comparison src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_cardTableExtension.cpp.incl"
27
28 // Checks an individual oop for missing precise marks. Mark
29 // may be either dirty or newgen.
30 class CheckForUnmarkedOops : public OopClosure {
31 PSYoungGen* _young_gen;
32 CardTableExtension* _card_table;
33 HeapWord* _unmarked_addr;
34 jbyte* _unmarked_card;
35
36 public:
37 CheckForUnmarkedOops( PSYoungGen* young_gen, CardTableExtension* card_table ) :
38 _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
39
40 virtual void do_oop(oop* p) {
41 if (_young_gen->is_in_reserved(*p) &&
42 !_card_table->addr_is_marked_imprecise(p)) {
43 // Don't overwrite the first missing card mark
44 if (_unmarked_addr == NULL) {
45 _unmarked_addr = (HeapWord*)p;
46 _unmarked_card = _card_table->byte_for(p);
47 }
48 }
49 }
50
51 bool has_unmarked_oop() {
52 return _unmarked_addr != NULL;
53 }
54 };
55
56 // Checks all objects for the existance of some type of mark,
57 // precise or imprecise, dirty or newgen.
58 class CheckForUnmarkedObjects : public ObjectClosure {
59 PSYoungGen* _young_gen;
60 CardTableExtension* _card_table;
61
62 public:
63 CheckForUnmarkedObjects() {
64 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
65 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
66
67 _young_gen = heap->young_gen();
68 _card_table = (CardTableExtension*)heap->barrier_set();
69 // No point in asserting barrier set type here. Need to make CardTableExtension
70 // a unique barrier set type.
71 }
72
73 // Card marks are not precise. The current system can leave us with
74 // a mismash of precise marks and begining of object marks. This means
75 // we test for missing precise marks first. If any are found, we don't
76 // fail unless the object head is also unmarked.
77 virtual void do_object(oop obj) {
78 CheckForUnmarkedOops object_check( _young_gen, _card_table );
79 obj->oop_iterate(&object_check);
80 if (object_check.has_unmarked_oop()) {
81 assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
82 }
83 }
84 };
85
86 // Checks for precise marking of oops as newgen.
87 class CheckForPreciseMarks : public OopClosure {
88 PSYoungGen* _young_gen;
89 CardTableExtension* _card_table;
90
91 public:
92 CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
93 _young_gen(young_gen), _card_table(card_table) { }
94
95 virtual void do_oop(oop* p) {
96 if (_young_gen->is_in_reserved(*p)) {
97 assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
98 _card_table->set_card_newgen(p);
99 }
100 }
101 };
102
103 // We get passed the space_top value to prevent us from traversing into
104 // the old_gen promotion labs, which cannot be safely parsed.
105 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
106 MutableSpace* sp,
107 HeapWord* space_top,
108 PSPromotionManager* pm)
109 {
110 assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
111 assert(start_array->covered_region().contains(sp->used_region()),
112 "ObjectStartArray does not cover space");
113 bool depth_first = pm->depth_first();
114
115 if (sp->not_empty()) {
116 oop* sp_top = (oop*)space_top;
117 oop* prev_top = NULL;
118 jbyte* current_card = byte_for(sp->bottom());
119 jbyte* end_card = byte_for(sp_top - 1); // sp_top is exclusive
120 // scan card marking array
121 while (current_card <= end_card) {
122 jbyte value = *current_card;
123 // skip clean cards
124 if (card_is_clean(value)) {
125 current_card++;
126 } else {
127 // we found a non-clean card
128 jbyte* first_nonclean_card = current_card++;
129 oop* bottom = (oop*)addr_for(first_nonclean_card);
130 // find object starting on card
131 oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
132 // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
133 assert(bottom_obj <= bottom, "just checking");
134 // make sure we don't scan oops we already looked at
135 if (bottom < prev_top) bottom = prev_top;
136 // figure out when to stop scanning
137 jbyte* first_clean_card;
138 oop* top;
139 bool restart_scanning;
140 do {
141 restart_scanning = false;
142 // find a clean card
143 while (current_card <= end_card) {
144 value = *current_card;
145 if (card_is_clean(value)) break;
146 current_card++;
147 }
148 // check if we reached the end, if so we are done
149 if (current_card >= end_card) {
150 first_clean_card = end_card + 1;
151 current_card++;
152 top = sp_top;
153 } else {
154 // we have a clean card, find object starting on that card
155 first_clean_card = current_card++;
156 top = (oop*)addr_for(first_clean_card);
157 oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
158 // top_obj = (oop*)start_array->object_start((HeapWord*)top);
159 assert(top_obj <= top, "just checking");
160 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
161 // an arrayOop is starting on the clean card - since we do exact store
162 // checks for objArrays we are done
163 } else {
164 // otherwise, it is possible that the object starting on the clean card
165 // spans the entire card, and that the store happened on a later card.
