comparison src/os/windows/vm/os_windows.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children e195fe4c40c7 5a76ab815e34
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #ifdef _WIN64
26 // Must be at least Windows 2000 or XP to use VectoredExceptions
27 #define _WIN32_WINNT 0x500
28 #endif
29
30 // do not include precompiled header file
31 # include "incls/_os_windows.cpp.incl"
32
33 #ifdef _DEBUG
34 #include <crtdbg.h>
35 #endif
36
37
38 #include <windows.h>
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/timeb.h>
42 #include <objidl.h>
43 #include <shlobj.h>
44
45 #include <malloc.h>
46 #include <signal.h>
47 #include <direct.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <io.h>
51 #include <process.h> // For _beginthreadex(), _endthreadex()
52 #include <imagehlp.h> // For os::dll_address_to_function_name
53
54 /* for enumerating dll libraries */
55 #include <tlhelp32.h>
56 #include <vdmdbg.h>
57
58 // for timer info max values which include all bits
59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
60
61 // For DLL loading/load error detection
62 // Values of PE COFF
63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
65
66 static HANDLE main_process;
67 static HANDLE main_thread;
68 static int main_thread_id;
69
70 static FILETIME process_creation_time;
71 static FILETIME process_exit_time;
72 static FILETIME process_user_time;
73 static FILETIME process_kernel_time;
74
75 #ifdef _WIN64
76 PVOID topLevelVectoredExceptionHandler = NULL;
77 #endif
78
79 #ifdef _M_IA64
80 #define __CPU__ ia64
81 #elif _M_AMD64
82 #define __CPU__ amd64
83 #else
84 #define __CPU__ i486
85 #endif
86
87 // save DLL module handle, used by GetModuleFileName
88
89 HINSTANCE vm_lib_handle;
90 static int getLastErrorString(char *buf, size_t len);
91
92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
93 switch (reason) {
94 case DLL_PROCESS_ATTACH:
95 vm_lib_handle = hinst;
96 if(ForceTimeHighResolution)
97 timeBeginPeriod(1L);
98 break;
99 case DLL_PROCESS_DETACH:
100 if(ForceTimeHighResolution)
101 timeEndPeriod(1L);
102 #ifdef _WIN64
103 if (topLevelVectoredExceptionHandler != NULL) {
104 RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
105 topLevelVectoredExceptionHandler = NULL;
106 }
107 #endif
108 break;
109 default:
110 break;
111 }
112 return true;
113 }
114
115 static inline double fileTimeAsDouble(FILETIME* time) {
116 const double high = (double) ((unsigned int) ~0);
117 const double split = 10000000.0;
118 double result = (time->dwLowDateTime / split) +
119 time->dwHighDateTime * (high/split);
120 return result;
121 }
122
123 // Implementation of os
124
125 bool os::getenv(const char* name, char* buffer, int len) {
126 int result = GetEnvironmentVariable(name, buffer, len);
127 return result > 0 && result < len;
128 }
129
130
131 // No setuid programs under Windows.
132 bool os::have_special_privileges() {
133 return false;
134 }
135
136
137 // This method is a periodic task to check for misbehaving JNI applications
138 // under CheckJNI, we can add any periodic checks here.
139 // For Windows at the moment does nothing
140 void os::run_periodic_checks() {
141 return;
142 }
143
144 #ifndef _WIN64
145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
146 #endif
147 void os::init_system_properties_values() {
148 /* sysclasspath, java_home, dll_dir */
149 {
150 char *home_path;
151 char *dll_path;
152 char *pslash;
153 char *bin = "\\bin";
154 char home_dir[MAX_PATH];
155
156 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
157 os::jvm_path(home_dir, sizeof(home_dir));
158 // Found the full path to jvm[_g].dll.
159 // Now cut the path to <java_home>/jre if we can.
160 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
161 pslash = strrchr(home_dir, '\\');
162 if (pslash != NULL) {
163 *pslash = '\0'; /* get rid of \{client|server} */
164 pslash = strrchr(home_dir, '\\');
165 if (pslash != NULL)
166 *pslash = '\0'; /* get rid of \bin */
167 }
168 }
169
170 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
171 if (home_path == NULL)
172 return;
173 strcpy(home_path, home_dir);
174 Arguments::set_java_home(home_path);
175
176 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
177 if (dll_path == NULL)
178 return;
179 strcpy(dll_path, home_dir);
180 strcat(dll_path, bin);
181 Arguments::set_dll_dir(dll_path);
182
183 if (!set_boot_path('\\', ';'))
184 return;
185 }
186
187 /* library_path */
188 #define EXT_DIR "\\lib\\ext"
189 #define BIN_DIR "\\bin"
190 #define PACKAGE_DIR "\\Sun\\Java"
191 {
192 /* Win32 library search order (See the documentation for LoadLibrary):
193 *
194 * 1. The directory from which application is loaded.
195 * 2. The current directory
196 * 3. The system wide Java Extensions directory (Java only)
197 * 4. System directory (GetSystemDirectory)
198 * 5. Windows directory (GetWindowsDirectory)
199 * 6. The PATH environment variable
200 */
201
202 char *library_path;
203 char tmp[MAX_PATH];
204 char *path_str = ::getenv("PATH");
205
206 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
207 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
208
209 library_path[0] = '\0';
210
211 GetModuleFileName(NULL, tmp, sizeof(tmp));
212 *(strrchr(tmp, '\\')) = '\0';
213 strcat(library_path, tmp);
214
215 strcat(library_path, ";.");
216
217 GetWindowsDirectory(tmp, sizeof(tmp));
218 strcat(library_path, ";");
219 strcat(library_path, tmp);
220 strcat(library_path, PACKAGE_DIR BIN_DIR);
221
222 GetSystemDirectory(tmp, sizeof(tmp));
223 strcat(library_path, ";");
224 strcat(library_path, tmp);
225
226 GetWindowsDirectory(tmp, sizeof(tmp));
227 strcat(library_path, ";");
228 strcat(library_path, tmp);
229
230 if (path_str) {
231 strcat(library_path, ";");
232 strcat(library_path, path_str);
233 }
234
235 Arguments::set_library_path(library_path);
236 FREE_C_HEAP_ARRAY(char, library_path);
237 }
238
239 /* Default extensions directory */
240 {
241 char path[MAX_PATH];
242 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
243 GetWindowsDirectory(path, MAX_PATH);
244 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
245 path, PACKAGE_DIR, EXT_DIR);
246 Arguments::set_ext_dirs(buf);
247 }
248 #undef EXT_DIR
249 #undef BIN_DIR
250 #undef PACKAGE_DIR
251
252 /* Default endorsed standards directory. */
253 {
254 #define ENDORSED_DIR "\\lib\\endorsed"
255 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
256 char * buf = NEW_C_HEAP_ARRAY(char, len);
257 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
258 Arguments::set_endorsed_dirs(buf);
259 #undef ENDORSED_DIR
260 }
261
262 #ifndef _WIN64
263 SetUnhandledExceptionFilter(Handle_FLT_Exception);
264 #endif
265
266 // Done
267 return;
268 }
269
270 void os::breakpoint() {
271 DebugBreak();
272 }
273
274 // Invoked from the BREAKPOINT Macro
275 extern "C" void breakpoint() {
276 os::breakpoint();
277 }
278
279 // Returns an estimate of the current stack pointer. Result must be guaranteed
280 // to point into the calling threads stack, and be no lower than the current
281 // stack pointer.
282
283 address os::current_stack_pointer() {
284 int dummy;
285 address sp = (address)&dummy;
286 return sp;
287 }
288
289 // os::current_stack_base()
290 //
291 // Returns the base of the stack, which is the stack's
292 // starting address. This function must be called
293 // while running on the stack of the thread being queried.
294
295 address os::current_stack_base() {
296 MEMORY_BASIC_INFORMATION minfo;
297 address stack_bottom;
298 size_t stack_size;
299
300 VirtualQuery(&minfo, &minfo, sizeof(minfo));
301 stack_bottom = (address)minfo.AllocationBase;
302 stack_size = minfo.RegionSize;
303
304 // Add up the sizes of all the regions with the same
305 // AllocationBase.
306 while( 1 )
307 {
308 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
309 if ( stack_bottom == (address)minfo.AllocationBase )
310 stack_size += minfo.RegionSize;
311 else
312 break;
313 }
314
315 #ifdef _M_IA64
316 // IA64 has memory and register stacks
317 stack_size = stack_size / 2;
318 #endif
319 return stack_bottom + stack_size;
320 }
321
322 size_t os::current_stack_size() {
323 size_t sz;
324 MEMORY_BASIC_INFORMATION minfo;
325 VirtualQuery(&minfo, &minfo, sizeof(minfo));
326 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
327 return sz;
328 }
329
330
331 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
332
333 // Thread start routine for all new Java threads
334 static unsigned __stdcall java_start(Thread* thread) {
335 // Try to randomize the cache line index of hot stack frames.
336 // This helps when threads of the same stack traces evict each other's
337 // cache lines. The threads can be either from the same JVM instance, or
338 // from different JVM instances. The benefit is especially true for
339 // processors with hyperthreading technology.
340 static int counter = 0;
341 int pid = os::current_process_id();
342 _alloca(((pid ^ counter++) & 7) * 128);
343
344 OSThread* osthr = thread->osthread();
345 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
346
347 if (UseNUMA) {
348 int lgrp_id = os::numa_get_group_id();
349 if (lgrp_id != -1) {
350 thread->set_lgrp_id(lgrp_id);
351 }
352 }
353
354
355 if (UseVectoredExceptions) {
356 // If we are using vectored exception we don't need to set a SEH
357 thread->run();
358 }
359 else {
360 // Install a win32 structured exception handler around every thread created
361 // by VM, so VM can genrate error dump when an exception occurred in non-
362 // Java thread (e.g. VM thread).
363 __try {
364 thread->run();
365 } __except(topLevelExceptionFilter(
366 (_EXCEPTION_POINTERS*)_exception_info())) {
367 // Nothing to do.
368 }
369 }
370
371 // One less thread is executing
372 // When the VMThread gets here, the main thread may have already exited
373 // which frees the CodeHeap containing the Atomic::add code
374 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
375 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
376 }
377
378 return 0;
379 }
380
381 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
382 // Allocate the OSThread object
383 OSThread* osthread = new OSThread(NULL, NULL);
384 if (osthread == NULL) return NULL;
385
386 // Initialize support for Java interrupts
387 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
388 if (interrupt_event == NULL) {
389 delete osthread;
390 return NULL;
391 }
392 osthread->set_interrupt_event(interrupt_event);
393
394 // Store info on the Win32 thread into the OSThread
395 osthread->set_thread_handle(thread_handle);
396 osthread->set_thread_id(thread_id);
397
398 if (UseNUMA) {
399 int lgrp_id = os::numa_get_group_id();
400 if (lgrp_id != -1) {
401 thread->set_lgrp_id(lgrp_id);
402 }
403 }
404
405 // Initial thread state is INITIALIZED, not SUSPENDED
406 osthread->set_state(INITIALIZED);
407
408 return osthread;
409 }
410
411
412 bool os::create_attached_thread(JavaThread* thread) {
413 #ifdef ASSERT
414 thread->verify_not_published();
415 #endif
416 HANDLE thread_h;
417 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
418 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
419 fatal("DuplicateHandle failed\n");
420 }
421 OSThread* osthread = create_os_thread(thread, thread_h,
422 (int)current_thread_id());
423 if (osthread == NULL) {
424 return false;
425 }
426
427 // Initial thread state is RUNNABLE
428 osthread->set_state(RUNNABLE);
429
430 thread->set_osthread(osthread);
431 return true;
432 }
433
434 bool os::create_main_thread(JavaThread* thread) {
435 #ifdef ASSERT
436 thread->verify_not_published();
437 #endif
438 if (_starting_thread == NULL) {
439 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
440 if (_starting_thread == NULL) {
441 return false;
442 }
443 }
444
445 // The primordial thread is runnable from the start)
446 _starting_thread->set_state(RUNNABLE);
447
448 thread->set_osthread(_starting_thread);
449 return true;
450 }
451
452 // Allocate and initialize a new OSThread
453 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
454 unsigned thread_id;
455
456 // Allocate the OSThread object
457 OSThread* osthread = new OSThread(NULL, NULL);
458 if (osthread == NULL) {
459 return false;
460 }
461
462 // Initialize support for Java interrupts
463 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
464 if (interrupt_event == NULL) {
465 delete osthread;
466 return NULL;
467 }
468 osthread->set_interrupt_event(interrupt_event);
469 osthread->set_interrupted(false);
470
471 thread->set_osthread(osthread);
472
473 if (stack_size == 0) {
474 switch (thr_type) {
475 case os::java_thread:
476 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
477 if (JavaThread::stack_size_at_create() > 0)
478 stack_size = JavaThread::stack_size_at_create();
479 break;
480 case os::compiler_thread:
481 if (CompilerThreadStackSize > 0) {
482 stack_size = (size_t)(CompilerThreadStackSize * K);
483 break;
484 } // else fall through:
485 // use VMThreadStackSize if CompilerThreadStackSize is not defined
486 case os::vm_thread:
487 case os::pgc_thread:
488 case os::cgc_thread:
489 case os::watcher_thread:
490 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
491 break;
492 }
493 }
494
495 // Create the Win32 thread
496 //
497 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
498 // does not specify stack size. Instead, it specifies the size of
499 // initially committed space. The stack size is determined by
500 // PE header in the executable. If the committed "stack_size" is larger
501 // than default value in the PE header, the stack is rounded up to the
502 // nearest multiple of 1MB. For example if the launcher has default
503 // stack size of 320k, specifying any size less than 320k does not
504 // affect the actual stack size at all, it only affects the initial
505 // commitment. On the other hand, specifying 'stack_size' larger than
506 // default value may cause significant increase in memory usage, because
507 // not only the stack space will be rounded up to MB, but also the
508 // entire space is committed upfront.
509 //
510 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
511 // for CreateThread() that can treat 'stack_size' as stack size. However we
512 // are not supposed to call CreateThread() directly according to MSDN
513 // document because JVM uses C runtime library. The good news is that the
514 // flag appears to work with _beginthredex() as well.
515
516 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
517 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
518 #endif
519
520 HANDLE thread_handle =
521 (HANDLE)_beginthreadex(NULL,
522 (unsigned)stack_size,
523 (unsigned (__stdcall *)(void*)) java_start,
524 thread,
525 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
526 &thread_id);
527 if (thread_handle == NULL) {
528 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
529 // without the flag.
