{
4555 match(ConF);
4556
4557 op_cost(15);
4558 format %{ %}
4559 interface(CONST_INTER);
4560 %}
4561
4562 // Double Immediate zero
4563 operand immD0()
4564 %{
4565 predicate(jlong_cast(n->getd()) == 0);
4566 match(ConD);
4567
4568 op_cost(5);
4569 format %{ %}
4570 interface(CONST_INTER);
4571 %}
4572
4573 // Double Immediate
4574 operand immD()
4575 %{
4576 match(ConD);
4577
4578 op_cost(15);
4579 format %{ %}
4580 interface(CONST_INTER);
4581 %}
4582
4583 // Immediates for special shifts (sign extend)
4584
4585 // Constants for increment
4586 operand immI_16()
4587 %{
4588 predicate(n->get_int() == 16);
4589 match(ConI);
4590
4591 format %{ %}
4592 interface(CONST_INTER);
4593 %}
4594
4595 operand immI_24()
4596 %{
4597 predicate(n->get_int() == 24);
4598 match(ConI);
4599
4600 format %{ %}
4601 interface(CONST_INTER);
4602 %}
4603
4604 // Constant for byte-wide masking
4605 operand immI_255()
4606 %{
4607 predicate(n->get_int() == 255);
4608 match(ConI);
4609
4610 format %{ %}
4611 interface(CONST_INTER);
4612 %}
4613
4614 // Constant for short-wide masking
4615 operand immI_65535()
4616 %{
4617 predicate(n->get_int() == 65535);
4618 match(ConI);
4619
4620 format %{ %}
4621 interface(CONST_INTER);
4622 %}
4623
4624 // Constant for byte-wide masking
4625 operand immL_255()
4626 %{
4627 predicate(n->get_long() == 255);
4628 match(ConL);
4629
4630 format %{ %}
4631 interface(CONST_INTER);
4632 %}
4633
4634 // Constant for short-wide masking
4635 operand immL_65535()
4636 %{
4637 predicate(n->get_long() == 65535);
4638 match(ConL);
4639
4640 format %{ %}
4641 interface(CONST_INTER);
4642 %}
4643
4644 // Register Operands
4645 // Integer Register
4646 operand rRegI()
4647 %{
4648 constraint(ALLOC_IN_RC(int_reg));
4649 match(RegI);
4650
4651 match(rax_RegI);
4652 match(rbx_RegI);
4653 match(rcx_RegI);
4654 match(rdx_RegI);
4655 match(rdi_RegI);
4656
4657 format %{ %}
4658 interface(REG_INTER);
4659 %}
4660
4661 // Special Registers
4662 operand rax_RegI()
4663 %{
4664 constraint(ALLOC_IN_RC(int_rax_reg));
4665 match(RegI);
4666 match(rRegI);
4667
4668 format %{ "RAX" %}
4669 interface(REG_INTER);
4670 %}
4671
4672 // Special Registers
4673 operand rbx_RegI()
4674 %{
4675 constraint(ALLOC_IN_RC(int_rbx_reg));
4676 match(RegI);
4677 match(rRegI);
4678
4679 format %{ "RBX" %}
4680 interface(REG_INTER);
4681 %}
4682
4683 operand rcx_RegI()
4684 %{
4685 constraint(ALLOC_IN_RC(int_rcx_reg));
4686 match(RegI);
4687 match(rRegI);
4688
4689 format %{ "RCX" %}
4690 interface(REG_INTER);
4691 %}
4692
4693 operand rdx_RegI()
4694 %{
4695 constraint(ALLOC_IN_RC(int_rdx_reg));
4696 match(RegI);
4697 match(rRegI);
4698
4699 format %{ "RDX" %}
4700 interface(REG_INTER);
4701 %}
4702
4703 operand rdi_RegI()
4704 %{
4705 constraint(ALLOC_IN_RC(int_rdi_reg));
4706 match(RegI);
4707 match(rRegI);
4708
4709 format %{ "RDI" %}
4710 interface(REG_INTER);
4711 %}
4712
4713 operand no_rcx_RegI()
4714 %{
4715 constraint(ALLOC_IN_RC(int_no_rcx_reg));
4716 match(RegI);
4717 match(rax_RegI);
4718 match(rbx_RegI);
4719 match(rdx_RegI);
4720 match(rdi_RegI);
4721
4722 format %{ %}
4723 interface(REG_INTER);
4724 %}
4725
4726 operand no_rax_rdx_RegI()
4727 %{
4728 constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
4729 match(RegI);
4730 match(rbx_RegI);
4731 match(rcx_RegI);
4732 match(rdi_RegI);
4733
4734 format %{ %}
4735 interface(REG_INTER);
4736 %}
4737
4738 // Pointer Register
4739 operand any_RegP()
4740 %{
4741 constraint(ALLOC_IN_RC(any_reg));
4742 match(RegP);
4743 match(rax_RegP);
4744 match(rbx_RegP);
4745 match(rdi_RegP);
4746 match(rsi_RegP);
4747 match(rbp_RegP);
4748 match(r15_RegP);
4749 match(rRegP);
4750
4751 format %{ %}
4752 interface(REG_INTER);
4753 %}
4754
4755 operand rRegP()
4756 %{
4757 constraint(ALLOC_IN_RC(ptr_reg));
4758 match(RegP);
4759 match(rax_RegP);
4760 match(rbx_RegP);
4761 match(rdi_RegP);
4762 match(rsi_RegP);
4763 match(rbp_RegP);
4764 match(r15_RegP); // See Q&A below about r15_RegP.
4765
4766 format %{ %}
4767 interface(REG_INTER);
4768 %}
4769
4770 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
4771 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
4772 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
4773 // The output of an instruction is controlled by the allocator, which respects
4774 // register class masks, not match rules. Unless an instruction mentions
4775 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
4776 // by the allocator as an input.
4777
4778 operand no_rax_RegP()
4779 %{
4780 constraint(ALLOC_IN_RC(ptr_no_rax_reg));
4781 match(RegP);
4782 match(rbx_RegP);
4783 match(rsi_RegP);
4784 match(rdi_RegP);
4785
4786 format %{ %}
4787 interface(REG_INTER);
4788 %}
4789
4790 operand no_rbp_RegP()
4791 %{
4792 constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
4793 match(RegP);
4794 match(rbx_RegP);
4795 match(rsi_RegP);
4796 match(rdi_RegP);
4797
4798 format %{ %}
4799 interface(REG_INTER);
4800 %}
4801
4802 operand no_rax_rbx_RegP()
4803 %{
4804 constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
4805 match(RegP);
4806 match(rsi_RegP);
4807 match(rdi_RegP);
4808
4809 format %{ %}
4810 interface(REG_INTER);
4811 %}
4812
4813 // Special Registers
4814 // Return a pointer value
4815 operand rax_RegP()
4816 %{
4817 constraint(ALLOC_IN_RC(ptr_rax_reg));
4818 match(RegP);
4819 match(rRegP);
4820
4821 format %{ %}
4822 interface(REG_INTER);
4823 %}
4824
4825 // Used in AtomicAdd
4826 operand rbx_RegP()
4827 %{
4828 constraint(ALLOC_IN_RC(ptr_rbx_reg));
4829 match(RegP);
4830 match(rRegP);
4831
4832 format %{ %}
4833 interface(REG_INTER);
4834 %}
4835
4836 operand rsi_RegP()
4837 %{
4838 constraint(ALLOC_IN_RC(ptr_rsi_reg));
4839 match(RegP);
4840 match(rRegP);
4841
4842 format %{ %}
4843 interface(REG_INTER);
4844 %}
4845
4846 // Used in rep stosq
4847 operand rdi_RegP()
4848 %{
4849 constraint(ALLOC_IN_RC(ptr_rdi_reg));
4850 match(RegP);
4851 match(rRegP);
4852
4853 format %{ %}
4854 interface(REG_INTER);
4855 %}
4856
4857 operand rbp_RegP()
4858 %{
4859 constraint(ALLOC_IN_RC(ptr_rbp_reg));
4860 match(RegP);
4861 match(rRegP);
4862
4863 format %{ %}
4864 interface(REG_INTER);
4865 %}
4866
4867 operand r15_RegP()
4868 %{
4869 constraint(ALLOC_IN_RC(ptr_r15_reg));
4870 match(RegP);
4871 match(rRegP);
4872
4873 format %{ %}
4874 interface(REG_INTER);
4875 %}
4876
4877 operand rRegL()
4878 %{
4879 constraint(ALLOC_IN_RC(long_reg));
4880 match(RegL);
4881 match(rax_RegL);
4882 match(rdx_RegL);
4883
4884 format %{ %}
4885 interface(REG_INTER);
4886 %}
4887
4888 // Special Registers
4889 operand no_rax_rdx_RegL()
4890 %{
4891 constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
4892 match(RegL);
4893 match(rRegL);
4894
4895 format %{ %}
4896 interface(REG_INTER);
4897 %}
4898
4899 operand no_rax_RegL()
4900 %{
4901 constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
4902 match(RegL);
4903 match(rRegL);
4904 match(rdx_RegL);
4905
4906 format %{ %}
4907 interface(REG_INTER);
4908 %}
4909
4910 operand no_rcx_RegL()
4911 %{
4912 constraint(ALLOC_IN_RC(long_no_rcx_reg));
4913 match(RegL);
4914 match(rRegL);
4915
4916 format %{ %}
4917 interface(REG_INTER);
4918 %}
4919
4920 operand rax_RegL()
4921 %{
4922 constraint(ALLOC_IN_RC(long_rax_reg));
4923 match(RegL);
4924 match(rRegL);
4925
4926 format %{ "RAX" %}
4927 interface(REG_INTER);
4928 %}
4929
4930 operand rcx_RegL()
4931 %{
4932 constraint(ALLOC_IN_RC(long_rcx_reg));
4933 match(RegL);
4934 match(rRegL);
4935
4936 format %{ %}
4937 interface(REG_INTER);
4938 %}
4939
4940 operand rdx_RegL()
4941 %{
4942 constraint(ALLOC_IN_RC(long_rdx_reg));
4943 match(RegL);
4944 match(rRegL);
4945
4946 format %{ %}
4947 interface(REG_INTER);
4948 %}
4949
4950 // Flags register, used as output of compare instructions
4951 operand rFlagsReg()
4952 %{
4953 constraint(ALLOC_IN_RC(int_flags));
4954 match(RegFlags);
4955
4956 format %{ "RFLAGS" %}
4957 interface(REG_INTER);
4958 %}
4959
4960 // Flags register, used as output of FLOATING POINT compare instructions
4961 operand rFlagsRegU()
4962 %{
4963 constraint(ALLOC_IN_RC(int_flags));
4964 match(RegFlags);
4965
4966 format %{ "RFLAGS_U" %}
4967 interface(REG_INTER);
4968 %}
4969
4970 // Float register operands
4971 operand regF()
4972 %{
4973 constraint(ALLOC_IN_RC(float_reg));
4974 match(RegF);
4975
4976 format %{ %}
4977 interface(REG_INTER);
4978 %}
4979
4980 // Double register operands
4981 operand regD()
4982 %{
4983 constraint(ALLOC_IN_RC(double_reg));
4984 match(RegD);
4985
4986 format %{ %}
4987 interface(REG_INTER);
4988 %}
4989
4990
4991 //----------Memory Operands----------------------------------------------------
4992 // Direct Memory Operand
4993 // operand direct(immP addr)
4994 // %{
4995 // match(addr);
4996
4997 // format %{ "[$addr]" %}
4998 // interface(MEMORY_INTER) %{
4999 // base(0xFFFFFFFF);
5000 // index(0x4);
5001 // scale(0x0);
5002 // disp($addr);
5003 // %}
5004 // %}
5005
5006 // Indirect Memory Operand
5007 operand indirect(any_RegP reg)
5008 %{
5009 constraint(ALLOC_IN_RC(ptr_reg));
5010 match(reg);
5011
5012 format %{ "[$reg]" %}
5013 interface(MEMORY_INTER) %{
5014 base($reg);
5015 index(0x4);
5016 scale(0x0);
5017 disp(0x0);
5018 %}
5019 %}
5020
5021 // Indirect Memory Plus Short Offset Operand
5022 operand indOffset8(any_RegP reg, immL8 off)
5023 %{
5024 constraint(ALLOC_IN_RC(ptr_reg));
5025 match(AddP reg off);
5026
5027 format %{ "[$reg + $off (8-bit)]" %}
5028 interface(MEMORY_INTER) %{
5029 base($reg);
5030 index(0x4);
5031 scale(0x0);
5032 disp($off);
5033 %}
5034 %}
5035
5036 // Indirect Memory Plus Long Offset Operand
5037 operand indOffset32(any_RegP reg, immL32 off)
5038 %{
5039 constraint(ALLOC_IN_RC(ptr_reg));
5040 match(AddP reg off);
5041
5042 format %{ "[$reg + $off (32-bit)]" %}
5043 interface(MEMORY_INTER) %{
5044 base($reg);
5045 index(0x4);
5046 scale(0x0);
5047 disp($off);
5048 %}
5049 %}
5050
5051 // Indirect Memory Plus Index Register Plus Offset Operand
5052 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
5053 %{
5054 constraint(ALLOC_IN_RC(ptr_reg));
5055 match(AddP (AddP reg lreg) off);
5056
5057 op_cost(10);
5058 format %{"[$reg + $off + $lreg]" %}
5059 interface(MEMORY_INTER) %{
5060 base($reg);
5061 index($lreg);
5062 scale(0x0);
5063 disp($off);
5064 %}
5065 %}
5066
5067 // Indirect Memory Plus Index Register Plus Offset Operand
5068 operand indIndex(any_RegP reg, rRegL lreg)
5069 %{
5070 constraint(ALLOC_IN_RC(ptr_reg));
5071 match(AddP reg lreg);
5072
5073 op_cost(10);
5074 format %{"[$reg + $lreg]" %}
5075 interface(MEMORY_INTER) %{
5076 base($reg);
5077 index($lreg);
5078 scale(0x0);
5079 disp(0x0);
5080 %}
5081 %}
5082
5083 // Indirect Memory Times Scale Plus Index Register
5084 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
5085 %{
5086 constraint(ALLOC_IN_RC(ptr_reg));
5087 match(AddP reg (LShiftL lreg scale));
5088
5089 op_cost(10);
5090 format %{"[$reg + $lreg << $scale]" %}
5091 interface(MEMORY_INTER) %{
5092 base($reg);
5093 index($lreg);
5094 scale($scale);
5095 disp(0x0);
5096 %}
5097 %}
5098
5099 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5100 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
5101 %{
5102 constraint(ALLOC_IN_RC(ptr_reg));
5103 match(AddP (AddP reg (LShiftL lreg scale)) off);
5104
5105 op_cost(10);
5106 format %{"[$reg + $off + $lreg << $scale]" %}
5107 interface(MEMORY_INTER) %{
5108 base($reg);
5109 index($lreg);
5110 scale($scale);
5111 disp($off);
5112 %}
5113 %}
5114
5115 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
5116 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
5117 %{
5118 constraint(ALLOC_IN_RC(ptr_reg));
5119 predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
5120 match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
5121
5122 op_cost(10);
5123 format %{"[$reg + $off + $idx << $scale]" %}
5124 interface(MEMORY_INTER) %{
5125 base($reg);
5126 index($idx);
5127 scale($scale);
5128 disp($off);
5129 %}
5130 %}
5131
5132 //----------Special Memory Operands--------------------------------------------
5133 // Stack Slot Operand - This operand is used for loading and storing temporary
5134 // values on the stack where a match requires a value to
5135 // flow through memory.
5136 operand stackSlotP(sRegP reg)
5137 %{
5138 constraint(ALLOC_IN_RC(stack_slots));
5139 // No match rule because this operand is only generated in matching
5140
5141 format %{ "[$reg]" %}
5142 interface(MEMORY_INTER) %{
5143 base(0x4); // RSP
5144 index(0x4); // No Index
5145 scale(0x0); // No Scale
5146 disp($reg); // Stack Offset
5147 %}
5148 %}
5149
5150 operand stackSlotI(sRegI reg)
5151 %{
5152 constraint(ALLOC_IN_RC(stack_slots));
5153 // No match rule because this operand is only generated in matching
5154
5155 format %{ "[$reg]" %}
5156 interface(MEMORY_INTER) %{
5157 base(0x4); // RSP
5158 index(0x4); // No Index
5159 scale(0x0); // No Scale
5160 disp($reg); // Stack Offset
5161 %}
5162 %}
5163
5164 operand stackSlotF(sRegF reg)
5165 %{
5166 constraint(ALLOC_IN_RC(stack_slots));
5167 // No match rule because this operand is only generated in matching
5168
5169 format %{ "[$reg]" %}
5170 interface(MEMORY_INTER) %{
5171 base(0x4); // RSP
5172 index(0x4); // No Index
5173 scale(0x0); // No Scale
5174 disp($reg); // Stack Offset
5175 %}
5176 %}
5177
5178 operand stackSlotD(sRegD reg)
5179 %{
5180 constraint(ALLOC_IN_RC(stack_slots));
5181 // No match rule because this operand is only generated in matching
5182
5183 format %{ "[$reg]" %}
5184 interface(MEMORY_INTER) %{
5185 base(0x4); // RSP
5186 index(0x4); // No Index
5187 scale(0x0); // No Scale
5188 disp($reg); // Stack Offset
5189 %}
5190 %}
5191 operand stackSlotL(sRegL reg)
5192 %{
5193 constraint(ALLOC_IN_RC(stack_slots));
5194 // No match rule because this operand is only generated in matching
5195
5196 format %{ "[$reg]" %}
5197 interface(MEMORY_INTER) %{
5198 base(0x4); // RSP
5199 index(0x4); // No Index
5200 scale(0x0); // No Scale
5201 disp($reg); // Stack Offset
5202 %}
5203 %}
5204
5205 //----------Conditional Branch Operands----------------------------------------
5206 // Comparison Op - This is the operation of the comparison, and is limited to
5207 // the following set of codes:
5208 // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5209 //
5210 // Other attributes of the comparison, such as unsignedness, are specified
5211 // by the comparison instruction that sets a condition code flags register.
5212 // That result is represented by a flags operand whose subtype is appropriate
5213 // to the unsignedness (etc.) of the comparison.
5214 //
5215 // Later, the instruction which matches both the Comparison Op (a Bool) and
5216 // the flags (produced by the Cmp) specifies the coding of the comparison op
5217 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5218
5219 // Comparision Code
5220 operand cmpOp()
5221 %{
5222 match(Bool);
5223
5224 format %{ "" %}
5225 interface(COND_INTER) %{
5226 equal(0x4);
5227 not_equal(0x5);
5228 less(0xC);
5229 greater_equal(0xD);
5230 less_equal(0xE);
5231 greater(0xF);
5232 %}
5233 %}
5234
5235 // Comparison Code, unsigned compare. Used by FP also, with
5236 // C2 (unordered) turned into GT or LT already. The other bits
5237 // C0 and C3 are turned into Carry & Zero flags.
5238 operand cmpOpU()
5239 %{
5240 match(Bool);
5241
5242 format %{ "" %}
5243 interface(COND_INTER) %{
5244 equal(0x4);
5245 not_equal(0x5);
5246 less(0x2);
5247 greater_equal(0x3);
5248 less_equal(0x6);
5249 greater(0x7);
5250 %}
5251 %}
5252
5253
5254 //----------OPERAND CLASSES----------------------------------------------------
5255 // Operand Classes are groups of operands that are used as to simplify
5256 // instruction definitions by not requiring the AD writer to specify seperate
5257 // instructions for every form of operand when the instruction accepts
5258 // multiple operand types with the same basic encoding and format. The classic
5259 // case of this is memory operands.
5260
5261 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
5262 indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset);
5263
5264 //----------PIPELINE-----------------------------------------------------------
5265 // Rules which define the behavior of the target architectures pipeline.
5266 pipeline %{
5267
5268 //----------ATTRIBUTES---------------------------------------------------------
5269 attributes %{
5270 variable_size_instructions; // Fixed size instructions
5271 max_instructions_per_bundle = 3; // Up to 3 instructions per bundle
5272 instruction_unit_size = 1; // An instruction is 1 bytes long
5273 instruction_fetch_unit_size = 16; // The processor fetches one line
5274 instruction_fetch_units = 1; // of 16 bytes
5275
5276 // List of nop instructions
5277 nops( MachNop );
5278 %}
5279
5280 //----------RESOURCES----------------------------------------------------------
5281 // Resources are the functional units available to the machine
5282
5283 // Generic P2/P3 pipeline
5284 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5285 // 3 instructions decoded per cycle.
5286 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5287 // 3 ALU op, only ALU0 handles mul instructions.
5288 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5289 MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
5290 BR, FPU,
5291 ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
5292
5293 //----------PIPELINE DESCRIPTION-----------------------------------------------
5294 // Pipeline Description specifies the stages in the machine's pipeline
5295
5296 // Generic P2/P3 pipeline
5297 pipe_desc(S0, S1, S2, S3, S4, S5);
5298
5299 //----------PIPELINE CLASSES---------------------------------------------------
5300 // Pipeline Classes describe the stages in which input and output are
5301 // referenced by the hardware pipeline.
5302
5303 // Naming convention: ialu or fpu
5304 // Then: _reg
5305 // Then: _reg if there is a 2nd register
5306 // Then: _long if it's a pair of instructions implementing a long
5307 // Then: _fat if it requires the big decoder
5308 // Or: _mem if it requires the big decoder and a memory unit.