166 // figure out where the object ends
167 top = top_obj + oop(top_obj)->size();
168 jbyte* top_card = CardTableModRefBS::byte_for(top - 1); // top is exclusive
169 if (top_card > first_clean_card) {
170 // object ends a different card
171 current_card = top_card + 1;
172 if (card_is_clean(*top_card)) {
173 // the ending card is clean, we are done
174 first_clean_card = top_card;
175 } else {
176 // the ending card is not clean, continue scanning at start of do-while
177 restart_scanning = true;
178 }
179 } else {
180 // object ends on the clean card, we are done.
181 assert(first_clean_card == top_card, "just checking");
182 }
183 }
184 }
185 } while (restart_scanning);
186 // we know which cards to scan, now clear them
187 while (first_nonclean_card < first_clean_card) {
188 *first_nonclean_card++ = clean_card;
189 }
190 // scan oops in objects
191 // hoisted the if (depth_first) check out of the loop
192 if (depth_first){
193 do {
194 oop(bottom_obj)->push_contents(pm);
195 bottom_obj += oop(bottom_obj)->size();
196 assert(bottom_obj <= sp_top, "just checking");
197 } while (bottom_obj < top);
198 pm->drain_stacks_cond_depth();
199 } else {
200 do {
201 oop(bottom_obj)->copy_contents(pm);
202 bottom_obj += oop(bottom_obj)->size();
203 assert(bottom_obj <= sp_top, "just checking");
204 } while (bottom_obj < top);
205 }
206 // remember top oop* scanned
207 prev_top = top;
208 }
209 }
210 }
211 }
212
213 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
214 MutableSpace* sp,
215 HeapWord* space_top,
216 PSPromotionManager* pm,
217 uint stripe_number) {
218 int ssize = 128; // Naked constant! Work unit = 64k.
219 int dirty_card_count = 0;
220 bool depth_first = pm->depth_first();
221
222 oop* sp_top = (oop*)space_top;
223 jbyte* start_card = byte_for(sp->bottom());
224 jbyte* end_card = byte_for(sp_top - 1) + 1;
225 oop* last_scanned = NULL; // Prevent scanning objects more than once
226 for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
227 jbyte* worker_start_card = slice + stripe_number * ssize;
228 if (worker_start_card >= end_card)
229 return; // We're done.
230
231 jbyte* worker_end_card = worker_start_card + ssize;
232 if (worker_end_card > end_card)
233 worker_end_card = end_card;
234
235 // We do not want to scan objects more than once. In order to accomplish
236 // this, we assert that any object with an object head inside our 'slice'
237 // belongs to us. We may need to extend the range of scanned cards if the
238 // last object continues into the next 'slice'.
239 //
240 // Note! ending cards are exclusive!
241 HeapWord* slice_start = addr_for(worker_start_card);
242 HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
243
244 // If there are not objects starting within the chunk, skip it.
245 if (!start_array->object_starts_in_range(slice_start, slice_end)) {
246 continue;
247 }
248 // Update our begining addr
249 HeapWord* first_object = start_array->object_start(slice_start);
250 debug_only(oop* first_object_within_slice = (oop*) first_object;)
251 if (first_object < slice_start) {
252 last_scanned = (oop*)(first_object + oop(first_object)->size());
253 debug_only(first_object_within_slice = last_scanned;)
254 worker_start_card = byte_for(last_scanned);
255 }
256
257 // Update the ending addr
258 if (slice_end < (HeapWord*)sp_top) {
259 // The subtraction is important! An object may start precisely at slice_end.
260 HeapWord* last_object = start_array->object_start(slice_end - 1);
261 slice_end = last_object + oop(last_object)->size();
262 // worker_end_card is exclusive, so bump it one past the end of last_object's
263 // covered span.
