comparison src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class ParallelScavengeHeap;
26 class PSAdaptiveSizePolicy;
27 class PSYoungGen;
28 class PSOldGen;
29 class PSPermGen;
30 class ParCompactionManager;
31 class ParallelTaskTerminator;
32 class PSParallelCompact;
33 class GCTaskManager;
34 class GCTaskQueue;
35 class PreGCValues;
36 class MoveAndUpdateClosure;
37 class RefProcTaskExecutor;
38
39 class SpaceInfo
40 {
41 public:
42 MutableSpace* space() const { return _space; }
43
44 // Where the free space will start after the collection. Valid only after the
45 // summary phase completes.
46 HeapWord* new_top() const { return _new_top; }
47
48 // Allows new_top to be set.
49 HeapWord** new_top_addr() { return &_new_top; }
50
51 // Where the smallest allowable dense prefix ends (used only for perm gen).
52 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
53
54 // Where the dense prefix ends, or the compacted region begins.
55 HeapWord* dense_prefix() const { return _dense_prefix; }
56
57 // The start array for the (generation containing the) space, or NULL if there
58 // is no start array.
59 ObjectStartArray* start_array() const { return _start_array; }
60
61 void set_space(MutableSpace* s) { _space = s; }
62 void set_new_top(HeapWord* addr) { _new_top = addr; }
63 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
64 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
65 void set_start_array(ObjectStartArray* s) { _start_array = s; }
66
67 private:
68 MutableSpace* _space;
69 HeapWord* _new_top;
70 HeapWord* _min_dense_prefix;
71 HeapWord* _dense_prefix;
72 ObjectStartArray* _start_array;
73 };
74
75 class ParallelCompactData
76 {
77 public:
78 // Sizes are in HeapWords, unless indicated otherwise.
79 static const size_t Log2ChunkSize;
80 static const size_t ChunkSize;
81 static const size_t ChunkSizeBytes;
82
83 // Mask for the bits in a size_t to get an offset within a chunk.
84 static const size_t ChunkSizeOffsetMask;
85 // Mask for the bits in a pointer to get an offset within a chunk.
86 static const size_t ChunkAddrOffsetMask;
87 // Mask for the bits in a pointer to get the address of the start of a chunk.
88 static const size_t ChunkAddrMask;
89
90 static const size_t Log2BlockSize;
91 static const size_t BlockSize;
92 static const size_t BlockOffsetMask;
93 static const size_t BlockMask;
94
95 static const size_t BlocksPerChunk;
96
97 class ChunkData
98 {
99 public:
100 // Destination address of the chunk.
101 HeapWord* destination() const { return _destination; }
102
103 // The first chunk containing data destined for this chunk.
104 size_t source_chunk() const { return _source_chunk; }
105
106 // The object (if any) starting in this chunk and ending in a different
107 // chunk that could not be updated during the main (parallel) compaction
108 // phase. This is different from _partial_obj_addr, which is an object that
109 // extends onto a source chunk. However, the two uses do not overlap in
110 // time, so the same field is used to save space.
111 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
112
113 // The starting address of the partial object extending onto the chunk.
114 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
115
116 // Size of the partial object extending onto the chunk (words).
117 size_t partial_obj_size() const { return _partial_obj_size; }
118
119 // Size of live data that lies within this chunk due to objects that start
120 // in this chunk (words). This does not include the partial object
121 // extending onto the chunk (if any), or the part of an object that extends
122 // onto the next chunk (if any).
123 size_t live_obj_size() const { return _dc_and_los & los_mask; }
124
125 // Total live data that lies within the chunk (words).
126 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
127
128 // The destination_count is the number of other chunks to which data from
129 // this chunk will be copied. At the end of the summary phase, the valid
130 // values of destination_count are
131 //
132 // 0 - data from the chunk will be compacted completely into itself, or the
133 // chunk is empty. The chunk can be claimed and then filled.
134 // 1 - data from the chunk will be compacted into 1 other chunk; some
135 // data from the chunk may also be compacted into the chunk itself.
136 // 2 - data from the chunk will be copied to 2 other chunks.
137 //
138 // During compaction as chunks are emptied, the destination_count is
139 // decremented (atomically) and when it reaches 0, it can be claimed and
140 // then filled.
141 //
142 // A chunk is claimed for processing by atomically changing the
143 // destination_count to the claimed value (dc_claimed). After a chunk has
144 // been filled, the destination_count should be set to the completed value
145 // (dc_completed).
146 inline uint destination_count() const;
147 inline uint destination_count_raw() const;
148
149 // The location of the java heap data that corresponds to this chunk.
150 inline HeapWord* data_location() const;
151
152 // The highest address referenced by objects in this chunk.
153 inline HeapWord* highest_ref() const;
154
155 // Whether this chunk is available to be claimed, has been claimed, or has
156 // been completed.
157 //
158 // Minor subtlety: claimed() returns true if the chunk is marked
159 // completed(), which is desirable since a chunk must be claimed before it
160 // can be completed.
161 bool available() const { return _dc_and_los < dc_one; }
162 bool claimed() const { return _dc_and_los >= dc_claimed; }
163 bool completed() const { return _dc_and_los >= dc_completed; }
164
165 // These are not atomic.
166 void set_destination(HeapWord* addr) { _destination = addr; }
167 void set_source_chunk(size_t chunk) { _source_chunk = chunk; }
168 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
169 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
170 void set_partial_obj_size(size_t words) {
171 _partial_obj_size = (chunk_sz_t) words;
172 }
173
174 inline void set_destination_count(uint count);
175 inline void set_live_obj_size(size_t words);
176 inline void set_data_location(HeapWord* addr);
177 inline void set_completed();
178 inline bool claim_unsafe();
179
180 // These are atomic.
181 inline void add_live_obj(size_t words);
182 inline void set_highest_ref(HeapWord* addr);
183 inline void decrement_destination_count();
184 inline bool claim();
185
186 private:
187 // The type used to represent object sizes within a chunk.