530 thread_handle =
531 (HANDLE)_beginthreadex(NULL,
532 (unsigned)stack_size,
533 (unsigned (__stdcall *)(void*)) java_start,
534 thread,
535 CREATE_SUSPENDED,
536 &thread_id);
537 }
538 if (thread_handle == NULL) {
539 // Need to clean up stuff we've allocated so far
540 CloseHandle(osthread->interrupt_event());
541 thread->set_osthread(NULL);
542 delete osthread;
543 return NULL;
544 }
545
546 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
547
548 // Store info on the Win32 thread into the OSThread
549 osthread->set_thread_handle(thread_handle);
550 osthread->set_thread_id(thread_id);
551
552 // Initial thread state is INITIALIZED, not SUSPENDED
553 osthread->set_state(INITIALIZED);
554
555 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
556 return true;
557 }
558
559
560 // Free Win32 resources related to the OSThread
561 void os::free_thread(OSThread* osthread) {
562 assert(osthread != NULL, "osthread not set");
563 CloseHandle(osthread->thread_handle());
564 CloseHandle(osthread->interrupt_event());
565 delete osthread;
566 }
567
568
569 static int has_performance_count = 0;
570 static jlong first_filetime;
571 static jlong initial_performance_count;
572 static jlong performance_frequency;
573
574
575 jlong as_long(LARGE_INTEGER x) {
576 jlong result = 0; // initialization to avoid warning
577 set_high(&result, x.HighPart);
578 set_low(&result, x.LowPart);
579 return result;
580 }
581
582
583 jlong os::elapsed_counter() {
584 LARGE_INTEGER count;
585 if (has_performance_count) {
586 QueryPerformanceCounter(&count);
587 return as_long(count) - initial_performance_count;
588 } else {
589 FILETIME wt;
590 GetSystemTimeAsFileTime(&wt);
591 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
592 }
593 }
594
595
596 jlong os::elapsed_frequency() {
597 if (has_performance_count) {
598 return performance_frequency;
599 } else {
600 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
601 return 10000000;
602 }
603 }
604
605
606 julong os::available_memory() {
607 return win32::available_memory();
608 }
609
610 julong os::win32::available_memory() {
611 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
612 // is larger than 4GB
613 MEMORYSTATUS ms;
614 GlobalMemoryStatus(&ms);
615
616 return (julong)ms.dwAvailPhys;
617 }
618
619 julong os::physical_memory() {
620 return win32::physical_memory();
621 }
622
623 julong os::allocatable_physical_memory(julong size) {
624 return MIN2(size, (julong)1400*M);
625 }
626
627 // VC6 lacks DWORD_PTR
628 #if _MSC_VER < 1300
629 typedef UINT_PTR DWORD_PTR;
630 #endif
631
632 int os::active_processor_count() {
633 DWORD_PTR lpProcessAffinityMask = 0;
634 DWORD_PTR lpSystemAffinityMask = 0;
635 int proc_count = processor_count();
636 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
637 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
638 // Nof active processors is number of bits in process affinity mask
639 int bitcount = 0;
640 while (lpProcessAffinityMask != 0) {
641 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
642 bitcount++;
643 }
644 return bitcount;
645 } else {
646 return proc_count;
647 }
648 }
649
650 bool os::distribute_processes(uint length, uint* distribution) {
651 // Not yet implemented.
652 return false;
653 }
654
655 bool os::bind_to_processor(uint processor_id) {
656 // Not yet implemented.
657 return false;
658 }
659
660 static void initialize_performance_counter() {
661 LARGE_INTEGER count;
662 if (QueryPerformanceFrequency(&count)) {
663 has_performance_count = 1;
664 performance_frequency = as_long(count);
665 QueryPerformanceCounter(&count);
666 initial_performance_count = as_long(count);
667 } else {
668 has_performance_count = 0;
669 FILETIME wt;
670 GetSystemTimeAsFileTime(&wt);
671 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
672 }
673 }
674
675
676 double os::elapsedTime() {
677 return (double) elapsed_counter() / (double) elapsed_frequency();
678 }
679
680
681 // Windows format:
682 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
683 // Java format:
684 // Java standards require the number of milliseconds since 1/1/1970
685
686 // Constant offset - calculated using offset()
687 static jlong _offset = 116444736000000000;
688 // Fake time counter for reproducible results when debugging
689 static jlong fake_time = 0;
690
691 #ifdef ASSERT
692 // Just to be safe, recalculate the offset in debug mode
693 static jlong _calculated_offset = 0;
694 static int _has_calculated_offset = 0;
695
696 jlong offset() {
697 if (_has_calculated_offset) return _calculated_offset;
698 SYSTEMTIME java_origin;
699 java_origin.wYear = 1970;
700 java_origin.wMonth = 1;
701 java_origin.wDayOfWeek = 0; // ignored
702 java_origin.wDay = 1;
703 java_origin.wHour = 0;
704 java_origin.wMinute = 0;
705 java_origin.wSecond = 0;
706 java_origin.wMilliseconds = 0;
707 FILETIME jot;
708 if (!SystemTimeToFileTime(&java_origin, &jot)) {
709 fatal1("Error = %d\nWindows error", GetLastError());
710 }
711 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
712 _has_calculated_offset = 1;
713 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
714 return _calculated_offset;
715 }
716 #else
717 jlong offset() {
718 return _offset;
719 }
720 #endif
721
722 jlong windows_to_java_time(FILETIME wt) {
723 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
724 return (a - offset()) / 10000;
725 }
726
727 FILETIME java_to_windows_time(jlong l) {
728 jlong a = (l * 10000) + offset();
729 FILETIME result;
730 result.dwHighDateTime = high(a);
731 result.dwLowDateTime = low(a);
732 return result;
733 }
734
735 jlong os::timeofday() {
736 FILETIME wt;
737 GetSystemTimeAsFileTime(&wt);
738 return windows_to_java_time(wt);
739 }
740
741
742 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
743 // _use_global_time is only set if CacheTimeMillis is true
744 jlong os::javaTimeMillis() {
745 if (UseFakeTimers) {
746 return fake_time++;
747 } else {
748 return (_use_global_time ? read_global_time() : timeofday());
749 }
750 }
751
752 #define NANOS_PER_SEC CONST64(1000000000)
753 #define NANOS_PER_MILLISEC 1000000
754 jlong os::javaTimeNanos() {
755 if (!has_performance_count) {
756 return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
757 } else {
758 LARGE_INTEGER current_count;
759 QueryPerformanceCounter(&current_count);
760 double current = as_long(current_count);
761 double freq = performance_frequency;
762 jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
763 return time;
764 }
765 }
766
767 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
768 if (!has_performance_count) {
769 // javaTimeMillis() doesn't have much percision,
770 // but it is not going to wrap -- so all 64 bits
771 info_ptr->max_value = ALL_64_BITS;
772
773 // this is a wall clock timer, so may skip
774 info_ptr->may_skip_backward = true;
775 info_ptr->may_skip_forward = true;
776 } else {
777 jlong freq = performance_frequency;
778 if (freq < NANOS_PER_SEC) {
779 // the performance counter is 64 bits and we will
780 // be multiplying it -- so no wrap in 64 bits
781 info_ptr->max_value = ALL_64_BITS;
782 } else if (freq > NANOS_PER_SEC) {
783 // use the max value the counter can reach to
784 // determine the max value which could be returned
785 julong max_counter = (julong)ALL_64_BITS;
786 info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
787 } else {
788 // the performance counter is 64 bits and we will
789 // be using it directly -- so no wrap in 64 bits
790 info_ptr->max_value = ALL_64_BITS;
791 }
792
793 // using a counter, so no skipping
794 info_ptr->may_skip_backward = false;
795 info_ptr->may_skip_forward = false;
796 }
797 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
798 }
799
800 char* os::local_time_string(char *buf, size_t buflen) {
801 SYSTEMTIME st;
802 GetLocalTime(&st);
803 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
804 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
805 return buf;
806 }
807
808 bool os::getTimesSecs(double* process_real_time,
809 double* process_user_time,
810 double* process_system_time) {
811 HANDLE h_process = GetCurrentProcess();
812 FILETIME create_time, exit_time, kernel_time, user_time;
813 BOOL result = GetProcessTimes(h_process,
814 &create_time,
815 &exit_time,
816 &kernel_time,
817 &user_time);
818 if (result != 0) {
819 FILETIME wt;
820 GetSystemTimeAsFileTime(&wt);
821 jlong rtc_millis = windows_to_java_time(wt);
822 jlong user_millis = windows_to_java_time(user_time);
823 jlong system_millis = windows_to_java_time(kernel_time);
824 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
825 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
826 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
827 return true;
828 } else {
829 return false;
830 }
831 }
832
833 void os::shutdown() {
834
835 // allow PerfMemory to attempt cleanup of any persistent resources
836 perfMemory_exit();
837
838 // flush buffered output, finish log files
839 ostream_abort();
840
841 // Check for abort hook
842 abort_hook_t abort_hook = Arguments::abort_hook();
843 if (abort_hook != NULL) {
844 abort_hook();
845 }
846 }
847
848 void os::abort(bool dump_core)
849 {
850 os::shutdown();
851 // no core dump on Windows
852 ::exit(1);
853 }
854
855 // Die immediately, no exit hook, no abort hook, no cleanup.
856 void os::die() {
857 _exit(-1);
858 }
859
860 // Directory routines copied from src/win32/native/java/io/dirent_md.c
861 // * dirent_md.c 1.15 00/02/02
862 //
863 // The declarations for DIR and struct dirent are in jvm_win32.h.
864
865 /* Caller must have already run dirname through JVM_NativePath, which removes
866 duplicate slashes and converts all instances of '/' into '\\'. */
867
868 DIR *
869 os::opendir(const char *dirname)
870 {
871 assert(dirname != NULL, "just checking"); // hotspot change
872 DIR *dirp = (DIR *)malloc(sizeof(DIR));
873 DWORD fattr; // hotspot change
874 char alt_dirname[4] = { 0, 0, 0, 0 };
875
876 if (dirp == 0) {
877 errno = ENOMEM;
878 return 0;
879 }
880
881 /*
882 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
883 * as a directory in FindFirstFile(). We detect this case here and
884 * prepend the current drive name.
885 */
886 if (dirname[1] == '\0' && dirname[0] == '\\') {
887 alt_dirname[0] = _getdrive() + 'A' - 1;
888 alt_dirname[1] = ':';
889 alt_dirname[2] = '\\';
890 alt_dirname[3] = '\0';
891 dirname = alt_dirname;
892 }
893
894 dirp->path = (char *)malloc(strlen(dirname) + 5);
895 if (dirp->path == 0) {
896 free(dirp);
897 errno = ENOMEM;
898 return 0;
899 }
900 strcpy(dirp->path, dirname);
901
902 fattr = GetFileAttributes(dirp->path);
903 if (fattr == 0xffffffff) {
904 free(dirp->path);
905 free(dirp);
906 errno = ENOENT;
907 return 0;
908 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
909 free(dirp->path);
910 free(dirp);
911 errno = ENOTDIR;
912 return 0;
913 }
914
915 /* Append "*.*", or possibly "\\*.*", to path */
916 if (dirp->path[1] == ':'
917 && (dirp->path[2] == '\0'
918 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
919 /* No '\\' needed for cases like "Z:" or "Z:\" */
920 strcat(dirp->path, "*.*");
921 } else {
922 strcat(dirp->path, "\\*.*");
923 }
924
925 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
926 if (dirp->handle == INVALID_HANDLE_VALUE) {
927 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
928 free(dirp->path);
929 free(dirp);
930 errno = EACCES;
931 return 0;
932 }
933 }
934 return dirp;
935 }
936
937 /* parameter dbuf unused on Windows */
938
939 struct dirent *
940 os::readdir(DIR *dirp, dirent *dbuf)
941 {
942 assert(dirp != NULL, "just checking"); // hotspot change
943 if (dirp->handle == INVALID_HANDLE_VALUE) {
944 return 0;
945 }
946
947 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
948
949 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
950 if (GetLastError() == ERROR_INVALID_HANDLE) {
951 errno = EBADF;
952 return 0;
953 }
954 FindClose(dirp->handle);
955 dirp->handle = INVALID_HANDLE_VALUE;
956 }
957
958 return &dirp->dirent;
959 }
960
961 int
962 os::closedir(DIR *dirp)
963 {
964 assert(dirp != NULL, "just checking"); // hotspot change
965 if (dirp->handle != INVALID_HANDLE_VALUE) {
966 if (!FindClose(dirp->handle)) {
967 errno = EBADF;
968 return -1;
969 }
970 dirp->handle = INVALID_HANDLE_VALUE;
971 }
972 free(dirp->path);
973 free(dirp);
974 return 0;
975 }
976
977 const char* os::dll_file_extension() { return ".dll"; }
978
979 const char * os::get_temp_directory()
980 {
981 static char path_buf[MAX_PATH];
982 if (GetTempPath(MAX_PATH, path_buf)>0)
983 return path_buf;
984 else{
985 path_buf[0]='\0';
986 return path_buf;
987 }
988 }
989
990 // Needs to be in os specific directory because windows requires another
991 // header file <direct.h>
992 const char* os::get_current_directory(char *buf, int buflen) {
993 return _getcwd(buf, buflen);
994 }
995
996 //-----------------------------------------------------------
997 // Helper functions for fatal error handler
998
999 // The following library functions are resolved dynamically at runtime:
1000
1001 // PSAPI functions, for Windows NT, 2000, XP
1002
1003 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1004 // SDK from Microsoft. Here are the definitions copied from psapi.h
1005 typedef struct _MODULEINFO {
1006 LPVOID lpBaseOfDll;
1007 DWORD SizeOfImage;
1008 LPVOID EntryPoint;
1009 } MODULEINFO, *LPMODULEINFO;
1010
1011 static BOOL (WINAPI *_EnumProcessModules) ( HANDLE, HMODULE *, DWORD, LPDWORD );
1012 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1013 static BOOL (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1014
1015 // ToolHelp Functions, for Windows 95, 98 and ME
1016
1017 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1018 static BOOL (WINAPI *_Module32First) (HANDLE,LPMODULEENTRY32) ;
1019 static BOOL (WINAPI *_Module32Next) (HANDLE,LPMODULEENTRY32) ;
1020
1021 bool _has_psapi;
1022 bool _psapi_init = false;
1023 bool _has_toolhelp;
1024
1025 static bool _init_psapi() {
1026 HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1027 if( psapi == NULL ) return false ;
1028
1029 _EnumProcessModules = CAST_TO_FN_PTR(
1030 BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1031 GetProcAddress(psapi, "EnumProcessModules")) ;
1032 _GetModuleFileNameEx = CAST_TO_FN_PTR(
1033 DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1034 GetProcAddress(psapi, "GetModuleFileNameExA"));
1035 _GetModuleInformation = CAST_TO_FN_PTR(
1036 BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1037 GetProcAddress(psapi, "GetModuleInformation"));
1038
1039 _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1040 _psapi_init = true;
1041 return _has_psapi;
1042 }
1043
1044 static bool _init_toolhelp() {
1045 HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1046 if (kernel32 == NULL) return false ;
1047
1048 _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1049 HANDLE(WINAPI *)(DWORD,DWORD),
1050 GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1051 _Module32First = CAST_TO_FN_PTR(
1052 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1053 GetProcAddress(kernel32, "Module32First" ));
1054 _Module32Next = CAST_TO_FN_PTR(
1055 BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1056 GetProcAddress(kernel32, "Module32Next" ));
1057
1058 _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1059 return _has_toolhelp;
1060 }
1061
1062 #ifdef _WIN64
1063 // Helper routine which returns true if address in
1064 // within the NTDLL address space.