5309
5310 // Integer ALU reg operation
5311 pipe_class ialu_reg(rRegI dst)
5312 %{
5313 single_instruction;
5314 dst : S4(write);
5315 dst : S3(read);
5316 DECODE : S0; // any decoder
5317 ALU : S3; // any alu
5318 %}
5319
5320 // Long ALU reg operation
5321 pipe_class ialu_reg_long(rRegL dst)
5322 %{
5323 instruction_count(2);
5324 dst : S4(write);
5325 dst : S3(read);
5326 DECODE : S0(2); // any 2 decoders
5327 ALU : S3(2); // both alus
5328 %}
5329
5330 // Integer ALU reg operation using big decoder
5331 pipe_class ialu_reg_fat(rRegI dst)
5332 %{
5333 single_instruction;
5334 dst : S4(write);
5335 dst : S3(read);
5336 D0 : S0; // big decoder only
5337 ALU : S3; // any alu
5338 %}
5339
5340 // Long ALU reg operation using big decoder
5341 pipe_class ialu_reg_long_fat(rRegL dst)
5342 %{
5343 instruction_count(2);
5344 dst : S4(write);
5345 dst : S3(read);
5346 D0 : S0(2); // big decoder only; twice
5347 ALU : S3(2); // any 2 alus
5348 %}
5349
5350 // Integer ALU reg-reg operation
5351 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
5352 %{
5353 single_instruction;
5354 dst : S4(write);
5355 src : S3(read);
5356 DECODE : S0; // any decoder
5357 ALU : S3; // any alu
5358 %}
5359
5360 // Long ALU reg-reg operation
5361 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
5362 %{
5363 instruction_count(2);
5364 dst : S4(write);
5365 src : S3(read);
5366 DECODE : S0(2); // any 2 decoders
5367 ALU : S3(2); // both alus
5368 %}
5369
5370 // Integer ALU reg-reg operation
5371 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
5372 %{
5373 single_instruction;
5374 dst : S4(write);
5375 src : S3(read);
5376 D0 : S0; // big decoder only
5377 ALU : S3; // any alu
5378 %}
5379
5380 // Long ALU reg-reg operation
5381 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
5382 %{
5383 instruction_count(2);
5384 dst : S4(write);
5385 src : S3(read);
5386 D0 : S0(2); // big decoder only; twice
5387 ALU : S3(2); // both alus
5388 %}
5389
5390 // Integer ALU reg-mem operation
5391 pipe_class ialu_reg_mem(rRegI dst, memory mem)
5392 %{
5393 single_instruction;
5394 dst : S5(write);
5395 mem : S3(read);
5396 D0 : S0; // big decoder only
5397 ALU : S4; // any alu
5398 MEM : S3; // any mem
5399 %}
5400
5401 // Integer mem operation (prefetch)
5402 pipe_class ialu_mem(memory mem)
5403 %{
5404 single_instruction;
5405 mem : S3(read);
5406 D0 : S0; // big decoder only
5407 MEM : S3; // any mem
5408 %}
5409
5410 // Integer Store to Memory
5411 pipe_class ialu_mem_reg(memory mem, rRegI src)
5412 %{
5413 single_instruction;
5414 mem : S3(read);
5415 src : S5(read);
5416 D0 : S0; // big decoder only
5417 ALU : S4; // any alu
5418 MEM : S3;
5419 %}
5420
5421 // // Long Store to Memory
5422 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
5423 // %{
5424 // instruction_count(2);
5425 // mem : S3(read);
5426 // src : S5(read);
5427 // D0 : S0(2); // big decoder only; twice
5428 // ALU : S4(2); // any 2 alus
5429 // MEM : S3(2); // Both mems
5430 // %}
5431
5432 // Integer Store to Memory
5433 pipe_class ialu_mem_imm(memory mem)
5434 %{
5435 single_instruction;
5436 mem : S3(read);
5437 D0 : S0; // big decoder only
5438 ALU : S4; // any alu
5439 MEM : S3;
5440 %}
5441
5442 // Integer ALU0 reg-reg operation
5443 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
5444 %{
5445 single_instruction;
5446 dst : S4(write);
5447 src : S3(read);
5448 D0 : S0; // Big decoder only
5449 ALU0 : S3; // only alu0
5450 %}
5451
5452 // Integer ALU0 reg-mem operation
5453 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
5454 %{
5455 single_instruction;
5456 dst : S5(write);
5457 mem : S3(read);
5458 D0 : S0; // big decoder only
5459 ALU0 : S4; // ALU0 only
5460 MEM : S3; // any mem
5461 %}
5462
5463 // Integer ALU reg-reg operation
5464 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
5465 %{
5466 single_instruction;
5467 cr : S4(write);
5468 src1 : S3(read);
5469 src2 : S3(read);
5470 DECODE : S0; // any decoder
5471 ALU : S3; // any alu
5472 %}
5473
5474 // Integer ALU reg-imm operation
5475 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
5476 %{
5477 single_instruction;
5478 cr : S4(write);
5479 src1 : S3(read);
5480 DECODE : S0; // any decoder
5481 ALU : S3; // any alu
5482 %}
5483
5484 // Integer ALU reg-mem operation
5485 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
5486 %{
5487 single_instruction;
5488 cr : S4(write);
5489 src1 : S3(read);
5490 src2 : S3(read);
5491 D0 : S0; // big decoder only
5492 ALU : S4; // any alu
5493 MEM : S3;
5494 %}
5495
5496 // Conditional move reg-reg
5497 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
5498 %{
5499 instruction_count(4);
5500 y : S4(read);
5501 q : S3(read);
5502 p : S3(read);
5503 DECODE : S0(4); // any decoder
5504 %}
5505
5506 // Conditional move reg-reg
5507 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
5508 %{
5509 single_instruction;
5510 dst : S4(write);
5511 src : S3(read);
5512 cr : S3(read);
5513 DECODE : S0; // any decoder
5514 %}
5515
5516 // Conditional move reg-mem
5517 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
5518 %{
5519 single_instruction;
5520 dst : S4(write);
5521 src : S3(read);
5522 cr : S3(read);
5523 DECODE : S0; // any decoder
5524 MEM : S3;
5525 %}
5526
5527 // Conditional move reg-reg long
5528 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
5529 %{
5530 single_instruction;
5531 dst : S4(write);
5532 src : S3(read);
5533 cr : S3(read);
5534 DECODE : S0(2); // any 2 decoders
5535 %}
5536
5537 // XXX
5538 // // Conditional move double reg-reg
5539 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
5540 // %{
5541 // single_instruction;
5542 // dst : S4(write);
5543 // src : S3(read);
5544 // cr : S3(read);
5545 // DECODE : S0; // any decoder
5546 // %}
5547
5548 // Float reg-reg operation
5549 pipe_class fpu_reg(regD dst)
5550 %{
5551 instruction_count(2);
5552 dst : S3(read);
5553 DECODE : S0(2); // any 2 decoders
5554 FPU : S3;
5555 %}
5556
5557 // Float reg-reg operation
5558 pipe_class fpu_reg_reg(regD dst, regD src)
5559 %{
5560 instruction_count(2);
5561 dst : S4(write);
5562 src : S3(read);
5563 DECODE : S0(2); // any 2 decoders
5564 FPU : S3;
5565 %}
5566
5567 // Float reg-reg operation
5568 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
5569 %{
5570 instruction_count(3);
5571 dst : S4(write);
5572 src1 : S3(read);
5573 src2 : S3(read);
5574 DECODE : S0(3); // any 3 decoders
5575 FPU : S3(2);
5576 %}
5577
5578 // Float reg-reg operation
5579 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
5580 %{
5581 instruction_count(4);
5582 dst : S4(write);
5583 src1 : S3(read);
5584 src2 : S3(read);
5585 src3 : S3(read);
5586 DECODE : S0(4); // any 3 decoders
5587 FPU : S3(2);
5588 %}
5589
5590 // Float reg-reg operation
5591 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
5592 %{
5593 instruction_count(4);
5594 dst : S4(write);
5595 src1 : S3(read);
5596 src2 : S3(read);
5597 src3 : S3(read);
5598 DECODE : S1(3); // any 3 decoders
5599 D0 : S0; // Big decoder only
5600 FPU : S3(2);
5601 MEM : S3;
5602 %}
5603
5604 // Float reg-mem operation
5605 pipe_class fpu_reg_mem(regD dst, memory mem)
5606 %{
5607 instruction_count(2);
5608 dst : S5(write);
5609 mem : S3(read);
5610 D0 : S0; // big decoder only
5611 DECODE : S1; // any decoder for FPU POP
5612 FPU : S4;
5613 MEM : S3; // any mem
5614 %}
5615
5616 // Float reg-mem operation
5617 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
5618 %{
5619 instruction_count(3);
5620 dst : S5(write);
5621 src1 : S3(read);
5622 mem : S3(read);
5623 D0 : S0; // big decoder only
5624 DECODE : S1(2); // any decoder for FPU POP
5625 FPU : S4;
5626 MEM : S3; // any mem
5627 %}
5628
5629 // Float mem-reg operation
5630 pipe_class fpu_mem_reg(memory mem, regD src)
5631 %{
5632 instruction_count(2);
5633 src : S5(read);
5634 mem : S3(read);
5635 DECODE : S0; // any decoder for FPU PUSH
5636 D0 : S1; // big decoder only
5637 FPU : S4;
5638 MEM : S3; // any mem
5639 %}
5640
5641 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
5642 %{
5643 instruction_count(3);
5644 src1 : S3(read);
5645 src2 : S3(read);
5646 mem : S3(read);
5647 DECODE : S0(2); // any decoder for FPU PUSH
5648 D0 : S1; // big decoder only
5649 FPU : S4;
5650 MEM : S3; // any mem
5651 %}
5652
5653 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
5654 %{
5655 instruction_count(3);
5656 src1 : S3(read);
5657 src2 : S3(read);
5658 mem : S4(read);
5659 DECODE : S0; // any decoder for FPU PUSH
5660 D0 : S0(2); // big decoder only
5661 FPU : S4;
5662 MEM : S3(2); // any mem
5663 %}
5664
5665 pipe_class fpu_mem_mem(memory dst, memory src1)
5666 %{
5667 instruction_count(2);
5668 src1 : S3(read);
5669 dst : S4(read);
5670 D0 : S0(2); // big decoder only
5671 MEM : S3(2); // any mem
5672 %}
5673
5674 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
5675 %{
5676 instruction_count(3);
5677 src1 : S3(read);
5678 src2 : S3(read);
5679 dst : S4(read);
5680 D0 : S0(3); // big decoder only
5681 FPU : S4;
5682 MEM : S3(3); // any mem
5683 %}
5684
5685 pipe_class fpu_mem_reg_con(memory mem, regD src1)
5686 %{
5687 instruction_count(3);
5688 src1 : S4(read);
5689 mem : S4(read);
5690 DECODE : S0; // any decoder for FPU PUSH
5691 D0 : S0(2); // big decoder only
5692 FPU : S4;
5693 MEM : S3(2); // any mem
5694 %}
5695
5696 // Float load constant
5697 pipe_class fpu_reg_con(regD dst)
5698 %{
5699 instruction_count(2);
5700 dst : S5(write);
5701 D0 : S0; // big decoder only for the load
5702 DECODE : S1; // any decoder for FPU POP
5703 FPU : S4;
5704 MEM : S3; // any mem
5705 %}
5706
5707 // Float load constant
5708 pipe_class fpu_reg_reg_con(regD dst, regD src)
5709 %{
5710 instruction_count(3);
5711 dst : S5(write);
5712 src : S3(read);
5713 D0 : S0; // big decoder only for the load
5714 DECODE : S1(2); // any decoder for FPU POP
5715 FPU : S4;
5716 MEM : S3; // any mem
5717 %}
5718
5719 // UnConditional branch
5720 pipe_class pipe_jmp(label labl)
5721 %{
5722 single_instruction;
5723 BR : S3;
5724 %}
5725
5726 // Conditional branch
5727 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
5728 %{
5729 single_instruction;
5730 cr : S1(read);
5731 BR : S3;
5732 %}
5733
5734 // Allocation idiom
5735 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
5736 %{
5737 instruction_count(1); force_serialization;
5738 fixed_latency(6);
5739 heap_ptr : S3(read);
5740 DECODE : S0(3);
5741 D0 : S2;
5742 MEM : S3;
5743 ALU : S3(2);
5744 dst : S5(write);
5745 BR : S5;
5746 %}
5747
5748 // Generic big/slow expanded idiom
5749 pipe_class pipe_slow()
5750 %{
5751 instruction_count(10); multiple_bundles; force_serialization;
5752 fixed_latency(100);
5753 D0 : S0(2);
5754 MEM : S3(2);
5755 %}
5756
5757 // The real do-nothing guy
5758 pipe_class empty()
5759 %{
5760 instruction_count(0);
5761 %}
5762
5763 // Define the class for the Nop node
5764 define
5765 %{
5766 MachNop = empty;
5767 %}
5768
5769 %}
5770
5771 //----------INSTRUCTIONS-------------------------------------------------------
5772 //
5773 // match -- States which machine-independent subtree may be replaced
5774 // by this instruction.
5775 // ins_cost -- The estimated cost of this instruction is used by instruction
5776 // selection to identify a minimum cost tree of machine
5777 // instructions that matches a tree of machine-independent
5778 // instructions.
5779 // format -- A string providing the disassembly for this instruction.
5780 // The value of an instruction's operand may be inserted
5781 // by referring to it with a '$' prefix.
5782 // opcode -- Three instruction opcodes may be provided. These are referred
5783 // to within an encode class as $primary, $secondary, and $tertiary
5784 // rrspectively. The primary opcode is commonly used to
5785 // indicate the type of machine instruction, while secondary
5786 // and tertiary are often used for prefix options or addressing
5787 // modes.
5788 // ins_encode -- A list of encode classes with parameters. The encode class
5789 // name must have been defined in an 'enc_class' specification
5790 // in the encode section of the architecture description.
5791
5792
5793 //----------Load/Store/Move Instructions---------------------------------------
5794 //----------Load Instructions--------------------------------------------------
5795
5796 // Load Byte (8 bit signed)
5797 instruct loadB(rRegI dst, memory mem)
5798 %{
5799 match(Set dst (LoadB mem));
5800
5801 ins_cost(125);
5802 format %{ "movsbl $dst, $mem\t# byte" %}
5803 opcode(0x0F, 0xBE);
5804 ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5805 ins_pipe(ialu_reg_mem);
5806 %}
5807
5808 // Load Byte (8 bit signed) into long
5809 // instruct loadB2L(rRegL dst, memory mem)
5810 // %{
5811 // match(Set dst (ConvI2L (LoadB mem)));
5812
5813 // ins_cost(125);
5814 // format %{ "movsbq $dst, $mem\t# byte -> long" %}
5815 // opcode(0x0F, 0xBE);
5816 // ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5817 // ins_pipe(ialu_reg_mem);
5818 // %}
5819
5820 // Load Byte (8 bit UNsigned)
5821 instruct loadUB(rRegI dst, memory mem, immI_255 bytemask)
5822 %{
5823 match(Set dst (AndI (LoadB mem) bytemask));
5824
5825 ins_cost(125);
5826 format %{ "movzbl $dst, $mem\t# ubyte" %}
5827 opcode(0x0F, 0xB6);
5828 ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5829 ins_pipe(ialu_reg_mem);
5830 %}
5831
5832 // Load Byte (8 bit UNsigned) into long
5833 // instruct loadUB2L(rRegL dst, memory mem, immI_255 bytemask)
5834 // %{
5835 // match(Set dst (ConvI2L (AndI (LoadB mem) bytemask)));
5836
5837 // ins_cost(125);
5838 // format %{ "movzbl $dst, $mem\t# ubyte -> long" %}
5839 // opcode(0x0F, 0xB6);
5840 // ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5841 // ins_pipe(ialu_reg_mem);
5842 // %}
5843
5844 // Load Short (16 bit signed)
5845 instruct loadS(rRegI dst, memory mem)
5846 %{
5847 match(Set dst (LoadS mem));
5848
5849 ins_cost(125); // XXX
5850 format %{ "movswl $dst, $mem\t# short" %}
5851 opcode(0x0F, 0xBF);
5852 ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5853 ins_pipe(ialu_reg_mem);
5854 %}
5855
5856 // Load Short (16 bit signed) into long
5857 // instruct loadS2L(rRegL dst, memory mem)
5858 // %{
5859 // match(Set dst (ConvI2L (LoadS mem)));
5860
5861 // ins_cost(125); // XXX
5862 // format %{ "movswq $dst, $mem\t# short -> long" %}
5863 // opcode(0x0F, 0xBF);
5864 // ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5865 // ins_pipe(ialu_reg_mem);
5866 // %}
5867
5868 // Load Char (16 bit UNsigned)
5869 instruct loadC(rRegI dst, memory mem)
5870 %{
5871 match(Set dst (LoadC mem));
5872
5873 ins_cost(125);
5874 format %{ "movzwl $dst, $mem\t# char" %}
5875 opcode(0x0F, 0xB7);
5876 ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5877 ins_pipe(ialu_reg_mem);
5878 %}
5879
5880 // Load Char (16 bit UNsigned) into long
5881 // instruct loadC2L(rRegL dst, memory mem)
5882 // %{
5883 // match(Set dst (ConvI2L (LoadC mem)));
5884
5885 // ins_cost(125);
5886 // format %{ "movzwl $dst, $mem\t# char -> long" %}
5887 // opcode(0x0F, 0xB7);
5888 // ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
5889 // ins_pipe(ialu_reg_mem);
5890 // %}
5891
5892 // Load Integer
5893 instruct loadI(rRegI dst, memory mem)
5894 %{
5895 match(Set dst (LoadI mem));
5896
5897 ins_cost(125); // XXX
5898 format %{ "movl $dst, $mem\t# int" %}
5899 opcode(0x8B);
5900 ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5901 ins_pipe(ialu_reg_mem);
5902 %}
5903
5904 // Load Long
5905 instruct loadL(rRegL dst, memory mem)
5906 %{
5907 match(Set dst (LoadL mem));
5908
5909 ins_cost(125); // XXX
5910 format %{ "movq $dst, $mem\t# long" %}
5911 opcode(0x8B);
5912 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5913 ins_pipe(ialu_reg_mem); // XXX
5914 %}
5915
5916 // Load Range
5917 instruct loadRange(rRegI dst, memory mem)
5918 %{
5919 match(Set dst (LoadRange mem));
5920
5921 ins_cost(125); // XXX
5922 format %{ "movl $dst, $mem\t# range" %}
5923 opcode(0x8B);
5924 ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5925 ins_pipe(ialu_reg_mem);
5926 %}
5927
5928 // Load Pointer
5929 instruct loadP(rRegP dst, memory mem)
5930 %{
5931 match(Set dst (LoadP mem));
5932
5933 ins_cost(125); // XXX
5934 format %{ "movq $dst, $mem\t# ptr" %}
5935 opcode(0x8B);
5936 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5937 ins_pipe(ialu_reg_mem); // XXX
5938 %}
5939
5940 // Load Klass Pointer
5941 instruct loadKlass(rRegP dst, memory mem)
5942 %{
5943 match(Set dst (LoadKlass mem));
5944
5945 ins_cost(125); // XXX
5946 format %{ "movq $dst, $mem\t# class" %}
5947 opcode(0x8B);
5948 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5949 ins_pipe(ialu_reg_mem); // XXX
5950 %}
5951
5952 // Load Float
5953 instruct loadF(regF dst, memory mem)
5954 %{
5955 match(Set dst (LoadF mem));
5956
5957 ins_cost(145); // XXX
5958 format %{ "movss $dst, $mem\t# float" %}
5959 opcode(0xF3, 0x0F, 0x10);
5960 ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
5961 ins_pipe(pipe_slow); // XXX
5962 %}
5963
5964 // Load Double
5965 instruct loadD_partial(regD dst, memory mem)
5966 %{
5967 predicate(!UseXmmLoadAndClearUpper);
5968 match(Set dst (LoadD mem));
5969
5970 ins_cost(145); // XXX
5971 format %{ "movlpd $dst, $mem\t# double" %}
5972 opcode(0x66, 0x0F, 0x12);
5973 ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
5974 ins_pipe(pipe_slow); // XXX
5975 %}
5976
5977 instruct loadD(regD dst, memory mem)
5978 %{
5979 predicate(UseXmmLoadAndClearUpper);
5980 match(Set dst (LoadD mem));
5981
5982 ins_cost(145); // XXX
5983 format %{ "movsd $dst, $mem\t# double" %}
5984 opcode(0xF2, 0x0F, 0x10);
5985 ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
5986 ins_pipe(pipe_slow); // XXX
5987 %}
5988
5989 // Load Aligned Packed Byte to XMM register
5990 instruct loadA8B(regD dst, memory mem) %{
5991 match(Set dst (Load8B mem));
5992 ins_cost(125);
5993 format %{ "MOVQ $dst,$mem\t! packed8B" %}
5994 ins_encode( movq_ld(dst, mem));
5995 ins_pipe( pipe_slow );
5996 %}
5997
5998 // Load Aligned Packed Short to XMM register
5999 instruct loadA4S(regD dst, memory mem) %{
6000 match(Set dst (Load4S mem));
6001 ins_cost(125);
6002 format %{ "MOVQ $dst,$mem\t! packed4S" %}
6003 ins_encode( movq_ld(dst, mem));
6004 ins_pipe( pipe_slow );
6005 %}
6006
6007 // Load Aligned Packed Char to XMM register
6008 instruct loadA4C(regD dst, memory mem) %{
6009 match(Set dst (Load4C mem));
6010 ins_cost(125);
6011 format %{ "MOVQ $dst,$mem\t! packed4C" %}
6012 ins_encode( movq_ld(dst, mem));
6013 ins_pipe( pipe_slow );
6014 %}
6015
6016 // Load Aligned Packed Integer to XMM register
6017 instruct load2IU(regD dst, memory mem) %{
6018 match(Set dst (Load2I mem));
6019 ins_cost(125);
6020 format %{ "MOVQ $dst,$mem\t! packed2I" %}
6021 ins_encode( movq_ld(dst, mem));
6022 ins_pipe( pipe_slow );
6023 %}
6024
6025 // Load Aligned Packed Single to XMM
6026 instruct loadA2F(regD dst, memory mem) %{
6027 match(Set dst (Load2F mem));
6028 ins_cost(145);
6029 format %{ "MOVQ $dst,$mem\t! packed2F" %}
6030 ins_encode( movq_ld(dst, mem));
6031 ins_pipe( pipe_slow );
6032 %}
6033
6034 // Load Effective Address
6035 instruct leaP8(rRegP dst, indOffset8 mem)
6036 %{
6037 match(Set dst mem);
6038
6039 ins_cost(110); // XXX
6040 format %{ "leaq $dst, $mem\t# ptr 8" %}
6041 opcode(0x8D);
6042 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6043 ins_pipe(ialu_reg_reg_fat);
6044 %}
6045
6046 instruct leaP32(rRegP dst, indOffset32 mem)
6047 %{
6048 match(Set dst mem);
6049
6050 ins_cost(110);
6051 format %{ "leaq $dst, $mem\t# ptr 32" %}
6052 opcode(0x8D);
6053 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6054 ins_pipe(ialu_reg_reg_fat);
6055 %}
6056
6057 // instruct leaPIdx(rRegP dst, indIndex mem)
6058 // %{
6059 // match(Set dst mem);
6060
6061 // ins_cost(110);
6062 // format %{ "leaq $dst, $mem\t# ptr idx" %}
6063 // opcode(0x8D);
6064 // ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6065 // ins_pipe(ialu_reg_reg_fat);
6066 // %}
6067
6068 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
6069 %{
6070 match(Set dst mem);
6071
6072 ins_cost(110);
6073 format %{ "leaq $dst, $mem\t# ptr idxoff" %}
6074 opcode(0x8D);
6075 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6076 ins_pipe(ialu_reg_reg_fat);
6077 %}
6078
6079 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
6080 %{
6081 match(Set dst mem);
6082
6083 ins_cost(110);
6084 format %{ "leaq $dst, $mem\t# ptr idxscale" %}
6085 opcode(0x8D);
6086 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6087 ins_pipe(ialu_reg_reg_fat);
6088 %}
6089
6090 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
6091 %{
6092 match(Set dst mem);
6093
6094 ins_cost(110);
6095 format %{ "leaq $dst, $mem\t# ptr idxscaleoff" %}
6096 opcode(0x8D);
6097 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
6098 ins_pipe(ialu_reg_reg_fat);
6099 %}
6100
6101 instruct loadConI(rRegI dst, immI src)
6102 %{
6103 match(Set dst src);
6104
6105 format %{ "movl $dst, $src\t# int" %}
6106 ins_encode(load_immI(dst, src));
6107 ins_pipe(ialu_reg_fat); // XXX
6108 %}
6109
6110 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
6111 %{
6112 match(Set dst src);
6113 effect(KILL cr);
6114
6115 ins_cost(50);
6116 format %{ "xorl $dst, $dst\t# int" %}
6117 opcode(0x33); /* + rd */
6118 ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
6119 ins_pipe(ialu_reg);
6120 %}
6121
6122 instruct loadConL(rRegL dst, immL src)
6123 %{
6124 match(Set dst src);
6125
6126 ins_cost(150);
6127 format %{ "movq $dst, $src\t# long" %}
6128 ins_encode(load_immL(dst, src));
6129 ins_pipe(ialu_reg);
6130 %}
6131
6132 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
6133 %{
6134 match(Set dst src);
6135 effect(KILL cr);
6136
6137 ins_cost(50);
6138 format %{ "xorl $dst, $dst\t# long" %}
6139 opcode(0x33); /* + rd */
6140 ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
6141 ins_pipe(ialu_reg); // XXX
6142 %}
6143
6144 instruct loadConUL32(rRegL dst, immUL32 src)
6145 %{
6146 match(Set dst src);
6147
6148 ins_cost(60);
6149 format %{ "movl $dst, $src\t# long (unsigned 32-bit)" %}
6150 ins_encode(load_immUL32(dst, src));
6151 ins_pipe(ialu_reg);
6152 %}
6153
6154 instruct loadConL32(rRegL dst, immL32 src)
6155 %{
6156 match(Set dst src);
6157
6158 ins_cost(70);
6159 format %{ "movq $dst, $src\t# long (32-bit)" %}
6160 ins_encode(load_immL32(dst, src));
6161 ins_pipe(ialu_reg);
6162 %}
6163
6164 instruct loadConP(rRegP dst, immP src)
6165 %{
6166 match(Set dst src);
6167
6168 format %{ "movq $dst, $src\t# ptr" %}
6169 ins_encode(load_immP(dst, src));
6170 ins_pipe(ialu_reg_fat); // XXX
6171 %}
6172
6173 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
6174 %{
6175 match(Set dst src);
6176 effect(KILL cr);
6177
6178 ins_cost(50);
6179 format %{ "xorl $dst, $dst\t# ptr" %}
6180 opcode(0x33); /* + rd */
6181 ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
6182 ins_pipe(ialu_reg);
6183 %}
6184
6185 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
6186 %{
6187 match(Set dst src);
6188 effect(KILL cr);
6189
6190 ins_cost(60);
6191 format %{ "movl $dst, $src\t# ptr (positive 32-bit)" %}
6192 ins_encode(load_immP31(dst, src));
6193 ins_pipe(ialu_reg);
6194 %}
6195
6196 instruct loadConF(regF dst, immF src)
6197 %{
6198 match(Set dst src);
6199 ins_cost(125);
6200
6201 format %{ "movss $dst, [$src]" %}
6202 ins_encode(load_conF(dst, src));
6203 ins_pipe(pipe_slow);
6204 %}
6205
6206 instruct loadConF0(regF dst, immF0 src)
6207 %{
6208 match(Set dst src);
6209 ins_cost(100);
6210
6211 format %{ "xorps $dst, $dst\t# float 0.0" %}
6212 opcode(0x0F, 0x57);
6213 ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
6214 ins_pipe(pipe_slow);
6215 %}
6216
6217 // Use the same format since predicate() can not be used here.
6218 instruct loadConD(regD dst, immD src)
6219 %{
6220 match(Set dst src);
6221 ins_cost(125);
6222
6223 format %{ "movsd $dst, [$src]" %}
6224 ins_encode(load_conD(dst, src));
6225 ins_pipe(pipe_slow);
6226 %}
6227
6228 instruct loadConD0(regD dst, immD0 src)
6229 %{
6230 match(Set dst src);
6231 ins_cost(100);
6232
6233 format %{ "xorpd $dst, $dst\t# double 0.0" %}
6234 opcode(0x66, 0x0F, 0x57);
6235 ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
6236 ins_pipe(pipe_slow);
6237 %}
6238
6239 instruct loadSSI(rRegI dst, stackSlotI src)
6240 %{
6241 match(Set dst src);
6242
6243 ins_cost(125);
6244 format %{ "movl $dst, $src\t# int stk" %}
6245 opcode(0x8B);
6246 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
6247 ins_pipe(ialu_reg_mem);
6248 %}
6249
6250 instruct loadSSL(rRegL dst, stackSlotL src)
6251 %{
6252 match(Set dst src);
6253
6254 ins_cost(125);
6255 format %{ "movq $dst, $src\t# long stk" %}
6256 opcode(0x8B);
6257 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
6258 ins_pipe(ialu_reg_mem);
6259 %}
6260
6261 instruct loadSSP(rRegP dst, stackSlotP src)
6262 %{
6263 match(Set dst src);
6264
6265 ins_cost(125);
6266 format %{ "movq $dst, $src\t# ptr stk" %}
6267 opcode(0x8B);
6268 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
6269 ins_pipe(ialu_reg_mem);
6270 %}
6271
6272 instruct loadSSF(regF dst, stackSlotF src)
6273 %{
6274 match(Set dst src);
6275
6276 ins_cost(125);
6277 format %{ "movss $dst, $src\t# float stk" %}
6278 opcode(0xF3, 0x0F, 0x10);
6279 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
6280 ins_pipe(pipe_slow); // XXX
6281 %}
6282
6283 // Use the same format since predicate() can not be used here.
6284 instruct loadSSD(regD dst, stackSlotD src)
6285 %{
6286 match(Set dst src);
6287
6288 ins_cost(125);
6289 format %{ "movsd $dst, $src\t# double stk" %}
6290 ins_encode %{
6291 __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
6292 %}
6293 ins_pipe(pipe_slow); // XXX
6294 %}
6295
6296 // Prefetch instructions.
6297 // Must be safe to execute with invalid address (cannot fault).