188 typedef uint chunk_sz_t;
189
190 // Constants for manipulating the _dc_and_los field, which holds both the
191 // destination count and live obj size. The live obj size lives at the
192 // least significant end so no masking is necessary when adding.
193 static const chunk_sz_t dc_shift; // Shift amount.
194 static const chunk_sz_t dc_mask; // Mask for destination count.
195 static const chunk_sz_t dc_one; // 1, shifted appropriately.
196 static const chunk_sz_t dc_claimed; // Chunk has been claimed.
197 static const chunk_sz_t dc_completed; // Chunk has been completed.
198 static const chunk_sz_t los_mask; // Mask for live obj size.
199
200 HeapWord* _destination;
201 size_t _source_chunk;
202 HeapWord* _partial_obj_addr;
203 chunk_sz_t _partial_obj_size;
204 chunk_sz_t volatile _dc_and_los;
205 #ifdef ASSERT
206 // These enable optimizations that are only partially implemented. Use
207 // debug builds to prevent the code fragments from breaking.
208 HeapWord* _data_location;
209 HeapWord* _highest_ref;
210 #endif // #ifdef ASSERT
211
212 #ifdef ASSERT
213 public:
214 uint _pushed; // 0 until chunk is pushed onto a worker's stack
215 private:
216 #endif
217 };
218
219 // 'Blocks' allow shorter sections of the bitmap to be searched. Each Block
220 // holds an offset, which is the amount of live data in the Chunk to the left
221 // of the first live object in the Block. This amount of live data will
222 // include any object extending into the block. The first block in
223 // a chunk does not include any partial object extending into the
224 // the chunk.
225 //
226 // The offset also encodes the
227 // 'parity' of the first 1 bit in the Block: a positive offset means the
228 // first 1 bit marks the start of an object, a negative offset means the first
229 // 1 bit marks the end of an object.
230 class BlockData
231 {
232 public:
233 typedef short int blk_ofs_t;
234
235 blk_ofs_t offset() const { return _offset >= 0 ? _offset : -_offset; }
236 blk_ofs_t raw_offset() const { return _offset; }
237 void set_first_is_start_bit(bool v) { _first_is_start_bit = v; }
238
239 #if 0
240 // The need for this method was anticipated but it is
241 // never actually used. Do not include it for now. If
242 // it is needed, consider the problem of what is passed
243 // as "v". To avoid warning errors the method set_start_bit_offset()
244 // was changed to take a size_t as the parameter and to do the
245 // check for the possible overflow. Doing the cast in these
246 // methods better limits the potential problems because of
247 // the size of the field to this class.
248 void set_raw_offset(blk_ofs_t v) { _offset = v; }
249 #endif
250 void set_start_bit_offset(size_t val) {
251 assert(val >= 0, "sanity");
252 _offset = (blk_ofs_t) val;
253 assert(val == (size_t) _offset, "Value is too large");
254 _first_is_start_bit = true;
255 }
256 void set_end_bit_offset(size_t val) {
257 assert(val >= 0, "sanity");
258 _offset = (blk_ofs_t) val;
259 assert(val == (size_t) _offset, "Value is too large");
260 _offset = - _offset;
261 _first_is_start_bit = false;
262 }
263 bool first_is_start_bit() {
264 assert(_set_phase > 0, "Not initialized");
265 return _first_is_start_bit;
266 }
267 bool first_is_end_bit() {
268 assert(_set_phase > 0, "Not initialized");
269 return !_first_is_start_bit;
270 }
271
272 private:
273 blk_ofs_t _offset;
274 // This is temporary until the mark_bitmap is separated into
275 // a start bit array and an end bit array.
276 bool _first_is_start_bit;
277 #ifdef ASSERT
278 short _set_phase;
279 static short _cur_phase;
280 public:
281 static void set_cur_phase(short v) { _cur_phase = v; }
282 #endif
283 };
284
285 public:
286 ParallelCompactData();
287 bool initialize(MemRegion covered_region);
288
289 size_t chunk_count() const { return _chunk_count; }
290
291 // Convert chunk indices to/from ChunkData pointers.
292 inline ChunkData* chunk(size_t chunk_idx) const;
293 inline size_t chunk(const ChunkData* const chunk_ptr) const;
294
295 // Returns true if the given address is contained within the chunk
296 bool chunk_contains(size_t chunk_index, HeapWord* addr);
297
298 size_t block_count() const { return _block_count; }
299 inline BlockData* block(size_t n) const;
300
301 // Returns true if the given block is in the given chunk.
302 static bool chunk_contains_block(size_t chunk_index, size_t block_index);
303
304 void add_obj(HeapWord* addr, size_t len);
305 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
306
307 // Fill in the chunks covering [beg, end) so that no data moves; i.e., the
308 // destination of chunk n is simply the start of chunk n. The argument beg
309 // must be chunk-aligned; end need not be.
310 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
311
312 bool summarize(HeapWord* target_beg, HeapWord* target_end,
313 HeapWord* source_beg, HeapWord* source_end,
314 HeapWord** target_next, HeapWord** source_next = 0);
315
316 void clear();
317 void clear_range(size_t beg_chunk, size_t end_chunk);
318 void clear_range(HeapWord* beg, HeapWord* end) {
319 clear_range(addr_to_chunk_idx(beg), addr_to_chunk_idx(end));
320 }
321
322 // Return the number of words between addr and the start of the chunk
323 // containing addr.
324 inline size_t chunk_offset(const HeapWord* addr) const;
325
326 // Convert addresses to/from a chunk index or chunk pointer.
327 inline size_t addr_to_chunk_idx(const HeapWord* addr) const;
328 inline ChunkData* addr_to_chunk_ptr(const HeapWord* addr) const;
329 inline HeapWord* chunk_to_addr(size_t chunk) const;
330 inline HeapWord* chunk_to_addr(size_t chunk, size_t offset) const;
331 inline HeapWord* chunk_to_addr(const ChunkData* chunk) const;
332
333 inline HeapWord* chunk_align_down(HeapWord* addr) const;
334 inline HeapWord* chunk_align_up(HeapWord* addr) const;
335 inline bool is_chunk_aligned(HeapWord* addr) const;
336
337 // Analogous to chunk_offset() for blocks.