264 worker_end_card = byte_for(slice_end) + 1;
265
266 if (worker_end_card > end_card)
267 worker_end_card = end_card;
268 }
269
270 assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
271 assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
272 assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
273 // Note that worker_start_card >= worker_end_card is legal, and happens when
274 // an object spans an entire slice.
275 assert(worker_start_card <= end_card, "worker start card beyond end card");
276 assert(worker_end_card <= end_card, "worker end card beyond end card");
277
278 jbyte* current_card = worker_start_card;
279 while (current_card < worker_end_card) {
280 // Find an unclean card.
281 while (current_card < worker_end_card && card_is_clean(*current_card)) {
282 current_card++;
283 }
284 jbyte* first_unclean_card = current_card;
285
286 // Find the end of a run of contiguous unclean cards
287 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
288 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
289 current_card++;
290 }
291
292 if (current_card < worker_end_card) {
293 // Some objects may be large enough to span several cards. If such
294 // an object has more than one dirty card, separated by a clean card,
295 // we will attempt to scan it twice. The test against "last_scanned"
296 // prevents the redundant object scan, but it does not prevent newly
297 // marked cards from being cleaned.
298 HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
299 size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
300 HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
301 jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
302 assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
303 if (ending_card_of_last_object > current_card) {
304 // This means the object spans the next complete card.
305 // We need to bump the current_card to ending_card_of_last_object
306 current_card = ending_card_of_last_object;
307 }
308 }
309 }
310 jbyte* following_clean_card = current_card;
311
312 if (first_unclean_card < worker_end_card) {
313 oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
314 assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
315 // "p" should always be >= "last_scanned" because newly GC dirtied
316 // cards are no longer scanned again (see comment at end
317 // of loop on the increment of "current_card"). Test that
318 // hypothesis before removing this code.
319 // If this code is removed, deal with the first time through
320 // the loop when the last_scanned is the object starting in
321 // the previous slice.
322 assert((p >= last_scanned) ||
323 (last_scanned == first_object_within_slice),
324 "Should no longer be possible");
325 if (p < last_scanned) {
326 // Avoid scanning more than once; this can happen because
327 // newgen cards set by GC may a different set than the
328 // originally dirty set
329 p = last_scanned;
330 }
331 oop* to = (oop*)addr_for(following_clean_card);
332
333 // Test slice_end first!
334 if ((HeapWord*)to > slice_end) {
335 to = (oop*)slice_end;
336 } else if (to > sp_top) {
337 to = sp_top;
338 }
339
340 // we know which cards to scan, now clear them
341 if (first_unclean_card <= worker_start_card+1)
342 first_unclean_card = worker_start_card+1;
343 if (following_clean_card >= worker_end_card-1)
344 following_clean_card = worker_end_card-1;
345
346 while (first_unclean_card < following_clean_card) {
347 *first_unclean_card++ = clean_card;
348 }
349
350 const int interval = PrefetchScanIntervalInBytes;
351 // scan all objects in the range
352 if (interval != 0) {
353 // hoisted the if (depth_first) check out of the loop
354 if (depth_first) {
355 while (p < to) {
356 Prefetch::write(p, interval);
357 oop m = oop(p);
358 assert(m->is_oop_or_null(), "check for header");
359 m->push_contents(pm);
360 p += m->size();
361 }
362 pm->drain_stacks_cond_depth();
363 } else {
364 while (p < to) {
365 Prefetch::write(p, interval);
366 oop m = oop(p);
367 assert(m->is_oop_or_null(), "check for header");
368 m->copy_contents(pm);
369 p += m->size();
370 }
371 }
372 } else {
373 // hoisted the if (depth_first) check out of the loop
374 if (depth_first) {
375 while (p < to) {
376 oop m = oop(p);
377 assert(m->is_oop_or_null(), "check for header");
378 m->push_contents(pm);
379 p += m->size();
380 }
381 pm->drain_stacks_cond_depth();
382 } else {
383 while (p < to) {
384 oop m = oop(p);
385 assert(m->is_oop_or_null(), "check for header");
386 m->copy_contents(pm);
387 p += m->size();
388 }
389 }
390 }
391 last_scanned = p;
392 }
393 // "current_card" is still the "following_clean_card" or
394 // the current_card is >= the worker_end_card so the
395 // loop will not execute again.
