comparison src/share/vm/memory/defNewGeneration.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 # include "incls/_precompiled.incl"
26 # include "incls/_defNewGeneration.cpp.incl"
27
28 //
29 // DefNewGeneration functions.
30
31 // Methods of protected closure types.
32
33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
34 assert(g->level() == 0, "Optimized for youngest gen.");
35 }
36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
37 assert(false, "Do not call.");
38 }
39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
40 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
41 }
42
43 DefNewGeneration::KeepAliveClosure::
44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
45 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
46 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
47 _rs = (CardTableRS*)rs;
48 }
49
50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) {
51 // We never expect to see a null reference being processed
52 // as a weak reference.
53 assert (*p != NULL, "expected non-null ref");
54 assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
55
56 _cl->do_oop_nv(p);
57
58 // Card marking is trickier for weak refs.
59 // This oop is a 'next' field which was filled in while we
60 // were discovering weak references. While we might not need
61 // to take a special action to keep this reference alive, we
62 // will need to dirty a card as the field was modified.
63 //
64 // Alternatively, we could create a method which iterates through
65 // each generation, allowing them in turn to examine the modified
66 // field.
67 //
68 // We could check that p is also in an older generation, but
69 // dirty cards in the youngest gen are never scanned, so the
70 // extra check probably isn't worthwhile.
71 if (Universe::heap()->is_in_reserved(p)) {
72 _rs->inline_write_ref_field_gc(p, *p);
73 }
74 }
75
76 DefNewGeneration::FastKeepAliveClosure::
77 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
78 DefNewGeneration::KeepAliveClosure(cl) {
79 _boundary = g->reserved().end();
80 }
81
82 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) {
83 assert (*p != NULL, "expected non-null ref");
84 assert ((*p)->is_oop(), "expected an oop while scanning weak refs");
85
86 _cl->do_oop_nv(p);
87
88 // Optimized for Defnew generation if it's the youngest generation:
89 // we set a younger_gen card if we have an older->youngest
90 // generation pointer.
91 if (((HeapWord*)(*p) < _boundary) && Universe::heap()->is_in_reserved(p)) {
92 _rs->inline_write_ref_field_gc(p, *p);
93 }
94 }
95
96 DefNewGeneration::EvacuateFollowersClosure::
97 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
98 ScanClosure* cur, ScanClosure* older) :
99 _gch(gch), _level(level),
100 _scan_cur_or_nonheap(cur), _scan_older(older)
101 {}
102
103 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
104 do {
105 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
106 _scan_older);
107 } while (!_gch->no_allocs_since_save_marks(_level));
108 }
109
110 DefNewGeneration::FastEvacuateFollowersClosure::
111 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
112 DefNewGeneration* gen,
113 FastScanClosure* cur, FastScanClosure* older) :
114 _gch(gch), _level(level), _gen(gen),
115 _scan_cur_or_nonheap(cur), _scan_older(older)
116 {}
117
118 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
119 do {
120 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
121 _scan_older);
122 } while (!_gch->no_allocs_since_save_marks(_level));
123 guarantee(_gen->promo_failure_scan_stack() == NULL
124 || _gen->promo_failure_scan_stack()->length() == 0,
125 "Failed to finish scan");
126 }
127
128 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
129 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
130 {
131 assert(_g->level() == 0, "Optimized for youngest generation");
132 _boundary = _g->reserved().end();
133 }
134
135 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
136 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
137 {
138 assert(_g->level() == 0, "Optimized for youngest generation");
139 _boundary = _g->reserved().end();
140 }
141
142 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
143 OopClosure(g->ref_processor()), _g(g)
144 {
145 assert(_g->level() == 0, "Optimized for youngest generation");
146 _boundary = _g->reserved().end();
147 }
148
149
150 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
151 size_t initial_size,
152 int level,
153 const char* policy)
154 : Generation(rs, initial_size, level),
155 _objs_with_preserved_marks(NULL),
156 _preserved_marks_of_objs(NULL),
157 _promo_failure_scan_stack(NULL),
158 _promo_failure_drain_in_progress(false),
159 _should_allocate_from_space(false)
160 {
161 MemRegion cmr((HeapWord*)_virtual_space.low(),
162 (HeapWord*)_virtual_space.high());
163 Universe::heap()->barrier_set()->resize_covered_region(cmr);
164
165 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
166 _eden_space = new ConcEdenSpace(this);
167 } else {
168 _eden_space = new EdenSpace(this);
169 }
170 _from_space = new ContiguousSpace();
171 _to_space = new ContiguousSpace();
172
173 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
174 vm_exit_during_initialization("Could not allocate a new gen space");
175
176 // Compute the maximum eden and survivor space sizes. These sizes
177 // are computed assuming the entire reserved space is committed.