6298
6299 instruct prefetchr( memory mem ) %{
6300 predicate(ReadPrefetchInstr==3);
6301 match(PrefetchRead mem);
6302 ins_cost(125);
6303
6304 format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
6305 opcode(0x0F, 0x0D); /* Opcode 0F 0D /0 */
6306 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
6307 ins_pipe(ialu_mem);
6308 %}
6309
6310 instruct prefetchrNTA( memory mem ) %{
6311 predicate(ReadPrefetchInstr==0);
6312 match(PrefetchRead mem);
6313 ins_cost(125);
6314
6315 format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
6316 opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
6317 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
6318 ins_pipe(ialu_mem);
6319 %}
6320
6321 instruct prefetchrT0( memory mem ) %{
6322 predicate(ReadPrefetchInstr==1);
6323 match(PrefetchRead mem);
6324 ins_cost(125);
6325
6326 format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
6327 opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
6328 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
6329 ins_pipe(ialu_mem);
6330 %}
6331
6332 instruct prefetchrT2( memory mem ) %{
6333 predicate(ReadPrefetchInstr==2);
6334 match(PrefetchRead mem);
6335 ins_cost(125);
6336
6337 format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
6338 opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
6339 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
6340 ins_pipe(ialu_mem);
6341 %}
6342
6343 instruct prefetchw( memory mem ) %{
6344 predicate(AllocatePrefetchInstr==3);
6345 match(PrefetchWrite mem);
6346 ins_cost(125);
6347
6348 format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
6349 opcode(0x0F, 0x0D); /* Opcode 0F 0D /1 */
6350 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
6351 ins_pipe(ialu_mem);
6352 %}
6353
6354 instruct prefetchwNTA( memory mem ) %{
6355 predicate(AllocatePrefetchInstr==0);
6356 match(PrefetchWrite mem);
6357 ins_cost(125);
6358
6359 format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
6360 opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */
6361 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
6362 ins_pipe(ialu_mem);
6363 %}
6364
6365 instruct prefetchwT0( memory mem ) %{
6366 predicate(AllocatePrefetchInstr==1);
6367 match(PrefetchWrite mem);
6368 ins_cost(125);
6369
6370 format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
6371 opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
6372 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
6373 ins_pipe(ialu_mem);
6374 %}
6375
6376 instruct prefetchwT2( memory mem ) %{
6377 predicate(AllocatePrefetchInstr==2);
6378 match(PrefetchWrite mem);
6379 ins_cost(125);
6380
6381 format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
6382 opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
6383 ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
6384 ins_pipe(ialu_mem);
6385 %}
6386
6387 //----------Store Instructions-------------------------------------------------
6388
6389 // Store Byte
6390 instruct storeB(memory mem, rRegI src)
6391 %{
6392 match(Set mem (StoreB mem src));
6393
6394 ins_cost(125); // XXX
6395 format %{ "movb $mem, $src\t# byte" %}
6396 opcode(0x88);
6397 ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
6398 ins_pipe(ialu_mem_reg);
6399 %}
6400
6401 // Store Char/Short
6402 instruct storeC(memory mem, rRegI src)
6403 %{
6404 match(Set mem (StoreC mem src));
6405
6406 ins_cost(125); // XXX
6407 format %{ "movw $mem, $src\t# char/short" %}
6408 opcode(0x89);
6409 ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
6410 ins_pipe(ialu_mem_reg);
6411 %}
6412
6413 // Store Integer
6414 instruct storeI(memory mem, rRegI src)
6415 %{
6416 match(Set mem (StoreI mem src));
6417
6418 ins_cost(125); // XXX
6419 format %{ "movl $mem, $src\t# int" %}
6420 opcode(0x89);
6421 ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
6422 ins_pipe(ialu_mem_reg);
6423 %}
6424
6425 // Store Long
6426 instruct storeL(memory mem, rRegL src)
6427 %{
6428 match(Set mem (StoreL mem src));
6429
6430 ins_cost(125); // XXX
6431 format %{ "movq $mem, $src\t# long" %}
6432 opcode(0x89);
6433 ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6434 ins_pipe(ialu_mem_reg); // XXX
6435 %}
6436
6437 // Store Pointer
6438 instruct storeP(memory mem, any_RegP src)
6439 %{
6440 match(Set mem (StoreP mem src));
6441
6442 ins_cost(125); // XXX
6443 format %{ "movq $mem, $src\t# ptr" %}
6444 opcode(0x89);
6445 ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
6446 ins_pipe(ialu_mem_reg);
6447 %}
6448
6449 // Store NULL Pointer, mark word, or other simple pointer constant.
6450 instruct storeImmP(memory mem, immP31 src)
6451 %{
6452 match(Set mem (StoreP mem src));
6453
6454 ins_cost(125); // XXX
6455 format %{ "movq $mem, $src\t# ptr" %}
6456 opcode(0xC7); /* C7 /0 */
6457 ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6458 ins_pipe(ialu_mem_imm);
6459 %}
6460
6461 // Store Integer Immediate
6462 instruct storeImmI(memory mem, immI src)
6463 %{
6464 match(Set mem (StoreI mem src));
6465
6466 ins_cost(150);
6467 format %{ "movl $mem, $src\t# int" %}
6468 opcode(0xC7); /* C7 /0 */
6469 ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6470 ins_pipe(ialu_mem_imm);
6471 %}
6472
6473 // Store Long Immediate
6474 instruct storeImmL(memory mem, immL32 src)
6475 %{
6476 match(Set mem (StoreL mem src));
6477
6478 ins_cost(150);
6479 format %{ "movq $mem, $src\t# long" %}
6480 opcode(0xC7); /* C7 /0 */
6481 ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6482 ins_pipe(ialu_mem_imm);
6483 %}
6484
6485 // Store Short/Char Immediate
6486 instruct storeImmI16(memory mem, immI16 src)
6487 %{
6488 predicate(UseStoreImmI16);
6489 match(Set mem (StoreC mem src));
6490
6491 ins_cost(150);
6492 format %{ "movw $mem, $src\t# short/char" %}
6493 opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6494 ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6495 ins_pipe(ialu_mem_imm);
6496 %}
6497
6498 // Store Byte Immediate
6499 instruct storeImmB(memory mem, immI8 src)
6500 %{
6501 match(Set mem (StoreB mem src));
6502
6503 ins_cost(150); // XXX
6504 format %{ "movb $mem, $src\t# byte" %}
6505 opcode(0xC6); /* C6 /0 */
6506 ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6507 ins_pipe(ialu_mem_imm);
6508 %}
6509
6510 // Store Aligned Packed Byte XMM register to memory
6511 instruct storeA8B(memory mem, regD src) %{
6512 match(Set mem (Store8B mem src));
6513 ins_cost(145);
6514 format %{ "MOVQ $mem,$src\t! packed8B" %}
6515 ins_encode( movq_st(mem, src));
6516 ins_pipe( pipe_slow );
6517 %}
6518
6519 // Store Aligned Packed Char/Short XMM register to memory
6520 instruct storeA4C(memory mem, regD src) %{
6521 match(Set mem (Store4C mem src));
6522 ins_cost(145);
6523 format %{ "MOVQ $mem,$src\t! packed4C" %}
6524 ins_encode( movq_st(mem, src));
6525 ins_pipe( pipe_slow );
6526 %}
6527
6528 // Store Aligned Packed Integer XMM register to memory
6529 instruct storeA2I(memory mem, regD src) %{
6530 match(Set mem (Store2I mem src));
6531 ins_cost(145);
6532 format %{ "MOVQ $mem,$src\t! packed2I" %}
6533 ins_encode( movq_st(mem, src));
6534 ins_pipe( pipe_slow );
6535 %}
6536
6537 // Store CMS card-mark Immediate
6538 instruct storeImmCM0(memory mem, immI0 src)
6539 %{
6540 match(Set mem (StoreCM mem src));
6541
6542 ins_cost(150); // XXX
6543 format %{ "movb $mem, $src\t# CMS card-mark byte 0" %}
6544 opcode(0xC6); /* C6 /0 */
6545 ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6546 ins_pipe(ialu_mem_imm);
6547 %}
6548
6549 // Store Aligned Packed Single Float XMM register to memory
6550 instruct storeA2F(memory mem, regD src) %{
6551 match(Set mem (Store2F mem src));
6552 ins_cost(145);
6553 format %{ "MOVQ $mem,$src\t! packed2F" %}
6554 ins_encode( movq_st(mem, src));
6555 ins_pipe( pipe_slow );
6556 %}
6557
6558 // Store Float
6559 instruct storeF(memory mem, regF src)
6560 %{
6561 match(Set mem (StoreF mem src));
6562
6563 ins_cost(95); // XXX
6564 format %{ "movss $mem, $src\t# float" %}
6565 opcode(0xF3, 0x0F, 0x11);
6566 ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
6567 ins_pipe(pipe_slow); // XXX
6568 %}
6569
6570 // Store immediate Float value (it is faster than store from XMM register)
6571 instruct storeF_imm(memory mem, immF src)
6572 %{
6573 match(Set mem (StoreF mem src));
6574
6575 ins_cost(50);
6576 format %{ "movl $mem, $src\t# float" %}
6577 opcode(0xC7); /* C7 /0 */
6578 ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6579 ins_pipe(ialu_mem_imm);
6580 %}
6581
6582 // Store Double
6583 instruct storeD(memory mem, regD src)
6584 %{
6585 match(Set mem (StoreD mem src));
6586
6587 ins_cost(95); // XXX
6588 format %{ "movsd $mem, $src\t# double" %}
6589 opcode(0xF2, 0x0F, 0x11);
6590 ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
6591 ins_pipe(pipe_slow); // XXX
6592 %}
6593
6594 // Store immediate double 0.0 (it is faster than store from XMM register)
6595 instruct storeD0_imm(memory mem, immD0 src)
6596 %{
6597 match(Set mem (StoreD mem src));
6598
6599 ins_cost(50);
6600 format %{ "movq $mem, $src\t# double 0." %}
6601 opcode(0xC7); /* C7 /0 */
6602 ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6603 ins_pipe(ialu_mem_imm);
6604 %}
6605
6606 instruct storeSSI(stackSlotI dst, rRegI src)
6607 %{
6608 match(Set dst src);
6609
6610 ins_cost(100);
6611 format %{ "movl $dst, $src\t# int stk" %}
6612 opcode(0x89);
6613 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6614 ins_pipe( ialu_mem_reg );
6615 %}
6616
6617 instruct storeSSL(stackSlotL dst, rRegL src)
6618 %{
6619 match(Set dst src);
6620
6621 ins_cost(100);
6622 format %{ "movq $dst, $src\t# long stk" %}
6623 opcode(0x89);
6624 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6625 ins_pipe(ialu_mem_reg);
6626 %}
6627
6628 instruct storeSSP(stackSlotP dst, rRegP src)
6629 %{
6630 match(Set dst src);
6631
6632 ins_cost(100);
6633 format %{ "movq $dst, $src\t# ptr stk" %}
6634 opcode(0x89);
6635 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6636 ins_pipe(ialu_mem_reg);
6637 %}
6638
6639 instruct storeSSF(stackSlotF dst, regF src)
6640 %{
6641 match(Set dst src);
6642
6643 ins_cost(95); // XXX
6644 format %{ "movss $dst, $src\t# float stk" %}
6645 opcode(0xF3, 0x0F, 0x11);
6646 ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
6647 ins_pipe(pipe_slow); // XXX
6648 %}
6649
6650 instruct storeSSD(stackSlotD dst, regD src)
6651 %{
6652 match(Set dst src);
6653
6654 ins_cost(95); // XXX
6655 format %{ "movsd $dst, $src\t# double stk" %}
6656 opcode(0xF2, 0x0F, 0x11);
6657 ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
6658 ins_pipe(pipe_slow); // XXX
6659 %}
6660
6661 //----------BSWAP Instructions-------------------------------------------------
6662 instruct bytes_reverse_int(rRegI dst) %{
6663 match(Set dst (ReverseBytesI dst));
6664
6665 format %{ "bswapl $dst" %}
6666 opcode(0x0F, 0xC8); /*Opcode 0F /C8 */
6667 ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6668 ins_pipe( ialu_reg );
6669 %}
6670
6671 instruct bytes_reverse_long(rRegL dst) %{
6672 match(Set dst (ReverseBytesL dst));
6673
6674 format %{ "bswapq $dst" %}
6675
6676 opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6677 ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6678 ins_pipe( ialu_reg);
6679 %}
6680
6681 instruct loadI_reversed(rRegI dst, memory src) %{
6682 match(Set dst (ReverseBytesI (LoadI src)));
6683
6684 format %{ "bswap_movl $dst, $src" %}
6685 opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
6686 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
6687 ins_pipe( ialu_reg_mem );
6688 %}
6689
6690 instruct loadL_reversed(rRegL dst, memory src) %{
6691 match(Set dst (ReverseBytesL (LoadL src)));
6692
6693 format %{ "bswap_movq $dst, $src" %}
6694 opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
6695 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
6696 ins_pipe( ialu_reg_mem );
6697 %}
6698
6699 instruct storeI_reversed(memory dst, rRegI src) %{
6700 match(Set dst (StoreI dst (ReverseBytesI src)));
6701
6702 format %{ "movl_bswap $dst, $src" %}
6703 opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
6704 ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
6705 ins_pipe( ialu_mem_reg );
6706 %}
6707
6708 instruct storeL_reversed(memory dst, rRegL src) %{
6709 match(Set dst (StoreL dst (ReverseBytesL src)));
6710
6711 format %{ "movq_bswap $dst, $src" %}
6712 opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
6713 ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
6714 ins_pipe( ialu_mem_reg );
6715 %}
6716
6717 //----------MemBar Instructions-----------------------------------------------
6718 // Memory barrier flavors
6719
6720 instruct membar_acquire()
6721 %{
6722 match(MemBarAcquire);
6723 ins_cost(0);
6724
6725 size(0);
6726 format %{ "MEMBAR-acquire" %}
6727 ins_encode();
6728 ins_pipe(empty);
6729 %}
6730
6731 instruct membar_acquire_lock()
6732 %{
6733 match(MemBarAcquire);
6734 predicate(Matcher::prior_fast_lock(n));
6735 ins_cost(0);
6736
6737 size(0);
6738 format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6739 ins_encode();
6740 ins_pipe(empty);
6741 %}
6742
6743 instruct membar_release()
6744 %{
6745 match(MemBarRelease);
6746 ins_cost(0);
6747
6748 size(0);
6749 format %{ "MEMBAR-release" %}
6750 ins_encode();
6751 ins_pipe(empty);
6752 %}
6753
6754 instruct membar_release_lock()
6755 %{
6756 match(MemBarRelease);
6757 predicate(Matcher::post_fast_unlock(n));
6758 ins_cost(0);
6759
6760 size(0);
6761 format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6762 ins_encode();
6763 ins_pipe(empty);
6764 %}
6765
6766 instruct membar_volatile()
6767 %{
6768 match(MemBarVolatile);
6769 ins_cost(400);
6770
6771 format %{ "MEMBAR-volatile" %}
6772 ins_encode(enc_membar_volatile);
6773 ins_pipe(pipe_slow);
6774 %}
6775
6776 instruct unnecessary_membar_volatile()
6777 %{
6778 match(MemBarVolatile);
6779 predicate(Matcher::post_store_load_barrier(n));
6780 ins_cost(0);
6781
6782 size(0);
6783 format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6784 ins_encode();
6785 ins_pipe(empty);
6786 %}
6787
6788 //----------Move Instructions--------------------------------------------------
6789
6790 instruct castX2P(rRegP dst, rRegL src)
6791 %{
6792 match(Set dst (CastX2P src));
6793
6794 format %{ "movq $dst, $src\t# long->ptr" %}
6795 ins_encode(enc_copy_wide(dst, src));
6796 ins_pipe(ialu_reg_reg); // XXX
6797 %}
6798
6799 instruct castP2X(rRegL dst, rRegP src)
6800 %{
6801 match(Set dst (CastP2X src));
6802
6803 format %{ "movq $dst, $src\t# ptr -> long" %}
6804 ins_encode(enc_copy_wide(dst, src));
6805 ins_pipe(ialu_reg_reg); // XXX
6806 %}
6807
6808 //----------Conditional Move---------------------------------------------------
6809 // Jump
6810 // dummy instruction for generating temp registers
6811 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6812 match(Jump (LShiftL switch_val shift));
6813 ins_cost(350);
6814 predicate(false);
6815 effect(TEMP dest);
6816
6817 format %{ "leaq $dest, table_base\n\t"
6818 "jmp [$dest + $switch_val << $shift]\n\t" %}
6819 ins_encode(jump_enc_offset(switch_val, shift, dest));
6820 ins_pipe(pipe_jmp);
6821 ins_pc_relative(1);
6822 %}
6823
6824 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6825 match(Jump (AddL (LShiftL switch_val shift) offset));
6826 ins_cost(350);
6827 effect(TEMP dest);
6828
6829 format %{ "leaq $dest, table_base\n\t"
6830 "jmp [$dest + $switch_val << $shift + $offset]\n\t" %}
6831 ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
6832 ins_pipe(pipe_jmp);
6833 ins_pc_relative(1);
6834 %}
6835
6836 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6837 match(Jump switch_val);
6838 ins_cost(350);
6839 effect(TEMP dest);
6840
6841 format %{ "leaq $dest, table_base\n\t"
6842 "jmp [$dest + $switch_val]\n\t" %}
6843 ins_encode(jump_enc(switch_val, dest));
6844 ins_pipe(pipe_jmp);
6845 ins_pc_relative(1);
6846 %}
6847
6848 // Conditional move
6849 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6850 %{
6851 match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6852
6853 ins_cost(200); // XXX
6854 format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6855 opcode(0x0F, 0x40);
6856 ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6857 ins_pipe(pipe_cmov_reg);
6858 %}
6859
6860 instruct cmovI_regU(rRegI dst, rRegI src, rFlagsRegU cr, cmpOpU cop)
6861 %{
6862 match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6863
6864 ins_cost(200); // XXX
6865 format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6866 opcode(0x0F, 0x40);
6867 ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6868 ins_pipe(pipe_cmov_reg);
6869 %}
6870
6871 // Conditional move
6872 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src)
6873 %{
6874 match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6875
6876 ins_cost(250); // XXX
6877 format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6878 opcode(0x0F, 0x40);
6879 ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6880 ins_pipe(pipe_cmov_mem);
6881 %}
6882
6883 // Conditional move
6884 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6885 %{
6886 match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6887
6888 ins_cost(250); // XXX
6889 format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6890 opcode(0x0F, 0x40);
6891 ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6892 ins_pipe(pipe_cmov_mem);
6893 %}
6894
6895 // Conditional move
6896 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6897 %{
6898 match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6899
6900 ins_cost(200); // XXX
6901 format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6902 opcode(0x0F, 0x40);
6903 ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6904 ins_pipe(pipe_cmov_reg); // XXX
6905 %}
6906
6907 // Conditional move
6908 instruct cmovP_regU(rRegP dst, rRegP src, rFlagsRegU cr, cmpOpU cop)
6909 %{
6910 match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6911
6912 ins_cost(200); // XXX
6913 format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6914 opcode(0x0F, 0x40);
6915 ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6916 ins_pipe(pipe_cmov_reg); // XXX
6917 %}
6918
6919 // DISABLED: Requires the ADLC to emit a bottom_type call that
6920 // correctly meets the two pointer arguments; one is an incoming
6921 // register but the other is a memory operand. ALSO appears to
6922 // be buggy with implicit null checks.
6923 //
6924 //// Conditional move
6925 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6926 //%{
6927 // match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6928 // ins_cost(250);
6929 // format %{ "CMOV$cop $dst,$src\t# ptr" %}
6930 // opcode(0x0F,0x40);
6931 // ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6932 // ins_pipe( pipe_cmov_mem );
6933 //%}
6934 //
6935 //// Conditional move
6936 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
6937 //%{
6938 // match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6939 // ins_cost(250);
6940 // format %{ "CMOV$cop $dst,$src\t# ptr" %}
6941 // opcode(0x0F,0x40);
6942 // ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6943 // ins_pipe( pipe_cmov_mem );
6944 //%}
6945
6946 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
6947 %{
6948 match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6949
6950 ins_cost(200); // XXX
6951 format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6952 opcode(0x0F, 0x40);
6953 ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6954 ins_pipe(pipe_cmov_reg); // XXX
6955 %}
6956
6957 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
6958 %{
6959 match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6960
6961 ins_cost(200); // XXX
6962 format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6963 opcode(0x0F, 0x40);
6964 ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6965 ins_pipe(pipe_cmov_mem); // XXX
6966 %}
6967
6968 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
6969 %{
6970 match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6971
6972 ins_cost(200); // XXX
6973 format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6974 opcode(0x0F, 0x40);
6975 ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6976 ins_pipe(pipe_cmov_reg); // XXX
6977 %}
6978
6979 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
6980 %{
6981 match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6982
6983 ins_cost(200); // XXX
6984 format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6985 opcode(0x0F, 0x40);
6986 ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6987 ins_pipe(pipe_cmov_mem); // XXX
6988 %}
6989
6990 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
6991 %{
6992 match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6993
6994 ins_cost(200); // XXX
6995 format %{ "jn$cop skip\t# signed cmove float\n\t"
6996 "movss $dst, $src\n"
6997 "skip:" %}
6998 ins_encode(enc_cmovf_branch(cop, dst, src));
6999 ins_pipe(pipe_slow);
7000 %}
7001
7002 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7003 // %{
7004 // match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7005
7006 // ins_cost(200); // XXX
7007 // format %{ "jn$cop skip\t# signed cmove float\n\t"
7008 // "movss $dst, $src\n"
7009 // "skip:" %}
7010 // ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7011 // ins_pipe(pipe_slow);
7012 // %}
7013
7014 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7015 %{
7016 match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7017
7018 ins_cost(200); // XXX
7019 format %{ "jn$cop skip\t# unsigned cmove float\n\t"
7020 "movss $dst, $src\n"
7021 "skip:" %}
7022 ins_encode(enc_cmovf_branch(cop, dst, src));
7023 ins_pipe(pipe_slow);
7024 %}
7025
7026 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7027 %{
7028 match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7029
7030 ins_cost(200); // XXX
7031 format %{ "jn$cop skip\t# signed cmove double\n\t"
7032 "movsd $dst, $src\n"
7033 "skip:" %}
7034 ins_encode(enc_cmovd_branch(cop, dst, src));
7035 ins_pipe(pipe_slow);
7036 %}
7037
7038 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7039 %{
7040 match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7041
7042 ins_cost(200); // XXX
7043 format %{ "jn$cop skip\t# unsigned cmove double\n\t"
7044 "movsd $dst, $src\n"
7045 "skip:" %}
7046 ins_encode(enc_cmovd_branch(cop, dst, src));
7047 ins_pipe(pipe_slow);
7048 %}
7049
7050 //----------Arithmetic Instructions--------------------------------------------
7051 //----------Addition Instructions----------------------------------------------
7052
7053 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7054 %{
7055 match(Set dst (AddI dst src));
7056 effect(KILL cr);
7057
7058 format %{ "addl $dst, $src\t# int" %}
7059 opcode(0x03);
7060 ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7061 ins_pipe(ialu_reg_reg);
7062 %}
7063
7064 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7065 %{
7066 match(Set dst (AddI dst src));
7067 effect(KILL cr);
7068
7069 format %{ "addl $dst, $src\t# int" %}
7070 opcode(0x81, 0x00); /* /0 id */
7071 ins_encode(OpcSErm(dst, src), Con8or32(src));
7072 ins_pipe( ialu_reg );
7073 %}
7074
7075 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7076 %{
7077 match(Set dst (AddI dst (LoadI src)));
7078 effect(KILL cr);
7079
7080 ins_cost(125); // XXX
7081 format %{ "addl $dst, $src\t# int" %}
7082 opcode(0x03);
7083 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7084 ins_pipe(ialu_reg_mem);
7085 %}
7086
7087 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7088 %{
7089 match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7090 effect(KILL cr);
7091
7092 ins_cost(150); // XXX
7093 format %{ "addl $dst, $src\t# int" %}
7094 opcode(0x01); /* Opcode 01 /r */
7095 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7096 ins_pipe(ialu_mem_reg);
7097 %}
7098
7099 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7100 %{
7101 match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7102 effect(KILL cr);
7103
7104 ins_cost(125); // XXX
7105 format %{ "addl $dst, $src\t# int" %}
7106 opcode(0x81); /* Opcode 81 /0 id */
7107 ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7108 ins_pipe(ialu_mem_imm);
7109 %}
7110
7111 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7112 %{
7113 predicate(UseIncDec);
7114 match(Set dst (AddI dst src));
7115 effect(KILL cr);
7116
7117 format %{ "incl $dst\t# int" %}
7118 opcode(0xFF, 0x00); // FF /0
7119 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7120 ins_pipe(ialu_reg);
7121 %}
7122
7123 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7124 %{
7125 predicate(UseIncDec);
7126 match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7127 effect(KILL cr);
7128
7129 ins_cost(125); // XXX
7130 format %{ "incl $dst\t# int" %}
7131 opcode(0xFF); /* Opcode FF /0 */
7132 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7133 ins_pipe(ialu_mem_imm);
7134 %}
7135
7136 // XXX why does that use AddI
7137 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7138 %{
7139 predicate(UseIncDec);
7140 match(Set dst (AddI dst src));
7141 effect(KILL cr);
7142
7143 format %{ "decl $dst\t# int" %}
7144 opcode(0xFF, 0x01); // FF /1
7145 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7146 ins_pipe(ialu_reg);
7147 %}
7148
7149 // XXX why does that use AddI
7150 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7151 %{
7152 predicate(UseIncDec);
7153 match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7154 effect(KILL cr);
7155
7156 ins_cost(125); // XXX
7157 format %{ "decl $dst\t# int" %}
7158 opcode(0xFF); /* Opcode FF /1 */
7159 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7160 ins_pipe(ialu_mem_imm);
7161 %}
7162
7163 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7164 %{
7165 match(Set dst (AddI src0 src1));
7166
7167 ins_cost(110);
7168 format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7169 opcode(0x8D); /* 0x8D /r */
7170 ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7171 ins_pipe(ialu_reg_reg);
7172 %}
7173
7174 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7175 %{
7176 match(Set dst (AddL dst src));
7177 effect(KILL cr);
7178
7179 format %{ "addq $dst, $src\t# long" %}
7180 opcode(0x03);
7181 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7182 ins_pipe(ialu_reg_reg);
7183 %}
7184
7185 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7186 %{
7187 match(Set dst (AddL dst src));
7188 effect(KILL cr);
7189
7190 format %{ "addq $dst, $src\t# long" %}
7191 opcode(0x81, 0x00); /* /0 id */
7192 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7193 ins_pipe( ialu_reg );
7194 %}
7195
7196 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7197 %{
7198 match(Set dst (AddL dst (LoadL src)));
7199 effect(KILL cr);
7200
7201 ins_cost(125); // XXX
7202 format %{ "addq $dst, $src\t# long" %}
7203 opcode(0x03);
7204 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7205 ins_pipe(ialu_reg_mem);
7206 %}
7207
7208 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7209 %{
7210 match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7211 effect(KILL cr);
7212
7213 ins_cost(150); // XXX
7214 format %{ "addq $dst, $src\t# long" %}
7215 opcode(0x01); /* Opcode 01 /r */
7216 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7217 ins_pipe(ialu_mem_reg);
7218 %}
7219
7220 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7221 %{
7222 match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7223 effect(KILL cr);
7224
7225 ins_cost(125); // XXX
7226 format %{ "addq $dst, $src\t# long" %}
7227 opcode(0x81); /* Opcode 81 /0 id */
7228 ins_encode(REX_mem_wide(dst),
7229 OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7230 ins_pipe(ialu_mem_imm);
7231 %}
7232
7233 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7234 %{
7235 predicate(UseIncDec);
7236 match(Set dst (AddL dst src));
7237 effect(KILL cr);
7238
7239 format %{ "incq $dst\t# long" %}
7240 opcode(0xFF, 0x00); // FF /0
7241 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7242 ins_pipe(ialu_reg);
7243 %}
7244
7245 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7246 %{
7247 predicate(UseIncDec);
7248 match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7249 effect(KILL cr);
7250
7251 ins_cost(125); // XXX
7252 format %{ "incq $dst\t# long" %}
7253 opcode(0xFF); /* Opcode FF /0 */
7254 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7255 ins_pipe(ialu_mem_imm);
7256 %}
7257
7258 // XXX why does that use AddL
7259 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7260 %{
7261 predicate(UseIncDec);
7262 match(Set dst (AddL dst src));
7263 effect(KILL cr);
7264
7265 format %{ "decq $dst\t# long" %}
7266 opcode(0xFF, 0x01); // FF /1
7267 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7268 ins_pipe(ialu_reg);
7269 %}
7270
7271 // XXX why does that use AddL
7272 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7273 %{
7274 predicate(UseIncDec);
7275 match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7276 effect(KILL cr);
7277
7278 ins_cost(125); // XXX
7279 format %{ "decq $dst\t# long" %}
7280 opcode(0xFF); /* Opcode FF /1 */
7281 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7282 ins_pipe(ialu_mem_imm);
7283 %}
7284
7285 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7286 %{
7287 match(Set dst (AddL src0 src1));
7288
7289 ins_cost(110);
7290 format %{ "leaq $dst, [$src0 + $src1]\t# long" %}
7291 opcode(0x8D); /* 0x8D /r */
7292 ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7293 ins_pipe(ialu_reg_reg);
7294 %}
7295
7296 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7297 %{
7298 match(Set dst (AddP dst src));
7299 effect(KILL cr);
7300
7301 format %{ "addq $dst, $src\t# ptr" %}
7302 opcode(0x03);
7303 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7304 ins_pipe(ialu_reg_reg);
7305 %}
7306
7307 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7308 %{
7309 match(Set dst (AddP dst src));
7310 effect(KILL cr);
7311
7312 format %{ "addq $dst, $src\t# ptr" %}
7313 opcode(0x81, 0x00); /* /0 id */
7314 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7315 ins_pipe( ialu_reg );
7316 %}
7317
7318 // XXX addP mem ops ????