338 size_t block_offset(const HeapWord* addr) const;
339 size_t addr_to_block_idx(const HeapWord* addr) const;
340 size_t addr_to_block_idx(const oop obj) const {
341 return addr_to_block_idx((HeapWord*) obj);
342 }
343 inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
344 inline HeapWord* block_to_addr(size_t block) const;
345
346 // Return the address one past the end of the partial object.
347 HeapWord* partial_obj_end(size_t chunk_idx) const;
348
349 // Return the new location of the object p after the
350 // the compaction.
351 HeapWord* calc_new_pointer(HeapWord* addr);
352
353 // Same as calc_new_pointer() using blocks.
354 HeapWord* block_calc_new_pointer(HeapWord* addr);
355
356 // Same as calc_new_pointer() using chunks.
357 HeapWord* chunk_calc_new_pointer(HeapWord* addr);
358
359 HeapWord* calc_new_pointer(oop p) {
360 return calc_new_pointer((HeapWord*) p);
361 }
362
363 // Return the updated address for the given klass
364 klassOop calc_new_klass(klassOop);
365
366 // Given a block returns true if the partial object for the
367 // corresponding chunk ends in the block. Returns false, otherwise
368 // If there is no partial object, returns false.
369 bool partial_obj_ends_in_block(size_t block_index);
370
371 // Returns the block index for the block
372 static size_t block_idx(BlockData* block);
373
374 #ifdef ASSERT
375 void verify_clear(const PSVirtualSpace* vspace);
376 void verify_clear();
377 #endif // #ifdef ASSERT
378
379 private:
380 bool initialize_block_data(size_t region_size);
381 bool initialize_chunk_data(size_t region_size);
382 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
383
384 private:
385 HeapWord* _region_start;
386 #ifdef ASSERT
387 HeapWord* _region_end;
388 #endif // #ifdef ASSERT
389
390 PSVirtualSpace* _chunk_vspace;
391 ChunkData* _chunk_data;
392 size_t _chunk_count;
393
394 PSVirtualSpace* _block_vspace;
395 BlockData* _block_data;
396 size_t _block_count;
397 };
398
399 inline uint
400 ParallelCompactData::ChunkData::destination_count_raw() const
401 {
402 return _dc_and_los & dc_mask;
403 }
404
405 inline uint
406 ParallelCompactData::ChunkData::destination_count() const
407 {
408 return destination_count_raw() >> dc_shift;
409 }
410
411 inline void
412 ParallelCompactData::ChunkData::set_destination_count(uint count)
413 {
414 assert(count <= (dc_completed >> dc_shift), "count too large");
415 const chunk_sz_t live_sz = (chunk_sz_t) live_obj_size();
416 _dc_and_los = (count << dc_shift) | live_sz;
417 }
418
419 inline void ParallelCompactData::ChunkData::set_live_obj_size(size_t words)
420 {
421 assert(words <= los_mask, "would overflow");
422 _dc_and_los = destination_count_raw() | (chunk_sz_t)words;
423 }
424
425 inline void ParallelCompactData::ChunkData::decrement_destination_count()
426 {
427 assert(_dc_and_los < dc_claimed, "already claimed");
428 assert(_dc_and_los >= dc_one, "count would go negative");
429 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
430 }
431
432 inline HeapWord* ParallelCompactData::ChunkData::data_location() const
433 {
434 DEBUG_ONLY(return _data_location;)
435 NOT_DEBUG(return NULL;)
436 }
437
438 inline HeapWord* ParallelCompactData::ChunkData::highest_ref() const
439 {
440 DEBUG_ONLY(return _highest_ref;)
441 NOT_DEBUG(return NULL;)
442 }
443
444 inline void ParallelCompactData::ChunkData::set_data_location(HeapWord* addr)
445 {
446 DEBUG_ONLY(_data_location = addr;)
447 }
448
449 inline void ParallelCompactData::ChunkData::set_completed()
450 {
451 assert(claimed(), "must be claimed first");
452 _dc_and_los = dc_completed | (chunk_sz_t) live_obj_size();
453 }
454
455 // MT-unsafe claiming of a chunk. Should only be used during single threaded
456 // execution.
457 inline bool ParallelCompactData::ChunkData::claim_unsafe()
458 {
459 if (available()) {
460 _dc_and_los |= dc_claimed;
461 return true;
462 }
463 return false;
464 }
465
466 inline void ParallelCompactData::ChunkData::add_live_obj(size_t words)
467 {
468 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
469 Atomic::add((int) words, (volatile int*) &_dc_and_los);
470 }
471
472 inline void ParallelCompactData::ChunkData::set_highest_ref(HeapWord* addr)
473 {
474 #ifdef ASSERT
475 HeapWord* tmp = _highest_ref;
476 while (addr > tmp) {
477 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
478 }
479 #endif // #ifdef ASSERT
480 }
481
482 inline bool ParallelCompactData::ChunkData::claim()
483 {
484 const int los = (int) live_obj_size();
485 const int old = Atomic::cmpxchg(dc_claimed | los,
486 (volatile int*) &_dc_and_los, los);
487 return old == los;
488 }
489
490 inline ParallelCompactData::ChunkData*
491 ParallelCompactData::chunk(size_t chunk_idx) const
492 {
493 assert(chunk_idx <= chunk_count(), "bad arg");
494 return _chunk_data + chunk_idx;
495 }
496
497 inline size_t
498 ParallelCompactData::chunk(const ChunkData* const chunk_ptr) const
499 {
500 assert(chunk_ptr >= _chunk_data, "bad arg");
501 assert(chunk_ptr <= _chunk_data + chunk_count(), "bad arg");
502 return pointer_delta(chunk_ptr, _chunk_data, sizeof(ChunkData));
503 }
504
505 inline ParallelCompactData::BlockData*
506 ParallelCompactData::block(size_t n) const {
507 assert(n < block_count(), "bad arg");
508 return _block_data + n;
509 }
510
511 inline size_t
512 ParallelCompactData::chunk_offset(const HeapWord* addr) const
513 {
514 assert(addr >= _region_start, "bad addr");
515 assert(addr <= _region_end, "bad addr");
516 return (size_t(addr) & ChunkAddrOffsetMask) >> LogHeapWordSize;
517 }
518
519 inline size_t
520 ParallelCompactData::addr_to_chunk_idx(const HeapWord* addr) const
521 {
522 assert(addr >= _region_start, "bad addr");
523 assert(addr <= _region_end, "bad addr");
524 return pointer_delta(addr, _region_start) >> Log2ChunkSize;
525 }
526
527 inline ParallelCompactData::ChunkData*
528 ParallelCompactData::addr_to_chunk_ptr(const HeapWord* addr) const
529 {
530 return chunk(addr_to_chunk_idx(addr));
531 }
532
533 inline HeapWord*
534 ParallelCompactData::chunk_to_addr(size_t chunk) const
535 {
536 assert(chunk <= _chunk_count, "chunk out of range");
537 return _region_start + (chunk << Log2ChunkSize);
538 }
539
540 inline HeapWord*
541 ParallelCompactData::chunk_to_addr(const ChunkData* chunk) const
542 {
543 return chunk_to_addr(pointer_delta(chunk, _chunk_data, sizeof(ChunkData)));
544 }
545
546 inline HeapWord*
547 ParallelCompactData::chunk_to_addr(size_t chunk, size_t offset) const
548 {
549 assert(chunk <= _chunk_count, "chunk out of range");
550 assert(offset < ChunkSize, "offset too big"); // This may be too strict.