1065 //
1066 static bool _addr_in_ntdll( address addr )
1067 {
1068 HMODULE hmod;
1069 MODULEINFO minfo;
1070
1071 hmod = GetModuleHandle("NTDLL.DLL");
1072 if ( hmod == NULL ) return false;
1073 if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1074 &minfo, sizeof(MODULEINFO)) )
1075 return false;
1076
1077 if ( (addr >= minfo.lpBaseOfDll) &&
1078 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1079 return true;
1080 else
1081 return false;
1082 }
1083 #endif
1084
1085
1086 // Enumerate all modules for a given process ID
1087 //
1088 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1089 // different API for doing this. We use PSAPI.DLL on NT based
1090 // Windows and ToolHelp on 95/98/Me.
1091
1092 // Callback function that is called by enumerate_modules() on
1093 // every DLL module.
1094 // Input parameters:
1095 // int pid,
1096 // char* module_file_name,
1097 // address module_base_addr,
1098 // unsigned module_size,
1099 // void* param
1100 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1101
1102 // enumerate_modules for Windows NT, using PSAPI
1103 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1104 {
1105 HANDLE hProcess ;
1106
1107 # define MAX_NUM_MODULES 128
1108 HMODULE modules[MAX_NUM_MODULES];
1109 static char filename[ MAX_PATH ];
1110 int result = 0;
1111
1112 if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1113
1114 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1115 FALSE, pid ) ;
1116 if (hProcess == NULL) return 0;
1117
1118 DWORD size_needed;
1119 if (!_EnumProcessModules(hProcess, modules,
1120 sizeof(modules), &size_needed)) {
1121 CloseHandle( hProcess );
1122 return 0;
1123 }
1124
1125 // number of modules that are currently loaded
1126 int num_modules = size_needed / sizeof(HMODULE);
1127
1128 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1129 // Get Full pathname:
1130 if(!_GetModuleFileNameEx(hProcess, modules[i],
1131 filename, sizeof(filename))) {
1132 filename[0] = '\0';
1133 }
1134
1135 MODULEINFO modinfo;
1136 if (!_GetModuleInformation(hProcess, modules[i],
1137 &modinfo, sizeof(modinfo))) {
1138 modinfo.lpBaseOfDll = NULL;
1139 modinfo.SizeOfImage = 0;
1140 }
1141
1142 // Invoke callback function
1143 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1144 modinfo.SizeOfImage, param);
1145 if (result) break;
1146 }
1147
1148 CloseHandle( hProcess ) ;
1149 return result;
1150 }
1151
1152
1153 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1154 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1155 {
1156 HANDLE hSnapShot ;
1157 static MODULEENTRY32 modentry ;
1158 int result = 0;
1159
1160 if (!_has_toolhelp) return 0;
1161
1162 // Get a handle to a Toolhelp snapshot of the system
1163 hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1164 if( hSnapShot == INVALID_HANDLE_VALUE ) {
1165 return FALSE ;
1166 }
1167
1168 // iterate through all modules
1169 modentry.dwSize = sizeof(MODULEENTRY32) ;
1170 bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1171
1172 while( not_done ) {
1173 // invoke the callback
1174 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1175 modentry.modBaseSize, param);
1176 if (result) break;
1177
1178 modentry.dwSize = sizeof(MODULEENTRY32) ;
1179 not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1180 }
1181
1182 CloseHandle(hSnapShot);
1183 return result;
1184 }
1185
1186 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1187 {
1188 // Get current process ID if caller doesn't provide it.
1189 if (!pid) pid = os::current_process_id();
1190
1191 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
1192 else return _enumerate_modules_windows(pid, func, param);
1193 }
1194
1195 struct _modinfo {
1196 address addr;
1197 char* full_path; // point to a char buffer
1198 int buflen; // size of the buffer
1199 address base_addr;
1200 };
1201
1202 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1203 unsigned size, void * param) {
1204 struct _modinfo *pmod = (struct _modinfo *)param;
1205 if (!pmod) return -1;
1206
1207 if (base_addr <= pmod->addr &&
1208 base_addr+size > pmod->addr) {
1209 // if a buffer is provided, copy path name to the buffer
1210 if (pmod->full_path) {
1211 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1212 }
1213 pmod->base_addr = base_addr;
1214 return 1;
1215 }
1216 return 0;
1217 }
1218
1219 bool os::dll_address_to_library_name(address addr, char* buf,
1220 int buflen, int* offset) {
1221 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1222 // return the full path to the DLL file, sometimes it returns path
1223 // to the corresponding PDB file (debug info); sometimes it only
1224 // returns partial path, which makes life painful.
1225
1226 struct _modinfo mi;
1227 mi.addr = addr;
1228 mi.full_path = buf;
1229 mi.buflen = buflen;
1230 int pid = os::current_process_id();
1231 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1232 // buf already contains path name
1233 if (offset) *offset = addr - mi.base_addr;
1234 return true;
1235 } else {
1236 if (buf) buf[0] = '\0';
1237 if (offset) *offset = -1;
1238 return false;
1239 }
1240 }
1241
1242 bool os::dll_address_to_function_name(address addr, char *buf,
1243 int buflen, int *offset) {
1244 // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1245 // we need to initialize imagehlp/dbghelp, then load symbol table
1246 // for every module. That's too much work to do after a fatal error.
1247 // For an example on how to implement this function, see 1.4.2.
1248 if (offset) *offset = -1;
1249 if (buf) buf[0] = '\0';
1250 return false;
1251 }
1252
1253 // save the start and end address of jvm.dll into param[0] and param[1]
1254 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1255 unsigned size, void * param) {
1256 if (!param) return -1;
1257
1258 if (base_addr <= (address)_locate_jvm_dll &&
1259 base_addr+size > (address)_locate_jvm_dll) {
1260 ((address*)param)[0] = base_addr;
1261 ((address*)param)[1] = base_addr + size;
1262 return 1;
1263 }
1264 return 0;
1265 }
1266
1267 address vm_lib_location[2]; // start and end address of jvm.dll
1268
1269 // check if addr is inside jvm.dll
1270 bool os::address_is_in_vm(address addr) {
1271 if (!vm_lib_location[0] || !vm_lib_location[1]) {
1272 int pid = os::current_process_id();
1273 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1274 assert(false, "Can't find jvm module.");
1275 return false;
1276 }
1277 }
1278
1279 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1280 }
1281
1282 // print module info; param is outputStream*
1283 static int _print_module(int pid, char* fname, address base,
1284 unsigned size, void* param) {
1285 if (!param) return -1;
1286
1287 outputStream* st = (outputStream*)param;
1288
1289 address end_addr = base + size;
1290 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1291 return 0;
1292 }
1293
1294 // Loads .dll/.so and
1295 // in case of error it checks if .dll/.so was built for the
1296 // same architecture as Hotspot is running on
1297 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1298 {
1299 void * result = LoadLibrary(name);
1300 if (result != NULL)
1301 {
1302 return result;
1303 }
1304
1305 long errcode = GetLastError();
1306 if (errcode == ERROR_MOD_NOT_FOUND) {
1307 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1308 ebuf[ebuflen-1]='\0';
1309 return NULL;
1310 }
1311
1312 // Parsing dll below
1313 // If we can read dll-info and find that dll was built
1314 // for an architecture other than Hotspot is running in
1315 // - then print to buffer "DLL was built for a different architecture"
1316 // else call getLastErrorString to obtain system error message
1317
1318 // Read system error message into ebuf
1319 // It may or may not be overwritten below (in the for loop and just above)
1320 getLastErrorString(ebuf, (size_t) ebuflen);
1321 ebuf[ebuflen-1]='\0';
1322 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1323 if (file_descriptor<0)
1324 {
1325 return NULL;
1326 }
1327
1328 uint32_t signature_offset;
1329 uint16_t lib_arch=0;
1330 bool failed_to_get_lib_arch=
1331 (
1332 //Go to position 3c in the dll
1333 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1334 ||
1335 // Read loacation of signature
1336 (sizeof(signature_offset)!=
1337 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1338 ||
1339 //Go to COFF File Header in dll
1340 //that is located after"signature" (4 bytes long)
1341 (os::seek_to_file_offset(file_descriptor,
1342 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1343 ||
1344 //Read field that contains code of architecture
1345 // that dll was build for
1346 (sizeof(lib_arch)!=
1347 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1348 );
1349
1350 ::close(file_descriptor);
1351 if (failed_to_get_lib_arch)
1352 {
1353 // file i/o error - report getLastErrorString(...) msg
1354 return NULL;
1355 }
1356
1357 typedef struct
1358 {
1359 uint16_t arch_code;
1360 char* arch_name;
1361 } arch_t;
1362
1363 static const arch_t arch_array[]={
1364 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
1365 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
1366 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
1367 };
1368 #if (defined _M_IA64)
1369 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1370 #elif (defined _M_AMD64)
1371 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1372 #elif (defined _M_IX86)
1373 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1374 #else
1375 #error Method os::dll_load requires that one of following \
1376 is defined :_M_IA64,_M_AMD64 or _M_IX86
1377 #endif
1378
1379
1380 // Obtain a string for printf operation
1381 // lib_arch_str shall contain string what platform this .dll was built for
1382 // running_arch_str shall string contain what platform Hotspot was built for
1383 char *running_arch_str=NULL,*lib_arch_str=NULL;
1384 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1385 {
1386 if (lib_arch==arch_array[i].arch_code)
1387 lib_arch_str=arch_array[i].arch_name;
1388 if (running_arch==arch_array[i].arch_code)
1389 running_arch_str=arch_array[i].arch_name;
1390 }
1391
1392 assert(running_arch_str,
1393 "Didn't find runing architecture code in arch_array");
1394
1395 // If the architure is right
1396 // but some other error took place - report getLastErrorString(...) msg
1397 if (lib_arch == running_arch)
1398 {
1399 return NULL;
1400 }
1401
1402 if (lib_arch_str!=NULL)
1403 {
1404 ::_snprintf(ebuf, ebuflen-1,
1405 "Can't load %s-bit .dll on a %s-bit platform",
1406 lib_arch_str,running_arch_str);
1407 }
1408 else
1409 {
1410 // don't know what architecture this dll was build for
1411 ::_snprintf(ebuf, ebuflen-1,
1412 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1413 lib_arch,running_arch_str);
1414 }
1415
1416 return NULL;
1417 }
1418
1419
1420 void os::print_dll_info(outputStream *st) {
1421 int pid = os::current_process_id();
1422 st->print_cr("Dynamic libraries:");
1423 enumerate_modules(pid, _print_module, (void *)st);
1424 }
1425
1426 void os::print_os_info(outputStream* st) {
1427 st->print("OS:");
1428
1429 OSVERSIONINFOEX osvi;
1430 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1431 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1432
1433 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1434 st->print_cr("N/A");
1435 return;
1436 }
1437
1438 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1439
1440 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1441 switch (os_vers) {
1442 case 3051: st->print(" Windows NT 3.51"); break;
1443 case 4000: st->print(" Windows NT 4.0"); break;
1444 case 5000: st->print(" Windows 2000"); break;
1445 case 5001: st->print(" Windows XP"); break;
1446 case 5002: st->print(" Windows Server 2003 family"); break;
1447 case 6000: st->print(" Windows Vista"); break;
1448 default: // future windows, print out its major and minor versions
1449 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1450 }
1451 } else {
1452 switch (os_vers) {
1453 case 4000: st->print(" Windows 95"); break;
1454 case 4010: st->print(" Windows 98"); break;
1455 case 4090: st->print(" Windows Me"); break;
1456 default: // future windows, print out its major and minor versions
1457 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1458 }
1459 }
1460
1461 st->print(" Build %d", osvi.dwBuildNumber);
1462 st->print(" %s", osvi.szCSDVersion); // service pack
1463 st->cr();
1464 }
1465
1466 void os::print_memory_info(outputStream* st) {
1467 st->print("Memory:");
1468 st->print(" %dk page", os::vm_page_size()>>10);
1469
1470 // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
1471 // is larger than 4GB
1472 MEMORYSTATUS ms;
1473 GlobalMemoryStatus(&ms);
1474
1475 st->print(", physical %uk", os::physical_memory() >> 10);
1476 st->print("(%uk free)", os::available_memory() >> 10);
1477
1478 st->print(", swap %uk", ms.dwTotalPageFile >> 10);
1479 st->print("(%uk free)", ms.dwAvailPageFile >> 10);
1480 st->cr();
1481 }
1482
1483 void os::print_siginfo(outputStream *st, void *siginfo) {
1484 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1485 st->print("siginfo:");
1486 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1487
1488 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1489 er->NumberParameters >= 2) {
1490 switch (er->ExceptionInformation[0]) {
1491 case 0: st->print(", reading address"); break;
1492 case 1: st->print(", writing address"); break;
1493 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1494 er->ExceptionInformation[0]);
1495 }
1496 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1497 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1498 er->NumberParameters >= 2 && UseSharedSpaces) {
1499 FileMapInfo* mapinfo = FileMapInfo::current_info();
1500 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1501 st->print("\n\nError accessing class data sharing archive." \
1502 " Mapped file inaccessible during execution, " \
1503 " possible disk/network problem.");
1504 }
1505 } else {
1506 int num = er->NumberParameters;
1507 if (num > 0) {
1508 st->print(", ExceptionInformation=");
1509 for (int i = 0; i < num; i++) {
1510 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1511 }
1512 }
1513 }
1514 st->cr();
1515 }
1516
1517 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1518 // do nothing
1519 }
1520
1521 static char saved_jvm_path[MAX_PATH] = {0};
1522
1523 // Find the full path to the current module, jvm.dll or jvm_g.dll
1524 void os::jvm_path(char *buf, jint buflen) {
1525 // Error checking.
1526 if (buflen < MAX_PATH) {
1527 assert(false, "must use a large-enough buffer");
1528 buf[0] = '\0';
1529 return;
1530 }
1531 // Lazy resolve the path to current module.
1532 if (saved_jvm_path[0] != 0) {
1533 strcpy(buf, saved_jvm_path);
1534 return;
1535 }
1536
1537 GetModuleFileName(vm_lib_handle, buf, buflen);
1538 strcpy(saved_jvm_path, buf);
1539 }
1540
1541
1542 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1543 #ifndef _WIN64
1544 st->print("_");
1545 #endif
1546 }
1547
1548
1549 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1550 #ifndef _WIN64
1551 st->print("@%d", args_size * sizeof(int));
1552 #endif
1553 }
1554
1555 // sun.misc.Signal
1556 // NOTE that this is a workaround for an apparent kernel bug where if
1557 // a signal handler for SIGBREAK is installed then that signal handler
1558 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1559 // See bug 4416763.
1560 static void (*sigbreakHandler)(int) = NULL;
1561
1562 static void UserHandler(int sig, void *siginfo, void *context) {
1563 os::signal_notify(sig);
1564 // We need to reinstate the signal handler each time...
1565 os::signal(sig, (void*)UserHandler);
1566 }
1567
1568 void* os::user_handler() {
1569 return (void*) UserHandler;
1570 }
1571
1572 void* os::signal(int signal_number, void* handler) {
1573 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1574 void (*oldHandler)(int) = sigbreakHandler;
1575 sigbreakHandler = (void (*)(int)) handler;
1576 return (void*) oldHandler;
1577 } else {
1578 return (void*)::signal(signal_number, (void (*)(int))handler);
1579 }
1580 }
1581
1582 void os::signal_raise(int signal_number) {
1583 raise(signal_number);
1584 }
1585
1586 // The Win32 C runtime library maps all console control events other than ^C
1587 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1588 // logoff, and shutdown events. We therefore install our own console handler
1589 // that raises SIGTERM for the latter cases.