7319
7320 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7321 %{
7322 match(Set dst (AddP src0 src1));
7323
7324 ins_cost(110);
7325 format %{ "leaq $dst, [$src0 + $src1]\t# ptr" %}
7326 opcode(0x8D); /* 0x8D /r */
7327 ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7328 ins_pipe(ialu_reg_reg);
7329 %}
7330
7331 instruct checkCastPP(rRegP dst)
7332 %{
7333 match(Set dst (CheckCastPP dst));
7334
7335 size(0);
7336 format %{ "# checkcastPP of $dst" %}
7337 ins_encode(/* empty encoding */);
7338 ins_pipe(empty);
7339 %}
7340
7341 instruct castPP(rRegP dst)
7342 %{
7343 match(Set dst (CastPP dst));
7344
7345 size(0);
7346 format %{ "# castPP of $dst" %}
7347 ins_encode(/* empty encoding */);
7348 ins_pipe(empty);
7349 %}
7350
7351 instruct castII(rRegI dst)
7352 %{
7353 match(Set dst (CastII dst));
7354
7355 size(0);
7356 format %{ "# castII of $dst" %}
7357 ins_encode(/* empty encoding */);
7358 ins_cost(0);
7359 ins_pipe(empty);
7360 %}
7361
7362 // LoadP-locked same as a regular LoadP when used with compare-swap
7363 instruct loadPLocked(rRegP dst, memory mem)
7364 %{
7365 match(Set dst (LoadPLocked mem));
7366
7367 ins_cost(125); // XXX
7368 format %{ "movq $dst, $mem\t# ptr locked" %}
7369 opcode(0x8B);
7370 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7371 ins_pipe(ialu_reg_mem); // XXX
7372 %}
7373
7374 // LoadL-locked - same as a regular LoadL when used with compare-swap
7375 instruct loadLLocked(rRegL dst, memory mem)
7376 %{
7377 match(Set dst (LoadLLocked mem));
7378
7379 ins_cost(125); // XXX
7380 format %{ "movq $dst, $mem\t# long locked" %}
7381 opcode(0x8B);
7382 ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7383 ins_pipe(ialu_reg_mem); // XXX
7384 %}
7385
7386 // Conditional-store of the updated heap-top.
7387 // Used during allocation of the shared heap.
7388 // Sets flags (EQ) on success. Implemented with a CMPXCHG on Intel.
7389
7390 instruct storePConditional(memory heap_top_ptr,
7391 rax_RegP oldval, rRegP newval,
7392 rFlagsReg cr)
7393 %{
7394 match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7395
7396 format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7397 "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7398 opcode(0x0F, 0xB1);
7399 ins_encode(lock_prefix,
7400 REX_reg_mem_wide(newval, heap_top_ptr),
7401 OpcP, OpcS,
7402 reg_mem(newval, heap_top_ptr));
7403 ins_pipe(pipe_cmpxchg);
7404 %}
7405
7406 // Conditional-store of a long value
7407 // Returns a boolean value (0/1) on success. Implemented with a
7408 // CMPXCHG8 on Intel. mem_ptr can actually be in either RSI or RDI
7409
7410 instruct storeLConditional(rRegI res,
7411 memory mem_ptr,
7412 rax_RegL oldval, rRegL newval,
7413 rFlagsReg cr)
7414 %{
7415 match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
7416 effect(KILL cr);
7417
7418 format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
7419 "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7420 "sete $res\n\t"
7421 "movzbl $res, $res" %}
7422 opcode(0x0F, 0xB1);
7423 ins_encode(lock_prefix,
7424 REX_reg_mem_wide(newval, mem_ptr),
7425 OpcP, OpcS,
7426 reg_mem(newval, mem_ptr),
7427 REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7428 REX_reg_breg(res, res), // movzbl
7429 Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7430 ins_pipe(pipe_cmpxchg);
7431 %}
7432
7433 // Conditional-store of a long value
7434 // ZF flag is set on success, reset otherwise. Implemented with a
7435 // CMPXCHG8 on Intel. mem_ptr can actually be in either RSI or RDI
7436 instruct storeLConditional_flags(memory mem_ptr,
7437 rax_RegL oldval, rRegL newval,
7438 rFlagsReg cr,
7439 immI0 zero)
7440 %{
7441 match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
7442
7443 format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
7444 "If rax == $mem_ptr then store $newval into $mem_ptr" %}
7445 opcode(0x0F, 0xB1);
7446 ins_encode(lock_prefix,
7447 REX_reg_mem_wide(newval, mem_ptr),
7448 OpcP, OpcS,
7449 reg_mem(newval, mem_ptr));
7450 ins_pipe(pipe_cmpxchg);
7451 %}
7452
7453 instruct compareAndSwapP(rRegI res,
7454 memory mem_ptr,
7455 rax_RegP oldval, rRegP newval,
7456 rFlagsReg cr)
7457 %{
7458 match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7459 effect(KILL cr, KILL oldval);
7460
7461 format %{ "cmpxchgq $mem_ptr,$newval\t# "
7462 "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7463 "sete $res\n\t"
7464 "movzbl $res, $res" %}
7465 opcode(0x0F, 0xB1);
7466 ins_encode(lock_prefix,
7467 REX_reg_mem_wide(newval, mem_ptr),
7468 OpcP, OpcS,
7469 reg_mem(newval, mem_ptr),
7470 REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7471 REX_reg_breg(res, res), // movzbl
7472 Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7473 ins_pipe( pipe_cmpxchg );
7474 %}
7475
7476 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7477 instruct compareAndSwapL(rRegI res,
7478 memory mem_ptr,
7479 rax_RegL oldval, rRegL newval,
7480 rFlagsReg cr)
7481 %{
7482 match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7483 effect(KILL cr, KILL oldval);
7484
7485 format %{ "cmpxchgq $mem_ptr,$newval\t# "
7486 "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7487 "sete $res\n\t"
7488 "movzbl $res, $res" %}
7489 opcode(0x0F, 0xB1);
7490 ins_encode(lock_prefix,
7491 REX_reg_mem_wide(newval, mem_ptr),
7492 OpcP, OpcS,
7493 reg_mem(newval, mem_ptr),
7494 REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7495 REX_reg_breg(res, res), // movzbl
7496 Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7497 ins_pipe( pipe_cmpxchg );
7498 %}
7499
7500 instruct compareAndSwapI(rRegI res,
7501 memory mem_ptr,
7502 rax_RegI oldval, rRegI newval,
7503 rFlagsReg cr)
7504 %{
7505 match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7506 effect(KILL cr, KILL oldval);
7507
7508 format %{ "cmpxchgl $mem_ptr,$newval\t# "
7509 "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7510 "sete $res\n\t"
7511 "movzbl $res, $res" %}
7512 opcode(0x0F, 0xB1);
7513 ins_encode(lock_prefix,
7514 REX_reg_mem(newval, mem_ptr),
7515 OpcP, OpcS,
7516 reg_mem(newval, mem_ptr),
7517 REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7518 REX_reg_breg(res, res), // movzbl
7519 Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7520 ins_pipe( pipe_cmpxchg );
7521 %}
7522
7523
7524 //----------Subtraction Instructions-------------------------------------------
7525
7526 // Integer Subtraction Instructions
7527 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7528 %{
7529 match(Set dst (SubI dst src));
7530 effect(KILL cr);
7531
7532 format %{ "subl $dst, $src\t# int" %}
7533 opcode(0x2B);
7534 ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7535 ins_pipe(ialu_reg_reg);
7536 %}
7537
7538 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7539 %{
7540 match(Set dst (SubI dst src));
7541 effect(KILL cr);
7542
7543 format %{ "subl $dst, $src\t# int" %}
7544 opcode(0x81, 0x05); /* Opcode 81 /5 */
7545 ins_encode(OpcSErm(dst, src), Con8or32(src));
7546 ins_pipe(ialu_reg);
7547 %}
7548
7549 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7550 %{
7551 match(Set dst (SubI dst (LoadI src)));
7552 effect(KILL cr);
7553
7554 ins_cost(125);
7555 format %{ "subl $dst, $src\t# int" %}
7556 opcode(0x2B);
7557 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7558 ins_pipe(ialu_reg_mem);
7559 %}
7560
7561 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7562 %{
7563 match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7564 effect(KILL cr);
7565
7566 ins_cost(150);
7567 format %{ "subl $dst, $src\t# int" %}
7568 opcode(0x29); /* Opcode 29 /r */
7569 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7570 ins_pipe(ialu_mem_reg);
7571 %}
7572
7573 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
7574 %{
7575 match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7576 effect(KILL cr);
7577
7578 ins_cost(125); // XXX
7579 format %{ "subl $dst, $src\t# int" %}
7580 opcode(0x81); /* Opcode 81 /5 id */
7581 ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7582 ins_pipe(ialu_mem_imm);
7583 %}
7584
7585 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7586 %{
7587 match(Set dst (SubL dst src));
7588 effect(KILL cr);
7589
7590 format %{ "subq $dst, $src\t# long" %}
7591 opcode(0x2B);
7592 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7593 ins_pipe(ialu_reg_reg);
7594 %}
7595
7596 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
7597 %{
7598 match(Set dst (SubL dst src));
7599 effect(KILL cr);
7600
7601 format %{ "subq $dst, $src\t# long" %}
7602 opcode(0x81, 0x05); /* Opcode 81 /5 */
7603 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7604 ins_pipe(ialu_reg);
7605 %}
7606
7607 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7608 %{
7609 match(Set dst (SubL dst (LoadL src)));
7610 effect(KILL cr);
7611
7612 ins_cost(125);
7613 format %{ "subq $dst, $src\t# long" %}
7614 opcode(0x2B);
7615 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7616 ins_pipe(ialu_reg_mem);
7617 %}
7618
7619 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7620 %{
7621 match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7622 effect(KILL cr);
7623
7624 ins_cost(150);
7625 format %{ "subq $dst, $src\t# long" %}
7626 opcode(0x29); /* Opcode 29 /r */
7627 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7628 ins_pipe(ialu_mem_reg);
7629 %}
7630
7631 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7632 %{
7633 match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7634 effect(KILL cr);
7635
7636 ins_cost(125); // XXX
7637 format %{ "subq $dst, $src\t# long" %}
7638 opcode(0x81); /* Opcode 81 /5 id */
7639 ins_encode(REX_mem_wide(dst),
7640 OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7641 ins_pipe(ialu_mem_imm);
7642 %}
7643
7644 // Subtract from a pointer
7645 // XXX hmpf???
7646 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
7647 %{
7648 match(Set dst (AddP dst (SubI zero src)));
7649 effect(KILL cr);
7650
7651 format %{ "subq $dst, $src\t# ptr - int" %}
7652 opcode(0x2B);
7653 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7654 ins_pipe(ialu_reg_reg);
7655 %}
7656
7657 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
7658 %{
7659 match(Set dst (SubI zero dst));
7660 effect(KILL cr);
7661
7662 format %{ "negl $dst\t# int" %}
7663 opcode(0xF7, 0x03); // Opcode F7 /3
7664 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7665 ins_pipe(ialu_reg);
7666 %}
7667
7668 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
7669 %{
7670 match(Set dst (StoreI dst (SubI zero (LoadI dst))));
7671 effect(KILL cr);
7672
7673 format %{ "negl $dst\t# int" %}
7674 opcode(0xF7, 0x03); // Opcode F7 /3
7675 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7676 ins_pipe(ialu_reg);
7677 %}
7678
7679 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
7680 %{
7681 match(Set dst (SubL zero dst));
7682 effect(KILL cr);
7683
7684 format %{ "negq $dst\t# long" %}
7685 opcode(0xF7, 0x03); // Opcode F7 /3
7686 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7687 ins_pipe(ialu_reg);
7688 %}
7689
7690 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
7691 %{
7692 match(Set dst (StoreL dst (SubL zero (LoadL dst))));
7693 effect(KILL cr);
7694
7695 format %{ "negq $dst\t# long" %}
7696 opcode(0xF7, 0x03); // Opcode F7 /3
7697 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
7698 ins_pipe(ialu_reg);
7699 %}
7700
7701
7702 //----------Multiplication/Division Instructions-------------------------------
7703 // Integer Multiplication Instructions
7704 // Multiply Register
7705
7706 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7707 %{
7708 match(Set dst (MulI dst src));
7709 effect(KILL cr);
7710
7711 ins_cost(300);
7712 format %{ "imull $dst, $src\t# int" %}
7713 opcode(0x0F, 0xAF);
7714 ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
7715 ins_pipe(ialu_reg_reg_alu0);
7716 %}
7717
7718 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
7719 %{
7720 match(Set dst (MulI src imm));
7721 effect(KILL cr);
7722
7723 ins_cost(300);
7724 format %{ "imull $dst, $src, $imm\t# int" %}
7725 opcode(0x69); /* 69 /r id */
7726 ins_encode(REX_reg_reg(dst, src),
7727 OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7728 ins_pipe(ialu_reg_reg_alu0);
7729 %}
7730
7731 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
7732 %{
7733 match(Set dst (MulI dst (LoadI src)));
7734 effect(KILL cr);
7735
7736 ins_cost(350);
7737 format %{ "imull $dst, $src\t# int" %}
7738 opcode(0x0F, 0xAF);
7739 ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
7740 ins_pipe(ialu_reg_mem_alu0);
7741 %}
7742
7743 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
7744 %{
7745 match(Set dst (MulI (LoadI src) imm));
7746 effect(KILL cr);
7747
7748 ins_cost(300);
7749 format %{ "imull $dst, $src, $imm\t# int" %}
7750 opcode(0x69); /* 69 /r id */
7751 ins_encode(REX_reg_mem(dst, src),
7752 OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7753 ins_pipe(ialu_reg_mem_alu0);
7754 %}
7755
7756 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7757 %{
7758 match(Set dst (MulL dst src));
7759 effect(KILL cr);
7760
7761 ins_cost(300);
7762 format %{ "imulq $dst, $src\t# long" %}
7763 opcode(0x0F, 0xAF);
7764 ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
7765 ins_pipe(ialu_reg_reg_alu0);
7766 %}
7767
7768 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
7769 %{
7770 match(Set dst (MulL src imm));
7771 effect(KILL cr);
7772
7773 ins_cost(300);
7774 format %{ "imulq $dst, $src, $imm\t# long" %}
7775 opcode(0x69); /* 69 /r id */
7776 ins_encode(REX_reg_reg_wide(dst, src),
7777 OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7778 ins_pipe(ialu_reg_reg_alu0);
7779 %}
7780
7781 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
7782 %{
7783 match(Set dst (MulL dst (LoadL src)));
7784 effect(KILL cr);
7785
7786 ins_cost(350);
7787 format %{ "imulq $dst, $src\t# long" %}
7788 opcode(0x0F, 0xAF);
7789 ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
7790 ins_pipe(ialu_reg_mem_alu0);
7791 %}
7792
7793 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
7794 %{
7795 match(Set dst (MulL (LoadL src) imm));
7796 effect(KILL cr);
7797
7798 ins_cost(300);
7799 format %{ "imulq $dst, $src, $imm\t# long" %}
7800 opcode(0x69); /* 69 /r id */
7801 ins_encode(REX_reg_mem_wide(dst, src),
7802 OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7803 ins_pipe(ialu_reg_mem_alu0);
7804 %}
7805
7806 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7807 rFlagsReg cr)
7808 %{
7809 match(Set rax (DivI rax div));
7810 effect(KILL rdx, KILL cr);
7811
7812 ins_cost(30*100+10*100); // XXX
7813 format %{ "cmpl rax, 0x80000000\t# idiv\n\t"
7814 "jne,s normal\n\t"
7815 "xorl rdx, rdx\n\t"
7816 "cmpl $div, -1\n\t"
7817 "je,s done\n"
7818 "normal: cdql\n\t"
7819 "idivl $div\n"
7820 "done:" %}
7821 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7822 ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7823 ins_pipe(ialu_reg_reg_alu0);
7824 %}
7825
7826 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7827 rFlagsReg cr)
7828 %{
7829 match(Set rax (DivL rax div));
7830 effect(KILL rdx, KILL cr);
7831
7832 ins_cost(30*100+10*100); // XXX
7833 format %{ "movq rdx, 0x8000000000000000\t# ldiv\n\t"
7834 "cmpq rax, rdx\n\t"
7835 "jne,s normal\n\t"
7836 "xorl rdx, rdx\n\t"
7837 "cmpq $div, -1\n\t"
7838 "je,s done\n"
7839 "normal: cdqq\n\t"
7840 "idivq $div\n"
7841 "done:" %}
7842 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7843 ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7844 ins_pipe(ialu_reg_reg_alu0);
7845 %}
7846
7847 // Integer DIVMOD with Register, both quotient and mod results
7848 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7849 rFlagsReg cr)
7850 %{
7851 match(DivModI rax div);
7852 effect(KILL cr);
7853
7854 ins_cost(30*100+10*100); // XXX
7855 format %{ "cmpl rax, 0x80000000\t# idiv\n\t"
7856 "jne,s normal\n\t"
7857 "xorl rdx, rdx\n\t"
7858 "cmpl $div, -1\n\t"
7859 "je,s done\n"
7860 "normal: cdql\n\t"
7861 "idivl $div\n"
7862 "done:" %}
7863 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7864 ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7865 ins_pipe(pipe_slow);
7866 %}
7867
7868 // Long DIVMOD with Register, both quotient and mod results
7869 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7870 rFlagsReg cr)
7871 %{
7872 match(DivModL rax div);
7873 effect(KILL cr);
7874
7875 ins_cost(30*100+10*100); // XXX
7876 format %{ "movq rdx, 0x8000000000000000\t# ldiv\n\t"
7877 "cmpq rax, rdx\n\t"
7878 "jne,s normal\n\t"
7879 "xorl rdx, rdx\n\t"
7880 "cmpq $div, -1\n\t"
7881 "je,s done\n"
7882 "normal: cdqq\n\t"
7883 "idivq $div\n"
7884 "done:" %}
7885 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7886 ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7887 ins_pipe(pipe_slow);
7888 %}
7889
7890 //----------- DivL-By-Constant-Expansions--------------------------------------
7891 // DivI cases are handled by the compiler
7892
7893 // Magic constant, reciprical of 10
7894 instruct loadConL_0x6666666666666667(rRegL dst)
7895 %{
7896 effect(DEF dst);
7897
7898 format %{ "movq $dst, #0x666666666666667\t# Used in div-by-10" %}
7899 ins_encode(load_immL(dst, 0x6666666666666667));
7900 ins_pipe(ialu_reg);
7901 %}
7902
7903 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7904 %{
7905 effect(DEF dst, USE src, USE_KILL rax, KILL cr);
7906
7907 format %{ "imulq rdx:rax, rax, $src\t# Used in div-by-10" %}
7908 opcode(0xF7, 0x5); /* Opcode F7 /5 */
7909 ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7910 ins_pipe(ialu_reg_reg_alu0);
7911 %}
7912
7913 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
7914 %{
7915 effect(USE_DEF dst, KILL cr);
7916
7917 format %{ "sarq $dst, #63\t# Used in div-by-10" %}
7918 opcode(0xC1, 0x7); /* C1 /7 ib */
7919 ins_encode(reg_opc_imm_wide(dst, 0x3F));
7920 ins_pipe(ialu_reg);
7921 %}
7922
7923 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
7924 %{
7925 effect(USE_DEF dst, KILL cr);
7926
7927 format %{ "sarq $dst, #2\t# Used in div-by-10" %}
7928 opcode(0xC1, 0x7); /* C1 /7 ib */
7929 ins_encode(reg_opc_imm_wide(dst, 0x2));
7930 ins_pipe(ialu_reg);
7931 %}
7932
7933 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
7934 %{
7935 match(Set dst (DivL src div));
7936
7937 ins_cost((5+8)*100);
7938 expand %{
7939 rax_RegL rax; // Killed temp
7940 rFlagsReg cr; // Killed
7941 loadConL_0x6666666666666667(rax); // movq rax, 0x6666666666666667
7942 mul_hi(dst, src, rax, cr); // mulq rdx:rax <= rax * $src
7943 sarL_rReg_63(src, cr); // sarq src, 63
7944 sarL_rReg_2(dst, cr); // sarq rdx, 2
7945 subL_rReg(dst, src, cr); // subl rdx, src
7946 %}
7947 %}
7948
7949 //-----------------------------------------------------------------------------
7950
7951 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
7952 rFlagsReg cr)
7953 %{
7954 match(Set rdx (ModI rax div));
7955 effect(KILL rax, KILL cr);
7956
7957 ins_cost(300); // XXX
7958 format %{ "cmpl rax, 0x80000000\t# irem\n\t"
7959 "jne,s normal\n\t"
7960 "xorl rdx, rdx\n\t"
7961 "cmpl $div, -1\n\t"
7962 "je,s done\n"
7963 "normal: cdql\n\t"
7964 "idivl $div\n"
7965 "done:" %}
7966 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7967 ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7968 ins_pipe(ialu_reg_reg_alu0);
7969 %}
7970
7971 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
7972 rFlagsReg cr)
7973 %{
7974 match(Set rdx (ModL rax div));
7975 effect(KILL rax, KILL cr);
7976
7977 ins_cost(300); // XXX
7978 format %{ "movq rdx, 0x8000000000000000\t# lrem\n\t"
7979 "cmpq rax, rdx\n\t"
7980 "jne,s normal\n\t"
7981 "xorl rdx, rdx\n\t"
7982 "cmpq $div, -1\n\t"
7983 "je,s done\n"
7984 "normal: cdqq\n\t"
7985 "idivq $div\n"
7986 "done:" %}
7987 opcode(0xF7, 0x7); /* Opcode F7 /7 */
7988 ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7989 ins_pipe(ialu_reg_reg_alu0);
7990 %}
7991
7992 // Integer Shift Instructions
7993 // Shift Left by one
7994 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7995 %{
7996 match(Set dst (LShiftI dst shift));
7997 effect(KILL cr);
7998
7999 format %{ "sall $dst, $shift" %}
8000 opcode(0xD1, 0x4); /* D1 /4 */
8001 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8002 ins_pipe(ialu_reg);
8003 %}
8004
8005 // Shift Left by one
8006 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8007 %{
8008 match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8009 effect(KILL cr);
8010
8011 format %{ "sall $dst, $shift\t" %}
8012 opcode(0xD1, 0x4); /* D1 /4 */
8013 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8014 ins_pipe(ialu_mem_imm);
8015 %}
8016
8017 // Shift Left by 8-bit immediate
8018 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8019 %{
8020 match(Set dst (LShiftI dst shift));
8021 effect(KILL cr);
8022
8023 format %{ "sall $dst, $shift" %}
8024 opcode(0xC1, 0x4); /* C1 /4 ib */
8025 ins_encode(reg_opc_imm(dst, shift));
8026 ins_pipe(ialu_reg);
8027 %}
8028
8029 // Shift Left by 8-bit immediate
8030 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8031 %{
8032 match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8033 effect(KILL cr);
8034
8035 format %{ "sall $dst, $shift" %}
8036 opcode(0xC1, 0x4); /* C1 /4 ib */
8037 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8038 ins_pipe(ialu_mem_imm);
8039 %}
8040
8041 // Shift Left by variable
8042 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8043 %{
8044 match(Set dst (LShiftI dst shift));
8045 effect(KILL cr);
8046
8047 format %{ "sall $dst, $shift" %}
8048 opcode(0xD3, 0x4); /* D3 /4 */
8049 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8050 ins_pipe(ialu_reg_reg);
8051 %}
8052
8053 // Shift Left by variable
8054 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8055 %{
8056 match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8057 effect(KILL cr);
8058
8059 format %{ "sall $dst, $shift" %}
8060 opcode(0xD3, 0x4); /* D3 /4 */
8061 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8062 ins_pipe(ialu_mem_reg);
8063 %}
8064
8065 // Arithmetic shift right by one
8066 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8067 %{
8068 match(Set dst (RShiftI dst shift));
8069 effect(KILL cr);
8070
8071 format %{ "sarl $dst, $shift" %}
8072 opcode(0xD1, 0x7); /* D1 /7 */
8073 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8074 ins_pipe(ialu_reg);
8075 %}
8076
8077 // Arithmetic shift right by one
8078 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8079 %{
8080 match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8081 effect(KILL cr);
8082
8083 format %{ "sarl $dst, $shift" %}
8084 opcode(0xD1, 0x7); /* D1 /7 */
8085 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8086 ins_pipe(ialu_mem_imm);
8087 %}
8088
8089 // Arithmetic Shift Right by 8-bit immediate
8090 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8091 %{
8092 match(Set dst (RShiftI dst shift));
8093 effect(KILL cr);
8094
8095 format %{ "sarl $dst, $shift" %}
8096 opcode(0xC1, 0x7); /* C1 /7 ib */
8097 ins_encode(reg_opc_imm(dst, shift));
8098 ins_pipe(ialu_mem_imm);
8099 %}
8100
8101 // Arithmetic Shift Right by 8-bit immediate
8102 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8103 %{
8104 match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8105 effect(KILL cr);
8106
8107 format %{ "sarl $dst, $shift" %}
8108 opcode(0xC1, 0x7); /* C1 /7 ib */
8109 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8110 ins_pipe(ialu_mem_imm);
8111 %}
8112
8113 // Arithmetic Shift Right by variable
8114 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8115 %{
8116 match(Set dst (RShiftI dst shift));
8117 effect(KILL cr);
8118
8119 format %{ "sarl $dst, $shift" %}
8120 opcode(0xD3, 0x7); /* D3 /7 */
8121 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8122 ins_pipe(ialu_reg_reg);
8123 %}
8124
8125 // Arithmetic Shift Right by variable
8126 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8127 %{
8128 match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8129 effect(KILL cr);
8130
8131 format %{ "sarl $dst, $shift" %}
8132 opcode(0xD3, 0x7); /* D3 /7 */
8133 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8134 ins_pipe(ialu_mem_reg);