396 assert((current_card == following_clean_card) ||
397 (current_card >= worker_end_card),
398 "current_card should only be incremented if it still equals "
399 "following_clean_card");
400 // Increment current_card so that it is not processed again.
401 // It may now be dirty because a old-to-young pointer was
402 // found on it an updated. If it is now dirty, it cannot be
403 // be safely cleaned in the next iteration.
404 current_card++;
405 }
406 }
407 }
408
409 // This should be called before a scavenge.
410 void CardTableExtension::verify_all_young_refs_imprecise() {
411 CheckForUnmarkedObjects check;
412
413 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
414 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
415
416 PSOldGen* old_gen = heap->old_gen();
417 PSPermGen* perm_gen = heap->perm_gen();
418
419 old_gen->object_iterate(&check);
420 perm_gen->object_iterate(&check);
421 }
422
423 // This should be called immediately after a scavenge, before mutators resume.
424 void CardTableExtension::verify_all_young_refs_precise() {
425 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
426 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
427
428 PSOldGen* old_gen = heap->old_gen();
429 PSPermGen* perm_gen = heap->perm_gen();
430
431 CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
432
433 old_gen->oop_iterate(&check);
434 perm_gen->oop_iterate(&check);
435
436 verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
437 verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
438 }
439
440 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
441 CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
442 // FIX ME ASSERT HERE
443
444 jbyte* bot = card_table->byte_for(mr.start());
445 jbyte* top = card_table->byte_for(mr.end());
446 while(bot <= top) {
447 assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
448 if (*bot == verify_card)
449 *bot = youngergen_card;
450 bot++;
451 }
452 }
453
454 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
455 jbyte* p = byte_for(addr);
456 jbyte val = *p;
457
458 if (card_is_dirty(val))
459 return true;
460
461 if (card_is_newgen(val))
462 return true;
463
464 if (card_is_clean(val))
465 return false;
466
467 assert(false, "Found unhandled card mark type");
468
469 return false;
470 }
471
472 // Also includes verify_card
473 bool CardTableExtension::addr_is_marked_precise(void *addr) {
474 jbyte* p = byte_for(addr);
475 jbyte val = *p;
476
477 if (card_is_newgen(val))
478 return true;
479
480 if (card_is_verify(val))
481 return true;
482
483 if (card_is_clean(val))
484 return false;
485
486 if (card_is_dirty(val))
487 return false;
488
489 assert(false, "Found unhandled card mark type");
490
491 return false;
492 }
493
494 // Assumes that only the base or the end changes. This allows indentification
495 // of the region that is being resized. The
496 // CardTableModRefBS::resize_covered_region() is used for the normal case
497 // where the covered regions are growing or shrinking at the high end.
498 // The method resize_covered_region_by_end() is analogous to
499 // CardTableModRefBS::resize_covered_region() but
500 // for regions that grow or shrink at the low end.
501 void CardTableExtension::resize_covered_region(MemRegion new_region) {
502
503 for (int i = 0; i < _cur_covered_regions; i++) {
504 if (_covered[i].start() == new_region.start()) {
505 // Found a covered region with the same start as the
506 // new region. The region is growing or shrinking
507 // from the start of the region.
508 resize_covered_region_by_start(new_region);
509 return;
510 }
511 if (_covered[i].start() > new_region.start()) {
512 break;
513 }
514 }
515
516 int changed_region = -1;
517 for (int j = 0; j < _cur_covered_regions; j++) {
518 if (_covered[j].end() == new_region.end()) {
519 changed_region = j;
520 // This is a case where the covered region is growing or shrinking
521 // at the start of the region.
522 assert(changed_region != -1, "Don't expect to add a covered region");
523 assert(_covered[changed_region].byte_size() != new_region.byte_size(),
524 "The sizes should be different here");
525 resize_covered_region_by_end(changed_region, new_region);
526 return;
527 }
528 }
529 // This should only be a new covered region (where no existing
530 // covered region matches at the start or the end).