551 return chunk_to_addr(chunk) + offset;
552 }
553
554 inline HeapWord*
555 ParallelCompactData::chunk_align_down(HeapWord* addr) const
556 {
557 assert(addr >= _region_start, "bad addr");
558 assert(addr < _region_end + ChunkSize, "bad addr");
559 return (HeapWord*)(size_t(addr) & ChunkAddrMask);
560 }
561
562 inline HeapWord*
563 ParallelCompactData::chunk_align_up(HeapWord* addr) const
564 {
565 assert(addr >= _region_start, "bad addr");
566 assert(addr <= _region_end, "bad addr");
567 return chunk_align_down(addr + ChunkSizeOffsetMask);
568 }
569
570 inline bool
571 ParallelCompactData::is_chunk_aligned(HeapWord* addr) const
572 {
573 return chunk_offset(addr) == 0;
574 }
575
576 inline size_t
577 ParallelCompactData::block_offset(const HeapWord* addr) const
578 {
579 assert(addr >= _region_start, "bad addr");
580 assert(addr <= _region_end, "bad addr");
581 return pointer_delta(addr, _region_start) & BlockOffsetMask;
582 }
583
584 inline size_t
585 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
586 {
587 assert(addr >= _region_start, "bad addr");
588 assert(addr <= _region_end, "bad addr");
589 return pointer_delta(addr, _region_start) >> Log2BlockSize;
590 }
591
592 inline ParallelCompactData::BlockData*
593 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
594 {
595 return block(addr_to_block_idx(addr));
596 }
597
598 inline HeapWord*
599 ParallelCompactData::block_to_addr(size_t block) const
600 {
601 assert(block < _block_count, "block out of range");
602 return _region_start + (block << Log2BlockSize);
603 }
604
605 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
606 // do_addr() method.
607 //
608 // The closure is initialized with the number of heap words to process
609 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
610 // methods in subclasses should update the total as words are processed. Since
611 // only one subclass actually uses this mechanism to terminate iteration, the
612 // default initial value is > 0. The implementation is here and not in the
613 // single subclass that uses it to avoid making is_full() virtual, and thus
614 // adding a virtual call per live object.
615
616 class ParMarkBitMapClosure: public StackObj {
617 public:
618 typedef ParMarkBitMap::idx_t idx_t;
619 typedef ParMarkBitMap::IterationStatus IterationStatus;
620
621 public:
622 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
623 size_t words = max_uintx);
624
625 inline ParCompactionManager* compaction_manager() const;
626 inline ParMarkBitMap* bitmap() const;
627 inline size_t words_remaining() const;
628 inline bool is_full() const;
629 inline HeapWord* source() const;
630
631 inline void set_source(HeapWord* addr);
632
633 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
634
635 protected:
636 inline void decrement_words_remaining(size_t words);
637
638 private:
639 ParMarkBitMap* const _bitmap;
640 ParCompactionManager* const _compaction_manager;
641 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
642 size_t _words_remaining; // Words left to copy.
643
644 protected:
645 HeapWord* _source; // Next addr that would be read.
646 };
647
648 inline
649 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
650 ParCompactionManager* cm,
651 size_t words):
652 _bitmap(bitmap), _compaction_manager(cm)
653 #ifdef ASSERT
654 , _initial_words_remaining(words)
655 #endif
656 {
657 _words_remaining = words;
658 _source = NULL;
659 }
660
661 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
662 return _compaction_manager;
663 }
664
665 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
666 return _bitmap;
667 }
668
669 inline size_t ParMarkBitMapClosure::words_remaining() const {
670 return _words_remaining;
671 }
672
673 inline bool ParMarkBitMapClosure::is_full() const {
674 return words_remaining() == 0;
675 }
676
677 inline HeapWord* ParMarkBitMapClosure::source() const {
678 return _source;
679 }
680
681 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
682 _source = addr;
683 }
684
685 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
686 assert(_words_remaining >= words, "processed too many words");
687 _words_remaining -= words;
688 }
689
690 // Closure for updating the block data during the summary phase.