8135 %}
8136
8137 // Logical shift right by one
8138 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8139 %{
8140 match(Set dst (URShiftI dst shift));
8141 effect(KILL cr);
8142
8143 format %{ "shrl $dst, $shift" %}
8144 opcode(0xD1, 0x5); /* D1 /5 */
8145 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8146 ins_pipe(ialu_reg);
8147 %}
8148
8149 // Logical shift right by one
8150 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8151 %{
8152 match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8153 effect(KILL cr);
8154
8155 format %{ "shrl $dst, $shift" %}
8156 opcode(0xD1, 0x5); /* D1 /5 */
8157 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8158 ins_pipe(ialu_mem_imm);
8159 %}
8160
8161 // Logical Shift Right by 8-bit immediate
8162 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8163 %{
8164 match(Set dst (URShiftI dst shift));
8165 effect(KILL cr);
8166
8167 format %{ "shrl $dst, $shift" %}
8168 opcode(0xC1, 0x5); /* C1 /5 ib */
8169 ins_encode(reg_opc_imm(dst, shift));
8170 ins_pipe(ialu_reg);
8171 %}
8172
8173 // Logical Shift Right by 8-bit immediate
8174 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8175 %{
8176 match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8177 effect(KILL cr);
8178
8179 format %{ "shrl $dst, $shift" %}
8180 opcode(0xC1, 0x5); /* C1 /5 ib */
8181 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8182 ins_pipe(ialu_mem_imm);
8183 %}
8184
8185 // Logical Shift Right by variable
8186 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8187 %{
8188 match(Set dst (URShiftI dst shift));
8189 effect(KILL cr);
8190
8191 format %{ "shrl $dst, $shift" %}
8192 opcode(0xD3, 0x5); /* D3 /5 */
8193 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8194 ins_pipe(ialu_reg_reg);
8195 %}
8196
8197 // Logical Shift Right by variable
8198 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8199 %{
8200 match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8201 effect(KILL cr);
8202
8203 format %{ "shrl $dst, $shift" %}
8204 opcode(0xD3, 0x5); /* D3 /5 */
8205 ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8206 ins_pipe(ialu_mem_reg);
8207 %}
8208
8209 // Long Shift Instructions
8210 // Shift Left by one
8211 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8212 %{
8213 match(Set dst (LShiftL dst shift));
8214 effect(KILL cr);
8215
8216 format %{ "salq $dst, $shift" %}
8217 opcode(0xD1, 0x4); /* D1 /4 */
8218 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8219 ins_pipe(ialu_reg);
8220 %}
8221
8222 // Shift Left by one
8223 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8224 %{
8225 match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8226 effect(KILL cr);
8227
8228 format %{ "salq $dst, $shift" %}
8229 opcode(0xD1, 0x4); /* D1 /4 */
8230 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8231 ins_pipe(ialu_mem_imm);
8232 %}
8233
8234 // Shift Left by 8-bit immediate
8235 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8236 %{
8237 match(Set dst (LShiftL dst shift));
8238 effect(KILL cr);
8239
8240 format %{ "salq $dst, $shift" %}
8241 opcode(0xC1, 0x4); /* C1 /4 ib */
8242 ins_encode(reg_opc_imm_wide(dst, shift));
8243 ins_pipe(ialu_reg);
8244 %}
8245
8246 // Shift Left by 8-bit immediate
8247 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8248 %{
8249 match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8250 effect(KILL cr);
8251
8252 format %{ "salq $dst, $shift" %}
8253 opcode(0xC1, 0x4); /* C1 /4 ib */
8254 ins_encode(REX_mem_wide(dst), OpcP,
8255 RM_opc_mem(secondary, dst), Con8or32(shift));
8256 ins_pipe(ialu_mem_imm);
8257 %}
8258
8259 // Shift Left by variable
8260 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8261 %{
8262 match(Set dst (LShiftL dst shift));
8263 effect(KILL cr);
8264
8265 format %{ "salq $dst, $shift" %}
8266 opcode(0xD3, 0x4); /* D3 /4 */
8267 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8268 ins_pipe(ialu_reg_reg);
8269 %}
8270
8271 // Shift Left by variable
8272 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8273 %{
8274 match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8275 effect(KILL cr);
8276
8277 format %{ "salq $dst, $shift" %}
8278 opcode(0xD3, 0x4); /* D3 /4 */
8279 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8280 ins_pipe(ialu_mem_reg);
8281 %}
8282
8283 // Arithmetic shift right by one
8284 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8285 %{
8286 match(Set dst (RShiftL dst shift));
8287 effect(KILL cr);
8288
8289 format %{ "sarq $dst, $shift" %}
8290 opcode(0xD1, 0x7); /* D1 /7 */
8291 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8292 ins_pipe(ialu_reg);
8293 %}
8294
8295 // Arithmetic shift right by one
8296 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8297 %{
8298 match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8299 effect(KILL cr);
8300
8301 format %{ "sarq $dst, $shift" %}
8302 opcode(0xD1, 0x7); /* D1 /7 */
8303 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8304 ins_pipe(ialu_mem_imm);
8305 %}
8306
8307 // Arithmetic Shift Right by 8-bit immediate
8308 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8309 %{
8310 match(Set dst (RShiftL dst shift));
8311 effect(KILL cr);
8312
8313 format %{ "sarq $dst, $shift" %}
8314 opcode(0xC1, 0x7); /* C1 /7 ib */
8315 ins_encode(reg_opc_imm_wide(dst, shift));
8316 ins_pipe(ialu_mem_imm);
8317 %}
8318
8319 // Arithmetic Shift Right by 8-bit immediate
8320 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8321 %{
8322 match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8323 effect(KILL cr);
8324
8325 format %{ "sarq $dst, $shift" %}
8326 opcode(0xC1, 0x7); /* C1 /7 ib */
8327 ins_encode(REX_mem_wide(dst), OpcP,
8328 RM_opc_mem(secondary, dst), Con8or32(shift));
8329 ins_pipe(ialu_mem_imm);
8330 %}
8331
8332 // Arithmetic Shift Right by variable
8333 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8334 %{
8335 match(Set dst (RShiftL dst shift));
8336 effect(KILL cr);
8337
8338 format %{ "sarq $dst, $shift" %}
8339 opcode(0xD3, 0x7); /* D3 /7 */
8340 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8341 ins_pipe(ialu_reg_reg);
8342 %}
8343
8344 // Arithmetic Shift Right by variable
8345 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8346 %{
8347 match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8348 effect(KILL cr);
8349
8350 format %{ "sarq $dst, $shift" %}
8351 opcode(0xD3, 0x7); /* D3 /7 */
8352 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8353 ins_pipe(ialu_mem_reg);
8354 %}
8355
8356 // Logical shift right by one
8357 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8358 %{
8359 match(Set dst (URShiftL dst shift));
8360 effect(KILL cr);
8361
8362 format %{ "shrq $dst, $shift" %}
8363 opcode(0xD1, 0x5); /* D1 /5 */
8364 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8365 ins_pipe(ialu_reg);
8366 %}
8367
8368 // Logical shift right by one
8369 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8370 %{
8371 match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8372 effect(KILL cr);
8373
8374 format %{ "shrq $dst, $shift" %}
8375 opcode(0xD1, 0x5); /* D1 /5 */
8376 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8377 ins_pipe(ialu_mem_imm);
8378 %}
8379
8380 // Logical Shift Right by 8-bit immediate
8381 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8382 %{
8383 match(Set dst (URShiftL dst shift));
8384 effect(KILL cr);
8385
8386 format %{ "shrq $dst, $shift" %}
8387 opcode(0xC1, 0x5); /* C1 /5 ib */
8388 ins_encode(reg_opc_imm_wide(dst, shift));
8389 ins_pipe(ialu_reg);
8390 %}
8391
8392 // Logical Shift Right by 8-bit immediate
8393 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8394 %{
8395 match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8396 effect(KILL cr);
8397
8398 format %{ "shrq $dst, $shift" %}
8399 opcode(0xC1, 0x5); /* C1 /5 ib */
8400 ins_encode(REX_mem_wide(dst), OpcP,
8401 RM_opc_mem(secondary, dst), Con8or32(shift));
8402 ins_pipe(ialu_mem_imm);
8403 %}
8404
8405 // Logical Shift Right by variable
8406 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8407 %{
8408 match(Set dst (URShiftL dst shift));
8409 effect(KILL cr);
8410
8411 format %{ "shrq $dst, $shift" %}
8412 opcode(0xD3, 0x5); /* D3 /5 */
8413 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8414 ins_pipe(ialu_reg_reg);
8415 %}
8416
8417 // Logical Shift Right by variable
8418 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8419 %{
8420 match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8421 effect(KILL cr);
8422
8423 format %{ "shrq $dst, $shift" %}
8424 opcode(0xD3, 0x5); /* D3 /5 */
8425 ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8426 ins_pipe(ialu_mem_reg);
8427 %}
8428
8429 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8430 // This idiom is used by the compiler for the i2b bytecode.
8431 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8432 %{
8433 match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8434
8435 format %{ "movsbl $dst, $src\t# i2b" %}
8436 opcode(0x0F, 0xBE);
8437 ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8438 ins_pipe(ialu_reg_reg);
8439 %}
8440
8441 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8442 // This idiom is used by the compiler the i2s bytecode.
8443 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8444 %{
8445 match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8446
8447 format %{ "movswl $dst, $src\t# i2s" %}
8448 opcode(0x0F, 0xBF);
8449 ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8450 ins_pipe(ialu_reg_reg);
8451 %}
8452
8453 // ROL/ROR instructions
8454
8455 // ROL expand
8456 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8457 effect(KILL cr, USE_DEF dst);
8458
8459 format %{ "roll $dst" %}
8460 opcode(0xD1, 0x0); /* Opcode D1 /0 */
8461 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8462 ins_pipe(ialu_reg);
8463 %}
8464
8465 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8466 effect(USE_DEF dst, USE shift, KILL cr);
8467
8468 format %{ "roll $dst, $shift" %}
8469 opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8470 ins_encode( reg_opc_imm(dst, shift) );
8471 ins_pipe(ialu_reg);
8472 %}
8473
8474 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8475 %{
8476 effect(USE_DEF dst, USE shift, KILL cr);
8477
8478 format %{ "roll $dst, $shift" %}
8479 opcode(0xD3, 0x0); /* Opcode D3 /0 */
8480 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8481 ins_pipe(ialu_reg_reg);
8482 %}
8483 // end of ROL expand
8484
8485 // Rotate Left by one
8486 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8487 %{
8488 match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8489
8490 expand %{
8491 rolI_rReg_imm1(dst, cr);
8492 %}
8493 %}
8494
8495 // Rotate Left by 8-bit immediate
8496 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8497 %{
8498 predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8499 match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8500
8501 expand %{
8502 rolI_rReg_imm8(dst, lshift, cr);
8503 %}
8504 %}
8505
8506 // Rotate Left by variable
8507 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8508 %{
8509 match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8510
8511 expand %{
8512 rolI_rReg_CL(dst, shift, cr);
8513 %}
8514 %}
8515
8516 // Rotate Left by variable
8517 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8518 %{
8519 match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8520
8521 expand %{
8522 rolI_rReg_CL(dst, shift, cr);
8523 %}
8524 %}
8525
8526 // ROR expand
8527 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
8528 %{
8529 effect(USE_DEF dst, KILL cr);
8530
8531 format %{ "rorl $dst" %}
8532 opcode(0xD1, 0x1); /* D1 /1 */
8533 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8534 ins_pipe(ialu_reg);
8535 %}
8536
8537 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
8538 %{
8539 effect(USE_DEF dst, USE shift, KILL cr);
8540
8541 format %{ "rorl $dst, $shift" %}
8542 opcode(0xC1, 0x1); /* C1 /1 ib */
8543 ins_encode(reg_opc_imm(dst, shift));
8544 ins_pipe(ialu_reg);
8545 %}
8546
8547 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8548 %{
8549 effect(USE_DEF dst, USE shift, KILL cr);
8550
8551 format %{ "rorl $dst, $shift" %}
8552 opcode(0xD3, 0x1); /* D3 /1 */
8553 ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8554 ins_pipe(ialu_reg_reg);
8555 %}
8556 // end of ROR expand
8557
8558 // Rotate Right by one
8559 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8560 %{
8561 match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8562
8563 expand %{
8564 rorI_rReg_imm1(dst, cr);
8565 %}
8566 %}
8567
8568 // Rotate Right by 8-bit immediate
8569 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8570 %{
8571 predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8572 match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8573
8574 expand %{
8575 rorI_rReg_imm8(dst, rshift, cr);
8576 %}
8577 %}
8578
8579 // Rotate Right by variable
8580 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8581 %{
8582 match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8583
8584 expand %{
8585 rorI_rReg_CL(dst, shift, cr);
8586 %}
8587 %}
8588
8589 // Rotate Right by variable
8590 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8591 %{
8592 match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8593
8594 expand %{
8595 rorI_rReg_CL(dst, shift, cr);
8596 %}
8597 %}
8598
8599 // for long rotate
8600 // ROL expand
8601 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
8602 effect(USE_DEF dst, KILL cr);
8603
8604 format %{ "rolq $dst" %}
8605 opcode(0xD1, 0x0); /* Opcode D1 /0 */
8606 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8607 ins_pipe(ialu_reg);
8608 %}
8609
8610 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
8611 effect(USE_DEF dst, USE shift, KILL cr);
8612
8613 format %{ "rolq $dst, $shift" %}
8614 opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8615 ins_encode( reg_opc_imm_wide(dst, shift) );
8616 ins_pipe(ialu_reg);
8617 %}
8618
8619 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8620 %{
8621 effect(USE_DEF dst, USE shift, KILL cr);
8622
8623 format %{ "rolq $dst, $shift" %}
8624 opcode(0xD3, 0x0); /* Opcode D3 /0 */
8625 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8626 ins_pipe(ialu_reg_reg);
8627 %}
8628 // end of ROL expand
8629
8630 // Rotate Left by one
8631 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8632 %{
8633 match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8634
8635 expand %{
8636 rolL_rReg_imm1(dst, cr);
8637 %}
8638 %}
8639
8640 // Rotate Left by 8-bit immediate
8641 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8642 %{
8643 predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8644 match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8645
8646 expand %{
8647 rolL_rReg_imm8(dst, lshift, cr);
8648 %}
8649 %}
8650
8651 // Rotate Left by variable
8652 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8653 %{
8654 match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
8655
8656 expand %{
8657 rolL_rReg_CL(dst, shift, cr);
8658 %}
8659 %}
8660
8661 // Rotate Left by variable
8662 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8663 %{
8664 match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
8665
8666 expand %{
8667 rolL_rReg_CL(dst, shift, cr);
8668 %}
8669 %}
8670
8671 // ROR expand
8672 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
8673 %{
8674 effect(USE_DEF dst, KILL cr);
8675
8676 format %{ "rorq $dst" %}
8677 opcode(0xD1, 0x1); /* D1 /1 */
8678 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8679 ins_pipe(ialu_reg);
8680 %}
8681
8682 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
8683 %{
8684 effect(USE_DEF dst, USE shift, KILL cr);
8685
8686 format %{ "rorq $dst, $shift" %}
8687 opcode(0xC1, 0x1); /* C1 /1 ib */
8688 ins_encode(reg_opc_imm_wide(dst, shift));
8689 ins_pipe(ialu_reg);
8690 %}
8691
8692 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8693 %{
8694 effect(USE_DEF dst, USE shift, KILL cr);
8695
8696 format %{ "rorq $dst, $shift" %}
8697 opcode(0xD3, 0x1); /* D3 /1 */
8698 ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8699 ins_pipe(ialu_reg_reg);
8700 %}
8701 // end of ROR expand
8702
8703 // Rotate Right by one
8704 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8705 %{
8706 match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8707
8708 expand %{
8709 rorL_rReg_imm1(dst, cr);
8710 %}
8711 %}
8712
8713 // Rotate Right by 8-bit immediate
8714 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8715 %{
8716 predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8717 match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8718
8719 expand %{
8720 rorL_rReg_imm8(dst, rshift, cr);
8721 %}
8722 %}
8723
8724 // Rotate Right by variable
8725 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8726 %{
8727 match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
8728
8729 expand %{
8730 rorL_rReg_CL(dst, shift, cr);
8731 %}
8732 %}
8733
8734 // Rotate Right by variable
8735 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8736 %{
8737 match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
8738
8739 expand %{
8740 rorL_rReg_CL(dst, shift, cr);
8741 %}
8742 %}
8743
8744 // Logical Instructions
8745
8746 // Integer Logical Instructions
8747
8748 // And Instructions
8749 // And Register with Register
8750 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8751 %{
8752 match(Set dst (AndI dst src));
8753 effect(KILL cr);
8754
8755 format %{ "andl $dst, $src\t# int" %}
8756 opcode(0x23);
8757 ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8758 ins_pipe(ialu_reg_reg);
8759 %}
8760
8761 // And Register with Immediate 255
8762 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
8763 %{
8764 match(Set dst (AndI dst src));
8765
8766 format %{ "movzbl $dst, $dst\t# int & 0xFF" %}
8767 opcode(0x0F, 0xB6);
8768 ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8769 ins_pipe(ialu_reg);
8770 %}
8771
8772 // And Register with Immediate 255 and promote to long
8773 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
8774 %{
8775 match(Set dst (ConvI2L (AndI src mask)));
8776
8777 format %{ "movzbl $dst, $src\t# int & 0xFF -> long" %}
8778 opcode(0x0F, 0xB6);
8779 ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8780 ins_pipe(ialu_reg);
8781 %}
8782
8783 // And Register with Immediate 65535
8784 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
8785 %{
8786 match(Set dst (AndI dst src));
8787
8788 format %{ "movzwl $dst, $dst\t# int & 0xFFFF" %}
8789 opcode(0x0F, 0xB7);
8790 ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8791 ins_pipe(ialu_reg);
8792 %}
8793
8794 // And Register with Immediate 65535 and promote to long
8795 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
8796 %{
8797 match(Set dst (ConvI2L (AndI src mask)));
8798
8799 format %{ "movzwl $dst, $src\t# int & 0xFFFF -> long" %}
8800 opcode(0x0F, 0xB7);
8801 ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8802 ins_pipe(ialu_reg);
8803 %}
8804
8805 // And Register with Immediate
8806 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8807 %{
8808 match(Set dst (AndI dst src));
8809 effect(KILL cr);
8810
8811 format %{ "andl $dst, $src\t# int" %}
8812 opcode(0x81, 0x04); /* Opcode 81 /4 */
8813 ins_encode(OpcSErm(dst, src), Con8or32(src));
8814 ins_pipe(ialu_reg);
8815 %}
8816
8817 // And Register with Memory
8818 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8819 %{
8820 match(Set dst (AndI dst (LoadI src)));
8821 effect(KILL cr);
8822
8823 ins_cost(125);
8824 format %{ "andl $dst, $src\t# int" %}
8825 opcode(0x23);
8826 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8827 ins_pipe(ialu_reg_mem);
8828 %}
8829
8830 // And Memory with Register
8831 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8832 %{
8833 match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8834 effect(KILL cr);
8835
8836 ins_cost(150);
8837 format %{ "andl $dst, $src\t# int" %}
8838 opcode(0x21); /* Opcode 21 /r */
8839 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8840 ins_pipe(ialu_mem_reg);
8841 %}
8842
8843 // And Memory with Immediate
8844 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
8845 %{
8846 match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8847 effect(KILL cr);
8848
8849 ins_cost(125);
8850 format %{ "andl $dst, $src\t# int" %}
8851 opcode(0x81, 0x4); /* Opcode 81 /4 id */
8852 ins_encode(REX_mem(dst), OpcSE(src),
8853 RM_opc_mem(secondary, dst), Con8or32(src));
8854 ins_pipe(ialu_mem_imm);
8855 %}
8856
8857 // Or Instructions
8858 // Or Register with Register
8859 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8860 %{
8861 match(Set dst (OrI dst src));
8862 effect(KILL cr);
8863
8864 format %{ "orl $dst, $src\t# int" %}
8865 opcode(0x0B);
8866 ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8867 ins_pipe(ialu_reg_reg);
8868 %}
8869
8870 // Or Register with Immediate
8871 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8872 %{
8873 match(Set dst (OrI dst src));
8874 effect(KILL cr);
8875
8876 format %{ "orl $dst, $src\t# int" %}
8877 opcode(0x81, 0x01); /* Opcode 81 /1 id */
8878 ins_encode(OpcSErm(dst, src), Con8or32(src));
8879 ins_pipe(ialu_reg);
8880 %}
8881
8882 // Or Register with Memory
8883 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8884 %{
8885 match(Set dst (OrI dst (LoadI src)));
8886 effect(KILL cr);
8887
8888 ins_cost(125);
8889 format %{ "orl $dst, $src\t# int" %}
8890 opcode(0x0B);
8891 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8892 ins_pipe(ialu_reg_mem);
8893 %}
8894
8895 // Or Memory with Register
8896 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8897 %{
8898 match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8899 effect(KILL cr);
8900
8901 ins_cost(150);
8902 format %{ "orl $dst, $src\t# int" %}
8903 opcode(0x09); /* Opcode 09 /r */
8904 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8905 ins_pipe(ialu_mem_reg);
8906 %}
8907
8908 // Or Memory with Immediate
8909 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
8910 %{
8911 match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8912 effect(KILL cr);
8913
8914 ins_cost(125);
8915 format %{ "orl $dst, $src\t# int" %}
8916 opcode(0x81, 0x1); /* Opcode 81 /1 id */
8917 ins_encode(REX_mem(dst), OpcSE(src),
8918 RM_opc_mem(secondary, dst), Con8or32(src));
8919 ins_pipe(ialu_mem_imm);
8920 %}
8921
8922 // Xor Instructions
8923 // Xor Register with Register
8924 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8925 %{
8926 match(Set dst (XorI dst src));
8927 effect(KILL cr);
8928
8929 format %{ "xorl $dst, $src\t# int" %}
8930 opcode(0x33);
8931 ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8932 ins_pipe(ialu_reg_reg);
8933 %}
8934
8935 // Xor Register with Immediate
8936 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8937 %{
8938 match(Set dst (XorI dst src));
8939 effect(KILL cr);
8940
8941 format %{ "xorl $dst, $src\t# int" %}
8942 opcode(0x81, 0x06); /* Opcode 81 /6 id */
8943 ins_encode(OpcSErm(dst, src), Con8or32(src));
8944 ins_pipe(ialu_reg);
8945 %}
8946
8947 // Xor Register with Memory
8948 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8949 %{
8950 match(Set dst (XorI dst (LoadI src)));
8951 effect(KILL cr);
8952
8953 ins_cost(125);
8954 format %{ "xorl $dst, $src\t# int" %}
8955 opcode(0x33);
8956 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8957 ins_pipe(ialu_reg_mem);
8958 %}
8959
8960 // Xor Memory with Register
8961 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8962 %{
8963 match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8964 effect(KILL cr);
8965
8966 ins_cost(150);
8967 format %{ "xorl $dst, $src\t# int" %}
8968 opcode(0x31); /* Opcode 31 /r */
8969 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8970 ins_pipe(ialu_mem_reg);
8971 %}
8972
8973 // Xor Memory with Immediate
8974 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
8975 %{
8976 match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8977 effect(KILL cr);
8978
8979 ins_cost(125);
8980 format %{ "xorl $dst, $src\t# int" %}