531 assert(_cur_covered_regions < _max_covered_regions,
532 "An existing region should have been found");
533 resize_covered_region_by_start(new_region);
534 }
535
536 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
537 CardTableModRefBS::resize_covered_region(new_region);
538 debug_only(verify_guard();)
539 }
540
541 void CardTableExtension::resize_covered_region_by_end(int changed_region,
542 MemRegion new_region) {
543 assert(SafepointSynchronize::is_at_safepoint(),
544 "Only expect an expansion at the low end at a GC");
545 debug_only(verify_guard();)
546 #ifdef ASSERT
547 for (int k = 0; k < _cur_covered_regions; k++) {
548 if (_covered[k].end() == new_region.end()) {
549 assert(changed_region == k, "Changed region is incorrect");
550 break;
551 }
552 }
553 #endif
554
555 // Commit new or uncommit old pages, if necessary.
556 resize_commit_uncommit(changed_region, new_region);
557
558 // Update card table entries
559 resize_update_card_table_entries(changed_region, new_region);
560
561 // Set the new start of the committed region
562 resize_update_committed_table(changed_region, new_region);
563
564 // Update the covered region
565 resize_update_covered_table(changed_region, new_region);
566
567 if (TraceCardTableModRefBS) {
568 int ind = changed_region;
569 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
570 gclog_or_tty->print_cr(" "
571 " _covered[%d].start(): " INTPTR_FORMAT
572 " _covered[%d].last(): " INTPTR_FORMAT,
573 ind, _covered[ind].start(),
574 ind, _covered[ind].last());
575 gclog_or_tty->print_cr(" "
576 " _committed[%d].start(): " INTPTR_FORMAT
577 " _committed[%d].last(): " INTPTR_FORMAT,
578 ind, _committed[ind].start(),
579 ind, _committed[ind].last());
580 gclog_or_tty->print_cr(" "
581 " byte_for(start): " INTPTR_FORMAT
582 " byte_for(last): " INTPTR_FORMAT,
583 byte_for(_covered[ind].start()),
584 byte_for(_covered[ind].last()));
585 gclog_or_tty->print_cr(" "
586 " addr_for(start): " INTPTR_FORMAT
587 " addr_for(last): " INTPTR_FORMAT,
588 addr_for((jbyte*) _committed[ind].start()),
589 addr_for((jbyte*) _committed[ind].last()));
590 }
591 debug_only(verify_guard();)
592 }
593
594 void CardTableExtension::resize_commit_uncommit(int changed_region,
595 MemRegion new_region) {
596 // Commit new or uncommit old pages, if necessary.
597 MemRegion cur_committed = _committed[changed_region];
598 assert(_covered[changed_region].end() == new_region.end(),
599 "The ends of the regions are expected to match");
600 // Extend the start of this _committed region to
601 // to cover the start of any previous _committed region.
602 // This forms overlapping regions, but never interior regions.
603 HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
604 if (min_prev_start < cur_committed.start()) {
605 // Only really need to set start of "cur_committed" to
606 // the new start (min_prev_start) but assertion checking code
607 // below use cur_committed.end() so make it correct.
608 MemRegion new_committed =
609 MemRegion(min_prev_start, cur_committed.end());
610 cur_committed = new_committed;
611 }
612 #ifdef ASSERT
613 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
614 assert(cur_committed.start() ==
615 (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
616 os::vm_page_size()),
617 "Starts should have proper alignment");
618 #endif
619
620 jbyte* new_start = byte_for(new_region.start());
621 // Round down because this is for the start address
622 HeapWord* new_start_aligned =
623 (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
624 // The guard page is always committed and should not be committed over.
625 // This method is used in cases where the generation is growing toward
626 // lower addresses but the guard region is still at the end of the
627 // card table. That still makes sense when looking for writes
628 // off the end of the card table.
629 if (new_start_aligned < cur_committed.start()) {
630 // Expand the committed region
631 //
632 // Case A
633 // |+ guard +|
634 // |+ cur committed +++++++++|
635 // |+ new committed +++++++++++++++++|
636 //
637 // Case B
638 // |+ guard +|
639 // |+ cur committed +|
640 // |+ new committed +++++++|
641 //
642 // These are not expected because the calculation of the
643 // cur committed region and the new committed region
644 // share the same end for the covered region.