178 // These values are exported as performance counters.
179 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
180 uintx size = _virtual_space.reserved_size();
181 _max_survivor_size = compute_survivor_size(size, alignment);
182 _max_eden_size = size - (2*_max_survivor_size);
183
184 // allocate the performance counters
185
186 // Generation counters -- generation 0, 3 subspaces
187 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
188 _gc_counters = new CollectorCounters(policy, 0);
189
190 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
191 _gen_counters);
192 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
193 _gen_counters);
194 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
195 _gen_counters);
196
197 compute_space_boundaries(0);
198 update_counters();
199 _next_gen = NULL;
200 _tenuring_threshold = MaxTenuringThreshold;
201 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
202 }
203
204 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size) {
205 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
206
207 // Compute sizes
208 uintx size = _virtual_space.committed_size();
209 uintx survivor_size = compute_survivor_size(size, alignment);
210 uintx eden_size = size - (2*survivor_size);
211 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
212
213 if (eden_size < minimum_eden_size) {
214 // May happen due to 64Kb rounding, if so adjust eden size back up
215 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
216 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
217 uintx unaligned_survivor_size =
218 align_size_down(maximum_survivor_size, alignment);
219 survivor_size = MAX2(unaligned_survivor_size, alignment);
220 eden_size = size - (2*survivor_size);
221 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
222 assert(eden_size >= minimum_eden_size, "just checking");
223 }
224
225 char *eden_start = _virtual_space.low();
226 char *from_start = eden_start + eden_size;
227 char *to_start = from_start + survivor_size;
228 char *to_end = to_start + survivor_size;
229
230 assert(to_end == _virtual_space.high(), "just checking");
231 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
232 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
233 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
234
235 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
236 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
237 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
238
239 eden()->initialize(edenMR, (minimum_eden_size == 0));
240 // If minumum_eden_size != 0, we will not have cleared any
241 // portion of eden above its top. This can cause newly
242 // expanded space not to be mangled if using ZapUnusedHeapArea.
243 // We explicitly do such mangling here.
244 if (ZapUnusedHeapArea && (minimum_eden_size != 0)) {
245 eden()->mangle_unused_area();
246 }
247 from()->initialize(fromMR, true);
248 to()->initialize(toMR , true);
249 eden()->set_next_compaction_space(from());
250 // The to-space is normally empty before a compaction so need
251 // not be considered. The exception is during promotion
252 // failure handling when to-space can contain live objects.
253 from()->set_next_compaction_space(NULL);
254 }
255
256 void DefNewGeneration::swap_spaces() {
257 ContiguousSpace* s = from();
258 _from_space = to();
259 _to_space = s;
260 eden()->set_next_compaction_space(from());
261 // The to-space is normally empty before a compaction so need
262 // not be considered. The exception is during promotion
263 // failure handling when to-space can contain live objects.