691 class BitBlockUpdateClosure: public ParMarkBitMapClosure {
692 // ParallelCompactData::BlockData::blk_ofs_t _live_data_left;
693 size_t _live_data_left;
694 size_t _cur_block;
695 HeapWord* _chunk_start;
696 HeapWord* _chunk_end;
697 size_t _chunk_index;
698
699 public:
700 BitBlockUpdateClosure(ParMarkBitMap* mbm,
701 ParCompactionManager* cm,
702 size_t chunk_index);
703
704 size_t cur_block() { return _cur_block; }
705 size_t chunk_index() { return _chunk_index; }
706 size_t live_data_left() { return _live_data_left; }
707 // Returns true the first bit in the current block (cur_block) is
708 // a start bit.
709 // Returns true if the current block is within the chunk for the closure;
710 bool chunk_contains_cur_block();
711
712 // Set the chunk index and related chunk values for
713 // a new chunk.
714 void reset_chunk(size_t chunk_index);
715
716 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
717 };
718
719 class PSParallelCompact : AllStatic {
720 public:
721 // Convenient access to type names.
722 typedef ParMarkBitMap::idx_t idx_t;
723 typedef ParallelCompactData::ChunkData ChunkData;
724 typedef ParallelCompactData::BlockData BlockData;
725
726 typedef enum {
727 perm_space_id, old_space_id, eden_space_id,
728 from_space_id, to_space_id, last_space_id
729 } SpaceId;
730
731 public:
732 // In line closure decls
733 //
734
735 class IsAliveClosure: public BoolObjectClosure {
736 public:
737 void do_object(oop p) { assert(false, "don't call"); }
738 bool do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
739 };
740
741 class KeepAliveClosure: public OopClosure {
742 ParCompactionManager* _compaction_manager;
743 public:
744 KeepAliveClosure(ParCompactionManager* cm) {
745 _compaction_manager = cm;
746 }
747 void do_oop(oop* p);
748 };
749
750 class FollowRootClosure: public OopsInGenClosure{
751 ParCompactionManager* _compaction_manager;
752 public:
753 FollowRootClosure(ParCompactionManager* cm) {
754 _compaction_manager = cm;
755 }
756 void do_oop(oop* p) { follow_root(_compaction_manager, p); }
757 virtual const bool do_nmethods() const { return true; }
758 };
759
760 class FollowStackClosure: public VoidClosure {
761 ParCompactionManager* _compaction_manager;
762 public:
763 FollowStackClosure(ParCompactionManager* cm) {
764 _compaction_manager = cm;
765 }
766 void do_void() { follow_stack(_compaction_manager); }
767 };
768
769 class AdjustPointerClosure: public OopsInGenClosure {
770 bool _is_root;
771 public:
772 AdjustPointerClosure(bool is_root) : _is_root(is_root) {}
773 void do_oop(oop* p) { adjust_pointer(p, _is_root); }
774 };
775
776 // Closure for verifying update of pointers. Does not
777 // have any side effects.
778 class VerifyUpdateClosure: public ParMarkBitMapClosure {
779 const MutableSpace* _space; // Is this ever used?
780
781 public:
782 VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
783 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
784 { }
785
786 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
787
788 const MutableSpace* space() { return _space; }
789 };
790
791 // Closure for updating objects altered for debug checking
792 class ResetObjectsClosure: public ParMarkBitMapClosure {
793 public:
794 ResetObjectsClosure(ParCompactionManager* cm):
795 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
796 { }
797
798 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
799 };
800
801 friend class KeepAliveClosure;
802 friend class FollowStackClosure;
803 friend class AdjustPointerClosure;
804 friend class FollowRootClosure;
805 friend class instanceKlassKlass;
806 friend class RefProcTaskProxy;
807
808 static void mark_and_push_internal(ParCompactionManager* cm, oop* p);
809
810 private:
811 static elapsedTimer _accumulated_time;
812 static unsigned int _total_invocations;
813 static unsigned int _maximum_compaction_gc_num;
814 static jlong _time_of_last_gc; // ms
815 static CollectorCounters* _counters;
816 static ParMarkBitMap _mark_bitmap;
817 static ParallelCompactData _summary_data;
818 static IsAliveClosure _is_alive_closure;
819 static SpaceInfo _space_info[last_space_id];
820 static bool _print_phases;
821 static AdjustPointerClosure _adjust_root_pointer_closure;
822 static AdjustPointerClosure _adjust_pointer_closure;
823
824 // Reference processing (used in ...follow_contents)
825 static ReferenceProcessor* _ref_processor;
826
827 // Updated location of intArrayKlassObj.
828 static klassOop _updated_int_array_klass_obj;
829
830 // Values computed at initialization and used by dead_wood_limiter().
831 static double _dwl_mean;
832 static double _dwl_std_dev;
833 static double _dwl_first_term;
834 static double _dwl_adjustment;
835 #ifdef ASSERT
836 static bool _dwl_initialized;
837 #endif // #ifdef ASSERT
838
839 private:
840 // Closure accessors
841 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
842 static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
843 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
844
845 static void initialize_space_info();
846
847 // Return true if details about individual phases should be printed.
848 static inline bool print_phases();
849
850 // Clear the marking bitmap and summary data that cover the specified space.
851 static void clear_data_covering_space(SpaceId id);
852
853 static void pre_compact(PreGCValues* pre_gc_values);
854 static void post_compact();
855
856 // Mark live objects
857 static void marking_phase(ParCompactionManager* cm,
858 bool maximum_heap_compaction);
859 static void follow_stack(ParCompactionManager* cm);
860 static void follow_weak_klass_links(ParCompactionManager* cm);
861
862 static void adjust_pointer(oop* p, bool is_root);
863 static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
864
865 static void follow_root(ParCompactionManager* cm, oop* p);
866
867 // Compute the dense prefix for the designated space. This is an experimental
868 // implementation currently not used in production.
869 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
870 bool maximum_compaction);
871
872 // Methods used to compute the dense prefix.
873
874 // Compute the value of the normal distribution at x = density. The mean and
875 // standard deviation are values saved by initialize_dead_wood_limiter().
876 static inline double normal_distribution(double density);
877
878 // Initialize the static vars used by dead_wood_limiter().
879 static void initialize_dead_wood_limiter();
880
881 // Return the percentage of space that can be treated as "dead wood" (i.e.,
882 // not reclaimed).