1590 //
1591 static BOOL WINAPI consoleHandler(DWORD event) {
1592 switch(event) {
1593 case CTRL_C_EVENT:
1594 if (is_error_reported()) {
1595 // Ctrl-C is pressed during error reporting, likely because the error
1596 // handler fails to abort. Let VM die immediately.
1597 os::die();
1598 }
1599
1600 os::signal_raise(SIGINT);
1601 return TRUE;
1602 break;
1603 case CTRL_BREAK_EVENT:
1604 if (sigbreakHandler != NULL) {
1605 (*sigbreakHandler)(SIGBREAK);
1606 }
1607 return TRUE;
1608 break;
1609 case CTRL_CLOSE_EVENT:
1610 case CTRL_LOGOFF_EVENT:
1611 case CTRL_SHUTDOWN_EVENT:
1612 os::signal_raise(SIGTERM);
1613 return TRUE;
1614 break;
1615 default:
1616 break;
1617 }
1618 return FALSE;
1619 }
1620
1621 /*
1622 * The following code is moved from os.cpp for making this
1623 * code platform specific, which it is by its very nature.
1624 */
1625
1626 // Return maximum OS signal used + 1 for internal use only
1627 // Used as exit signal for signal_thread
1628 int os::sigexitnum_pd(){
1629 return NSIG;
1630 }
1631
1632 // a counter for each possible signal value, including signal_thread exit signal
1633 static volatile jint pending_signals[NSIG+1] = { 0 };
1634 static HANDLE sig_sem;
1635
1636 void os::signal_init_pd() {
1637 // Initialize signal structures
1638 memset((void*)pending_signals, 0, sizeof(pending_signals));
1639
1640 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1641
1642 // Programs embedding the VM do not want it to attempt to receive
1643 // events like CTRL_LOGOFF_EVENT, which are used to implement the
1644 // shutdown hooks mechanism introduced in 1.3. For example, when
1645 // the VM is run as part of a Windows NT service (i.e., a servlet
1646 // engine in a web server), the correct behavior is for any console
1647 // control handler to return FALSE, not TRUE, because the OS's
1648 // "final" handler for such events allows the process to continue if
1649 // it is a service (while terminating it if it is not a service).
1650 // To make this behavior uniform and the mechanism simpler, we
1651 // completely disable the VM's usage of these console events if -Xrs
1652 // (=ReduceSignalUsage) is specified. This means, for example, that
1653 // the CTRL-BREAK thread dump mechanism is also disabled in this
1654 // case. See bugs 4323062, 4345157, and related bugs.
1655
1656 if (!ReduceSignalUsage) {
1657 // Add a CTRL-C handler
1658 SetConsoleCtrlHandler(consoleHandler, TRUE);
1659 }
1660 }
1661
1662 void os::signal_notify(int signal_number) {
1663 BOOL ret;
1664
1665 Atomic::inc(&pending_signals[signal_number]);
1666 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1667 assert(ret != 0, "ReleaseSemaphore() failed");
1668 }
1669
1670 static int check_pending_signals(bool wait_for_signal) {
1671 DWORD ret;
1672 while (true) {
1673 for (int i = 0; i < NSIG + 1; i++) {
1674 jint n = pending_signals[i];
1675 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1676 return i;
1677 }
1678 }
1679 if (!wait_for_signal) {
1680 return -1;
1681 }
1682
1683 JavaThread *thread = JavaThread::current();
1684
1685 ThreadBlockInVM tbivm(thread);
1686
1687 bool threadIsSuspended;
1688 do {
1689 thread->set_suspend_equivalent();
1690 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1691 ret = ::WaitForSingleObject(sig_sem, INFINITE);
1692 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1693
1694 // were we externally suspended while we were waiting?
1695 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1696 if (threadIsSuspended) {
1697 //
1698 // The semaphore has been incremented, but while we were waiting
1699 // another thread suspended us. We don't want to continue running
1700 // while suspended because that would surprise the thread that
1701 // suspended us.
1702 //
1703 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1704 assert(ret != 0, "ReleaseSemaphore() failed");
1705
1706 thread->java_suspend_self();
1707 }
1708 } while (threadIsSuspended);
1709 }
1710 }
1711
1712 int os::signal_lookup() {
1713 return check_pending_signals(false);
1714 }
1715
1716 int os::signal_wait() {
1717 return check_pending_signals(true);
1718 }
1719
1720 // Implicit OS exception handling
1721
1722 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1723 JavaThread* thread = JavaThread::current();
1724 // Save pc in thread
1725 #ifdef _M_IA64
1726 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1727 // Set pc to handler
1728 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1729 #elif _M_AMD64
1730 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1731 // Set pc to handler
1732 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1733 #else
1734 thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1735 // Set pc to handler
1736 exceptionInfo->ContextRecord->Eip = (LONG)handler;
1737 #endif
1738
1739 // Continue the execution
1740 return EXCEPTION_CONTINUE_EXECUTION;
1741 }
1742
1743
1744 // Used for PostMortemDump
1745 extern "C" void safepoints();
1746 extern "C" void find(int x);
1747 extern "C" void events();
1748
1749 // According to Windows API documentation, an illegal instruction sequence should generate
1750 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1751 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1752 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1753
1754 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1755
1756 // From "Execution Protection in the Windows Operating System" draft 0.35
1757 // Once a system header becomes available, the "real" define should be
1758 // included or copied here.
1759 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1760
1761 #define def_excpt(val) #val, val
1762
1763 struct siglabel {
1764 char *name;
1765 int number;
1766 };
1767
1768 struct siglabel exceptlabels[] = {
1769 def_excpt(EXCEPTION_ACCESS_VIOLATION),
1770 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1771 def_excpt(EXCEPTION_BREAKPOINT),
1772 def_excpt(EXCEPTION_SINGLE_STEP),
1773 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1774 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1775 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1776 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1777 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1778 def_excpt(EXCEPTION_FLT_OVERFLOW),
1779 def_excpt(EXCEPTION_FLT_STACK_CHECK),
1780 def_excpt(EXCEPTION_FLT_UNDERFLOW),
1781 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1782 def_excpt(EXCEPTION_INT_OVERFLOW),
1783 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1784 def_excpt(EXCEPTION_IN_PAGE_ERROR),
1785 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1786 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1787 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1788 def_excpt(EXCEPTION_STACK_OVERFLOW),
1789 def_excpt(EXCEPTION_INVALID_DISPOSITION),
1790 def_excpt(EXCEPTION_GUARD_PAGE),
1791 def_excpt(EXCEPTION_INVALID_HANDLE),
1792 NULL, 0
1793 };
1794
1795 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1796 for (int i = 0; exceptlabels[i].name != NULL; i++) {
1797 if (exceptlabels[i].number == exception_code) {
1798 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1799 return buf;
1800 }
1801 }
1802
1803 return NULL;
1804 }
1805
1806 //-----------------------------------------------------------------------------
1807 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1808 // handle exception caused by idiv; should only happen for -MinInt/-1
1809 // (division by zero is handled explicitly)
1810 #ifdef _M_IA64
1811 assert(0, "Fix Handle_IDiv_Exception");
1812 #elif _M_AMD64
1813 PCONTEXT ctx = exceptionInfo->ContextRecord;
1814 address pc = (address)ctx->Rip;
1815 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1816 assert(pc[0] == 0xF7, "not an idiv opcode");
1817 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1818 assert(ctx->Rax == min_jint, "unexpected idiv exception");
1819 // set correct result values and continue after idiv instruction
1820 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
1821 ctx->Rax = (DWORD)min_jint; // result
1822 ctx->Rdx = (DWORD)0; // remainder
1823 // Continue the execution
1824 #else
1825 PCONTEXT ctx = exceptionInfo->ContextRecord;
1826 address pc = (address)ctx->Eip;
1827 NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1828 assert(pc[0] == 0xF7, "not an idiv opcode");
1829 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1830 assert(ctx->Eax == min_jint, "unexpected idiv exception");
1831 // set correct result values and continue after idiv instruction
1832 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
1833 ctx->Eax = (DWORD)min_jint; // result
1834 ctx->Edx = (DWORD)0; // remainder
1835 // Continue the execution
1836 #endif
1837 return EXCEPTION_CONTINUE_EXECUTION;
1838 }
1839
1840 #ifndef _WIN64
1841 //-----------------------------------------------------------------------------
1842 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1843 // handle exception caused by native mothod modifying control word
1844 PCONTEXT ctx = exceptionInfo->ContextRecord;
1845 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1846
1847 switch (exception_code) {
1848 case EXCEPTION_FLT_DENORMAL_OPERAND:
1849 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1850 case EXCEPTION_FLT_INEXACT_RESULT:
1851 case EXCEPTION_FLT_INVALID_OPERATION:
1852 case EXCEPTION_FLT_OVERFLOW:
1853 case EXCEPTION_FLT_STACK_CHECK:
1854 case EXCEPTION_FLT_UNDERFLOW:
1855 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1856 if (fp_control_word != ctx->FloatSave.ControlWord) {
1857 // Restore FPCW and mask out FLT exceptions
1858 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1859 // Mask out pending FLT exceptions
1860 ctx->FloatSave.StatusWord &= 0xffffff00;
1861 return EXCEPTION_CONTINUE_EXECUTION;
1862 }
1863 }
1864 return EXCEPTION_CONTINUE_SEARCH;
1865 }
1866 #else //_WIN64
1867 /*
1868 On Windows, the mxcsr control bits are non-volatile across calls
1869 See also CR 6192333
1870 If EXCEPTION_FLT_* happened after some native method modified
1871 mxcsr - it is not a jvm fault.
1872 However should we decide to restore of mxcsr after a faulty
1873 native method we can uncomment following code
1874 jint MxCsr = INITIAL_MXCSR;
1875 // we can't use StubRoutines::addr_mxcsr_std()
1876 // because in Win64 mxcsr is not saved there
1877 if (MxCsr != ctx->MxCsr) {
1878 ctx->MxCsr = MxCsr;
1879 return EXCEPTION_CONTINUE_EXECUTION;
1880 }
1881
1882 */
1883 #endif //_WIN64
1884
1885
1886 // Fatal error reporting is single threaded so we can make this a
1887 // static and preallocated. If it's more than MAX_PATH silently ignore
1888 // it.
1889 static char saved_error_file[MAX_PATH] = {0};
1890
1891 void os::set_error_file(const char *logfile) {
1892 if (strlen(logfile) <= MAX_PATH) {
1893 strncpy(saved_error_file, logfile, MAX_PATH);
1894 }
1895 }
1896
1897 static inline void report_error(Thread* t, DWORD exception_code,
1898 address addr, void* siginfo, void* context) {
1899 VMError err(t, exception_code, addr, siginfo, context);
1900 err.report_and_die();
1901
1902 // If UseOsErrorReporting, this will return here and save the error file
1903 // somewhere where we can find it in the minidump.
1904 }
1905
1906 //-----------------------------------------------------------------------------
1907 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
1908 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
1909 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1910 #ifdef _M_IA64
1911 address pc = (address) exceptionInfo->ContextRecord->StIIP;
1912 #elif _M_AMD64
1913 address pc = (address) exceptionInfo->ContextRecord->Rip;
1914 #else
1915 address pc = (address) exceptionInfo->ContextRecord->Eip;
1916 #endif
1917 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
1918
1919 #ifndef _WIN64
1920 // Execution protection violation - win32 running on AMD64 only
1921 // Handled first to avoid misdiagnosis as a "normal" access violation;
1922 // This is safe to do because we have a new/unique ExceptionInformation
1923 // code for this condition.
1924 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
1925 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
1926 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
1927 address addr = (address) exceptionRecord->ExceptionInformation[1];
1928
1929 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
1930 int page_size = os::vm_page_size();
1931
1932 // Make sure the pc and the faulting address are sane.
1933 //
1934 // If an instruction spans a page boundary, and the page containing
1935 // the beginning of the instruction is executable but the following
1936 // page is not, the pc and the faulting address might be slightly
1937 // different - we still want to unguard the 2nd page in this case.
1938 //
1939 // 15 bytes seems to be a (very) safe value for max instruction size.
1940 bool pc_is_near_addr =
1941 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
1942 bool instr_spans_page_boundary =
1943 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
1944 (intptr_t) page_size) > 0);
1945
1946 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
1947 static volatile address last_addr =
1948 (address) os::non_memory_address_word();
1949
1950 // In conservative mode, don't unguard unless the address is in the VM
1951 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
1952 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
1953
1954 // Unguard and retry
1955 address page_start =
1956 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
1957 bool res = os::unguard_memory((char*) page_start, page_size);
1958
1959 if (PrintMiscellaneous && Verbose) {
1960 char buf[256];
1961 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
1962 "at " INTPTR_FORMAT
1963 ", unguarding " INTPTR_FORMAT ": %s", addr,
1964 page_start, (res ? "success" : strerror(errno)));
1965 tty->print_raw_cr(buf);
1966 }
1967
1968 // Set last_addr so if we fault again at the same address, we don't
1969 // end up in an endless loop.
1970 //
1971 // There are two potential complications here. Two threads trapping
1972 // at the same address at the same time could cause one of the
1973 // threads to think it already unguarded, and abort the VM. Likely
1974 // very rare.
1975 //
1976 // The other race involves two threads alternately trapping at
1977 // different addresses and failing to unguard the page, resulting in
1978 // an endless loop. This condition is probably even more unlikely
1979 // than the first.
1980 //
1981 // Although both cases could be avoided by using locks or thread
1982 // local last_addr, these solutions are unnecessary complication:
1983 // this handler is a best-effort safety net, not a complete solution.
1984 // It is disabled by default and should only be used as a workaround
1985 // in case we missed any no-execute-unsafe VM code.
1986
1987 last_addr = addr;
1988
1989 return EXCEPTION_CONTINUE_EXECUTION;
1990 }
1991 }
1992
1993 // Last unguard failed or not unguarding
1994 tty->print_raw_cr("Execution protection violation");
1995 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
1996 exceptionInfo->ContextRecord);
1997 return EXCEPTION_CONTINUE_SEARCH;
1998 }
1999 }
2000 #endif // _WIN64
2001
2002 // Check to see if we caught the safepoint code in the
2003 // process of write protecting the memory serialization page.
2004 // It write enables the page immediately after protecting it
2005 // so just return.
2006 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2007 JavaThread* thread = (JavaThread*) t;
2008 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2009 address addr = (address) exceptionRecord->ExceptionInformation[1];
2010 if ( os::is_memory_serialize_page(thread, addr) ) {
2011 // Block current thread until the memory serialize page permission restored.
2012 os::block_on_serialize_page_trap();
2013 return EXCEPTION_CONTINUE_EXECUTION;
2014 }
2015 }
2016
2017
2018 if (t != NULL && t->is_Java_thread()) {
2019 JavaThread* thread = (JavaThread*) t;
2020 bool in_java = thread->thread_state() == _thread_in_Java;
2021
2022 // Handle potential stack overflows up front.