645 // Case C
646 // |+ guard +|
647 // |+ cur committed +|
648 // |+ new committed +++++++++++++++++|
649 // Case D
650 // |+ guard +|
651 // |+ cur committed +++++++++++|
652 // |+ new committed +++++++|
653
654 HeapWord* new_end_for_commit =
655 MIN2(cur_committed.end(), _guard_region.start());
656 MemRegion new_committed =
657 MemRegion(new_start_aligned, new_end_for_commit);
658 if(!new_committed.is_empty()) {
659 if (!os::commit_memory((char*)new_committed.start(),
660 new_committed.byte_size())) {
661 vm_exit_out_of_memory(new_committed.byte_size(),
662 "card table expansion");
663 }
664 }
665 } else if (new_start_aligned > cur_committed.start()) {
666 // Shrink the committed region
667 MemRegion uncommit_region = committed_unique_to_self(changed_region,
668 MemRegion(cur_committed.start(), new_start_aligned));
669 if (!uncommit_region.is_empty()) {
670 if (!os::uncommit_memory((char*)uncommit_region.start(),
671 uncommit_region.byte_size())) {
672 vm_exit_out_of_memory(uncommit_region.byte_size(),
673 "card table contraction");
674 }
675 }
676 }
677 assert(_committed[changed_region].end() == cur_committed.end(),
678 "end should not change");
679 }
680
681 void CardTableExtension::resize_update_committed_table(int changed_region,
682 MemRegion new_region) {
683
684 jbyte* new_start = byte_for(new_region.start());
685 // Set the new start of the committed region
686 HeapWord* new_start_aligned =
687 (HeapWord*)align_size_down((uintptr_t)new_start,
688 os::vm_page_size());
689 MemRegion new_committed = MemRegion(new_start_aligned,
690 _committed[changed_region].end());
691 _committed[changed_region] = new_committed;
692 _committed[changed_region].set_start(new_start_aligned);
693 }
694
695 void CardTableExtension::resize_update_card_table_entries(int changed_region,
696 MemRegion new_region) {
697 debug_only(verify_guard();)
698 MemRegion original_covered = _covered[changed_region];
699 // Initialize the card entries. Only consider the
700 // region covered by the card table (_whole_heap)
701 jbyte* entry;
702 if (new_region.start() < _whole_heap.start()) {
703 entry = byte_for(_whole_heap.start());
704 } else {
705 entry = byte_for(new_region.start());
706 }
707 jbyte* end = byte_for(original_covered.start());
708 // If _whole_heap starts at the original covered regions start,
709 // this loop will not execute.
710 while (entry < end) { *entry++ = clean_card; }
711 }
712
713 void CardTableExtension::resize_update_covered_table(int changed_region,
714 MemRegion new_region) {
715 // Update the covered region
716 _covered[changed_region].set_start(new_region.start());
717 _covered[changed_region].set_word_size(new_region.word_size());
718
719 // reorder regions. There should only be at most 1 out
720 // of order.
721 for (int i = _cur_covered_regions-1 ; i > 0; i--) {
722 if (_covered[i].start() < _covered[i-1].start()) {
723 MemRegion covered_mr = _covered[i-1];
724 _covered[i-1] = _covered[i];
725 _covered[i] = covered_mr;
726 MemRegion committed_mr = _committed[i-1];
727 _committed[i-1] = _committed[i];
728 _committed[i] = committed_mr;
729 break;
730 }
731 }
732 #ifdef ASSERT
733 for (int m = 0; m < _cur_covered_regions-1; m++) {
734 assert(_covered[m].start() <= _covered[m+1].start(),
735 "Covered regions out of order");
736 assert(_committed[m].start() <= _committed[m+1].start(),
737 "Committed regions out of order");
738 }
739 #endif
740 }
741
742 // Returns the start of any committed region that is lower than
743 // the target committed region (index ind) and that intersects the
744 // target region. If none, return start of target region.
745 //
746 // -------------
747 // | |
748 // -------------
749 // ------------
750 // | target |
751 // ------------
752 // -------------
753 // | |
754 // -------------
755 // ^ returns this
756 //
757 // -------------
758 // | |
759 // -------------
760 // ------------
761 // | target |
762 // ------------
763 // -------------
764 // | |
765 // -------------
766 // ^ returns this
767
768 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
769 assert(_cur_covered_regions >= 0, "Expecting at least on region");
770 HeapWord* min_start = _committed[ind].start();
771 for (int j = 0; j < ind; j++) {
772 HeapWord* this_start = _committed[j].start();
773 if ((this_start < min_start) &&
774 !(_committed[j].intersection(_committed[ind])).is_empty()) {
775 min_start = this_start;
776 }
777 }
778 return min_start;
779 }