883 static double dead_wood_limiter(double density, size_t min_percent);
884
885 // Find the first (left-most) chunk in the range [beg, end) that has at least
886 // dead_words of dead space to the left. The argument beg must be the first
887 // chunk in the space that is not completely live.
888 static ChunkData* dead_wood_limit_chunk(const ChunkData* beg,
889 const ChunkData* end,
890 size_t dead_words);
891
892 // Return a pointer to the first chunk in the range [beg, end) that is not
893 // completely full.
894 static ChunkData* first_dead_space_chunk(const ChunkData* beg,
895 const ChunkData* end);
896
897 // Return a value indicating the benefit or 'yield' if the compacted region
898 // were to start (or equivalently if the dense prefix were to end) at the
899 // candidate chunk. Higher values are better.
900 //
901 // The value is based on the amount of space reclaimed vs. the costs of (a)
902 // updating references in the dense prefix plus (b) copying objects and
903 // updating references in the compacted region.
904 static inline double reclaimed_ratio(const ChunkData* const candidate,
905 HeapWord* const bottom,
906 HeapWord* const top,
907 HeapWord* const new_top);
908
909 // Compute the dense prefix for the designated space.
910 static HeapWord* compute_dense_prefix(const SpaceId id,
911 bool maximum_compaction);
912
913 // Return true if dead space crosses onto the specified Chunk; bit must be the
914 // bit index corresponding to the first word of the Chunk.
915 static inline bool dead_space_crosses_boundary(const ChunkData* chunk,
916 idx_t bit);
917
918 // Summary phase utility routine to fill dead space (if any) at the dense
919 // prefix boundary. Should only be called if the the dense prefix is
920 // non-empty.
921 static void fill_dense_prefix_end(SpaceId id);
922
923 static void summarize_spaces_quick();
924 static void summarize_space(SpaceId id, bool maximum_compaction);
925 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
926
927 static bool block_first_offset(size_t block_index, idx_t* block_offset_ptr);
928
929 // Fill in the BlockData
930 static void summarize_blocks(ParCompactionManager* cm,
931 SpaceId first_compaction_space_id);
932
933 // The space that is compacted after space_id.
934 static SpaceId next_compaction_space_id(SpaceId space_id);
935
936 // Adjust addresses in roots. Does not adjust addresses in heap.
937 static void adjust_roots();
938
939 // Serial code executed in preparation for the compaction phase.
940 static void compact_prologue();
941
942 // Move objects to new locations.
943 static void compact_perm(ParCompactionManager* cm);
944 static void compact();
945
946 // Add available chunks to the stack and draining tasks to the task queue.
947 static void enqueue_chunk_draining_tasks(GCTaskQueue* q,
948 uint parallel_gc_threads);
949
950 // Add dense prefix update tasks to the task queue.
951 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
952 uint parallel_gc_threads);
953
954 // Add chunk stealing tasks to the task queue.
955 static void enqueue_chunk_stealing_tasks(
956 GCTaskQueue* q,
957 ParallelTaskTerminator* terminator_ptr,
958 uint parallel_gc_threads);
959
960 // For debugging only - compacts the old gen serially
961 static void compact_serial(ParCompactionManager* cm);
962
963 // If objects are left in eden after a collection, try to move the boundary
964 // and absorb them into the old gen. Returns true if eden was emptied.
965 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
966 PSYoungGen* young_gen,
967 PSOldGen* old_gen);
968
969 // Reset time since last full gc
970 static void reset_millis_since_last_gc();
971
972 protected:
973 #ifdef VALIDATE_MARK_SWEEP
974 static GrowableArray<oop*>* _root_refs_stack;
975 static GrowableArray<oop> * _live_oops;
976 static GrowableArray<oop> * _live_oops_moved_to;
977 static GrowableArray<size_t>* _live_oops_size;
978 static size_t _live_oops_index;
979 static size_t _live_oops_index_at_perm;
980 static GrowableArray<oop*>* _other_refs_stack;
981 static GrowableArray<oop*>* _adjusted_pointers;
982 static bool _pointer_tracking;
983 static bool _root_tracking;
984
985 // The following arrays are saved since the time of the last GC and
986 // assist in tracking down problems where someone has done an errant
987 // store into the heap, usually to an oop that wasn't properly
988 // handleized across a GC. If we crash or otherwise fail before the
989 // next GC, we can query these arrays to find out the object we had
990 // intended to do the store to (assuming it is still alive) and the
991 // offset within that object. Covered under RecordMarkSweepCompaction.
992 static GrowableArray<HeapWord*> * _cur_gc_live_oops;
993 static GrowableArray<HeapWord*> * _cur_gc_live_oops_moved_to;
994 static GrowableArray<size_t>* _cur_gc_live_oops_size;
995 static GrowableArray<HeapWord*> * _last_gc_live_oops;
996 static GrowableArray<HeapWord*> * _last_gc_live_oops_moved_to;
997 static GrowableArray<size_t>* _last_gc_live_oops_size;
998 #endif
999
1000 public:
1001 class MarkAndPushClosure: public OopClosure {
1002 ParCompactionManager* _compaction_manager;
1003 public:
1004 MarkAndPushClosure(ParCompactionManager* cm) {
1005 _compaction_manager = cm;
1006 }
1007 void do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
1008 virtual const bool do_nmethods() const { return true; }
1009 };
1010
1011 PSParallelCompact();
1012
1013 // Convenient accessor for Universe::heap().
1014 static ParallelScavengeHeap* gc_heap() {
1015 return (ParallelScavengeHeap*)Universe::heap();
1016 }
1017
1018 static void invoke(bool maximum_heap_compaction);
1019 static void invoke_no_policy(bool maximum_heap_compaction);
1020
1021 static void post_initialize();
1022 // Perform initialization for PSParallelCompact that requires
1023 // allocations. This should be called during the VM initialization
1024 // at a pointer where it would be appropriate to return a JNI_ENOMEM
1025 // in the event of a failure.