2023 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2024 if (os::uses_stack_guard_pages()) {
2025 #ifdef _M_IA64
2026 //
2027 // If it's a legal stack address continue, Windows will map it in.
2028 //
2029 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2030 address addr = (address) exceptionRecord->ExceptionInformation[1];
2031 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2032 return EXCEPTION_CONTINUE_EXECUTION;
2033
2034 // The register save area is the same size as the memory stack
2035 // and starts at the page just above the start of the memory stack.
2036 // If we get a fault in this area, we've run out of register
2037 // stack. If we are in java, try throwing a stack overflow exception.
2038 if (addr > thread->stack_base() &&
2039 addr <= (thread->stack_base()+thread->stack_size()) ) {
2040 char buf[256];
2041 jio_snprintf(buf, sizeof(buf),
2042 "Register stack overflow, addr:%p, stack_base:%p\n",
2043 addr, thread->stack_base() );
2044 tty->print_raw_cr(buf);
2045 // If not in java code, return and hope for the best.
2046 return in_java ? Handle_Exception(exceptionInfo,
2047 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2048 : EXCEPTION_CONTINUE_EXECUTION;
2049 }
2050 #endif
2051 if (thread->stack_yellow_zone_enabled()) {
2052 // Yellow zone violation. The o/s has unprotected the first yellow
2053 // zone page for us. Note: must call disable_stack_yellow_zone to
2054 // update the enabled status, even if the zone contains only one page.
2055 thread->disable_stack_yellow_zone();
2056 // If not in java code, return and hope for the best.
2057 return in_java ? Handle_Exception(exceptionInfo,
2058 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2059 : EXCEPTION_CONTINUE_EXECUTION;
2060 } else {
2061 // Fatal red zone violation.
2062 thread->disable_stack_red_zone();
2063 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2064 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2065 exceptionInfo->ContextRecord);
2066 return EXCEPTION_CONTINUE_SEARCH;
2067 }
2068 } else if (in_java) {
2069 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
2070 // a one-time-only guard page, which it has released to us. The next
2071 // stack overflow on this thread will result in an ACCESS_VIOLATION.
2072 return Handle_Exception(exceptionInfo,
2073 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2074 } else {
2075 // Can only return and hope for the best. Further stack growth will
2076 // result in an ACCESS_VIOLATION.
2077 return EXCEPTION_CONTINUE_EXECUTION;
2078 }
2079 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2080 // Either stack overflow or null pointer exception.
2081 if (in_java) {
2082 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2083 address addr = (address) exceptionRecord->ExceptionInformation[1];
2084 address stack_end = thread->stack_base() - thread->stack_size();
2085 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2086 // Stack overflow.
2087 assert(!os::uses_stack_guard_pages(),
2088 "should be caught by red zone code above.");
2089 return Handle_Exception(exceptionInfo,
2090 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2091 }
2092 //
2093 // Check for safepoint polling and implicit null
2094 // We only expect null pointers in the stubs (vtable)
2095 // the rest are checked explicitly now.
2096 //
2097 CodeBlob* cb = CodeCache::find_blob(pc);
2098 if (cb != NULL) {
2099 if (os::is_poll_address(addr)) {
2100 address stub = SharedRuntime::get_poll_stub(pc);
2101 return Handle_Exception(exceptionInfo, stub);
2102 }
2103 }
2104 {
2105 #ifdef _WIN64
2106 //
2107 // If it's a legal stack address map the entire region in
2108 //
2109 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2110 address addr = (address) exceptionRecord->ExceptionInformation[1];
2111 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2112 addr = (address)((uintptr_t)addr &
2113 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2114 os::commit_memory( (char *)addr, thread->stack_base() - addr );
2115 return EXCEPTION_CONTINUE_EXECUTION;
2116 }
2117 else
2118 #endif
2119 {
2120 // Null pointer exception.
2121 #ifdef _M_IA64
2122 // We catch register stack overflows in compiled code by doing
2123 // an explicit compare and executing a st8(G0, G0) if the
2124 // BSP enters into our guard area. We test for the overflow
2125 // condition and fall into the normal null pointer exception
2126 // code if BSP hasn't overflowed.
2127 if ( in_java ) {
2128 if(thread->register_stack_overflow()) {
2129 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2130 thread->register_stack_limit(),
2131 "GR7 doesn't contain register_stack_limit");
2132 // Disable the yellow zone which sets the state that
2133 // we've got a stack overflow problem.
2134 if (thread->stack_yellow_zone_enabled()) {
2135 thread->disable_stack_yellow_zone();
2136 }
2137 // Give us some room to process the exception
2138 thread->disable_register_stack_guard();
2139 // Update GR7 with the new limit so we can continue running
2140 // compiled code.
2141 exceptionInfo->ContextRecord->IntS3 =
2142 (ULONGLONG)thread->register_stack_limit();
2143 return Handle_Exception(exceptionInfo,
2144 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2145 } else {
2146 //
2147 // Check for implicit null
2148 // We only expect null pointers in the stubs (vtable)
2149 // the rest are checked explicitly now.
2150 //
2151 CodeBlob* cb = CodeCache::find_blob(pc);
2152 if (cb != NULL) {
2153 if (VtableStubs::stub_containing(pc) != NULL) {
2154 if (((uintptr_t)addr) < os::vm_page_size() ) {
2155 // an access to the first page of VM--assume it is a null pointer
2156 return Handle_Exception(exceptionInfo,
2157 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
2158 }
2159 }
2160 }
2161 }
2162 } // in_java
2163
2164 // IA64 doesn't use implicit null checking yet. So we shouldn't
2165 // get here.
2166 tty->print_raw_cr("Access violation, possible null pointer exception");
2167 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2168 exceptionInfo->ContextRecord);
2169 return EXCEPTION_CONTINUE_SEARCH;
2170 #else /* !IA64 */
2171
2172 // Windows 98 reports faulting addresses incorrectly
2173 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2174 !os::win32::is_nt()) {
2175 return Handle_Exception(exceptionInfo,
2176 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
2177 }
2178 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2179 exceptionInfo->ContextRecord);
2180 return EXCEPTION_CONTINUE_SEARCH;
2181 #endif
2182 }
2183 }
2184 }
2185
2186 #ifdef _WIN64
2187 // Special care for fast JNI field accessors.
2188 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2189 // in and the heap gets shrunk before the field access.
2190 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2191 address addr = JNI_FastGetField::find_slowcase_pc(pc);
2192 if (addr != (address)-1) {
2193 return Handle_Exception(exceptionInfo, addr);
2194 }
2195 }
2196 #endif
2197
2198 #ifdef _WIN64
2199 // Windows will sometimes generate an access violation
2200 // when we call malloc. Since we use VectoredExceptions
2201 // on 64 bit platforms, we see this exception. We must
2202 // pass this exception on so Windows can recover.
2203 // We check to see if the pc of the fault is in NTDLL.DLL
2204 // if so, we pass control on to Windows for handling.
2205 if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2206 #endif
2207
2208 // Stack overflow or null pointer exception in native code.
2209 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2210 exceptionInfo->ContextRecord);
2211 return EXCEPTION_CONTINUE_SEARCH;
2212 }
2213
2214 if (in_java) {
2215 switch (exception_code) {
2216 case EXCEPTION_INT_DIVIDE_BY_ZERO:
2217 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2218
2219 case EXCEPTION_INT_OVERFLOW:
2220 return Handle_IDiv_Exception(exceptionInfo);
2221
2222 } // switch
2223 }
2224 #ifndef _WIN64
2225 if ((thread->thread_state() == _thread_in_Java) ||
2226 (thread->thread_state() == _thread_in_native) )
2227 {
2228 LONG result=Handle_FLT_Exception(exceptionInfo);
2229 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2230 }
2231 #endif //_WIN64
2232 }
2233
2234 if (exception_code != EXCEPTION_BREAKPOINT) {
2235 #ifndef _WIN64
2236 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2237 exceptionInfo->ContextRecord);
2238 #else
2239 // Itanium Windows uses a VectoredExceptionHandler
2240 // Which means that C++ programatic exception handlers (try/except)
2241 // will get here. Continue the search for the right except block if
2242 // the exception code is not a fatal code.
2243 switch ( exception_code ) {
2244 case EXCEPTION_ACCESS_VIOLATION:
2245 case EXCEPTION_STACK_OVERFLOW:
2246 case EXCEPTION_ILLEGAL_INSTRUCTION:
2247 case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2248 case EXCEPTION_INT_OVERFLOW:
2249 case EXCEPTION_INT_DIVIDE_BY_ZERO:
2250 { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2251 exceptionInfo->ContextRecord);
2252 }
2253 break;
2254 default:
2255 break;
2256 }
2257 #endif
2258 }
2259 return EXCEPTION_CONTINUE_SEARCH;
2260 }
2261
2262 #ifndef _WIN64
2263 // Special care for fast JNI accessors.
2264 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2265 // the heap gets shrunk before the field access.
2266 // Need to install our own structured exception handler since native code may
2267 // install its own.
2268 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2269 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2270 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2271 address pc = (address) exceptionInfo->ContextRecord->Eip;
2272 address addr = JNI_FastGetField::find_slowcase_pc(pc);
2273 if (addr != (address)-1) {
2274 return Handle_Exception(exceptionInfo, addr);
2275 }
2276 }
2277 return EXCEPTION_CONTINUE_SEARCH;
2278 }
2279
2280 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2281 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2282 __try { \
2283 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2284 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2285 } \
2286 return 0; \
2287 }
2288
2289 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
2290 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
2291 DEFINE_FAST_GETFIELD(jchar, char, Char)
2292 DEFINE_FAST_GETFIELD(jshort, short, Short)
2293 DEFINE_FAST_GETFIELD(jint, int, Int)
2294 DEFINE_FAST_GETFIELD(jlong, long, Long)
2295 DEFINE_FAST_GETFIELD(jfloat, float, Float)
2296 DEFINE_FAST_GETFIELD(jdouble, double, Double)
2297
2298 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2299 switch (type) {
2300 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2301 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
2302 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
2303 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
2304 case T_INT: return (address)jni_fast_GetIntField_wrapper;
2305 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
2306 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
2307 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
2308 default: ShouldNotReachHere();
2309 }
2310 return (address)-1;
2311 }
2312 #endif
2313
2314 // Virtual Memory
2315
2316 int os::vm_page_size() { return os::win32::vm_page_size(); }
2317 int os::vm_allocation_granularity() {
2318 return os::win32::vm_allocation_granularity();
2319 }
2320
2321 // Windows large page support is available on Windows 2003. In order to use
2322 // large page memory, the administrator must first assign additional privilege
2323 // to the user:
2324 // + select Control Panel -> Administrative Tools -> Local Security Policy
2325 // + select Local Policies -> User Rights Assignment
2326 // + double click "Lock pages in memory", add users and/or groups
2327 // + reboot
2328 // Note the above steps are needed for administrator as well, as administrators
2329 // by default do not have the privilege to lock pages in memory.
2330 //
2331 // Note about Windows 2003: although the API supports committing large page
2332 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2333 // scenario, I found through experiment it only uses large page if the entire
2334 // memory region is reserved and committed in a single VirtualAlloc() call.
2335 // This makes Windows large page support more or less like Solaris ISM, in
2336 // that the entire heap must be committed upfront. This probably will change
2337 // in the future, if so the code below needs to be revisited.
2338
2339 #ifndef MEM_LARGE_PAGES
2340 #define MEM_LARGE_PAGES 0x20000000
2341 #endif
2342
2343 // GetLargePageMinimum is only available on Windows 2003. The other functions
2344 // are available on NT but not on Windows 98/Me. We have to resolve them at
2345 // runtime.
2346 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2347 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2348 (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2349 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2350 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2351
2352 static GetLargePageMinimum_func_type _GetLargePageMinimum;
2353 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2354 static OpenProcessToken_func_type _OpenProcessToken;
2355 static LookupPrivilegeValue_func_type _LookupPrivilegeValue;
2356
2357 static HINSTANCE _kernel32;
2358 static HINSTANCE _advapi32;
2359 static HANDLE _hProcess;
2360 static HANDLE _hToken;
2361
2362 static size_t _large_page_size = 0;
2363
2364 static bool resolve_functions_for_large_page_init() {
2365 _kernel32 = LoadLibrary("kernel32.dll");
2366 if (_kernel32 == NULL) return false;
2367
2368 _GetLargePageMinimum = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2369 GetProcAddress(_kernel32, "GetLargePageMinimum"));
2370 if (_GetLargePageMinimum == NULL) return false;
2371
2372 _advapi32 = LoadLibrary("advapi32.dll");
2373 if (_advapi32 == NULL) return false;
2374
2375 _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2376 GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2377 _OpenProcessToken = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2378 GetProcAddress(_advapi32, "OpenProcessToken"));
2379 _LookupPrivilegeValue = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2380 GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2381 return _AdjustTokenPrivileges != NULL &&
2382 _OpenProcessToken != NULL &&
2383 _LookupPrivilegeValue != NULL;
2384 }
2385
2386 static bool request_lock_memory_privilege() {
2387 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2388 os::current_process_id());
2389
2390 LUID luid;
2391 if (_hProcess != NULL &&
2392 _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2393 _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2394
2395 TOKEN_PRIVILEGES tp;
2396 tp.PrivilegeCount = 1;
2397 tp.Privileges[0].Luid = luid;
2398 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2399
2400 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2401 // privilege. Check GetLastError() too. See MSDN document.
2402 if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2403 (GetLastError() == ERROR_SUCCESS)) {
2404 return true;
2405 }
2406 }
2407
2408 return false;
2409 }
2410
2411 static void cleanup_after_large_page_init() {
2412 _GetLargePageMinimum = NULL;
2413 _AdjustTokenPrivileges = NULL;
2414 _OpenProcessToken = NULL;
2415 _LookupPrivilegeValue = NULL;
2416 if (_kernel32) FreeLibrary(_kernel32);
2417 _kernel32 = NULL;
2418 if (_advapi32) FreeLibrary(_advapi32);
2419 _advapi32 = NULL;
2420 if (_hProcess) CloseHandle(_hProcess);
2421 _hProcess = NULL;
2422 if (_hToken) CloseHandle(_hToken);
2423 _hToken = NULL;
2424 }
2425
2426 bool os::large_page_init() {
2427 if (!UseLargePages) return false;
2428
2429 // print a warning if any large page related flag is specified on command line
2430 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2431 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2432 bool success = false;
2433
2434 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2435 if (resolve_functions_for_large_page_init()) {
2436 if (request_lock_memory_privilege()) {
2437 size_t s = _GetLargePageMinimum();
2438 if (s) {
2439 #if defined(IA32) || defined(AMD64)
2440 if (s > 4*M || LargePageSizeInBytes > 4*M) {
2441 WARN("JVM cannot use large pages bigger than 4mb.");
2442 } else {
2443 #endif
2444 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2445 _large_page_size = LargePageSizeInBytes;
2446 } else {
2447 _large_page_size = s;
2448 }
2449 success = true;
2450 #if defined(IA32) || defined(AMD64)
2451 }
2452 #endif
2453 } else {
2454 WARN("Large page is not supported by the processor.");
2455 }
2456 } else {
2457 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2458 }
2459 } else {
2460 WARN("Large page is not supported by the operating system.");
2461 }
2462 #undef WARN
2463
2464 const size_t default_page_size = (size_t) vm_page_size();
2465 if (success && _large_page_size > default_page_size) {
2466 _page_sizes[0] = _large_page_size;
2467 _page_sizes[1] = default_page_size;
2468 _page_sizes[2] = 0;
2469 }
2470
2471 cleanup_after_large_page_init();
2472 return success;
2473 }
2474
2475 // On win32, one cannot release just a part of reserved memory, it's an
2476 // all or nothing deal. When we split a reservation, we must break the
2477 // reservation into two reservations.