264 from()->set_next_compaction_space(NULL);
265
266 if (UsePerfData) {
267 CSpaceCounters* c = _from_counters;
268 _from_counters = _to_counters;
269 _to_counters = c;
270 }
271 }
272
273 bool DefNewGeneration::expand(size_t bytes) {
274 MutexLocker x(ExpandHeap_lock);
275 bool success = _virtual_space.expand_by(bytes);
276
277 // Do not attempt an expand-to-the reserve size. The
278 // request should properly observe the maximum size of
279 // the generation so an expand-to-reserve should be
280 // unnecessary. Also a second call to expand-to-reserve
281 // value potentially can cause an undue expansion.
282 // For example if the first expand fail for unknown reasons,
283 // but the second succeeds and expands the heap to its maximum
284 // value.
285 if (GC_locker::is_active()) {
286 if (PrintGC && Verbose) {
287 gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
288 }
289 }
290
291 return success;
292 }
293
294
295 void DefNewGeneration::compute_new_size() {
296 // This is called after a gc that includes the following generation
297 // (which is required to exist.) So from-space will normally be empty.
298 // Note that we check both spaces, since if scavenge failed they revert roles.
299 // If not we bail out (otherwise we would have to relocate the objects)
300 if (!from()->is_empty() || !to()->is_empty()) {
301 return;
302 }
303
304 int next_level = level() + 1;
305 GenCollectedHeap* gch = GenCollectedHeap::heap();
306 assert(next_level < gch->_n_gens,
307 "DefNewGeneration cannot be an oldest gen");
308
309 Generation* next_gen = gch->_gens[next_level];
310 size_t old_size = next_gen->capacity();
311 size_t new_size_before = _virtual_space.committed_size();
312 size_t min_new_size = spec()->init_size();
313 size_t max_new_size = reserved().byte_size();
314 assert(min_new_size <= new_size_before &&
315 new_size_before <= max_new_size,
316 "just checking");
317 // All space sizes must be multiples of Generation::GenGrain.
318 size_t alignment = Generation::GenGrain;
319
320 // Compute desired new generation size based on NewRatio and
321 // NewSizeThreadIncrease
322 size_t desired_new_size = old_size/NewRatio;
323 int threads_count = Threads::number_of_non_daemon_threads();
324 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
325 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
326
327 // Adjust new generation size
328 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
329 assert(desired_new_size <= max_new_size, "just checking");
330
331 bool changed = false;
332 if (desired_new_size > new_size_before) {
333 size_t change = desired_new_size - new_size_before;
334 assert(change % alignment == 0, "just checking");
335 if (expand(change)) {
336 changed = true;
337 }
338 // If the heap failed to expand to the desired size,
339 // "changed" will be false. If the expansion failed
340 // (and at this point it was expected to succeed),
341 // ignore the failure (leaving "changed" as false).
342 }
343 if (desired_new_size < new_size_before && eden()->is_empty()) {
344 // bail out of shrinking if objects in eden
345 size_t change = new_size_before - desired_new_size;
346 assert(change % alignment == 0, "just checking");
347 _virtual_space.shrink_by(change);
348 changed = true;
349 }
350 if (changed) {
351 compute_space_boundaries(eden()->used());
352 MemRegion cmr((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high());
353 Universe::heap()->barrier_set()->resize_covered_region(cmr);
354 if (Verbose && PrintGC) {
355 size_t new_size_after = _virtual_space.committed_size();
356 size_t eden_size_after = eden()->capacity();
357 size_t survivor_size_after = from()->capacity();
358 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden="
359 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
360 new_size_before/K, new_size_after/K, eden_size_after/K, survivor_size_after/K);
361 if (WizardMode) {
362 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
363 thread_increase_size/K, threads_count);
364 }
365 gclog_or_tty->cr();
366 }
367 }
368 }
369
370 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
371 // $$$ This may be wrong in case of "scavenge failure"?