1026 static bool initialize();
1027
1028 // Public accessors
1029 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1030 static unsigned int total_invocations() { return _total_invocations; }
1031 static CollectorCounters* counters() { return _counters; }
1032
1033 // Used to add tasks
1034 static GCTaskManager* const gc_task_manager();
1035 static klassOop updated_int_array_klass_obj() {
1036 return _updated_int_array_klass_obj;
1037 }
1038
1039 // Marking support
1040 static inline bool mark_obj(oop obj);
1041 static bool mark_obj(oop* p) {
1042 if (*p != NULL) {
1043 return mark_obj(*p);
1044 } else {
1045 return false;
1046 }
1047 }
1048 static void mark_and_push(ParCompactionManager* cm, oop* p) {
1049 // Check mark and maybe push on
1050 // marking stack
1051 oop m = *p;
1052 if (m != NULL && mark_bitmap()->is_unmarked(m)) {
1053 mark_and_push_internal(cm, p);
1054 }
1055 }
1056
1057 // Compaction support.
1058 // Return true if p is in the range [beg_addr, end_addr).
1059 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1060 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1061
1062 // Convenience wrappers for per-space data kept in _space_info.
1063 static inline MutableSpace* space(SpaceId space_id);
1064 static inline HeapWord* new_top(SpaceId space_id);
1065 static inline HeapWord* dense_prefix(SpaceId space_id);
1066 static inline ObjectStartArray* start_array(SpaceId space_id);
1067
1068 // Return true if the klass should be updated.
1069 static inline bool should_update_klass(klassOop k);
1070
1071 // Move and update the live objects in the specified space.
1072 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1073
1074 // Process the end of the given chunk range in the dense prefix.
1075 // This includes saving any object not updated.
1076 static void dense_prefix_chunks_epilogue(ParCompactionManager* cm,
1077 size_t chunk_start_index,
1078 size_t chunk_end_index,
1079 idx_t exiting_object_offset,
1080 idx_t chunk_offset_start,
1081 idx_t chunk_offset_end);
1082
1083 // Update a chunk in the dense prefix. For each live object
1084 // in the chunk, update it's interior references. For each
1085 // dead object, fill it with deadwood. Dead space at the end
1086 // of a chunk range will be filled to the start of the next
1087 // live object regardless of the chunk_index_end. None of the
1088 // objects in the dense prefix move and dead space is dead
1089 // (holds only dead objects that don't need any processing), so
1090 // dead space can be filled in any order.
1091 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1092 SpaceId space_id,
1093 size_t chunk_index_start,
1094 size_t chunk_index_end);
1095
1096 // Return the address of the count + 1st live word in the range [beg, end).
1097 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1098
1099 // Return the address of the word to be copied to dest_addr, which must be
1100 // aligned to a chunk boundary.
1101 static HeapWord* first_src_addr(HeapWord* const dest_addr,
1102 size_t src_chunk_idx);
1103
1104 // Determine the next source chunk, set closure.source() to the start of the
1105 // new chunk return the chunk index. Parameter end_addr is the address one
1106 // beyond the end of source range just processed. If necessary, switch to a
1107 // new source space and set src_space_id (in-out parameter) and src_space_top
1108 // (out parameter) accordingly.
1109 static size_t next_src_chunk(MoveAndUpdateClosure& closure,
1110 SpaceId& src_space_id,
1111 HeapWord*& src_space_top,
1112 HeapWord* end_addr);
1113
1114 // Decrement the destination count for each non-empty source chunk in the
1115 // range [beg_chunk, chunk(chunk_align_up(end_addr))).
1116 static void decrement_destination_counts(ParCompactionManager* cm,
1117 size_t beg_chunk,
1118 HeapWord* end_addr);
1119
1120 // Fill a chunk, copying objects from one or more source chunks.
1121 static void fill_chunk(ParCompactionManager* cm, size_t chunk_idx);
1122 static void fill_and_update_chunk(ParCompactionManager* cm, size_t chunk) {
1123 fill_chunk(cm, chunk);
1124 }
1125
1126 // Update the deferred objects in the space.
1127 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1128
1129 // Mark pointer and follow contents.
1130 static void mark_and_follow(ParCompactionManager* cm, oop* p);
1131
1132 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1133 static ParallelCompactData& summary_data() { return _summary_data; }
1134
1135 static inline void adjust_pointer(oop* p) { adjust_pointer(p, false); }
1136 static inline void adjust_pointer(oop* p,
1137 HeapWord* beg_addr,
1138 HeapWord* end_addr);
1139
1140 // Reference Processing
1141 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1142
1143 // Return the SpaceId for the given address.
1144 static SpaceId space_id(HeapWord* addr);
1145
1146 // Time since last full gc (in milliseconds).
1147 static jlong millis_since_last_gc();
1148
1149 #ifdef VALIDATE_MARK_SWEEP
1150 static void track_adjusted_pointer(oop* p, oop newobj, bool isroot);
1151 static void check_adjust_pointer(oop* p); // Adjust this pointer
1152 static void track_interior_pointers(oop obj);
1153 static void check_interior_pointers();
1154
1155 static void reset_live_oop_tracking(bool at_perm);
1156 static void register_live_oop(oop p, size_t size);
1157 static void validate_live_oop(oop p, size_t size);
1158 static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
1159 static void compaction_complete();
1160
1161 // Querying operation of RecordMarkSweepCompaction results.
1162 // Finds and prints the current base oop and offset for a word
1163 // within an oop that was live during the last GC. Helpful for
1164 // tracking down heap stomps.
1165 static void print_new_location_of_heap_address(HeapWord* q);
1166 #endif // #ifdef VALIDATE_MARK_SWEEP
1167
1168 // Call backs for class unloading
1169 // Update subklass/sibling/implementor links at end of marking.
1170 static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
1171
1172 #ifndef PRODUCT
1173 // Debugging support.
1174 static const char* space_names[last_space_id];
1175 static void print_chunk_ranges();
1176 static void print_dense_prefix_stats(const char* const algorithm,
1177 const SpaceId id,
1178 const bool maximum_compaction,
1179 HeapWord* const addr);
1180 #endif // #ifndef PRODUCT
1181
1182 #ifdef ASSERT
1183 // Verify that all the chunks have been emptied.