2478 void os::split_reserved_memory(char *base, size_t size, size_t split,
2479 bool realloc) {
2480 if (size > 0) {
2481 release_memory(base, size);
2482 if (realloc) {
2483 reserve_memory(split, base);
2484 }
2485 if (size != split) {
2486 reserve_memory(size - split, base + split);
2487 }
2488 }
2489 }
2490
2491 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2492 assert((size_t)addr % os::vm_allocation_granularity() == 0,
2493 "reserve alignment");
2494 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2495 char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
2496 PAGE_EXECUTE_READWRITE);
2497 assert(res == NULL || addr == NULL || addr == res,
2498 "Unexpected address from reserve.");
2499 return res;
2500 }
2501
2502 // Reserve memory at an arbitrary address, only if that area is
2503 // available (and not reserved for something else).
2504 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2505 // Windows os::reserve_memory() fails of the requested address range is
2506 // not avilable.
2507 return reserve_memory(bytes, requested_addr);
2508 }
2509
2510 size_t os::large_page_size() {
2511 return _large_page_size;
2512 }
2513
2514 bool os::can_commit_large_page_memory() {
2515 // Windows only uses large page memory when the entire region is reserved
2516 // and committed in a single VirtualAlloc() call. This may change in the
2517 // future, but with Windows 2003 it's not possible to commit on demand.
2518 return false;
2519 }
2520
2521 char* os::reserve_memory_special(size_t bytes) {
2522 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2523 char * res = (char *)VirtualAlloc(NULL, bytes, flag, PAGE_READWRITE);
2524 return res;
2525 }
2526
2527 bool os::release_memory_special(char* base, size_t bytes) {
2528 return release_memory(base, bytes);
2529 }
2530
2531 void os::print_statistics() {
2532 }
2533
2534 bool os::commit_memory(char* addr, size_t bytes) {
2535 if (bytes == 0) {
2536 // Don't bother the OS with noops.
2537 return true;
2538 }
2539 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2540 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2541 // Don't attempt to print anything if the OS call fails. We're
2542 // probably low on resources, so the print itself may cause crashes.
2543 return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
2544 }
2545
2546 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2547 return commit_memory(addr, size);
2548 }
2549
2550 bool os::uncommit_memory(char* addr, size_t bytes) {
2551 if (bytes == 0) {
2552 // Don't bother the OS with noops.
2553 return true;
2554 }
2555 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2556 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2557 return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2558 }
2559
2560 bool os::release_memory(char* addr, size_t bytes) {
2561 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2562 }
2563
2564 bool os::protect_memory(char* addr, size_t bytes) {
2565 DWORD old_status;
2566 return VirtualProtect(addr, bytes, PAGE_READONLY, &old_status) != 0;
2567 }
2568
2569 bool os::guard_memory(char* addr, size_t bytes) {
2570 DWORD old_status;
2571 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE | PAGE_GUARD, &old_status) != 0;
2572 }
2573
2574 bool os::unguard_memory(char* addr, size_t bytes) {
2575 DWORD old_status;
2576 return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &old_status) != 0;
2577 }
2578
2579 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2580 void os::free_memory(char *addr, size_t bytes) { }
2581 void os::numa_make_global(char *addr, size_t bytes) { }
2582 void os::numa_make_local(char *addr, size_t bytes) { }
2583 bool os::numa_topology_changed() { return false; }
2584 size_t os::numa_get_groups_num() { return 1; }
2585 int os::numa_get_group_id() { return 0; }
2586 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2587 if (size > 0) {
2588 ids[0] = 0;
2589 return 1;
2590 }
2591 return 0;
2592 }
2593
2594 bool os::get_page_info(char *start, page_info* info) {
2595 return false;
2596 }
2597
2598 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2599 return end;
2600 }
2601
2602 char* os::non_memory_address_word() {
2603 // Must never look like an address returned by reserve_memory,
2604 // even in its subfields (as defined by the CPU immediate fields,
2605 // if the CPU splits constants across multiple instructions).
2606 return (char*)-1;
2607 }
2608
2609 #define MAX_ERROR_COUNT 100
2610 #define SYS_THREAD_ERROR 0xffffffffUL
2611
2612 void os::pd_start_thread(Thread* thread) {
2613 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2614 // Returns previous suspend state:
2615 // 0: Thread was not suspended
2616 // 1: Thread is running now
2617 // >1: Thread is still suspended.
2618 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2619 }
2620
2621 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2622 return ::read(fd, buf, nBytes);
2623 }
2624
2625 class HighResolutionInterval {
2626 // The default timer resolution seems to be 10 milliseconds.
2627 // (Where is this written down?)
2628 // If someone wants to sleep for only a fraction of the default,
2629 // then we set the timer resolution down to 1 millisecond for
2630 // the duration of their interval.
2631 // We carefully set the resolution back, since otherwise we
2632 // seem to incur an overhead (3%?) that we don't need.
2633 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2634 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2635 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2636 // timeBeginPeriod() if the relative error exceeded some threshold.
2637 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2638 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
2639 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2640 // resolution timers running.
2641 private:
2642 jlong resolution;
2643 public:
2644 HighResolutionInterval(jlong ms) {
2645 resolution = ms % 10L;
2646 if (resolution != 0) {
2647 MMRESULT result = timeBeginPeriod(1L);
2648 }
2649 }
2650 ~HighResolutionInterval() {
2651 if (resolution != 0) {
2652 MMRESULT result = timeEndPeriod(1L);
2653 }
2654 resolution = 0L;
2655 }
2656 };
2657
2658 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2659 jlong limit = (jlong) MAXDWORD;
2660
2661 while(ms > limit) {
2662 int res;
2663 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2664 return res;
2665 ms -= limit;
2666 }
2667
2668 assert(thread == Thread::current(), "thread consistency check");
2669 OSThread* osthread = thread->osthread();
2670 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2671 int result;
2672 if (interruptable) {
2673 assert(thread->is_Java_thread(), "must be java thread");
2674 JavaThread *jt = (JavaThread *) thread;
2675 ThreadBlockInVM tbivm(jt);
2676
2677 jt->set_suspend_equivalent();
2678 // cleared by handle_special_suspend_equivalent_condition() or
2679 // java_suspend_self() via check_and_wait_while_suspended()
2680
2681 HANDLE events[1];
2682 events[0] = osthread->interrupt_event();
2683 HighResolutionInterval *phri=NULL;
2684 if(!ForceTimeHighResolution)
2685 phri = new HighResolutionInterval( ms );
2686 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2687 result = OS_TIMEOUT;
2688 } else {
2689 ResetEvent(osthread->interrupt_event());
2690 osthread->set_interrupted(false);
2691 result = OS_INTRPT;
2692 }
2693 delete phri; //if it is NULL, harmless
2694
2695 // were we externally suspended while we were waiting?
2696 jt->check_and_wait_while_suspended();
2697 } else {
2698 assert(!thread->is_Java_thread(), "must not be java thread");
2699 Sleep((long) ms);
2700 result = OS_TIMEOUT;
2701 }
2702 return result;
2703 }
2704
2705 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2706 void os::infinite_sleep() {
2707 while (true) { // sleep forever ...
2708 Sleep(100000); // ... 100 seconds at a time
2709 }
2710 }
2711
2712 typedef BOOL (WINAPI * STTSignature)(void) ;
2713
2714 os::YieldResult os::NakedYield() {
2715 // Use either SwitchToThread() or Sleep(0)
2716 // Consider passing back the return value from SwitchToThread().
2717 // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2718 // In that case we revert to Sleep(0).
2719 static volatile STTSignature stt = (STTSignature) 1 ;
2720
2721 if (stt == ((STTSignature) 1)) {
2722 stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2723 // It's OK if threads race during initialization as the operation above is idempotent.
2724 }
2725 if (stt != NULL) {
2726 return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
2727 } else {
2728 Sleep (0) ;
2729 }
2730 return os::YIELD_UNKNOWN ;
2731 }
2732
2733 void os::yield() { os::NakedYield(); }
2734
2735 void os::yield_all(int attempts) {
2736 // Yields to all threads, including threads with lower priorities
2737 Sleep(1);
2738 }
2739
2740 // Win32 only gives you access to seven real priorities at a time,
2741 // so we compress Java's ten down to seven. It would be better
2742 // if we dynamically adjusted relative priorities.
2743
2744 int os::java_to_os_priority[MaxPriority + 1] = {
2745 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
2746 THREAD_PRIORITY_LOWEST, // 1 MinPriority
2747 THREAD_PRIORITY_LOWEST, // 2
2748 THREAD_PRIORITY_BELOW_NORMAL, // 3
2749 THREAD_PRIORITY_BELOW_NORMAL, // 4
2750 THREAD_PRIORITY_NORMAL, // 5 NormPriority
2751 THREAD_PRIORITY_NORMAL, // 6
2752 THREAD_PRIORITY_ABOVE_NORMAL, // 7
2753 THREAD_PRIORITY_ABOVE_NORMAL, // 8
2754 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
2755 THREAD_PRIORITY_HIGHEST // 10 MaxPriority
2756 };
2757
2758 int prio_policy1[MaxPriority + 1] = {
2759 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
2760 THREAD_PRIORITY_LOWEST, // 1 MinPriority
2761 THREAD_PRIORITY_LOWEST, // 2
2762 THREAD_PRIORITY_BELOW_NORMAL, // 3
2763 THREAD_PRIORITY_BELOW_NORMAL, // 4
2764 THREAD_PRIORITY_NORMAL, // 5 NormPriority
2765 THREAD_PRIORITY_ABOVE_NORMAL, // 6
2766 THREAD_PRIORITY_ABOVE_NORMAL, // 7
2767 THREAD_PRIORITY_HIGHEST, // 8
2768 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
2769 THREAD_PRIORITY_TIME_CRITICAL // 10 MaxPriority
2770 };
2771
2772 static int prio_init() {
2773 // If ThreadPriorityPolicy is 1, switch tables
2774 if (ThreadPriorityPolicy == 1) {
2775 int i;
2776 for (i = 0; i < MaxPriority + 1; i++) {
2777 os::java_to_os_priority[i] = prio_policy1[i];
2778 }
2779 }
2780 return 0;
2781 }
2782
2783 OSReturn os::set_native_priority(Thread* thread, int priority) {
2784 if (!UseThreadPriorities) return OS_OK;
2785 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
2786 return ret ? OS_OK : OS_ERR;
2787 }
2788
2789 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
2790 if ( !UseThreadPriorities ) {
2791 *priority_ptr = java_to_os_priority[NormPriority];
2792 return OS_OK;
2793 }
2794 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
2795 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
2796 assert(false, "GetThreadPriority failed");
2797 return OS_ERR;
2798 }
2799 *priority_ptr = os_prio;
2800 return OS_OK;
2801 }
2802
2803
2804 // Hint to the underlying OS that a task switch would not be good.
2805 // Void return because it's a hint and can fail.
2806 void os::hint_no_preempt() {}
2807
2808 void os::interrupt(Thread* thread) {
2809 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
2810 "possibility of dangling Thread pointer");
2811
2812 OSThread* osthread = thread->osthread();
2813 osthread->set_interrupted(true);
2814 // More than one thread can get here with the same value of osthread,
2815 // resulting in multiple notifications. We do, however, want the store
2816 // to interrupted() to be visible to other threads before we post
2817 // the interrupt event.
2818 OrderAccess::release();
2819 SetEvent(osthread->interrupt_event());
2820 // For JSR166: unpark after setting status
2821 if (thread->is_Java_thread())
2822 ((JavaThread*)thread)->parker()->unpark();
2823
2824 ParkEvent * ev = thread->_ParkEvent ;
2825 if (ev != NULL) ev->unpark() ;
2826
2827 }
2828
2829
2830 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2831 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
2832 "possibility of dangling Thread pointer");
2833
2834 OSThread* osthread = thread->osthread();
2835 bool interrupted;
2836 interrupted = osthread->interrupted();
2837 if (clear_interrupted == true) {
2838 osthread->set_interrupted(false);
2839 ResetEvent(osthread->interrupt_event());
2840 } // Otherwise leave the interrupted state alone
2841
2842 return interrupted;
2843 }
2844
2845 // Get's a pc (hint) for a running thread. Currently used only for profiling.
2846 ExtendedPC os::get_thread_pc(Thread* thread) {
2847 CONTEXT context;
2848 context.ContextFlags = CONTEXT_CONTROL;
2849 HANDLE handle = thread->osthread()->thread_handle();
2850 #ifdef _M_IA64
2851 assert(0, "Fix get_thread_pc");
2852 return ExtendedPC(NULL);
2853 #else
2854 if (GetThreadContext(handle, &context)) {
2855 #ifdef _M_AMD64
2856 return ExtendedPC((address) context.Rip);
2857 #else
2858 return ExtendedPC((address) context.Eip);
2859 #endif
2860 } else {
2861 return ExtendedPC(NULL);
2862 }
2863 #endif
2864 }
2865
2866 // GetCurrentThreadId() returns DWORD
2867 intx os::current_thread_id() { return GetCurrentThreadId(); }
2868
2869 static int _initial_pid = 0;
2870
2871 int os::current_process_id()
2872 {
2873 return (_initial_pid ? _initial_pid : _getpid());
2874 }
2875
2876 int os::win32::_vm_page_size = 0;
2877 int os::win32::_vm_allocation_granularity = 0;
2878 int os::win32::_processor_type = 0;
2879 // Processor level is not available on non-NT systems, use vm_version instead
2880 int os::win32::_processor_level = 0;
2881 julong os::win32::_physical_memory = 0;
2882 size_t os::win32::_default_stack_size = 0;
2883
2884 intx os::win32::_os_thread_limit = 0;
2885 volatile intx os::win32::_os_thread_count = 0;
2886
2887 bool os::win32::_is_nt = false;
2888
2889
2890 void os::win32::initialize_system_info() {
2891 SYSTEM_INFO si;
2892 GetSystemInfo(&si);
2893 _vm_page_size = si.dwPageSize;
2894 _vm_allocation_granularity = si.dwAllocationGranularity;
2895 _processor_type = si.dwProcessorType;
2896 _processor_level = si.wProcessorLevel;
2897 _processor_count = si.dwNumberOfProcessors;
2898
2899 MEMORYSTATUS ms;
2900 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
2901 // dwMemoryLoad (% of memory in use)
2902 GlobalMemoryStatus(&ms);
2903 _physical_memory = ms.dwTotalPhys;
2904
2905 OSVERSIONINFO oi;
2906 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
2907 GetVersionEx(&oi);
2908 switch(oi.dwPlatformId) {
2909 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
2910 case VER_PLATFORM_WIN32_NT: _is_nt = true; break;
2911 default: fatal("Unknown platform");
2912 }
2913
2914 _default_stack_size = os::current_stack_size();
2915 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
2916 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
2917 "stack size not a multiple of page size");
2918
2919 initialize_performance_counter();
2920
2921 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
2922 // known to deadlock the system, if the VM issues to thread operations with
2923 // a too high frequency, e.g., such as changing the priorities.