8981 opcode(0x81, 0x6); /* Opcode 81 /6 id */
8982 ins_encode(REX_mem(dst), OpcSE(src),
8983 RM_opc_mem(secondary, dst), Con8or32(src));
8984 ins_pipe(ialu_mem_imm);
8985 %}
8986
8987
8988 // Long Logical Instructions
8989
8990 // And Instructions
8991 // And Register with Register
8992 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8993 %{
8994 match(Set dst (AndL dst src));
8995 effect(KILL cr);
8996
8997 format %{ "andq $dst, $src\t# long" %}
8998 opcode(0x23);
8999 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9000 ins_pipe(ialu_reg_reg);
9001 %}
9002
9003 // And Register with Immediate 255
9004 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9005 %{
9006 match(Set dst (AndL dst src));
9007
9008 format %{ "movzbq $dst, $src\t# long & 0xFF" %}
9009 opcode(0x0F, 0xB6);
9010 ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9011 ins_pipe(ialu_reg);
9012 %}
9013
9014 // And Register with Immediate 65535
9015 instruct andL_rReg_imm65535(rRegI dst, immL_65535 src)
9016 %{
9017 match(Set dst (AndL dst src));
9018
9019 format %{ "movzwq $dst, $dst\t# long & 0xFFFF" %}
9020 opcode(0x0F, 0xB7);
9021 ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9022 ins_pipe(ialu_reg);
9023 %}
9024
9025 // And Register with Immediate
9026 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9027 %{
9028 match(Set dst (AndL dst src));
9029 effect(KILL cr);
9030
9031 format %{ "andq $dst, $src\t# long" %}
9032 opcode(0x81, 0x04); /* Opcode 81 /4 */
9033 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9034 ins_pipe(ialu_reg);
9035 %}
9036
9037 // And Register with Memory
9038 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9039 %{
9040 match(Set dst (AndL dst (LoadL src)));
9041 effect(KILL cr);
9042
9043 ins_cost(125);
9044 format %{ "andq $dst, $src\t# long" %}
9045 opcode(0x23);
9046 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9047 ins_pipe(ialu_reg_mem);
9048 %}
9049
9050 // And Memory with Register
9051 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9052 %{
9053 match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9054 effect(KILL cr);
9055
9056 ins_cost(150);
9057 format %{ "andq $dst, $src\t# long" %}
9058 opcode(0x21); /* Opcode 21 /r */
9059 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9060 ins_pipe(ialu_mem_reg);
9061 %}
9062
9063 // And Memory with Immediate
9064 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9065 %{
9066 match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9067 effect(KILL cr);
9068
9069 ins_cost(125);
9070 format %{ "andq $dst, $src\t# long" %}
9071 opcode(0x81, 0x4); /* Opcode 81 /4 id */
9072 ins_encode(REX_mem_wide(dst), OpcSE(src),
9073 RM_opc_mem(secondary, dst), Con8or32(src));
9074 ins_pipe(ialu_mem_imm);
9075 %}
9076
9077 // Or Instructions
9078 // Or Register with Register
9079 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9080 %{
9081 match(Set dst (OrL dst src));
9082 effect(KILL cr);
9083
9084 format %{ "orq $dst, $src\t# long" %}
9085 opcode(0x0B);
9086 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9087 ins_pipe(ialu_reg_reg);
9088 %}
9089
9090 // Or Register with Immediate
9091 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9092 %{
9093 match(Set dst (OrL dst src));
9094 effect(KILL cr);
9095
9096 format %{ "orq $dst, $src\t# long" %}
9097 opcode(0x81, 0x01); /* Opcode 81 /1 id */
9098 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9099 ins_pipe(ialu_reg);
9100 %}
9101
9102 // Or Register with Memory
9103 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9104 %{
9105 match(Set dst (OrL dst (LoadL src)));
9106 effect(KILL cr);
9107
9108 ins_cost(125);
9109 format %{ "orq $dst, $src\t# long" %}
9110 opcode(0x0B);
9111 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9112 ins_pipe(ialu_reg_mem);
9113 %}
9114
9115 // Or Memory with Register
9116 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9117 %{
9118 match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9119 effect(KILL cr);
9120
9121 ins_cost(150);
9122 format %{ "orq $dst, $src\t# long" %}
9123 opcode(0x09); /* Opcode 09 /r */
9124 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9125 ins_pipe(ialu_mem_reg);
9126 %}
9127
9128 // Or Memory with Immediate
9129 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9130 %{
9131 match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9132 effect(KILL cr);
9133
9134 ins_cost(125);
9135 format %{ "orq $dst, $src\t# long" %}
9136 opcode(0x81, 0x1); /* Opcode 81 /1 id */
9137 ins_encode(REX_mem_wide(dst), OpcSE(src),
9138 RM_opc_mem(secondary, dst), Con8or32(src));
9139 ins_pipe(ialu_mem_imm);
9140 %}
9141
9142 // Xor Instructions
9143 // Xor Register with Register
9144 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9145 %{
9146 match(Set dst (XorL dst src));
9147 effect(KILL cr);
9148
9149 format %{ "xorq $dst, $src\t# long" %}
9150 opcode(0x33);
9151 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9152 ins_pipe(ialu_reg_reg);
9153 %}
9154
9155 // Xor Register with Immediate
9156 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9157 %{
9158 match(Set dst (XorL dst src));
9159 effect(KILL cr);
9160
9161 format %{ "xorq $dst, $src\t# long" %}
9162 opcode(0x81, 0x06); /* Opcode 81 /6 id */
9163 ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9164 ins_pipe(ialu_reg);
9165 %}
9166
9167 // Xor Register with Memory
9168 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9169 %{
9170 match(Set dst (XorL dst (LoadL src)));
9171 effect(KILL cr);
9172
9173 ins_cost(125);
9174 format %{ "xorq $dst, $src\t# long" %}
9175 opcode(0x33);
9176 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9177 ins_pipe(ialu_reg_mem);
9178 %}
9179
9180 // Xor Memory with Register
9181 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9182 %{
9183 match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9184 effect(KILL cr);
9185
9186 ins_cost(150);
9187 format %{ "xorq $dst, $src\t# long" %}
9188 opcode(0x31); /* Opcode 31 /r */
9189 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9190 ins_pipe(ialu_mem_reg);
9191 %}
9192
9193 // Xor Memory with Immediate
9194 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9195 %{
9196 match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9197 effect(KILL cr);
9198
9199 ins_cost(125);
9200 format %{ "xorq $dst, $src\t# long" %}
9201 opcode(0x81, 0x6); /* Opcode 81 /6 id */
9202 ins_encode(REX_mem_wide(dst), OpcSE(src),
9203 RM_opc_mem(secondary, dst), Con8or32(src));
9204 ins_pipe(ialu_mem_imm);
9205 %}
9206
9207 // Convert Int to Boolean
9208 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9209 %{
9210 match(Set dst (Conv2B src));
9211 effect(KILL cr);
9212
9213 format %{ "testl $src, $src\t# ci2b\n\t"
9214 "setnz $dst\n\t"
9215 "movzbl $dst, $dst" %}
9216 ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9217 setNZ_reg(dst),
9218 REX_reg_breg(dst, dst), // movzbl
9219 Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9220 ins_pipe(pipe_slow); // XXX
9221 %}
9222
9223 // Convert Pointer to Boolean
9224 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9225 %{
9226 match(Set dst (Conv2B src));
9227 effect(KILL cr);
9228
9229 format %{ "testq $src, $src\t# cp2b\n\t"
9230 "setnz $dst\n\t"
9231 "movzbl $dst, $dst" %}
9232 ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9233 setNZ_reg(dst),
9234 REX_reg_breg(dst, dst), // movzbl
9235 Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9236 ins_pipe(pipe_slow); // XXX
9237 %}
9238
9239 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9240 %{
9241 match(Set dst (CmpLTMask p q));
9242 effect(KILL cr);
9243
9244 ins_cost(400); // XXX
9245 format %{ "cmpl $p, $q\t# cmpLTMask\n\t"
9246 "setlt $dst\n\t"
9247 "movzbl $dst, $dst\n\t"
9248 "negl $dst" %}
9249 ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9250 setLT_reg(dst),
9251 REX_reg_breg(dst, dst), // movzbl
9252 Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9253 neg_reg(dst));
9254 ins_pipe(pipe_slow);
9255 %}
9256
9257 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9258 %{
9259 match(Set dst (CmpLTMask dst zero));
9260 effect(KILL cr);
9261
9262 ins_cost(100); // XXX
9263 format %{ "sarl $dst, #31\t# cmpLTMask0" %}
9264 opcode(0xC1, 0x7); /* C1 /7 ib */
9265 ins_encode(reg_opc_imm(dst, 0x1F));
9266 ins_pipe(ialu_reg);
9267 %}
9268
9269
9270 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
9271 rRegI tmp,
9272 rFlagsReg cr)
9273 %{
9274 match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9275 effect(TEMP tmp, KILL cr);
9276
9277 ins_cost(400); // XXX
9278 format %{ "subl $p, $q\t# cadd_cmpLTMask1\n\t"
9279 "sbbl $tmp, $tmp\n\t"
9280 "andl $tmp, $y\n\t"
9281 "addl $p, $tmp" %}
9282 ins_encode(enc_cmpLTP(p, q, y, tmp));
9283 ins_pipe(pipe_cmplt);
9284 %}
9285
9286 /* If I enable this, I encourage spilling in the inner loop of compress.
9287 instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
9288 %{
9289 match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9290 effect( TEMP tmp, KILL cr );
9291 ins_cost(400);
9292
9293 format %{ "SUB $p,$q\n\t"
9294 "SBB RCX,RCX\n\t"
9295 "AND RCX,$y\n\t"
9296 "ADD $p,RCX" %}
9297 ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9298 %}
9299 */
9300
9301 //---------- FP Instructions------------------------------------------------
9302
9303 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9304 %{
9305 match(Set cr (CmpF src1 src2));
9306
9307 ins_cost(145);
9308 format %{ "ucomiss $src1, $src2\n\t"
9309 "jnp,s exit\n\t"
9310 "pushfq\t# saw NaN, set CF\n\t"
9311 "andq [rsp], #0xffffff2b\n\t"
9312 "popfq\n"
9313 "exit: nop\t# avoid branch to branch" %}
9314 opcode(0x0F, 0x2E);
9315 ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
9316 cmpfp_fixup);
9317 ins_pipe(pipe_slow);
9318 %}
9319
9320 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
9321 %{
9322 match(Set cr (CmpF src1 (LoadF src2)));
9323
9324 ins_cost(145);
9325 format %{ "ucomiss $src1, $src2\n\t"
9326 "jnp,s exit\n\t"
9327 "pushfq\t# saw NaN, set CF\n\t"
9328 "andq [rsp], #0xffffff2b\n\t"
9329 "popfq\n"
9330 "exit: nop\t# avoid branch to branch" %}
9331 opcode(0x0F, 0x2E);
9332 ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
9333 cmpfp_fixup);
9334 ins_pipe(pipe_slow);
9335 %}
9336
9337 instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
9338 %{
9339 match(Set cr (CmpF src1 src2));
9340
9341 ins_cost(145);
9342 format %{ "ucomiss $src1, $src2\n\t"
9343 "jnp,s exit\n\t"
9344 "pushfq\t# saw NaN, set CF\n\t"
9345 "andq [rsp], #0xffffff2b\n\t"
9346 "popfq\n"
9347 "exit: nop\t# avoid branch to branch" %}
9348 opcode(0x0F, 0x2E);
9349 ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
9350 cmpfp_fixup);
9351 ins_pipe(pipe_slow);
9352 %}
9353
9354 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
9355 %{
9356 match(Set cr (CmpD src1 src2));
9357
9358 ins_cost(145);
9359 format %{ "ucomisd $src1, $src2\n\t"
9360 "jnp,s exit\n\t"
9361 "pushfq\t# saw NaN, set CF\n\t"
9362 "andq [rsp], #0xffffff2b\n\t"
9363 "popfq\n"
9364 "exit: nop\t# avoid branch to branch" %}
9365 opcode(0x66, 0x0F, 0x2E);
9366 ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
9367 cmpfp_fixup);
9368 ins_pipe(pipe_slow);
9369 %}
9370
9371 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
9372 %{
9373 match(Set cr (CmpD src1 (LoadD src2)));
9374
9375 ins_cost(145);
9376 format %{ "ucomisd $src1, $src2\n\t"
9377 "jnp,s exit\n\t"
9378 "pushfq\t# saw NaN, set CF\n\t"
9379 "andq [rsp], #0xffffff2b\n\t"
9380 "popfq\n"
9381 "exit: nop\t# avoid branch to branch" %}
9382 opcode(0x66, 0x0F, 0x2E);
9383 ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
9384 cmpfp_fixup);
9385 ins_pipe(pipe_slow);
9386 %}
9387
9388 instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
9389 %{
9390 match(Set cr (CmpD src1 src2));
9391
9392 ins_cost(145);
9393 format %{ "ucomisd $src1, [$src2]\n\t"
9394 "jnp,s exit\n\t"
9395 "pushfq\t# saw NaN, set CF\n\t"
9396 "andq [rsp], #0xffffff2b\n\t"
9397 "popfq\n"
9398 "exit: nop\t# avoid branch to branch" %}
9399 opcode(0x66, 0x0F, 0x2E);
9400 ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
9401 cmpfp_fixup);
9402 ins_pipe(pipe_slow);
9403 %}
9404
9405 // Compare into -1,0,1
9406 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
9407 %{
9408 match(Set dst (CmpF3 src1 src2));
9409 effect(KILL cr);
9410
9411 ins_cost(275);
9412 format %{ "ucomiss $src1, $src2\n\t"
9413 "movl $dst, #-1\n\t"
9414 "jp,s done\n\t"
9415 "jb,s done\n\t"
9416 "setne $dst\n\t"
9417 "movzbl $dst, $dst\n"
9418 "done:" %}
9419
9420 opcode(0x0F, 0x2E);
9421 ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
9422 cmpfp3(dst));
9423 ins_pipe(pipe_slow);
9424 %}
9425
9426 // Compare into -1,0,1
9427 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
9428 %{
9429 match(Set dst (CmpF3 src1 (LoadF src2)));
9430 effect(KILL cr);
9431
9432 ins_cost(275);
9433 format %{ "ucomiss $src1, $src2\n\t"
9434 "movl $dst, #-1\n\t"
9435 "jp,s done\n\t"
9436 "jb,s done\n\t"
9437 "setne $dst\n\t"
9438 "movzbl $dst, $dst\n"
9439 "done:" %}
9440
9441 opcode(0x0F, 0x2E);
9442 ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
9443 cmpfp3(dst));
9444 ins_pipe(pipe_slow);
9445 %}
9446
9447 // Compare into -1,0,1
9448 instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
9449 %{
9450 match(Set dst (CmpF3 src1 src2));
9451 effect(KILL cr);
9452
9453 ins_cost(275);
9454 format %{ "ucomiss $src1, [$src2]\n\t"
9455 "movl $dst, #-1\n\t"
9456 "jp,s done\n\t"
9457 "jb,s done\n\t"
9458 "setne $dst\n\t"
9459 "movzbl $dst, $dst\n"
9460 "done:" %}
9461
9462 opcode(0x0F, 0x2E);
9463 ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
9464 cmpfp3(dst));
9465 ins_pipe(pipe_slow);
9466 %}
9467
9468 // Compare into -1,0,1
9469 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
9470 %{
9471 match(Set dst (CmpD3 src1 src2));
9472 effect(KILL cr);
9473
9474 ins_cost(275);
9475 format %{ "ucomisd $src1, $src2\n\t"
9476 "movl $dst, #-1\n\t"
9477 "jp,s done\n\t"
9478 "jb,s done\n\t"
9479 "setne $dst\n\t"
9480 "movzbl $dst, $dst\n"
9481 "done:" %}
9482
9483 opcode(0x66, 0x0F, 0x2E);
9484 ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
9485 cmpfp3(dst));
9486 ins_pipe(pipe_slow);
9487 %}
9488
9489 // Compare into -1,0,1
9490 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
9491 %{
9492 match(Set dst (CmpD3 src1 (LoadD src2)));
9493 effect(KILL cr);
9494
9495 ins_cost(275);
9496 format %{ "ucomisd $src1, $src2\n\t"
9497 "movl $dst, #-1\n\t"
9498 "jp,s done\n\t"
9499 "jb,s done\n\t"
9500 "setne $dst\n\t"
9501 "movzbl $dst, $dst\n"
9502 "done:" %}
9503
9504 opcode(0x66, 0x0F, 0x2E);
9505 ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
9506 cmpfp3(dst));
9507 ins_pipe(pipe_slow);
9508 %}
9509
9510 // Compare into -1,0,1
9511 instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
9512 %{
9513 match(Set dst (CmpD3 src1 src2));
9514 effect(KILL cr);
9515
9516 ins_cost(275);
9517 format %{ "ucomisd $src1, [$src2]\n\t"
9518 "movl $dst, #-1\n\t"
9519 "jp,s done\n\t"
9520 "jb,s done\n\t"
9521 "setne $dst\n\t"
9522 "movzbl $dst, $dst\n"
9523 "done:" %}
9524
9525 opcode(0x66, 0x0F, 0x2E);
9526 ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
9527 cmpfp3(dst));
9528 ins_pipe(pipe_slow);
9529 %}
9530
9531 instruct addF_reg(regF dst, regF src)
9532 %{
9533 match(Set dst (AddF dst src));
9534
9535 format %{ "addss $dst, $src" %}
9536 ins_cost(150); // XXX
9537 opcode(0xF3, 0x0F, 0x58);
9538 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9539 ins_pipe(pipe_slow);
9540 %}
9541
9542 instruct addF_mem(regF dst, memory src)
9543 %{
9544 match(Set dst (AddF dst (LoadF src)));
9545
9546 format %{ "addss $dst, $src" %}
9547 ins_cost(150); // XXX
9548 opcode(0xF3, 0x0F, 0x58);
9549 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9550 ins_pipe(pipe_slow);
9551 %}
9552
9553 instruct addF_imm(regF dst, immF src)
9554 %{
9555 match(Set dst (AddF dst src));
9556
9557 format %{ "addss $dst, [$src]" %}
9558 ins_cost(150); // XXX
9559 opcode(0xF3, 0x0F, 0x58);
9560 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
9561 ins_pipe(pipe_slow);
9562 %}
9563
9564 instruct addD_reg(regD dst, regD src)
9565 %{
9566 match(Set dst (AddD dst src));
9567
9568 format %{ "addsd $dst, $src" %}
9569 ins_cost(150); // XXX
9570 opcode(0xF2, 0x0F, 0x58);
9571 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9572 ins_pipe(pipe_slow);
9573 %}
9574
9575 instruct addD_mem(regD dst, memory src)
9576 %{
9577 match(Set dst (AddD dst (LoadD src)));
9578
9579 format %{ "addsd $dst, $src" %}
9580 ins_cost(150); // XXX
9581 opcode(0xF2, 0x0F, 0x58);
9582 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9583 ins_pipe(pipe_slow);
9584 %}
9585
9586 instruct addD_imm(regD dst, immD src)
9587 %{
9588 match(Set dst (AddD dst src));
9589
9590 format %{ "addsd $dst, [$src]" %}
9591 ins_cost(150); // XXX
9592 opcode(0xF2, 0x0F, 0x58);
9593 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
9594 ins_pipe(pipe_slow);
9595 %}
9596
9597 instruct subF_reg(regF dst, regF src)
9598 %{
9599 match(Set dst (SubF dst src));
9600
9601 format %{ "subss $dst, $src" %}
9602 ins_cost(150); // XXX
9603 opcode(0xF3, 0x0F, 0x5C);
9604 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9605 ins_pipe(pipe_slow);
9606 %}
9607
9608 instruct subF_mem(regF dst, memory src)
9609 %{
9610 match(Set dst (SubF dst (LoadF src)));
9611
9612 format %{ "subss $dst, $src" %}
9613 ins_cost(150); // XXX
9614 opcode(0xF3, 0x0F, 0x5C);
9615 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9616 ins_pipe(pipe_slow);
9617 %}
9618
9619 instruct subF_imm(regF dst, immF src)
9620 %{
9621 match(Set dst (SubF dst src));
9622
9623 format %{ "subss $dst, [$src]" %}
9624 ins_cost(150); // XXX
9625 opcode(0xF3, 0x0F, 0x5C);
9626 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
9627 ins_pipe(pipe_slow);
9628 %}
9629
9630 instruct subD_reg(regD dst, regD src)
9631 %{
9632 match(Set dst (SubD dst src));
9633
9634 format %{ "subsd $dst, $src" %}
9635 ins_cost(150); // XXX
9636 opcode(0xF2, 0x0F, 0x5C);
9637 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9638 ins_pipe(pipe_slow);
9639 %}
9640
9641 instruct subD_mem(regD dst, memory src)
9642 %{
9643 match(Set dst (SubD dst (LoadD src)));
9644
9645 format %{ "subsd $dst, $src" %}
9646 ins_cost(150); // XXX
9647 opcode(0xF2, 0x0F, 0x5C);
9648 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9649 ins_pipe(pipe_slow);
9650 %}
9651
9652 instruct subD_imm(regD dst, immD src)
9653 %{
9654 match(Set dst (SubD dst src));
9655
9656 format %{ "subsd $dst, [$src]" %}
9657 ins_cost(150); // XXX
9658 opcode(0xF2, 0x0F, 0x5C);
9659 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
9660 ins_pipe(pipe_slow);
9661 %}
9662
9663 instruct mulF_reg(regF dst, regF src)
9664 %{
9665 match(Set dst (MulF dst src));
9666
9667 format %{ "mulss $dst, $src" %}
9668 ins_cost(150); // XXX
9669 opcode(0xF3, 0x0F, 0x59);
9670 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9671 ins_pipe(pipe_slow);
9672 %}
9673
9674 instruct mulF_mem(regF dst, memory src)
9675 %{
9676 match(Set dst (MulF dst (LoadF src)));
9677
9678 format %{ "mulss $dst, $src" %}
9679 ins_cost(150); // XXX
9680 opcode(0xF3, 0x0F, 0x59);
9681 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9682 ins_pipe(pipe_slow);
9683 %}
9684
9685 instruct mulF_imm(regF dst, immF src)
9686 %{
9687 match(Set dst (MulF dst src));
9688
9689 format %{ "mulss $dst, [$src]" %}
9690 ins_cost(150); // XXX
9691 opcode(0xF3, 0x0F, 0x59);
9692 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
9693 ins_pipe(pipe_slow);
9694 %}
9695
9696 instruct mulD_reg(regD dst, regD src)
9697 %{
9698 match(Set dst (MulD dst src));
9699
9700 format %{ "mulsd $dst, $src" %}
9701 ins_cost(150); // XXX
9702 opcode(0xF2, 0x0F, 0x59);
9703 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9704 ins_pipe(pipe_slow);
9705 %}
9706
9707 instruct mulD_mem(regD dst, memory src)
9708 %{
9709 match(Set dst (MulD dst (LoadD src)));
9710
9711 format %{ "mulsd $dst, $src" %}
9712 ins_cost(150); // XXX
9713 opcode(0xF2, 0x0F, 0x59);
9714 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9715 ins_pipe(pipe_slow);
9716 %}
9717
9718 instruct mulD_imm(regD dst, immD src)
9719 %{
9720 match(Set dst (MulD dst src));
9721
9722 format %{ "mulsd $dst, [$src]" %}
9723 ins_cost(150); // XXX
9724 opcode(0xF2, 0x0F, 0x59);
9725 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
9726 ins_pipe(pipe_slow);
9727 %}
9728
9729 instruct divF_reg(regF dst, regF src)
9730 %{
9731 match(Set dst (DivF dst src));
9732
9733 format %{ "divss $dst, $src" %}
9734 ins_cost(150); // XXX
9735 opcode(0xF3, 0x0F, 0x5E);
9736 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9737 ins_pipe(pipe_slow);
9738 %}
9739
9740 instruct divF_mem(regF dst, memory src)
9741 %{
9742 match(Set dst (DivF dst (LoadF src)));
9743
9744 format %{ "divss $dst, $src" %}
9745 ins_cost(150); // XXX
9746 opcode(0xF3, 0x0F, 0x5E);
9747 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9748 ins_pipe(pipe_slow);
9749 %}
9750
9751 instruct divF_imm(regF dst, immF src)
9752 %{
9753 match(Set dst (DivF dst src));
9754
9755 format %{ "divss $dst, [$src]" %}
9756 ins_cost(150); // XXX
9757 opcode(0xF3, 0x0F, 0x5E);
9758 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
9759 ins_pipe(pipe_slow);
9760 %}
9761
9762 instruct divD_reg(regD dst, regD src)
9763 %{
9764 match(Set dst (DivD dst src));
9765
9766 format %{ "divsd $dst, $src" %}
9767 ins_cost(150); // XXX
9768 opcode(0xF2, 0x0F, 0x5E);
9769 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9770 ins_pipe(pipe_slow);
9771 %}
9772
9773 instruct divD_mem(regD dst, memory src)
9774 %{
9775 match(Set dst (DivD dst (LoadD src)));
9776
9777 format %{ "divsd $dst, $src" %}
9778 ins_cost(150); // XXX
9779 opcode(0xF2, 0x0F, 0x5E);
9780 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9781 ins_pipe(pipe_slow);
9782 %}
9783
9784 instruct divD_imm(regD dst, immD src)
9785 %{
9786 match(Set dst (DivD dst src));
9787
9788 format %{ "divsd $dst, [$src]" %}
9789 ins_cost(150); // XXX
9790 opcode(0xF2, 0x0F, 0x5E);
9791 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
9792 ins_pipe(pipe_slow);
9793 %}
9794
9795 instruct sqrtF_reg(regF dst, regF src)
9796 %{
9797 match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
9798
9799 format %{ "sqrtss $dst, $src" %}
9800 ins_cost(150); // XXX
9801 opcode(0xF3, 0x0F, 0x51);
9802 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9803 ins_pipe(pipe_slow);
9804 %}
9805
9806 instruct sqrtF_mem(regF dst, memory src)
9807 %{
9808 match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
9809
9810 format %{ "sqrtss $dst, $src" %}
9811 ins_cost(150); // XXX
9812 opcode(0xF3, 0x0F, 0x51);
9813 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9814 ins_pipe(pipe_slow);
9815 %}
9816
9817 instruct sqrtF_imm(regF dst, immF src)
9818 %{
9819 match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
9820
9821 format %{ "sqrtss $dst, [$src]" %}
9822 ins_cost(150); // XXX
9823 opcode(0xF3, 0x0F, 0x51);
9824 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
9825 ins_pipe(pipe_slow);
9826 %}
9827
9828 instruct sqrtD_reg(regD dst, regD src)
9829 %{
9830 match(Set dst (SqrtD src));
9831
9832 format %{ "sqrtsd $dst, $src" %}
9833 ins_cost(150); // XXX
9834 opcode(0xF2, 0x0F, 0x51);
9835 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9836 ins_pipe(pipe_slow);
9837 %}
9838
9839 instruct sqrtD_mem(regD dst, memory src)
9840 %{
9841 match(Set dst (SqrtD (LoadD src)));
9842
9843 format %{ "sqrtsd $dst, $src" %}
9844 ins_cost(150); // XXX
9845 opcode(0xF2, 0x0F, 0x51);
9846 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9847 ins_pipe(pipe_slow);
9848 %}
9849
9850 instruct sqrtD_imm(regD dst, immD src)
9851 %{
9852 match(Set dst (SqrtD src));
9853
9854 format %{ "sqrtsd $dst, [$src]" %}
9855 ins_cost(150); // XXX
9856 opcode(0xF2, 0x0F, 0x51);
9857 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
9858 ins_pipe(pipe_slow);
9859 %}
9860
9861 instruct absF_reg(regF dst)
9862 %{
9863 match(Set dst (AbsF dst));
9864
9865 format %{ "andps $dst, [0x7fffffff]\t# abs float by sign masking" %}