372 eden()->object_iterate(cl);
373 }
374
375 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
376 assert(false, "NYI -- are you sure you want to call this?");
377 }
378
379
380 size_t DefNewGeneration::capacity() const {
381 return eden()->capacity()
382 + from()->capacity(); // to() is only used during scavenge
383 }
384
385
386 size_t DefNewGeneration::used() const {
387 return eden()->used()
388 + from()->used(); // to() is only used during scavenge
389 }
390
391
392 size_t DefNewGeneration::free() const {
393 return eden()->free()
394 + from()->free(); // to() is only used during scavenge
395 }
396
397 size_t DefNewGeneration::max_capacity() const {
398 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
399 const size_t reserved_bytes = reserved().byte_size();
400 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
401 }
402
403 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
404 return eden()->free();
405 }
406
407 size_t DefNewGeneration::capacity_before_gc() const {
408 return eden()->capacity();
409 }
410
411 size_t DefNewGeneration::contiguous_available() const {
412 return eden()->free();
413 }
414
415
416 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
417 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
418
419 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
420 eden()->object_iterate(blk);
421 from()->object_iterate(blk);
422 }
423
424
425 void DefNewGeneration::space_iterate(SpaceClosure* blk,
426 bool usedOnly) {
427 blk->do_space(eden());
428 blk->do_space(from());
429 blk->do_space(to());
430 }
431
432 // The last collection bailed out, we are running out of heap space,
433 // so we try to allocate the from-space, too.
434 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
435 HeapWord* result = NULL;
436 if (PrintGC && Verbose) {
437 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
438 " will_fail: %s"
439 " heap_lock: %s"
440 " free: " SIZE_FORMAT,
441 size,
442 GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
443 Heap_lock->is_locked() ? "locked" : "unlocked",
444 from()->free());
445 }
446 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
447 if (Heap_lock->owned_by_self() ||
448 (SafepointSynchronize::is_at_safepoint() &&
449 Thread::current()->is_VM_thread())) {
450 // If the Heap_lock is not locked by this thread, this will be called
451 // again later with the Heap_lock held.
452 result = from()->allocate(size);
453 } else if (PrintGC && Verbose) {
454 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
455 }
456 } else if (PrintGC && Verbose) {
457 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
458 }
459 if (PrintGC && Verbose) {
460 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
461 }
462 return result;
463 }
464
465 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
466 bool is_tlab,
467 bool parallel) {
468 // We don't attempt to expand the young generation (but perhaps we should.)
469 return allocate(size, is_tlab);
470 }
471
472
473 void DefNewGeneration::collect(bool full,
474 bool clear_all_soft_refs,
475 size_t size,
476 bool is_tlab) {
477 assert(full || size > 0, "otherwise we don't want to collect");
478 GenCollectedHeap* gch = GenCollectedHeap::heap();
479 _next_gen = gch->next_gen(this);
480 assert(_next_gen != NULL,
481 "This must be the youngest gen, and not the only gen");
482
483 // If the next generation is too full to accomodate promotion
484 // from this generation, pass on collection; let the next generation
485 // do it.
486 if (!collection_attempt_is_safe()) {
487 gch->set_incremental_collection_will_fail();
488 return;
489 }
490 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
491
492 init_assuming_no_promotion_failure();
493
494 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
495 // Capture heap used before collection (for printing).
496 size_t gch_prev_used = gch->used();
497
498 SpecializationStats::clear();
499
500 // These can be shared for all code paths
501 IsAliveClosure is_alive(this);
502 ScanWeakRefClosure scan_weak_ref(this);
503
504 age_table()->clear();
505 to()->clear();
506
507 gch->rem_set()->prepare_for_younger_refs_iterate(false);
508
509 assert(gch->no_allocs_since_save_marks(0),
510 "save marks have not been newly set.");
511
512 // Weak refs.
513 // FIXME: Are these storage leaks, or are they resource objects?
514 #ifdef COMPILER2
515 ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy();
516 #else
517 ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy();
518 #endif // COMPILER2
519
520 // Not very pretty.