2924 // The 6000 seems to work well - no deadlocks has been notices on the test
2925 // programs that we have seen experience this problem.
2926 if (!os::win32::is_nt()) {
2927 StarvationMonitorInterval = 6000;
2928 }
2929 }
2930
2931
2932 void os::win32::setmode_streams() {
2933 _setmode(_fileno(stdin), _O_BINARY);
2934 _setmode(_fileno(stdout), _O_BINARY);
2935 _setmode(_fileno(stderr), _O_BINARY);
2936 }
2937
2938
2939 int os::message_box(const char* title, const char* message) {
2940 int result = MessageBox(NULL, message, title,
2941 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
2942 return result == IDYES;
2943 }
2944
2945 int os::allocate_thread_local_storage() {
2946 return TlsAlloc();
2947 }
2948
2949
2950 void os::free_thread_local_storage(int index) {
2951 TlsFree(index);
2952 }
2953
2954
2955 void os::thread_local_storage_at_put(int index, void* value) {
2956 TlsSetValue(index, value);
2957 assert(thread_local_storage_at(index) == value, "Just checking");
2958 }
2959
2960
2961 void* os::thread_local_storage_at(int index) {
2962 return TlsGetValue(index);
2963 }
2964
2965
2966 #ifndef PRODUCT
2967 #ifndef _WIN64
2968 // Helpers to check whether NX protection is enabled
2969 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
2970 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
2971 pex->ExceptionRecord->NumberParameters > 0 &&
2972 pex->ExceptionRecord->ExceptionInformation[0] ==
2973 EXCEPTION_INFO_EXEC_VIOLATION) {
2974 return EXCEPTION_EXECUTE_HANDLER;
2975 }
2976 return EXCEPTION_CONTINUE_SEARCH;
2977 }
2978
2979 void nx_check_protection() {
2980 // If NX is enabled we'll get an exception calling into code on the stack
2981 char code[] = { (char)0xC3 }; // ret
2982 void *code_ptr = (void *)code;
2983 __try {
2984 __asm call code_ptr
2985 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
2986 tty->print_raw_cr("NX protection detected.");
2987 }
2988 }
2989 #endif // _WIN64
2990 #endif // PRODUCT
2991
2992 // this is called _before_ the global arguments have been parsed
2993 void os::init(void) {
2994 _initial_pid = _getpid();
2995
2996 init_random(1234567);
2997
2998 win32::initialize_system_info();
2999 win32::setmode_streams();
3000 init_page_sizes((size_t) win32::vm_page_size());
3001
3002 // For better scalability on MP systems (must be called after initialize_system_info)
3003 #ifndef PRODUCT
3004 if (is_MP()) {
3005 NoYieldsInMicrolock = true;
3006 }
3007 #endif
3008 // Initialize main_process and main_thread
3009 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
3010 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3011 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3012 fatal("DuplicateHandle failed\n");
3013 }
3014 main_thread_id = (int) GetCurrentThreadId();
3015 }
3016
3017 // To install functions for atexit processing
3018 extern "C" {
3019 static void perfMemory_exit_helper() {
3020 perfMemory_exit();
3021 }
3022 }
3023
3024
3025 // this is called _after_ the global arguments have been parsed
3026 jint os::init_2(void) {
3027 // Allocate a single page and mark it as readable for safepoint polling
3028 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3029 guarantee( polling_page != NULL, "Reserve Failed for polling page");
3030
3031 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3032 guarantee( return_page != NULL, "Commit Failed for polling page");
3033
3034 os::set_polling_page( polling_page );
3035
3036 #ifndef PRODUCT
3037 if( Verbose && PrintMiscellaneous )
3038 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3039 #endif
3040
3041 if (!UseMembar) {
3042 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
3043 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3044
3045 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
3046 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3047
3048 os::set_memory_serialize_page( mem_serialize_page );
3049
3050 #ifndef PRODUCT
3051 if(Verbose && PrintMiscellaneous)
3052 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3053 #endif
3054 }
3055
3056 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3057
3058 // Setup Windows Exceptions
3059
3060 // On Itanium systems, Structured Exception Handling does not
3061 // work since stack frames must be walkable by the OS. Since
3062 // much of our code is dynamically generated, and we do not have
3063 // proper unwind .xdata sections, the system simply exits
3064 // rather than delivering the exception. To work around
3065 // this we use VectorExceptions instead.
3066 #ifdef _WIN64
3067 if (UseVectoredExceptions) {
3068 topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3069 }
3070 #endif
3071
3072 // for debugging float code generation bugs
3073 if (ForceFloatExceptions) {
3074 #ifndef _WIN64
3075 static long fp_control_word = 0;
3076 __asm { fstcw fp_control_word }
3077 // see Intel PPro Manual, Vol. 2, p 7-16
3078 const long precision = 0x20;
3079 const long underflow = 0x10;
3080 const long overflow = 0x08;
3081 const long zero_div = 0x04;
3082 const long denorm = 0x02;
3083 const long invalid = 0x01;
3084 fp_control_word |= invalid;
3085 __asm { fldcw fp_control_word }
3086 #endif
3087 }
3088
3089 // Initialize HPI.
3090 jint hpi_result = hpi::initialize();
3091 if (hpi_result != JNI_OK) { return hpi_result; }
3092
3093 // If stack_commit_size is 0, windows will reserve the default size,
3094 // but only commit a small portion of it.
3095 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3096 size_t default_reserve_size = os::win32::default_stack_size();
3097 size_t actual_reserve_size = stack_commit_size;
3098 if (stack_commit_size < default_reserve_size) {
3099 // If stack_commit_size == 0, we want this too
3100 actual_reserve_size = default_reserve_size;
3101 }
3102
3103 JavaThread::set_stack_size_at_create(stack_commit_size);
3104
3105 // Calculate theoretical max. size of Threads to guard gainst artifical
3106 // out-of-memory situations, where all available address-space has been
3107 // reserved by thread stacks.
3108 assert(actual_reserve_size != 0, "Must have a stack");
3109
3110 // Calculate the thread limit when we should start doing Virtual Memory
3111 // banging. Currently when the threads will have used all but 200Mb of space.
3112 //
3113 // TODO: consider performing a similar calculation for commit size instead
3114 // as reserve size, since on a 64-bit platform we'll run into that more
3115 // often than running out of virtual memory space. We can use the
3116 // lower value of the two calculations as the os_thread_limit.
3117 size_t max_address_space = ((size_t)1 << (BitsPerOop - 1)) - (200 * K * K);
3118 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3119
3120 // at exit methods are called in the reverse order of their registration.
3121 // there is no limit to the number of functions registered. atexit does
3122 // not set errno.
3123
3124 if (PerfAllowAtExitRegistration) {
3125 // only register atexit functions if PerfAllowAtExitRegistration is set.
3126 // atexit functions can be delayed until process exit time, which
3127 // can be problematic for embedded VM situations. Embedded VMs should
3128 // call DestroyJavaVM() to assure that VM resources are released.
3129
3130 // note: perfMemory_exit_helper atexit function may be removed in
3131 // the future if the appropriate cleanup code can be added to the
3132 // VM_Exit VMOperation's doit method.
3133 if (atexit(perfMemory_exit_helper) != 0) {
3134 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3135 }
3136 }
3137
3138 // initialize PSAPI or ToolHelp for fatal error handler
3139 if (win32::is_nt()) _init_psapi();
3140 else _init_toolhelp();
3141
3142 #ifndef _WIN64
3143 // Print something if NX is enabled (win32 on AMD64)
3144 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3145 #endif
3146
3147 // initialize thread priority policy
3148 prio_init();
3149
3150 return JNI_OK;
3151 }
3152
3153
3154 // Mark the polling page as unreadable
3155 void os::make_polling_page_unreadable(void) {
3156 DWORD old_status;
3157 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3158 fatal("Could not disable polling page");
3159 };
3160
3161 // Mark the polling page as readable
3162 void os::make_polling_page_readable(void) {
3163 DWORD old_status;
3164 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3165 fatal("Could not enable polling page");
3166 };
3167
3168
3169 int os::stat(const char *path, struct stat *sbuf) {
3170 char pathbuf[MAX_PATH];
3171 if (strlen(path) > MAX_PATH - 1) {
3172 errno = ENAMETOOLONG;
3173 return -1;
3174 }
3175 hpi::native_path(strcpy(pathbuf, path));
3176 int ret = ::stat(pathbuf, sbuf);
3177 if (sbuf != NULL && UseUTCFileTimestamp) {
3178 // Fix for 6539723. st_mtime returned from stat() is dependent on
3179 // the system timezone and so can return different values for the
3180 // same file if/when daylight savings time changes. This adjustment
3181 // makes sure the same timestamp is returned regardless of the TZ.
3182 //
3183 // See:
3184 // http://msdn.microsoft.com/library/
3185 // default.asp?url=/library/en-us/sysinfo/base/
3186 // time_zone_information_str.asp
3187 // and
3188 // http://msdn.microsoft.com/library/default.asp?url=
3189 // /library/en-us/sysinfo/base/settimezoneinformation.asp
3190 //
3191 // NOTE: there is a insidious bug here: If the timezone is changed
3192 // after the call to stat() but before 'GetTimeZoneInformation()', then
3193 // the adjustment we do here will be wrong and we'll return the wrong
3194 // value (which will likely end up creating an invalid class data
3195 // archive). Absent a better API for this, or some time zone locking
3196 // mechanism, we'll have to live with this risk.
3197 TIME_ZONE_INFORMATION tz;
3198 DWORD tzid = GetTimeZoneInformation(&tz);
3199 int daylightBias =
3200 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
3201 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3202 }
3203 return ret;
3204 }
3205
3206
3207 #define FT2INT64(ft) \
3208 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3209
3210
3211 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3212 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3213 // of a thread.
3214 //
3215 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3216 // the fast estimate available on the platform.
3217
3218 // current_thread_cpu_time() is not optimized for Windows yet
3219 jlong os::current_thread_cpu_time() {
3220 // return user + sys since the cost is the same
3221 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3222 }
3223
3224 jlong os::thread_cpu_time(Thread* thread) {
3225 // consistent with what current_thread_cpu_time() returns.
3226 return os::thread_cpu_time(thread, true /* user+sys */);
3227 }
3228
3229 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3230 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3231 }
3232
3233 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3234 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3235 // If this function changes, os::is_thread_cpu_time_supported() should too
3236 if (os::win32::is_nt()) {
3237 FILETIME CreationTime;
3238 FILETIME ExitTime;
3239 FILETIME KernelTime;
3240 FILETIME UserTime;
3241
3242 if ( GetThreadTimes(thread->osthread()->thread_handle(),
3243 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3244 return -1;
3245 else
3246 if (user_sys_cpu_time) {
3247 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3248 } else {
3249 return FT2INT64(UserTime) * 100;
3250 }
3251 } else {
3252 return (jlong) timeGetTime() * 1000000;
3253 }
3254 }
3255
3256 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3257 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
3258 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
3259 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
3260 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
3261 }
3262
3263 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3264 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
3265 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
3266 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
3267 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
3268 }
3269
3270 bool os::is_thread_cpu_time_supported() {
3271 // see os::thread_cpu_time
3272 if (os::win32::is_nt()) {
3273 FILETIME CreationTime;
3274 FILETIME ExitTime;
3275 FILETIME KernelTime;
3276 FILETIME UserTime;
3277
3278 if ( GetThreadTimes(GetCurrentThread(),
3279 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3280 return false;
3281 else
3282 return true;
3283 } else {
3284 return false;
3285 }
3286 }
3287
3288 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3289 // It does have primitives (PDH API) to get CPU usage and run queue length.
3290 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3291 // If we wanted to implement loadavg on Windows, we have a few options:
3292 //
3293 // a) Query CPU usage and run queue length and "fake" an answer by
3294 // returning the CPU usage if it's under 100%, and the run queue
3295 // length otherwise. It turns out that querying is pretty slow
3296 // on Windows, on the order of 200 microseconds on a fast machine.
3297 // Note that on the Windows the CPU usage value is the % usage
3298 // since the last time the API was called (and the first call
3299 // returns 100%), so we'd have to deal with that as well.
3300 //
3301 // b) Sample the "fake" answer using a sampling thread and store
3302 // the answer in a global variable. The call to loadavg would
3303 // just return the value of the global, avoiding the slow query.
3304 //
3305 // c) Sample a better answer using exponential decay to smooth the
3306 // value. This is basically the algorithm used by UNIX kernels.
3307 //
3308 // Note that sampling thread starvation could affect both (b) and (c).
3309 int os::loadavg(double loadavg[], int nelem) {
3310 return -1;
3311 }
3312
3313
3314 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3315 bool os::dont_yield() {
3316 return DontYieldALot;
3317 }
3318
3319 // Is a (classpath) directory empty?
3320 bool os::dir_is_empty(const char* path) {
3321 WIN32_FIND_DATA fd;
3322 HANDLE f = FindFirstFile(path, &fd);
3323 if (f == INVALID_HANDLE_VALUE) {
3324 return true;
3325 }
3326 FindClose(f);
3327 return false;
3328 }
3329
3330 // create binary file, rewriting existing file if required
3331 int os::create_binary_file(const char* path, bool rewrite_existing) {
3332 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3333 if (!rewrite_existing) {
3334 oflags |= _O_EXCL;
3335 }
3336 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3337 }
3338
3339 // return current position of file pointer
3340 jlong os::current_file_offset(int fd) {
3341 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3342 }
3343
3344 // move file pointer to the specified offset
3345 jlong os::seek_to_file_offset(int fd, jlong offset) {
3346 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3347 }
3348
3349
3350 // Map a block of memory.
3351 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3352 char *addr, size_t bytes, bool read_only,
3353 bool allow_exec) {
3354 HANDLE hFile;
3355 char* base;
3356
3357 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3358 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3359 if (hFile == NULL) {
3360 if (PrintMiscellaneous && Verbose) {
3361 DWORD err = GetLastError();
3362 tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3363 }
3364 return NULL;
3365 }
3366
3367 if (allow_exec) {
3368 // CreateFileMapping/MapViewOfFileEx can't map executable memory
3369 // unless it comes from a PE image (which the shared archive is not.)
3370 // Even VirtualProtect refuses to give execute access to mapped memory
3371 // that was not previously executable.
3372 //
3373 // Instead, stick the executable region in anonymous memory. Yuck.
3374 // Penalty is that ~4 pages will not be shareable - in the future
3375 // we might consider DLLizing the shared archive with a proper PE
3376 // header so that mapping executable + sharing is possible.