9866 ins_encode(absF_encoding(dst));
9867 ins_pipe(pipe_slow);
9868 %}
9869
9870 instruct absD_reg(regD dst)
9871 %{
9872 match(Set dst (AbsD dst));
9873
9874 format %{ "andpd $dst, [0x7fffffffffffffff]\t"
9875 "# abs double by sign masking" %}
9876 ins_encode(absD_encoding(dst));
9877 ins_pipe(pipe_slow);
9878 %}
9879
9880 instruct negF_reg(regF dst)
9881 %{
9882 match(Set dst (NegF dst));
9883
9884 format %{ "xorps $dst, [0x80000000]\t# neg float by sign flipping" %}
9885 ins_encode(negF_encoding(dst));
9886 ins_pipe(pipe_slow);
9887 %}
9888
9889 instruct negD_reg(regD dst)
9890 %{
9891 match(Set dst (NegD dst));
9892
9893 format %{ "xorpd $dst, [0x8000000000000000]\t"
9894 "# neg double by sign flipping" %}
9895 ins_encode(negD_encoding(dst));
9896 ins_pipe(pipe_slow);
9897 %}
9898
9899 // -----------Trig and Trancendental Instructions------------------------------
9900 instruct cosD_reg(regD dst) %{
9901 match(Set dst (CosD dst));
9902
9903 format %{ "dcos $dst\n\t" %}
9904 opcode(0xD9, 0xFF);
9905 ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9906 ins_pipe( pipe_slow );
9907 %}
9908
9909 instruct sinD_reg(regD dst) %{
9910 match(Set dst (SinD dst));
9911
9912 format %{ "dsin $dst\n\t" %}
9913 opcode(0xD9, 0xFE);
9914 ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9915 ins_pipe( pipe_slow );
9916 %}
9917
9918 instruct tanD_reg(regD dst) %{
9919 match(Set dst (TanD dst));
9920
9921 format %{ "dtan $dst\n\t" %}
9922 ins_encode( Push_SrcXD(dst),
9923 Opcode(0xD9), Opcode(0xF2), //fptan
9924 Opcode(0xDD), Opcode(0xD8), //fstp st
9925 Push_ResultXD(dst) );
9926 ins_pipe( pipe_slow );
9927 %}
9928
9929 instruct log10D_reg(regD dst) %{
9930 // The source and result Double operands in XMM registers
9931 match(Set dst (Log10D dst));
9932 // fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number
9933 // fyl2x ; compute log_10(2) * log_2(x)
9934 format %{ "fldlg2\t\t\t#Log10\n\t"
9935 "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
9936 %}
9937 ins_encode(Opcode(0xD9), Opcode(0xEC), // fldlg2
9938 Push_SrcXD(dst),
9939 Opcode(0xD9), Opcode(0xF1), // fyl2x
9940 Push_ResultXD(dst));
9941
9942 ins_pipe( pipe_slow );
9943 %}
9944
9945 instruct logD_reg(regD dst) %{
9946 // The source and result Double operands in XMM registers
9947 match(Set dst (LogD dst));
9948 // fldln2 ; push log_e(2) on the FPU stack; full 80-bit number
9949 // fyl2x ; compute log_e(2) * log_2(x)
9950 format %{ "fldln2\t\t\t#Log_e\n\t"
9951 "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
9952 %}
9953 ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2
9954 Push_SrcXD(dst),
9955 Opcode(0xD9), Opcode(0xF1), // fyl2x
9956 Push_ResultXD(dst));
9957 ins_pipe( pipe_slow );
9958 %}
9959
9960
9961
9962 //----------Arithmetic Conversion Instructions---------------------------------
9963
9964 instruct roundFloat_nop(regF dst)
9965 %{
9966 match(Set dst (RoundFloat dst));
9967
9968 ins_cost(0);
9969 ins_encode();
9970 ins_pipe(empty);
9971 %}
9972
9973 instruct roundDouble_nop(regD dst)
9974 %{
9975 match(Set dst (RoundDouble dst));
9976
9977 ins_cost(0);
9978 ins_encode();
9979 ins_pipe(empty);
9980 %}
9981
9982 instruct convF2D_reg_reg(regD dst, regF src)
9983 %{
9984 match(Set dst (ConvF2D src));
9985
9986 format %{ "cvtss2sd $dst, $src" %}
9987 opcode(0xF3, 0x0F, 0x5A);
9988 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
9989 ins_pipe(pipe_slow); // XXX
9990 %}
9991
9992 instruct convF2D_reg_mem(regD dst, memory src)
9993 %{
9994 match(Set dst (ConvF2D (LoadF src)));
9995
9996 format %{ "cvtss2sd $dst, $src" %}
9997 opcode(0xF3, 0x0F, 0x5A);
9998 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
9999 ins_pipe(pipe_slow); // XXX
10000 %}
10001
10002 instruct convD2F_reg_reg(regF dst, regD src)
10003 %{
10004 match(Set dst (ConvD2F src));
10005
10006 format %{ "cvtsd2ss $dst, $src" %}
10007 opcode(0xF2, 0x0F, 0x5A);
10008 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
10009 ins_pipe(pipe_slow); // XXX
10010 %}
10011
10012 instruct convD2F_reg_mem(regF dst, memory src)
10013 %{
10014 match(Set dst (ConvD2F (LoadD src)));
10015
10016 format %{ "cvtsd2ss $dst, $src" %}
10017 opcode(0xF2, 0x0F, 0x5A);
10018 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10019 ins_pipe(pipe_slow); // XXX
10020 %}
10021
10022 // XXX do mem variants
10023 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10024 %{
10025 match(Set dst (ConvF2I src));
10026 effect(KILL cr);
10027
10028 format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
10029 "cmpl $dst, #0x80000000\n\t"
10030 "jne,s done\n\t"
10031 "subq rsp, #8\n\t"
10032 "movss [rsp], $src\n\t"
10033 "call f2i_fixup\n\t"
10034 "popq $dst\n"
10035 "done: "%}
10036 opcode(0xF3, 0x0F, 0x2C);
10037 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
10038 f2i_fixup(dst, src));
10039 ins_pipe(pipe_slow);
10040 %}
10041
10042 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10043 %{
10044 match(Set dst (ConvF2L src));
10045 effect(KILL cr);
10046
10047 format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
10048 "cmpq $dst, [0x8000000000000000]\n\t"
10049 "jne,s done\n\t"
10050 "subq rsp, #8\n\t"
10051 "movss [rsp], $src\n\t"
10052 "call f2l_fixup\n\t"
10053 "popq $dst\n"
10054 "done: "%}
10055 opcode(0xF3, 0x0F, 0x2C);
10056 ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
10057 f2l_fixup(dst, src));
10058 ins_pipe(pipe_slow);
10059 %}
10060
10061 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10062 %{
10063 match(Set dst (ConvD2I src));
10064 effect(KILL cr);
10065
10066 format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
10067 "cmpl $dst, #0x80000000\n\t"
10068 "jne,s done\n\t"
10069 "subq rsp, #8\n\t"
10070 "movsd [rsp], $src\n\t"
10071 "call d2i_fixup\n\t"
10072 "popq $dst\n"
10073 "done: "%}
10074 opcode(0xF2, 0x0F, 0x2C);
10075 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
10076 d2i_fixup(dst, src));
10077 ins_pipe(pipe_slow);
10078 %}
10079
10080 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10081 %{
10082 match(Set dst (ConvD2L src));
10083 effect(KILL cr);
10084
10085 format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
10086 "cmpq $dst, [0x8000000000000000]\n\t"
10087 "jne,s done\n\t"
10088 "subq rsp, #8\n\t"
10089 "movsd [rsp], $src\n\t"
10090 "call d2l_fixup\n\t"
10091 "popq $dst\n"
10092 "done: "%}
10093 opcode(0xF2, 0x0F, 0x2C);
10094 ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
10095 d2l_fixup(dst, src));
10096 ins_pipe(pipe_slow);
10097 %}
10098
10099 instruct convI2F_reg_reg(regF dst, rRegI src)
10100 %{
10101 match(Set dst (ConvI2F src));
10102
10103 format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10104 opcode(0xF3, 0x0F, 0x2A);
10105 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
10106 ins_pipe(pipe_slow); // XXX
10107 %}
10108
10109 instruct convI2F_reg_mem(regF dst, memory src)
10110 %{
10111 match(Set dst (ConvI2F (LoadI src)));
10112
10113 format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10114 opcode(0xF3, 0x0F, 0x2A);
10115 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10116 ins_pipe(pipe_slow); // XXX
10117 %}
10118
10119 instruct convI2D_reg_reg(regD dst, rRegI src)
10120 %{
10121 match(Set dst (ConvI2D src));
10122
10123 format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10124 opcode(0xF2, 0x0F, 0x2A);
10125 ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
10126 ins_pipe(pipe_slow); // XXX
10127 %}
10128
10129 instruct convI2D_reg_mem(regD dst, memory src)
10130 %{
10131 match(Set dst (ConvI2D (LoadI src)));
10132
10133 format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10134 opcode(0xF2, 0x0F, 0x2A);
10135 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10136 ins_pipe(pipe_slow); // XXX
10137 %}
10138
10139 instruct convL2F_reg_reg(regF dst, rRegL src)
10140 %{
10141 match(Set dst (ConvL2F src));
10142
10143 format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10144 opcode(0xF3, 0x0F, 0x2A);
10145 ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
10146 ins_pipe(pipe_slow); // XXX
10147 %}
10148
10149 instruct convL2F_reg_mem(regF dst, memory src)
10150 %{
10151 match(Set dst (ConvL2F (LoadL src)));
10152
10153 format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10154 opcode(0xF3, 0x0F, 0x2A);
10155 ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
10156 ins_pipe(pipe_slow); // XXX
10157 %}
10158
10159 instruct convL2D_reg_reg(regD dst, rRegL src)
10160 %{
10161 match(Set dst (ConvL2D src));
10162
10163 format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10164 opcode(0xF2, 0x0F, 0x2A);
10165 ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
10166 ins_pipe(pipe_slow); // XXX
10167 %}
10168
10169 instruct convL2D_reg_mem(regD dst, memory src)
10170 %{
10171 match(Set dst (ConvL2D (LoadL src)));
10172
10173 format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10174 opcode(0xF2, 0x0F, 0x2A);
10175 ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
10176 ins_pipe(pipe_slow); // XXX
10177 %}
10178
10179 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10180 %{
10181 match(Set dst (ConvI2L src));
10182
10183 ins_cost(125);
10184 format %{ "movslq $dst, $src\t# i2l" %}
10185 opcode(0x63); // needs REX.W
10186 ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10187 ins_pipe(ialu_reg_reg);
10188 %}
10189
10190 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10191 // %{
10192 // match(Set dst (ConvI2L src));
10193 // // predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10194 // // _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10195 // predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10196 // (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10197 // ((const TypeNode*) n)->type()->is_long()->_lo ==
10198 // (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10199
10200 // format %{ "movl $dst, $src\t# unsigned i2l" %}
10201 // ins_encode(enc_copy(dst, src));
10202 // // opcode(0x63); // needs REX.W
10203 // // ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10204 // ins_pipe(ialu_reg_reg);
10205 // %}
10206
10207 instruct convI2L_reg_mem(rRegL dst, memory src)
10208 %{
10209 match(Set dst (ConvI2L (LoadI src)));
10210
10211 format %{ "movslq $dst, $src\t# i2l" %}
10212 opcode(0x63); // needs REX.W
10213 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst,src));
10214 ins_pipe(ialu_reg_mem);
10215 %}
10216
10217 // Zero-extend convert int to long
10218 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10219 %{
10220 match(Set dst (AndL (ConvI2L src) mask));
10221
10222 format %{ "movl $dst, $src\t# i2l zero-extend\n\t" %}
10223 ins_encode(enc_copy(dst, src));
10224 ins_pipe(ialu_reg_reg);
10225 %}
10226
10227 // Zero-extend convert int to long
10228 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10229 %{
10230 match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10231
10232 format %{ "movl $dst, $src\t# i2l zero-extend\n\t" %}
10233 opcode(0x8B);
10234 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
10235 ins_pipe(ialu_reg_mem);
10236 %}
10237
10238 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10239 %{
10240 match(Set dst (AndL src mask));
10241
10242 format %{ "movl $dst, $src\t# zero-extend long" %}
10243 ins_encode(enc_copy_always(dst, src));
10244 ins_pipe(ialu_reg_reg);
10245 %}
10246
10247 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10248 %{
10249 match(Set dst (ConvL2I src));
10250
10251 format %{ "movl $dst, $src\t# l2i" %}
10252 ins_encode(enc_copy_always(dst, src));
10253 ins_pipe(ialu_reg_reg);
10254 %}
10255
10256
10257 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10258 match(Set dst (MoveF2I src));
10259 effect(DEF dst, USE src);
10260
10261 ins_cost(125);
10262 format %{ "movl $dst, $src\t# MoveF2I_stack_reg" %}
10263 opcode(0x8B);
10264 ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
10265 ins_pipe(ialu_reg_mem);
10266 %}
10267
10268 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10269 match(Set dst (MoveI2F src));
10270 effect(DEF dst, USE src);
10271
10272 ins_cost(125);
10273 format %{ "movss $dst, $src\t# MoveI2F_stack_reg" %}
10274 opcode(0xF3, 0x0F, 0x10);
10275 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10276 ins_pipe(pipe_slow);
10277 %}
10278
10279 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10280 match(Set dst (MoveD2L src));
10281 effect(DEF dst, USE src);
10282
10283 ins_cost(125);
10284 format %{ "movq $dst, $src\t# MoveD2L_stack_reg" %}
10285 opcode(0x8B);
10286 ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
10287 ins_pipe(ialu_reg_mem);
10288 %}
10289
10290 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10291 predicate(!UseXmmLoadAndClearUpper);
10292 match(Set dst (MoveL2D src));
10293 effect(DEF dst, USE src);
10294
10295 ins_cost(125);
10296 format %{ "movlpd $dst, $src\t# MoveL2D_stack_reg" %}
10297 opcode(0x66, 0x0F, 0x12);
10298 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10299 ins_pipe(pipe_slow);
10300 %}
10301
10302 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10303 predicate(UseXmmLoadAndClearUpper);
10304 match(Set dst (MoveL2D src));
10305 effect(DEF dst, USE src);
10306
10307 ins_cost(125);
10308 format %{ "movsd $dst, $src\t# MoveL2D_stack_reg" %}
10309 opcode(0xF2, 0x0F, 0x10);
10310 ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
10311 ins_pipe(pipe_slow);
10312 %}
10313
10314
10315 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10316 match(Set dst (MoveF2I src));
10317 effect(DEF dst, USE src);
10318
10319 ins_cost(95); // XXX
10320 format %{ "movss $dst, $src\t# MoveF2I_reg_stack" %}
10321 opcode(0xF3, 0x0F, 0x11);
10322 ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
10323 ins_pipe(pipe_slow);
10324 %}
10325
10326 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10327 match(Set dst (MoveI2F src));
10328 effect(DEF dst, USE src);
10329
10330 ins_cost(100);
10331 format %{ "movl $dst, $src\t# MoveI2F_reg_stack" %}
10332 opcode(0x89);
10333 ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
10334 ins_pipe( ialu_mem_reg );
10335 %}
10336
10337 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10338 match(Set dst (MoveD2L src));
10339 effect(DEF dst, USE src);
10340
10341 ins_cost(95); // XXX
10342 format %{ "movsd $dst, $src\t# MoveL2D_reg_stack" %}
10343 opcode(0xF2, 0x0F, 0x11);
10344 ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
10345 ins_pipe(pipe_slow);
10346 %}
10347
10348 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10349 match(Set dst (MoveL2D src));
10350 effect(DEF dst, USE src);
10351
10352 ins_cost(100);
10353 format %{ "movq $dst, $src\t# MoveL2D_reg_stack" %}
10354 opcode(0x89);
10355 ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10356 ins_pipe(ialu_mem_reg);
10357 %}
10358
10359 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10360 match(Set dst (MoveF2I src));
10361 effect(DEF dst, USE src);
10362 ins_cost(85);
10363 format %{ "movd $dst,$src\t# MoveF2I" %}
10364 ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
10365 ins_pipe( pipe_slow );
10366 %}
10367
10368 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10369 match(Set dst (MoveD2L src));
10370 effect(DEF dst, USE src);
10371 ins_cost(85);
10372 format %{ "movd $dst,$src\t# MoveD2L" %}
10373 ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
10374 ins_pipe( pipe_slow );
10375 %}
10376
10377 // The next instructions have long latency and use Int unit. Set high cost.
10378 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10379 match(Set dst (MoveI2F src));
10380 effect(DEF dst, USE src);
10381 ins_cost(300);
10382 format %{ "movd $dst,$src\t# MoveI2F" %}
10383 ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
10384 ins_pipe( pipe_slow );
10385 %}
10386
10387 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10388 match(Set dst (MoveL2D src));
10389 effect(DEF dst, USE src);
10390 ins_cost(300);
10391 format %{ "movd $dst,$src\t# MoveL2D" %}
10392 ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
10393 ins_pipe( pipe_slow );
10394 %}
10395
10396 // Replicate scalar to packed byte (1 byte) values in xmm
10397 instruct Repl8B_reg(regD dst, regD src) %{
10398 match(Set dst (Replicate8B src));
10399 format %{ "MOVDQA $dst,$src\n\t"
10400 "PUNPCKLBW $dst,$dst\n\t"
10401 "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
10402 ins_encode( pshufd_8x8(dst, src));
10403 ins_pipe( pipe_slow );
10404 %}
10405
10406 // Replicate scalar to packed byte (1 byte) values in xmm
10407 instruct Repl8B_rRegI(regD dst, rRegI src) %{
10408 match(Set dst (Replicate8B src));
10409 format %{ "MOVD $dst,$src\n\t"
10410 "PUNPCKLBW $dst,$dst\n\t"
10411 "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
10412 ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
10413 ins_pipe( pipe_slow );
10414 %}
10415
10416 // Replicate scalar zero to packed byte (1 byte) values in xmm
10417 instruct Repl8B_immI0(regD dst, immI0 zero) %{
10418 match(Set dst (Replicate8B zero));
10419 format %{ "PXOR $dst,$dst\t! replicate8B" %}
10420 ins_encode( pxor(dst, dst));
10421 ins_pipe( fpu_reg_reg );
10422 %}
10423
10424 // Replicate scalar to packed shore (2 byte) values in xmm
10425 instruct Repl4S_reg(regD dst, regD src) %{
10426 match(Set dst (Replicate4S src));
10427 format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
10428 ins_encode( pshufd_4x16(dst, src));
10429 ins_pipe( fpu_reg_reg );
10430 %}
10431
10432 // Replicate scalar to packed shore (2 byte) values in xmm
10433 instruct Repl4S_rRegI(regD dst, rRegI src) %{
10434 match(Set dst (Replicate4S src));
10435 format %{ "MOVD $dst,$src\n\t"
10436 "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
10437 ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
10438 ins_pipe( fpu_reg_reg );
10439 %}
10440
10441 // Replicate scalar zero to packed short (2 byte) values in xmm
10442 instruct Repl4S_immI0(regD dst, immI0 zero) %{
10443 match(Set dst (Replicate4S zero));
10444 format %{ "PXOR $dst,$dst\t! replicate4S" %}
10445 ins_encode( pxor(dst, dst));
10446 ins_pipe( fpu_reg_reg );
10447 %}
10448
10449 // Replicate scalar to packed char (2 byte) values in xmm
10450 instruct Repl4C_reg(regD dst, regD src) %{
10451 match(Set dst (Replicate4C src));
10452 format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
10453 ins_encode( pshufd_4x16(dst, src));
10454 ins_pipe( fpu_reg_reg );
10455 %}
10456
10457 // Replicate scalar to packed char (2 byte) values in xmm
10458 instruct Repl4C_rRegI(regD dst, rRegI src) %{
10459 match(Set dst (Replicate4C src));
10460 format %{ "MOVD $dst,$src\n\t"
10461 "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
10462 ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
10463 ins_pipe( fpu_reg_reg );
10464 %}
10465
10466 // Replicate scalar zero to packed char (2 byte) values in xmm
10467 instruct Repl4C_immI0(regD dst, immI0 zero) %{
10468 match(Set dst (Replicate4C zero));
10469 format %{ "PXOR $dst,$dst\t! replicate4C" %}
10470 ins_encode( pxor(dst, dst));
10471 ins_pipe( fpu_reg_reg );
10472 %}
10473
10474 // Replicate scalar to packed integer (4 byte) values in xmm
10475 instruct Repl2I_reg(regD dst, regD src) %{
10476 match(Set dst (Replicate2I src));
10477 format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
10478 ins_encode( pshufd(dst, src, 0x00));
10479 ins_pipe( fpu_reg_reg );
10480 %}
10481
10482 // Replicate scalar to packed integer (4 byte) values in xmm
10483 instruct Repl2I_rRegI(regD dst, rRegI src) %{
10484 match(Set dst (Replicate2I src));
10485 format %{ "MOVD $dst,$src\n\t"
10486 "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
10487 ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
10488 ins_pipe( fpu_reg_reg );
10489 %}
10490
10491 // Replicate scalar zero to packed integer (2 byte) values in xmm
10492 instruct Repl2I_immI0(regD dst, immI0 zero) %{
10493 match(Set dst (Replicate2I zero));
10494 format %{ "PXOR $dst,$dst\t! replicate2I" %}
10495 ins_encode( pxor(dst, dst));
10496 ins_pipe( fpu_reg_reg );
10497 %}
10498
10499 // Replicate scalar to packed single precision floating point values in xmm
10500 instruct Repl2F_reg(regD dst, regD src) %{
10501 match(Set dst (Replicate2F src));
10502 format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
10503 ins_encode( pshufd(dst, src, 0xe0));
10504 ins_pipe( fpu_reg_reg );
10505 %}
10506
10507 // Replicate scalar to packed single precision floating point values in xmm
10508 instruct Repl2F_regF(regD dst, regF src) %{
10509 match(Set dst (Replicate2F src));
10510 format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
10511 ins_encode( pshufd(dst, src, 0xe0));
10512 ins_pipe( fpu_reg_reg );
10513 %}
10514
10515 // Replicate scalar to packed single precision floating point values in xmm
10516 instruct Repl2F_immF0(regD dst, immF0 zero) %{
10517 match(Set dst (Replicate2F zero));
10518 format %{ "PXOR $dst,$dst\t! replicate2F" %}
10519 ins_encode( pxor(dst, dst));
10520 ins_pipe( fpu_reg_reg );
10521 %}
10522
10523
10524 // =======================================================================
10525 // fast clearing of an array
10526 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
10527 rFlagsReg cr)
10528 %{
10529 match(Set dummy (ClearArray cnt base));
10530 effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
10531
10532 format %{ "xorl rax, rax\t# ClearArray:\n\t"
10533 "rep stosq\t# Store rax to *rdi++ while rcx--" %}
10534 ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
10535 Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
10536 ins_pipe(pipe_slow);
10537 %}
10538
10539 instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
10540 rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
10541 %{
10542 match(Set result (StrComp str1 str2));
10543 effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
10544 //ins_cost(300);
10545
10546 format %{ "String Compare $str1, $str2 -> $result // XXX KILL RAX, RBX" %}
10547 ins_encode( enc_String_Compare() );
10548 ins_pipe( pipe_slow );
10549 %}
10550
10551 //----------Control Flow Instructions------------------------------------------
10552 // Signed compare Instructions
10553
10554 // XXX more variants!!
10555 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
10556 %{
10557 match(Set cr (CmpI op1 op2));
10558 effect(DEF cr, USE op1, USE op2);
10559
10560 format %{ "cmpl $op1, $op2" %}
10561 opcode(0x3B); /* Opcode 3B /r */
10562 ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10563 ins_pipe(ialu_cr_reg_reg);
10564 %}
10565
10566 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
10567 %{
10568 match(Set cr (CmpI op1 op2));
10569
10570 format %{ "cmpl $op1, $op2" %}
10571 opcode(0x81, 0x07); /* Opcode 81 /7 */
10572 ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10573 ins_pipe(ialu_cr_reg_imm);
10574 %}
10575
10576 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
10577 %{
10578 match(Set cr (CmpI op1 (LoadI op2)));
10579
10580 ins_cost(500); // XXX
10581 format %{ "cmpl $op1, $op2" %}
10582 opcode(0x3B); /* Opcode 3B /r */
10583 ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10584 ins_pipe(ialu_cr_reg_mem);
10585 %}
10586
10587 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
10588 %{
10589 match(Set cr (CmpI src zero));
10590
10591 format %{ "testl $src, $src" %}
10592 opcode(0x85);
10593 ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10594 ins_pipe(ialu_cr_reg_imm);
10595 %}
10596
10597 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
10598 %{
10599 match(Set cr (CmpI (AndI src con) zero));
10600
10601 format %{ "testl $src, $con" %}
10602 opcode(0xF7, 0x00);
10603 ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
10604 ins_pipe(ialu_cr_reg_imm);
10605 %}
10606
10607 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
10608 %{
10609 match(Set cr (CmpI (AndI src (LoadI mem)) zero));
10610
10611 format %{ "testl $src, $mem" %}
10612 opcode(0x85);
10613 ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
10614 ins_pipe(ialu_cr_reg_mem);
10615 %}
10616
10617 // Unsigned compare Instructions; really, same as signed except they
10618 // produce an rFlagsRegU instead of rFlagsReg.