521 CollectorPolicy* cp = gch->collector_policy();
522
523 FastScanClosure fsc_with_no_gc_barrier(this, false);
524 FastScanClosure fsc_with_gc_barrier(this, true);
525
526 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
527 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
528 &fsc_with_no_gc_barrier,
529 &fsc_with_gc_barrier);
530
531 assert(gch->no_allocs_since_save_marks(0),
532 "save marks have not been newly set.");
533
534 gch->gen_process_strong_roots(_level,
535 true, // Process younger gens, if any, as
536 // strong roots.
537 false,// not collecting permanent generation.
538 SharedHeap::SO_AllClasses,
539 &fsc_with_gc_barrier,
540 &fsc_with_no_gc_barrier);
541
542 // "evacuate followers".
543 evacuate_followers.do_void();
544
545 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
546 ref_processor()->process_discovered_references(
547 soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers, NULL);
548 if (!promotion_failed()) {
549 // Swap the survivor spaces.
550 eden()->clear();
551 from()->clear();
552 swap_spaces();
553
554 assert(to()->is_empty(), "to space should be empty now");
555
556 // Set the desired survivor size to half the real survivor space
557 _tenuring_threshold =
558 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
559
560 if (PrintGC && !PrintGCDetails) {
561 gch->print_heap_change(gch_prev_used);
562 }
563 } else {
564 assert(HandlePromotionFailure,
565 "Should not be here unless promotion failure handling is on");
566 assert(_promo_failure_scan_stack != NULL &&
567 _promo_failure_scan_stack->length() == 0, "post condition");
568
569 // deallocate stack and it's elements
570 delete _promo_failure_scan_stack;
571 _promo_failure_scan_stack = NULL;
572
573 remove_forwarding_pointers();
574 if (PrintGCDetails) {
575 gclog_or_tty->print(" (promotion failed)");
576 }
577 // Add to-space to the list of space to compact
578 // when a promotion failure has occurred. In that
579 // case there can be live objects in to-space
580 // as a result of a partial evacuation of eden
581 // and from-space.
582 swap_spaces(); // For the sake of uniformity wrt ParNewGeneration::collect().
583 from()->set_next_compaction_space(to());
584 gch->set_incremental_collection_will_fail();
585
586 // Reset the PromotionFailureALot counters.
587 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
588 }
589 // set new iteration safe limit for the survivor spaces
590 from()->set_concurrent_iteration_safe_limit(from()->top());
591 to()->set_concurrent_iteration_safe_limit(to()->top());
592 SpecializationStats::print();
593 update_time_of_last_gc(os::javaTimeMillis());
594 }
595
596 class RemoveForwardPointerClosure: public ObjectClosure {
597 public:
598 void do_object(oop obj) {
599 obj->init_mark();
600 }
601 };
602
603 void DefNewGeneration::init_assuming_no_promotion_failure() {
604 _promotion_failed = false;
605 from()->set_next_compaction_space(NULL);
606 }
607
608 void DefNewGeneration::remove_forwarding_pointers() {
609 RemoveForwardPointerClosure rspc;
610 eden()->object_iterate(&rspc);
611 from()->object_iterate(&rspc);
612 // Now restore saved marks, if any.