1184 static void verify_complete(SpaceId space_id);
1185 #endif // #ifdef ASSERT
1186 };
1187
1188 bool PSParallelCompact::mark_obj(oop obj) {
1189 const int obj_size = obj->size();
1190 if (mark_bitmap()->mark_obj(obj, obj_size)) {
1191 _summary_data.add_obj(obj, obj_size);
1192 return true;
1193 } else {
1194 return false;
1195 }
1196 }
1197
1198 inline bool PSParallelCompact::print_phases()
1199 {
1200 return _print_phases;
1201 }
1202
1203 inline double PSParallelCompact::normal_distribution(double density)
1204 {
1205 assert(_dwl_initialized, "uninitialized");
1206 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
1207 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
1208 }
1209
1210 inline bool
1211 PSParallelCompact::dead_space_crosses_boundary(const ChunkData* chunk,
1212 idx_t bit)
1213 {
1214 assert(bit > 0, "cannot call this for the first bit/chunk");
1215 assert(_summary_data.chunk_to_addr(chunk) == _mark_bitmap.bit_to_addr(bit),
1216 "sanity check");
1217
1218 // Dead space crosses the boundary if (1) a partial object does not extend
1219 // onto the chunk, (2) an object does not start at the beginning of the chunk,
1220 // and (3) an object does not end at the end of the prior chunk.
1221 return chunk->partial_obj_size() == 0 &&
1222 !_mark_bitmap.is_obj_beg(bit) &&
1223 !_mark_bitmap.is_obj_end(bit - 1);
1224 }
1225
1226 inline bool
1227 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
1228 return p >= beg_addr && p < end_addr;
1229 }
1230
1231 inline bool
1232 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
1233 return is_in((HeapWord*)p, beg_addr, end_addr);
1234 }
1235
1236 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
1237 assert(id < last_space_id, "id out of range");
1238 return _space_info[id].space();
1239 }
1240
1241 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
1242 assert(id < last_space_id, "id out of range");
1243 return _space_info[id].new_top();
1244 }
1245
1246 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
1247 assert(id < last_space_id, "id out of range");
1248 return _space_info[id].dense_prefix();
1249 }
1250
1251 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
1252 assert(id < last_space_id, "id out of range");
1253 return _space_info[id].start_array();
1254 }
1255
1256 inline bool PSParallelCompact::should_update_klass(klassOop k) {
1257 return ((HeapWord*) k) >= dense_prefix(perm_space_id);
1258 }
1259
1260 inline void PSParallelCompact::adjust_pointer(oop* p,
1261 HeapWord* beg_addr,
1262 HeapWord* end_addr) {
1263 if (is_in(p, beg_addr, end_addr)) {
1264 adjust_pointer(p);
1265 }
1266 }
1267
1268 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1269 public:
1270 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1271 ObjectStartArray* start_array,
1272 HeapWord* destination, size_t words);
1273
1274 // Accessors.
1275 HeapWord* destination() const { return _destination; }
1276
1277 // If the object will fit (size <= words_remaining()), copy it to the current
1278 // destination, update the interior oops and the start array and return either
1279 // full (if the closure is full) or incomplete. If the object will not fit,
1280 // return would_overflow.
1281 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1282
1283 // Copy enough words to fill this closure, starting at source(). Interior
1284 // oops and the start array are not updated. Return full.
1285 IterationStatus copy_until_full();
1286
1287 // Copy enough words to fill this closure or to the end of an object,
1288 // whichever is smaller, starting at source(). Interior oops and the start
1289 // array are not updated.
1290 void copy_partial_obj();
1291
1292 protected:
1293 // Update variables to indicate that word_count words were processed.
1294 inline void update_state(size_t word_count);
1295
1296 protected:
1297 ObjectStartArray* const _start_array;
1298 HeapWord* _destination; // Next addr to be written.
1299 };
1300
1301 inline
1302 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1303 ParCompactionManager* cm,
1304 ObjectStartArray* start_array,
1305 HeapWord* destination,
1306 size_t words) :
1307 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1308 {
1309 _destination = destination;
1310 }
1311
1312 inline void MoveAndUpdateClosure::update_state(size_t words)
1313 {
1314 decrement_words_remaining(words);
1315 _source += words;
1316 _destination += words;
1317 }
1318
1319 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1320 private:
1321 const PSParallelCompact::SpaceId _space_id;
1322 ObjectStartArray* const _start_array;
1323
1324 public:
1325 UpdateOnlyClosure(ParMarkBitMap* mbm,
1326 ParCompactionManager* cm,
1327 PSParallelCompact::SpaceId space_id);
1328
1329 // Update the object.
1330 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1331
1332 inline void do_addr(HeapWord* addr);
1333 };
1334
1335 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
1336 _start_array->allocate_block(addr);
1337 oop(addr)->update_contents(compaction_manager());
1338 }
1339
1340 class FillClosure: public ParMarkBitMapClosure {
1341 public:
1342 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id):
1343 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1344 _space_id(space_id),
1345 _start_array(PSParallelCompact::start_array(space_id))
1346 {
1347 assert(_space_id == PSParallelCompact::perm_space_id ||
1348 _space_id == PSParallelCompact::old_space_id,
1349 "cannot use FillClosure in the young gen");
1350 assert(bitmap() != NULL, "need a bitmap");
1351 assert(_start_array != NULL, "need a start array");
1352 }
1353
1354 void fill_region(HeapWord* addr, size_t size) {
1355 MemRegion region(addr, size);
1356 SharedHeap::fill_region_with_object(region);
1357 _start_array->allocate_block(addr);
1358 }
1359
1360 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1361 fill_region(addr, size);
1362 return ParMarkBitMap::incomplete;
1363 }
1364
1365 private:
1366 const PSParallelCompact::SpaceId _space_id;
1367 ObjectStartArray* const _start_array;
1368 };