3377
3378 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3379 PAGE_READWRITE);
3380 if (base == NULL) {
3381 if (PrintMiscellaneous && Verbose) {
3382 DWORD err = GetLastError();
3383 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3384 }
3385 CloseHandle(hFile);
3386 return NULL;
3387 }
3388
3389 DWORD bytes_read;
3390 OVERLAPPED overlapped;
3391 overlapped.Offset = (DWORD)file_offset;
3392 overlapped.OffsetHigh = 0;
3393 overlapped.hEvent = NULL;
3394 // ReadFile guarantees that if the return value is true, the requested
3395 // number of bytes were read before returning.
3396 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3397 if (!res) {
3398 if (PrintMiscellaneous && Verbose) {
3399 DWORD err = GetLastError();
3400 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3401 }
3402 release_memory(base, bytes);
3403 CloseHandle(hFile);
3404 return NULL;
3405 }
3406 } else {
3407 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3408 NULL /*file_name*/);
3409 if (hMap == NULL) {
3410 if (PrintMiscellaneous && Verbose) {
3411 DWORD err = GetLastError();
3412 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3413 }
3414 CloseHandle(hFile);
3415 return NULL;
3416 }
3417
3418 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3419 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3420 (DWORD)bytes, addr);
3421 if (base == NULL) {
3422 if (PrintMiscellaneous && Verbose) {
3423 DWORD err = GetLastError();
3424 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3425 }
3426 CloseHandle(hMap);
3427 CloseHandle(hFile);
3428 return NULL;
3429 }
3430
3431 if (CloseHandle(hMap) == 0) {
3432 if (PrintMiscellaneous && Verbose) {
3433 DWORD err = GetLastError();
3434 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3435 }
3436 CloseHandle(hFile);
3437 return base;
3438 }
3439 }
3440
3441 if (allow_exec) {
3442 DWORD old_protect;
3443 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3444 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3445
3446 if (!res) {
3447 if (PrintMiscellaneous && Verbose) {
3448 DWORD err = GetLastError();
3449 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3450 }
3451 // Don't consider this a hard error, on IA32 even if the
3452 // VirtualProtect fails, we should still be able to execute
3453 CloseHandle(hFile);
3454 return base;
3455 }
3456 }
3457
3458 if (CloseHandle(hFile) == 0) {
3459 if (PrintMiscellaneous && Verbose) {
3460 DWORD err = GetLastError();
3461 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3462 }
3463 return base;
3464 }
3465
3466 return base;
3467 }
3468
3469
3470 // Remap a block of memory.
3471 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3472 char *addr, size_t bytes, bool read_only,
3473 bool allow_exec) {
3474 // This OS does not allow existing memory maps to be remapped so we
3475 // have to unmap the memory before we remap it.
3476 if (!os::unmap_memory(addr, bytes)) {
3477 return NULL;
3478 }
3479
3480 // There is a very small theoretical window between the unmap_memory()
3481 // call above and the map_memory() call below where a thread in native
3482 // code may be able to access an address that is no longer mapped.
3483
3484 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3485 allow_exec);
3486 }
3487
3488
3489 // Unmap a block of memory.
3490 // Returns true=success, otherwise false.
3491
3492 bool os::unmap_memory(char* addr, size_t bytes) {
3493 BOOL result = UnmapViewOfFile(addr);
3494 if (result == 0) {
3495 if (PrintMiscellaneous && Verbose) {
3496 DWORD err = GetLastError();
3497 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3498 }
3499 return false;
3500 }
3501 return true;
3502 }
3503
3504 void os::pause() {
3505 char filename[MAX_PATH];
3506 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3507 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3508 } else {
3509 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3510 }
3511
3512 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3513 if (fd != -1) {
3514 struct stat buf;
3515 close(fd);
3516 while (::stat(filename, &buf) == 0) {
3517 Sleep(100);
3518 }
3519 } else {
3520 jio_fprintf(stderr,
3521 "Could not open pause file '%s', continuing immediately.\n", filename);
3522 }
3523 }
3524
3525 // An Event wraps a win32 "CreateEvent" kernel handle.
3526 //
3527 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3528 //
3529 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3530 // field, and call CloseHandle() on the win32 event handle. Unpark() would
3531 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3532 // In addition, an unpark() operation might fetch the handle field, but the
3533 // event could recycle between the fetch and the SetEvent() operation.
3534 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
3535 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
3536 // on an stale but recycled handle would be harmless, but in practice this might
3537 // confuse other non-Sun code, so it's not a viable approach.
3538 //
3539 // 2: Once a win32 event handle is associated with an Event, it remains associated
3540 // with the Event. The event handle is never closed. This could be construed
3541 // as handle leakage, but only up to the maximum # of threads that have been extant
3542 // at any one time. This shouldn't be an issue, as windows platforms typically
3543 // permit a process to have hundreds of thousands of open handles.
3544 //
3545 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3546 // and release unused handles.
3547 //
3548 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3549 // It's not clear, however, that we wouldn't be trading one type of leak for another.
3550 //
3551 // 5. Use an RCU-like mechanism (Read-Copy Update).
3552 // Or perhaps something similar to Maged Michael's "Hazard pointers".
3553 //
3554 // We use (2).
3555 //
3556 // TODO-FIXME:
3557 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3558 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3559 // to recover from (or at least detect) the dreaded Windows 841176 bug.
3560 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3561 // into a single win32 CreateEvent() handle.
3562 //
3563 // _Event transitions in park()
3564 // -1 => -1 : illegal
3565 // 1 => 0 : pass - return immediately
3566 // 0 => -1 : block
3567 //
3568 // _Event serves as a restricted-range semaphore :
3569 // -1 : thread is blocked
3570 // 0 : neutral - thread is running or ready
3571 // 1 : signaled - thread is running or ready
3572 //
3573 // Another possible encoding of _Event would be
3574 // with explicit "PARKED" and "SIGNALED" bits.
3575
3576 int os::PlatformEvent::park (jlong Millis) {
3577 guarantee (_ParkHandle != NULL , "Invariant") ;
3578 guarantee (Millis > 0 , "Invariant") ;
3579 int v ;
3580
3581 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3582 // the initial park() operation.
3583
3584 for (;;) {
3585 v = _Event ;
3586 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3587 }
3588 guarantee ((v == 0) || (v == 1), "invariant") ;
3589 if (v != 0) return OS_OK ;
3590
3591 // Do this the hard way by blocking ...
3592 // TODO: consider a brief spin here, gated on the success of recent
3593 // spin attempts by this thread.
3594 //
3595 // We decompose long timeouts into series of shorter timed waits.
3596 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3597 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
3598 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3599 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
3600 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3601 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
3602 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3603 // for the already waited time. This policy does not admit any new outcomes.
3604 // In the future, however, we might want to track the accumulated wait time and
3605 // adjust Millis accordingly if we encounter a spurious wakeup.
3606
3607 const int MAXTIMEOUT = 0x10000000 ;
3608 DWORD rv = WAIT_TIMEOUT ;
3609 while (_Event < 0 && Millis > 0) {
3610 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
3611 if (Millis > MAXTIMEOUT) {
3612 prd = MAXTIMEOUT ;
3613 }
3614 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3615 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3616 if (rv == WAIT_TIMEOUT) {
3617 Millis -= prd ;
3618 }
3619 }
3620 v = _Event ;
3621 _Event = 0 ;
3622 OrderAccess::fence() ;
3623 // If we encounter a nearly simultanous timeout expiry and unpark()
3624 // we return OS_OK indicating we awoke via unpark().
3625 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3626 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3627 }
3628
3629 void os::PlatformEvent::park () {
3630 guarantee (_ParkHandle != NULL, "Invariant") ;
3631 // Invariant: Only the thread associated with the Event/PlatformEvent
3632 // may call park().
3633 int v ;
3634 for (;;) {
3635 v = _Event ;
3636 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3637 }
3638 guarantee ((v == 0) || (v == 1), "invariant") ;
3639 if (v != 0) return ;
3640
3641 // Do this the hard way by blocking ...
3642 // TODO: consider a brief spin here, gated on the success of recent
3643 // spin attempts by this thread.
3644 while (_Event < 0) {
3645 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3646 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3647 }
3648
3649 // Usually we'll find _Event == 0 at this point, but as
3650 // an optional optimization we clear it, just in case can
3651 // multiple unpark() operations drove _Event up to 1.
3652 _Event = 0 ;
3653 OrderAccess::fence() ;
3654 guarantee (_Event >= 0, "invariant") ;
3655 }
3656
3657 void os::PlatformEvent::unpark() {
3658 guarantee (_ParkHandle != NULL, "Invariant") ;
3659 int v ;
3660 for (;;) {
3661 v = _Event ; // Increment _Event if it's < 1.
3662 if (v > 0) {
3663 // If it's already signaled just return.
3664 // The LD of _Event could have reordered or be satisfied
3665 // by a read-aside from this processor's write buffer.
3666 // To avoid problems execute a barrier and then
3667 // ratify the value. A degenerate CAS() would also work.
3668 // Viz., CAS (v+0, &_Event, v) == v).
3669 OrderAccess::fence() ;
3670 if (_Event == v) return ;
3671 continue ;
3672 }
3673 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3674 }
3675 if (v < 0) {
3676 ::SetEvent (_ParkHandle) ;
3677 }
3678 }
3679
3680
3681 // JSR166
3682 // -------------------------------------------------------
3683
3684 /*
3685 * The Windows implementation of Park is very straightforward: Basic
3686 * operations on Win32 Events turn out to have the right semantics to
3687 * use them directly. We opportunistically resuse the event inherited
3688 * from Monitor.
3689 */
3690
3691
3692 void Parker::park(bool isAbsolute, jlong time) {
3693 guarantee (_ParkEvent != NULL, "invariant") ;
3694 // First, demultiplex/decode time arguments
3695 if (time < 0) { // don't wait
3696 return;
3697 }
3698 else if (time == 0) {
3699 time = INFINITE;
3700 }
3701 else if (isAbsolute) {
3702 time -= os::javaTimeMillis(); // convert to relative time
3703 if (time <= 0) // already elapsed
3704 return;
3705 }
3706 else { // relative
3707 time /= 1000000; // Must coarsen from nanos to millis
3708 if (time == 0) // Wait for the minimal time unit if zero
3709 time = 1;
3710 }
3711
3712 JavaThread* thread = (JavaThread*)(Thread::current());
3713 assert(thread->is_Java_thread(), "Must be JavaThread");
3714 JavaThread *jt = (JavaThread *)thread;
3715
3716 // Don't wait if interrupted or already triggered
3717 if (Thread::is_interrupted(thread, false) ||
3718 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
3719 ResetEvent(_ParkEvent);
3720 return;
3721 }
3722 else {
3723 ThreadBlockInVM tbivm(jt);
3724 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3725 jt->set_suspend_equivalent();
3726
3727 WaitForSingleObject(_ParkEvent, time);
3728 ResetEvent(_ParkEvent);
3729
3730 // If externally suspended while waiting, re-suspend
3731 if (jt->handle_special_suspend_equivalent_condition()) {
3732 jt->java_suspend_self();
3733 }
3734 }
3735 }
3736
3737 void Parker::unpark() {
3738 guarantee (_ParkEvent != NULL, "invariant") ;
3739 SetEvent(_ParkEvent);
3740 }
3741
3742 // Run the specified command in a separate process. Return its exit value,
3743 // or -1 on failure (e.g. can't create a new process).
3744 int os::fork_and_exec(char* cmd) {
3745 STARTUPINFO si;
3746 PROCESS_INFORMATION pi;
3747
3748 memset(&si, 0, sizeof(si));
3749 si.cb = sizeof(si);
3750 memset(&pi, 0, sizeof(pi));
3751 BOOL rslt = CreateProcess(NULL, // executable name - use command line
3752 cmd, // command line
3753 NULL, // process security attribute
3754 NULL, // thread security attribute
3755 TRUE, // inherits system handles
3756 0, // no creation flags
3757 NULL, // use parent's environment block
3758 NULL, // use parent's starting directory
3759 &si, // (in) startup information
3760 &pi); // (out) process information
3761
3762 if (rslt) {
3763 // Wait until child process exits.
3764 WaitForSingleObject(pi.hProcess, INFINITE);
3765
3766 DWORD exit_code;
3767 GetExitCodeProcess(pi.hProcess, &exit_code);
3768
3769 // Close process and thread handles.
3770 CloseHandle(pi.hProcess);
3771 CloseHandle(pi.hThread);
3772
3773 return (int)exit_code;
3774 } else {
3775 return -1;
3776 }
3777 }
3778
3779 //--------------------------------------------------------------------------------------------------
3780 // Non-product code
3781
3782 static int mallocDebugIntervalCounter = 0;
3783 static int mallocDebugCounter = 0;
3784 bool os::check_heap(bool force) {
3785 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
3786 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
3787 // Note: HeapValidate executes two hardware breakpoints when it finds something
3788 // wrong; at these points, eax contains the address of the offending block (I think).
3789 // To get to the exlicit error message(s) below, just continue twice.
3790 HANDLE heap = GetProcessHeap();
3791 { HeapLock(heap);
3792 PROCESS_HEAP_ENTRY phe;
3793 phe.lpData = NULL;
3794 while (HeapWalk(heap, &phe) != 0) {
3795 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
3796 !HeapValidate(heap, 0, phe.lpData)) {
3797 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
3798 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
3799 fatal("corrupted C heap");
3800 }
3801 }
3802 int err = GetLastError();
3803 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
3804 fatal1("heap walk aborted with error %d", err);
3805 }
3806 HeapUnlock(heap);
3807 }
3808 mallocDebugIntervalCounter = 0;
3809 }
3810 return true;
3811 }
3812
3813
3814 #ifndef PRODUCT
3815 bool os::find(address addr) {
3816 // Nothing yet
3817 return false;
3818 }
3819 #endif
3820
3821 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
3822 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
3823
3824 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
3825 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
3826 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
3827 address addr = (address) exceptionRecord->ExceptionInformation[1];
3828
3829 if (os::is_memory_serialize_page(thread, addr))
3830 return EXCEPTION_CONTINUE_EXECUTION;
3831 }
3832
3833 return EXCEPTION_CONTINUE_SEARCH;
3834 }
3835
3836 static int getLastErrorString(char *buf, size_t len)
3837 {
3838 long errval;
3839
3840 if ((errval = GetLastError()) != 0)
3841 {
3842 /* DOS error */
3843 size_t n = (size_t)FormatMessage(
3844 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
3845 NULL,
3846 errval,
3847 0,
3848 buf,
3849 (DWORD)len,
3850 NULL);
3851 if (n > 3) {
3852 /* Drop final '.', CR, LF */
3853 if (buf[n - 1] == '\n') n--;
3854 if (buf[n - 1] == '\r') n--;
3855 if (buf[n - 1] == '.') n--;
3856 buf[n] = '\0';
3857 }
3858 return (int)n;
3859 }
3860
3861 if (errno != 0)
3862 {
3863 /* C runtime error that has no corresponding DOS error code */
3864 const char *s = strerror(errno);
3865 size_t n = strlen(s);
3866 if (n >= len) n = len - 1;
3867 strncpy(buf, s, n);
3868 buf[n] = '\0';
3869 return (int)n;
3870 }
3871 return 0;
3872 }