613 if (_objs_with_preserved_marks != NULL) {
614 assert(_preserved_marks_of_objs != NULL, "Both or none.");
615 assert(_objs_with_preserved_marks->length() ==
616 _preserved_marks_of_objs->length(), "Both or none.");
617 for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
618 oop obj = _objs_with_preserved_marks->at(i);
619 markOop m = _preserved_marks_of_objs->at(i);
620 obj->set_mark(m);
621 }
622 delete _objs_with_preserved_marks;
623 delete _preserved_marks_of_objs;
624 _objs_with_preserved_marks = NULL;
625 _preserved_marks_of_objs = NULL;
626 }
627 }
628
629 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
630 if (m->must_be_preserved_for_promotion_failure(obj)) {
631 if (_objs_with_preserved_marks == NULL) {
632 assert(_preserved_marks_of_objs == NULL, "Both or none.");
633 _objs_with_preserved_marks = new (ResourceObj::C_HEAP)
634 GrowableArray<oop>(PreserveMarkStackSize, true);
635 _preserved_marks_of_objs = new (ResourceObj::C_HEAP)
636 GrowableArray<markOop>(PreserveMarkStackSize, true);
637 }
638 _objs_with_preserved_marks->push(obj);
639 _preserved_marks_of_objs->push(m);
640 }
641 }
642
643 void DefNewGeneration::handle_promotion_failure(oop old) {
644 preserve_mark_if_necessary(old, old->mark());
645 // forward to self
646 old->forward_to(old);
647 _promotion_failed = true;
648
649 push_on_promo_failure_scan_stack(old);
650
651 if (!_promo_failure_drain_in_progress) {
652 // prevent recursion in copy_to_survivor_space()
653 _promo_failure_drain_in_progress = true;
654 drain_promo_failure_scan_stack();
655 _promo_failure_drain_in_progress = false;
656 }
657 }
658
659 oop DefNewGeneration::copy_to_survivor_space(oop old, oop* from) {
660 assert(is_in_reserved(old) && !old->is_forwarded(),
661 "shouldn't be scavenging this oop");
662 size_t s = old->size();
663 oop obj = NULL;
664
665 // Try allocating obj in to-space (unless too old)
666 if (old->age() < tenuring_threshold()) {
667 obj = (oop) to()->allocate(s);
668 }
669
670 // Otherwise try allocating obj tenured
671 if (obj == NULL) {
672 obj = _next_gen->promote(old, s, from);
673 if (obj == NULL) {
674 if (!HandlePromotionFailure) {
675 // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
676 // is incorrectly set. In any case, its seriously wrong to be here!
677 vm_exit_out_of_memory(s*wordSize, "promotion");
678 }
679
680 handle_promotion_failure(old);
681 return old;
682 }
683 } else {
684 // Prefetch beyond obj
685 const intx interval = PrefetchCopyIntervalInBytes;
686 Prefetch::write(obj, interval);
687
688 // Copy obj
689 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
690
691 // Increment age if obj still in new generation
692 obj->incr_age();
693 age_table()->add(obj, s);
694 }
695
696 // Done, insert forward pointer to obj in this header
697 old->forward_to(obj);
698
699 return obj;
700 }
701
702 void DefNewGeneration::push_on_promo_failure_scan_stack(oop obj) {
703 if (_promo_failure_scan_stack == NULL) {
704 _promo_failure_scan_stack = new (ResourceObj::C_HEAP)
705 GrowableArray<oop>(40, true);
706 }
707
708 _promo_failure_scan_stack->push(obj);
709 }
710
711 void DefNewGeneration::drain_promo_failure_scan_stack() {
712 assert(_promo_failure_scan_stack != NULL, "precondition");
713
714 while (_promo_failure_scan_stack->length() > 0) {
715 oop obj = _promo_failure_scan_stack->pop();
716 obj->oop_iterate(_promo_failure_scan_stack_closure);
717 }
718 }
719
720 void DefNewGeneration::save_marks() {
721 eden()->set_saved_mark();
722 to()->set_saved_mark();
723 from()->set_saved_mark();
724 }
725
726
727 void DefNewGeneration::reset_saved_marks() {
728 eden()->reset_saved_mark();
729 to()->reset_saved_mark();
730 from()->reset_saved_mark();
731 }
732
733
734 bool DefNewGeneration::no_allocs_since_save_marks() {
735 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
736 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
737 return to()->saved_mark_at_top();
738 }
739
740 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
741 \
742 void DefNewGeneration:: \
743 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
744 cl->set_generation(this); \
745 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
746 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