10619 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
10620 %{
10621 match(Set cr (CmpU op1 op2));
10622
10623 format %{ "cmpl $op1, $op2\t# unsigned" %}
10624 opcode(0x3B); /* Opcode 3B /r */
10625 ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10626 ins_pipe(ialu_cr_reg_reg);
10627 %}
10628
10629 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
10630 %{
10631 match(Set cr (CmpU op1 op2));
10632
10633 format %{ "cmpl $op1, $op2\t# unsigned" %}
10634 opcode(0x81,0x07); /* Opcode 81 /7 */
10635 ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10636 ins_pipe(ialu_cr_reg_imm);
10637 %}
10638
10639 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
10640 %{
10641 match(Set cr (CmpU op1 (LoadI op2)));
10642
10643 ins_cost(500); // XXX
10644 format %{ "cmpl $op1, $op2\t# unsigned" %}
10645 opcode(0x3B); /* Opcode 3B /r */
10646 ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10647 ins_pipe(ialu_cr_reg_mem);
10648 %}
10649
10650 // // // Cisc-spilled version of cmpU_rReg
10651 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
10652 // //%{
10653 // // match(Set cr (CmpU (LoadI op1) op2));
10654 // //
10655 // // format %{ "CMPu $op1,$op2" %}
10656 // // ins_cost(500);
10657 // // opcode(0x39); /* Opcode 39 /r */
10658 // // ins_encode( OpcP, reg_mem( op1, op2) );
10659 // //%}
10660
10661 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
10662 %{
10663 match(Set cr (CmpU src zero));
10664
10665 format %{ "testl $src, $src\t# unsigned" %}
10666 opcode(0x85);
10667 ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10668 ins_pipe(ialu_cr_reg_imm);
10669 %}
10670
10671 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
10672 %{
10673 match(Set cr (CmpP op1 op2));
10674
10675 format %{ "cmpq $op1, $op2\t# ptr" %}
10676 opcode(0x3B); /* Opcode 3B /r */
10677 ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10678 ins_pipe(ialu_cr_reg_reg);
10679 %}
10680
10681 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
10682 %{
10683 match(Set cr (CmpP op1 (LoadP op2)));
10684
10685 ins_cost(500); // XXX
10686 format %{ "cmpq $op1, $op2\t# ptr" %}
10687 opcode(0x3B); /* Opcode 3B /r */
10688 ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10689 ins_pipe(ialu_cr_reg_mem);
10690 %}
10691
10692 // // // Cisc-spilled version of cmpP_rReg
10693 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
10694 // //%{
10695 // // match(Set cr (CmpP (LoadP op1) op2));
10696 // //
10697 // // format %{ "CMPu $op1,$op2" %}
10698 // // ins_cost(500);
10699 // // opcode(0x39); /* Opcode 39 /r */
10700 // // ins_encode( OpcP, reg_mem( op1, op2) );
10701 // //%}
10702
10703 // XXX this is generalized by compP_rReg_mem???
10704 // Compare raw pointer (used in out-of-heap check).
10705 // Only works because non-oop pointers must be raw pointers
10706 // and raw pointers have no anti-dependencies.
10707 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
10708 %{
10709 predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
10710 match(Set cr (CmpP op1 (LoadP op2)));
10711
10712 format %{ "cmpq $op1, $op2\t# raw ptr" %}
10713 opcode(0x3B); /* Opcode 3B /r */
10714 ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10715 ins_pipe(ialu_cr_reg_mem);
10716 %}
10717
10718 // This will generate a signed flags result. This should be OK since
10719 // any compare to a zero should be eq/neq.
10720 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
10721 %{
10722 match(Set cr (CmpP src zero));
10723
10724 format %{ "testq $src, $src\t# ptr" %}
10725 opcode(0x85);
10726 ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10727 ins_pipe(ialu_cr_reg_imm);
10728 %}
10729
10730 // This will generate a signed flags result. This should be OK since
10731 // any compare to a zero should be eq/neq.
10732 instruct testP_reg_mem(rFlagsReg cr, memory op, immP0 zero)
10733 %{
10734 match(Set cr (CmpP (LoadP op) zero));
10735
10736 ins_cost(500); // XXX
10737 format %{ "testq $op, 0xffffffffffffffff\t# ptr" %}
10738 opcode(0xF7); /* Opcode F7 /0 */
10739 ins_encode(REX_mem_wide(op),
10740 OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
10741 ins_pipe(ialu_cr_reg_imm);
10742 %}
10743
10744 // Yanked all unsigned pointer compare operations.
10745 // Pointer compares are done with CmpP which is already unsigned.
10746
10747 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
10748 %{
10749 match(Set cr (CmpL op1 op2));
10750
10751 format %{ "cmpq $op1, $op2" %}
10752 opcode(0x3B); /* Opcode 3B /r */
10753 ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10754 ins_pipe(ialu_cr_reg_reg);
10755 %}
10756
10757 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
10758 %{
10759 match(Set cr (CmpL op1 op2));
10760
10761 format %{ "cmpq $op1, $op2" %}
10762 opcode(0x81, 0x07); /* Opcode 81 /7 */
10763 ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
10764 ins_pipe(ialu_cr_reg_imm);
10765 %}
10766
10767 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
10768 %{
10769 match(Set cr (CmpL op1 (LoadL op2)));
10770
10771 ins_cost(500); // XXX
10772 format %{ "cmpq $op1, $op2" %}
10773 opcode(0x3B); /* Opcode 3B /r */
10774 ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10775 ins_pipe(ialu_cr_reg_mem);
10776 %}
10777
10778 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
10779 %{
10780 match(Set cr (CmpL src zero));
10781
10782 format %{ "testq $src, $src" %}
10783 opcode(0x85);
10784 ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10785 ins_pipe(ialu_cr_reg_imm);
10786 %}
10787
10788 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
10789 %{
10790 match(Set cr (CmpL (AndL src con) zero));
10791
10792 format %{ "testq $src, $con\t# long" %}
10793 opcode(0xF7, 0x00);
10794 ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
10795 ins_pipe(ialu_cr_reg_imm);
10796 %}
10797
10798 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
10799 %{
10800 match(Set cr (CmpL (AndL src (LoadL mem)) zero));
10801
10802 format %{ "testq $src, $mem" %}
10803 opcode(0x85);
10804 ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
10805 ins_pipe(ialu_cr_reg_mem);
10806 %}
10807
10808 // Manifest a CmpL result in an integer register. Very painful.
10809 // This is the test to avoid.
10810 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
10811 %{
10812 match(Set dst (CmpL3 src1 src2));
10813 effect(KILL flags);
10814
10815 ins_cost(275); // XXX
10816 format %{ "cmpq $src1, $src2\t# CmpL3\n\t"
10817 "movl $dst, -1\n\t"
10818 "jl,s done\n\t"
10819 "setne $dst\n\t"
10820 "movzbl $dst, $dst\n\t"
10821 "done:" %}
10822 ins_encode(cmpl3_flag(src1, src2, dst));
10823 ins_pipe(pipe_slow);
10824 %}
10825
10826 //----------Max and Min--------------------------------------------------------
10827 // Min Instructions
10828
10829 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
10830 %{
10831 effect(USE_DEF dst, USE src, USE cr);
10832
10833 format %{ "cmovlgt $dst, $src\t# min" %}
10834 opcode(0x0F, 0x4F);
10835 ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
10836 ins_pipe(pipe_cmov_reg);
10837 %}
10838
10839
10840 instruct minI_rReg(rRegI dst, rRegI src)
10841 %{
10842 match(Set dst (MinI dst src));
10843
10844 ins_cost(200);
10845 expand %{
10846 rFlagsReg cr;
10847 compI_rReg(cr, dst, src);
10848 cmovI_reg_g(dst, src, cr);
10849 %}
10850 %}
10851
10852 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
10853 %{
10854 effect(USE_DEF dst, USE src, USE cr);
10855
10856 format %{ "cmovllt $dst, $src\t# max" %}
10857 opcode(0x0F, 0x4C);
10858 ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
10859 ins_pipe(pipe_cmov_reg);
10860 %}
10861
10862
10863 instruct maxI_rReg(rRegI dst, rRegI src)
10864 %{
10865 match(Set dst (MaxI dst src));
10866
10867 ins_cost(200);
10868 expand %{
10869 rFlagsReg cr;
10870 compI_rReg(cr, dst, src);
10871 cmovI_reg_l(dst, src, cr);
10872 %}
10873 %}
10874
10875 // ============================================================================
10876 // Branch Instructions
10877
10878 // Jump Direct - Label defines a relative address from JMP+1
10879 instruct jmpDir(label labl)
10880 %{
10881 match(Goto);
10882 effect(USE labl);
10883
10884 ins_cost(300);
10885 format %{ "jmp $labl" %}
10886 size(5);
10887 opcode(0xE9);
10888 ins_encode(OpcP, Lbl(labl));
10889 ins_pipe(pipe_jmp);
10890 ins_pc_relative(1);
10891 %}
10892
10893 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10894 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
10895 %{
10896 match(If cop cr);
10897 effect(USE labl);
10898
10899 ins_cost(300);
10900 format %{ "j$cop $labl" %}
10901 size(6);
10902 opcode(0x0F, 0x80);
10903 ins_encode(Jcc(cop, labl));
10904 ins_pipe(pipe_jcc);
10905 ins_pc_relative(1);
10906 %}
10907
10908 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10909 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
10910 %{
10911 match(CountedLoopEnd cop cr);
10912 effect(USE labl);
10913
10914 ins_cost(300);
10915 format %{ "j$cop $labl\t# loop end" %}
10916 size(6);
10917 opcode(0x0F, 0x80);
10918 ins_encode(Jcc(cop, labl));
10919 ins_pipe(pipe_jcc);
10920 ins_pc_relative(1);
10921 %}
10922
10923 // Jump Direct Conditional - Label defines a relative address from Jcc+1
10924 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl)
10925 %{
10926 match(CountedLoopEnd cop cmp);
10927 effect(USE labl);
10928
10929 ins_cost(300);
10930 format %{ "j$cop,u $labl\t# loop end" %}
10931 size(6);
10932 opcode(0x0F, 0x80);
10933 ins_encode(Jcc(cop, labl));
10934 ins_pipe(pipe_jcc);
10935 ins_pc_relative(1);
10936 %}
10937
10938 // Jump Direct Conditional - using unsigned comparison
10939 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl)
10940 %{
10941 match(If cop cmp);
10942 effect(USE labl);
10943
10944 ins_cost(300);
10945 format %{ "j$cop,u $labl" %}
10946 size(6);
10947 opcode(0x0F, 0x80);
10948 ins_encode(Jcc(cop, labl));
10949 ins_pipe(pipe_jcc);
10950 ins_pc_relative(1);
10951 %}
10952
10953 // ============================================================================
10954 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary
10955 // superklass array for an instance of the superklass. Set a hidden
10956 // internal cache on a hit (cache is checked with exposed code in
10957 // gen_subtype_check()). Return NZ for a miss or zero for a hit. The
10958 // encoding ALSO sets flags.
10959
10960 instruct partialSubtypeCheck(rdi_RegP result,
10961 rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
10962 rFlagsReg cr)
10963 %{
10964 match(Set result (PartialSubtypeCheck sub super));
10965 effect(KILL rcx, KILL cr);
10966
10967 ins_cost(1100); // slightly larger than the next version
10968 format %{ "cmpq rax, rsi\n\t"
10969 "jeq,s hit\n\t"
10970 "movq rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
10971 "movl rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
10972 "addq rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
10973 "repne scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
10974 "jne,s miss\t\t# Missed: rdi not-zero\n\t"
10975 "movq [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
10976 "hit:\n\t"
10977 "xorq $result, $result\t\t Hit: rdi zero\n\t"
10978 "miss:\t" %}
10979
10980 opcode(0x1); // Force a XOR of RDI
10981 ins_encode(enc_PartialSubtypeCheck());
10982 ins_pipe(pipe_slow);
10983 %}
10984
10985 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
10986 rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
10987 immP0 zero,
10988 rdi_RegP result)
10989 %{
10990 match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
10991 effect(KILL rcx, KILL result);
10992
10993 ins_cost(1000);
10994 format %{ "cmpq rax, rsi\n\t"
10995 "jeq,s miss\t# Actually a hit; we are done.\n\t"
10996 "movq rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
10997 "movl rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
10998 "addq rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
10999 "repne scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
11000 "jne,s miss\t\t# Missed: flags nz\n\t"
11001 "movq [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
11002 "miss:\t" %}
11003
11004 opcode(0x0); // No need to XOR RDI
11005 ins_encode(enc_PartialSubtypeCheck());
11006 ins_pipe(pipe_slow);
11007 %}
11008
11009 // ============================================================================
11010 // Branch Instructions -- short offset versions
11011 //
11012 // These instructions are used to replace jumps of a long offset (the default
11013 // match) with jumps of a shorter offset. These instructions are all tagged
11014 // with the ins_short_branch attribute, which causes the ADLC to suppress the
11015 // match rules in general matching. Instead, the ADLC generates a conversion
11016 // method in the MachNode which can be used to do in-place replacement of the
11017 // long variant with the shorter variant. The compiler will determine if a
11018 // branch can be taken by the is_short_branch_offset() predicate in the machine
11019 // specific code section of the file.
11020
11021 // Jump Direct - Label defines a relative address from JMP+1
11022 instruct jmpDir_short(label labl)
11023 %{
11024 match(Goto);
11025 effect(USE labl);
11026
11027 ins_cost(300);
11028 format %{ "jmp,s $labl" %}
11029 size(2);
11030 opcode(0xEB);
11031 ins_encode(OpcP, LblShort(labl));
11032 ins_pipe(pipe_jmp);
11033 ins_pc_relative(1);
11034 ins_short_branch(1);
11035 %}
11036
11037 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11038 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl)
11039 %{
11040 match(If cop cr);
11041 effect(USE labl);
11042
11043 ins_cost(300);
11044 format %{ "j$cop,s $labl" %}
11045 size(2);
11046 opcode(0x70);
11047 ins_encode(JccShort(cop, labl));
11048 ins_pipe(pipe_jcc);
11049 ins_pc_relative(1);
11050 ins_short_branch(1);
11051 %}
11052
11053 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11054 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl)
11055 %{
11056 match(CountedLoopEnd cop cr);
11057 effect(USE labl);
11058
11059 ins_cost(300);
11060 format %{ "j$cop,s $labl" %}
11061 size(2);
11062 opcode(0x70);
11063 ins_encode(JccShort(cop, labl));
11064 ins_pipe(pipe_jcc);
11065 ins_pc_relative(1);
11066 ins_short_branch(1);
11067 %}
11068
11069 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11070 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
11071 %{
11072 match(CountedLoopEnd cop cmp);
11073 effect(USE labl);
11074
11075 ins_cost(300);
11076 format %{ "j$cop,us $labl" %}
11077 size(2);
11078 opcode(0x70);
11079 ins_encode(JccShort(cop, labl));
11080 ins_pipe(pipe_jcc);
11081 ins_pc_relative(1);
11082 ins_short_branch(1);
11083 %}
11084
11085 // Jump Direct Conditional - using unsigned comparison
11086 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
11087 %{
11088 match(If cop cmp);
11089 effect(USE labl);
11090
11091 ins_cost(300);
11092 format %{ "j$cop,us $labl" %}
11093 size(2);
11094 opcode(0x70);
11095 ins_encode(JccShort(cop, labl));
11096 ins_pipe(pipe_jcc);
11097 ins_pc_relative(1);
11098 ins_short_branch(1);
11099 %}
11100
11101 // ============================================================================
11102 // inlined locking and unlocking
11103
11104 instruct cmpFastLock(rFlagsReg cr,
11105 rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
11106 %{
11107 match(Set cr (FastLock object box));
11108 effect(TEMP tmp, TEMP scr);
11109
11110 ins_cost(300);
11111 format %{ "fastlock $object,$box,$tmp,$scr" %}
11112 ins_encode(Fast_Lock(object, box, tmp, scr));
11113 ins_pipe(pipe_slow);
11114 ins_pc_relative(1);
11115 %}
11116
11117 instruct cmpFastUnlock(rFlagsReg cr,
11118 rRegP object, rax_RegP box, rRegP tmp)
11119 %{
11120 match(Set cr (FastUnlock object box));
11121 effect(TEMP tmp);
11122
11123 ins_cost(300);
11124 format %{ "fastunlock $object, $box, $tmp" %}
11125 ins_encode(Fast_Unlock(object, box, tmp));
11126 ins_pipe(pipe_slow);
11127 ins_pc_relative(1);
11128 %}
11129
11130
11131 // ============================================================================
11132 // Safepoint Instructions
11133 instruct safePoint_poll(rFlagsReg cr)
11134 %{
11135 match(SafePoint);
11136 effect(KILL cr);
11137
11138 format %{ "testl rax, [rip + #offset_to_poll_page]\t"
11139 "# Safepoint: poll for GC" %}
11140 size(6); // Opcode + ModRM + Disp32 == 6 bytes
11141 ins_cost(125);
11142 ins_encode(enc_safepoint_poll);
11143 ins_pipe(ialu_reg_mem);
11144 %}
11145
11146 // ============================================================================
11147 // Procedure Call/Return Instructions
11148 // Call Java Static Instruction
11149 // Note: If this code changes, the corresponding ret_addr_offset() and
11150 // compute_padding() functions will have to be adjusted.
11151 instruct CallStaticJavaDirect(method meth)
11152 %{
11153 match(CallStaticJava);
11154 effect(USE meth);
11155
11156 ins_cost(300);
11157 format %{ "call,static " %}
11158 opcode(0xE8); /* E8 cd */
11159 ins_encode(Java_Static_Call(meth), call_epilog);
11160 ins_pipe(pipe_slow);
11161 ins_pc_relative(1);
11162 ins_alignment(4);
11163 %}
11164
11165 // Call Java Dynamic Instruction
11166 // Note: If this code changes, the corresponding ret_addr_offset() and
11167 // compute_padding() functions will have to be adjusted.
11168 instruct CallDynamicJavaDirect(method meth)
11169 %{
11170 match(CallDynamicJava);
11171 effect(USE meth);
11172
11173 ins_cost(300);
11174 format %{ "movq rax, #Universe::non_oop_word()\n\t"
11175 "call,dynamic " %}
11176 opcode(0xE8); /* E8 cd */
11177 ins_encode(Java_Dynamic_Call(meth), call_epilog);
11178 ins_pipe(pipe_slow);
11179 ins_pc_relative(1);
11180 ins_alignment(4);
11181 %}
11182
11183 // Call Runtime Instruction
11184 instruct CallRuntimeDirect(method meth)
11185 %{
11186 match(CallRuntime);
11187 effect(USE meth);
11188
11189 ins_cost(300);
11190 format %{ "call,runtime " %}
11191 opcode(0xE8); /* E8 cd */
11192 ins_encode(Java_To_Runtime(meth));
11193 ins_pipe(pipe_slow);
11194 ins_pc_relative(1);
11195 %}
11196
11197 // Call runtime without safepoint
11198 instruct CallLeafDirect(method meth)
11199 %{
11200 match(CallLeaf);
11201 effect(USE meth);
11202
11203 ins_cost(300);
11204 format %{ "call_leaf,runtime " %}
11205 opcode(0xE8); /* E8 cd */
11206 ins_encode(Java_To_Runtime(meth));
11207 ins_pipe(pipe_slow);
11208 ins_pc_relative(1);
11209 %}
11210
11211 // Call runtime without safepoint
11212 instruct CallLeafNoFPDirect(method meth)
11213 %{
11214 match(CallLeafNoFP);
11215 effect(USE meth);
11216
11217 ins_cost(300);
11218 format %{ "call_leaf_nofp,runtime " %}
11219 opcode(0xE8); /* E8 cd */
11220 ins_encode(Java_To_Runtime(meth));
11221 ins_pipe(pipe_slow);
11222 ins_pc_relative(1);
11223 %}
11224
11225 // Return Instruction
11226 // Remove the return address & jump to it.
11227 // Notice: We always emit a nop after a ret to make sure there is room
11228 // for safepoint patching
11229 instruct Ret()
11230 %{
11231 match(Return);
11232
11233 format %{ "ret" %}
11234 opcode(0xC3);
11235 ins_encode(OpcP);
11236 ins_pipe(pipe_jmp);
11237 %}
11238
11239 // Tail Call; Jump from runtime stub to Java code.
11240 // Also known as an 'interprocedural jump'.
11241 // Target of jump will eventually return to caller.
11242 // TailJump below removes the return address.
11243 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
11244 %{
11245 match(TailCall jump_target method_oop);
11246
11247 ins_cost(300);
11248 format %{ "jmp $jump_target\t# rbx holds method oop" %}
11249 opcode(0xFF, 0x4); /* Opcode FF /4 */
11250 ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
11251 ins_pipe(pipe_jmp);
11252 %}
11253
11254 // Tail Jump; remove the return address; jump to target.
11255 // TailCall above leaves the return address around.
11256 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
11257 %{
11258 match(TailJump jump_target ex_oop);
11259
11260 ins_cost(300);
11261 format %{ "popq rdx\t# pop return address\n\t"
11262 "jmp $jump_target" %}
11263 opcode(0xFF, 0x4); /* Opcode FF /4 */
11264 ins_encode(Opcode(0x5a), // popq rdx
11265 REX_reg(jump_target), OpcP, reg_opc(jump_target));
11266 ins_pipe(pipe_jmp);
11267 %}
11268
11269 // Create exception oop: created by stack-crawling runtime code.
11270 // Created exception is now available to this handler, and is setup
11271 // just prior to jumping to this handler. No code emitted.
11272 instruct CreateException(rax_RegP ex_oop)
11273 %{
11274 match(Set ex_oop (CreateEx));
11275
11276 size(0);
11277 // use the following format syntax
11278 format %{ "# exception oop is in rax; no code emitted" %}
11279 ins_encode();
11280 ins_pipe(empty);
11281 %}
11282
11283 // Rethrow exception:
11284 // The exception oop will come in the first argument position.
11285 // Then JUMP (not call) to the rethrow stub code.
11286 instruct RethrowException()
11287 %{
11288 match(Rethrow);
11289
11290 // use the following format syntax
11291 format %{ "jmp rethrow_stub" %}
11292 ins_encode(enc_rethrow);
11293 ins_pipe(pipe_jmp);
11294 %}
11295
11296
11297 //----------PEEPHOLE RULES-----------------------------------------------------
11298 // These must follow all instruction definitions as they use the names
11299 // defined in the instructions definitions.
11300 //
11301 // peepmatch ( root_instr_name [precerding_instruction]* );
11302 //
11303 // peepconstraint %{
11304 // (instruction_number.operand_name relational_op instruction_number.operand_name
11305 // [, ...] );
11306 // // instruction numbers are zero-based using left to right order in peepmatch
11307 //
11308 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
11309 // // provide an instruction_number.operand_name for each operand that appears
11310 // // in the replacement instruction's match rule
11311 //
11312 // ---------VM FLAGS---------------------------------------------------------
11313 //
11314 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11315 //
11316 // Each peephole rule is given an identifying number starting with zero and
11317 // increasing by one in the order seen by the parser. An individual peephole
11318 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11319 // on the command-line.
11320 //
11321 // ---------CURRENT LIMITATIONS----------------------------------------------
11322 //
11323 // Only match adjacent instructions in same basic block
11324 // Only equality constraints
11325 // Only constraints between operands, not (0.dest_reg == RAX_enc)
11326 // Only one replacement instruction
11327 //
11328 // ---------EXAMPLE----------------------------------------------------------
11329 //
11330 // // pertinent parts of existing instructions in architecture description
11331 // instruct movI(rRegI dst, rRegI src)
11332 // %{
11333 // match(Set dst (CopyI src));
11334 // %}
11335 //
11336 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
11337 // %{
11338 // match(Set dst (AddI dst src));
11339 // effect(KILL cr);
11340 // %}
11341 //
11342 // // Change (inc mov) to lea
11343 // peephole %{
11344 // // increment preceeded by register-register move
11345 // peepmatch ( incI_rReg movI );
11346 // // require that the destination register of the increment
11347 // // match the destination register of the move
11348 // peepconstraint ( 0.dst == 1.dst );
11349 // // construct a replacement instruction that sets
11350 // // the destination to ( move's source register + one )
11351 // peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
11352 // %}
11353 //
11354
11355 // Implementation no longer uses movX instructions since
11356 // machine-independent system no longer uses CopyX nodes.
11357 //
11358 // peephole
11359 // %{
11360 // peepmatch (incI_rReg movI);
11361 // peepconstraint (0.dst == 1.dst);
11362 // peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11363 // %}
11364
11365 // peephole
11366 // %{
11367 // peepmatch (decI_rReg movI);
11368 // peepconstraint (0.dst == 1.dst);
11369 // peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11370 // %}
11371
11372 // peephole
11373 // %{
11374 // peepmatch (addI_rReg_imm movI);
11375 // peepconstraint (0.dst == 1.dst);
11376 // peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11377 // %}
11378
11379 // peephole
11380 // %{
11381 // peepmatch (incL_rReg movL);
11382 // peepconstraint (0.dst == 1.dst);
11383 // peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11384 // %}
11385
11386 // peephole
11387 // %{
11388 // peepmatch (decL_rReg movL);
11389 // peepconstraint (0.dst == 1.dst);
11390 // peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11391 // %}
11392
11393 // peephole
11394 // %{
11395 // peepmatch (addL_rReg_imm movL);
11396 // peepconstraint (0.dst == 1.dst);
11397 // peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11398 // %}
11399
11400 // peephole
11401 // %{
11402 // peepmatch (addP_rReg_imm movP);
11403 // peepconstraint (0.dst == 1.dst);
11404 // peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
11405 // %}
11406
11407 // // Change load of spilled value to only a spill
11408 // instruct storeI(memory mem, rRegI src)
11409 // %{
11410 // match(Set mem (StoreI mem src));
11411 // %}
11412 //
11413 // instruct loadI(rRegI dst, memory mem)
11414 // %{
11415 // match(Set dst (LoadI mem));
11416 // %}
11417 //
11418
11419 peephole
11420 %{
11421 peepmatch (loadI storeI);
11422 peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11423 peepreplace (storeI(1.mem 1.mem 1.src));
11424 %}
11425
11426 peephole
11427 %{
11428 peepmatch (loadL storeL);
11429 peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11430 peepreplace (storeL(1.mem 1.mem 1.src));
11431 %}
11432
11433 //----------SMARTSPILL RULES---------------------------------------------------
11434 // These must follow all instruction definitions as they use the names
11435 // defined in the instructions definitions.