747 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
748 cl->reset_generation(); \
749 save_marks(); \
750 }
751
752 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
753
754 #undef DefNew_SINCE_SAVE_MARKS_DEFN
755
756 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
757 size_t max_alloc_words) {
758 if (requestor == this || _promotion_failed) return;
759 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
760
761 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
762 if (to_space->top() > to_space->bottom()) {
763 trace("to_space not empty when contribute_scratch called");
764 }
765 */
766
767 ContiguousSpace* to_space = to();
768 assert(to_space->end() >= to_space->top(), "pointers out of order");
769 size_t free_words = pointer_delta(to_space->end(), to_space->top());
770 if (free_words >= MinFreeScratchWords) {
771 ScratchBlock* sb = (ScratchBlock*)to_space->top();
772 sb->num_words = free_words;
773 sb->next = list;
774 list = sb;
775 }
776 }
777
778 bool DefNewGeneration::collection_attempt_is_safe() {
779 if (!to()->is_empty()) {
780 return false;
781 }
782 if (_next_gen == NULL) {
783 GenCollectedHeap* gch = GenCollectedHeap::heap();
784 _next_gen = gch->next_gen(this);
785 assert(_next_gen != NULL,
786 "This must be the youngest gen, and not the only gen");
787 }
788
789 // Decide if there's enough room for a full promotion
790 // When using extremely large edens, we effectively lose a
791 // large amount of old space. Use the "MaxLiveObjectEvacuationRatio"
792 // flag to reduce the minimum evacuation space requirements. If
793 // there is not enough space to evacuate eden during a scavenge,
794 // the VM will immediately exit with an out of memory error.
795 // This flag has not been tested
796 // with collectors other than simple mark & sweep.
797 //
798 // Note that with the addition of promotion failure handling, the
799 // VM will not immediately exit but will undo the young generation
800 // collection. The parameter is left here for compatibility.
801 const double evacuation_ratio = MaxLiveObjectEvacuationRatio / 100.0;
802
803 // worst_case_evacuation is based on "used()". For the case where this
804 // method is called after a collection, this is still appropriate because
805 // the case that needs to be detected is one in which a full collection
806 // has been done and has overflowed into the young generation. In that
807 // case a minor collection will fail (the overflow of the full collection
808 // means there is no space in the old generation for any promotion).
809 size_t worst_case_evacuation = (size_t)(used() * evacuation_ratio);
810
811 return _next_gen->promotion_attempt_is_safe(worst_case_evacuation,
812 HandlePromotionFailure);
813 }
814
815 void DefNewGeneration::gc_epilogue(bool full) {
816 // Check if the heap is approaching full after a collection has
817 // been done. Generally the young generation is empty at
818 // a minimum at the end of a collection. If it is not, then
819 // the heap is approaching full.
820 GenCollectedHeap* gch = GenCollectedHeap::heap();
821 clear_should_allocate_from_space();
822 if (collection_attempt_is_safe()) {
823 gch->clear_incremental_collection_will_fail();
824 } else {
825 gch->set_incremental_collection_will_fail();
826 if (full) { // we seem to be running out of space
827 set_should_allocate_from_space();
828 }
829 }
830
831 // update the generation and space performance counters
832 update_counters();
833 gch->collector_policy()->counters()->update_counters();
834 }
835
836 void DefNewGeneration::update_counters() {
837 if (UsePerfData) {
838 _eden_counters->update_all();
839 _from_counters->update_all();
840 _to_counters->update_all();
841 _gen_counters->update_all();
842 }
843 }
844
845 void DefNewGeneration::verify(bool allow_dirty) {
846 eden()->verify(allow_dirty);
847 from()->verify(allow_dirty);
848 to()->verify(allow_dirty);
849 }
850
851 void DefNewGeneration::print_on(outputStream* st) const {
852 Generation::print_on(st);
853 st->print(" eden");
854 eden()->print_on(st);
855 st->print(" from");
856 from()->print_on(st);
857 st->print(" to ");
858 to()->print_on(st);
859 }
860
861
862 const char* DefNewGeneration::name() const {
863 return "def new generation";
864 }