comparison src/share/vm/memory/referenceProcessor.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // ReferenceProcessor class encapsulates the per-"collector" processing
26 // of "weak" references for GC. The interface is useful for supporting
27 // a generational abstraction, in particular when there are multiple
28 // generations that are being independently collected -- possibly
29 // concurrently and/or incrementally. Note, however, that the
30 // ReferenceProcessor class abstracts away from a generational setting
31 // by using only a heap interval (called "span" below), thus allowing
32 // its use in a straightforward manner in a general, non-generational
33 // setting.
34 //
35 // The basic idea is that each ReferenceProcessor object concerns
36 // itself with ("weak") reference processing in a specific "span"
37 // of the heap of interest to a specific collector. Currently,
38 // the span is a convex interval of the heap, but, efficiency
39 // apart, there seems to be no reason it couldn't be extended
40 // (with appropriate modifications) to any "non-convex interval".
41
42 // forward references
43 class ReferencePolicy;
44 class AbstractRefProcTaskExecutor;
45 class DiscoveredList;
46
47 class ReferenceProcessor : public CHeapObj {
48 friend class DiscoveredList;
49 friend class DiscoveredListIterator;
50 protected:
51 // End of list marker
52 static oop _sentinelRef;
53 MemRegion _span; // (right-open) interval of heap
54 // subject to wkref discovery
55 bool _discovering_refs; // true when discovery enabled
56 bool _discovery_is_atomic; // if discovery is atomic wrt
57 // other collectors in configuration
58 bool _discovery_is_mt; // true if reference discovery is MT.
59 bool _enqueuing_is_done; // true if all weak references enqueued
60 bool _processing_is_mt; // true during phases when
61 // reference processing is MT.
62 int _next_id; // round-robin counter in
63 // support of work distribution
64
65 // For collectors that do not keep GC marking information
66 // in the object header, this field holds a closure that
67 // helps the reference processor determine the reachability
68 // of an oop (the field is currently initialized to NULL for
69 // all collectors but the CMS collector).
70 BoolObjectClosure* _is_alive_non_header;
71
72 // The discovered ref lists themselves
73 int _num_q; // the MT'ness degree of the queues below
74 DiscoveredList* _discoveredSoftRefs; // pointer to array of oops
75 DiscoveredList* _discoveredWeakRefs;
76 DiscoveredList* _discoveredFinalRefs;
77 DiscoveredList* _discoveredPhantomRefs;
78
79 public:
80 int num_q() { return _num_q; }
81 DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
82 static oop* sentinel_ref() { return &_sentinelRef; }
83
84 public:
85 // Process references with a certain reachability level.
86 void process_discovered_reflist(DiscoveredList refs_lists[],
87 ReferencePolicy* policy,
88 bool clear_referent,
89 BoolObjectClosure* is_alive,
90 OopClosure* keep_alive,
91 VoidClosure* complete_gc,
92 AbstractRefProcTaskExecutor* task_executor);
93
94 void process_phaseJNI(BoolObjectClosure* is_alive,
95 OopClosure* keep_alive,
96 VoidClosure* complete_gc);
97
98 // Work methods used by the method process_discovered_reflist
99 // Phase1: keep alive all those referents that are otherwise
100 // dead but which must be kept alive by policy (and their closure).
101 void process_phase1(DiscoveredList& refs_list_addr,
102 ReferencePolicy* policy,
103 BoolObjectClosure* is_alive,
104 OopClosure* keep_alive,
105 VoidClosure* complete_gc);
106 // Phase2: remove all those references whose referents are
107 // reachable.
108 inline void process_phase2(DiscoveredList& refs_list_addr,
109 BoolObjectClosure* is_alive,
110 OopClosure* keep_alive,
111 VoidClosure* complete_gc) {
112 if (discovery_is_atomic()) {
113 // complete_gc is ignored in this case for this phase
114 pp2_work(refs_list_addr, is_alive, keep_alive);
115 } else {
116 assert(complete_gc != NULL, "Error");
117 pp2_work_concurrent_discovery(refs_list_addr, is_alive,
118 keep_alive, complete_gc);
119 }
120 }
121 // Work methods in support of process_phase2
122 void pp2_work(DiscoveredList& refs_list_addr,
123 BoolObjectClosure* is_alive,
124 OopClosure* keep_alive);
125 void pp2_work_concurrent_discovery(
126 DiscoveredList& refs_list_addr,
127 BoolObjectClosure* is_alive,
128 OopClosure* keep_alive,
129 VoidClosure* complete_gc);
130 // Phase3: process the referents by either clearing them
131 // or keeping them alive (and their closure)
132 void process_phase3(DiscoveredList& refs_list_addr,
133 bool clear_referent,
134 BoolObjectClosure* is_alive,
135 OopClosure* keep_alive,
136 VoidClosure* complete_gc);
137
138 // Enqueue references with a certain reachability level
139 void enqueue_discovered_reflist(DiscoveredList& refs_list, oop* pending_list_addr);
140
141 // "Preclean" all the discovered reference lists
142 // by removing references with strongly reachable referents.
143 // The first argument is a predicate on an oop that indicates
144 // its (strong) reachability and the second is a closure that
145 // may be used to incrementalize or abort the precleaning process.
146 // The caller is responsible for taking care of potential
147 // interference with concurrent operations on these lists
148 // (or predicates involved) by other threads. Currently
149 // only used by the CMS collector.
150 void preclean_discovered_references(BoolObjectClosure* is_alive,
151 OopClosure* keep_alive,
152 VoidClosure* complete_gc,
153 YieldClosure* yield);
154
155 // Delete entries in the discovered lists that have
156 // either a null referent or are not active. Such
157 // Reference objects can result from the clearing
158 // or enqueueing of Reference objects concurrent
159 // with their discovery by a (concurrent) collector.
160 // For a definition of "active" see java.lang.ref.Reference;
161 // Refs are born active, become inactive when enqueued,
162 // and never become active again. The state of being
163 // active is encoded as follows: A Ref is active
164 // if and only if its "next" field is NULL.
165 void clean_up_discovered_references();
166 void clean_up_discovered_reflist(DiscoveredList& refs_list);
167
168 // Returns the name of the discovered reference list
169 // occupying the i / _num_q slot.
170 const char* list_name(int i);
171
172 protected:
173 // "Preclean" the given discovered reference list
174 // by removing references with strongly reachable referents.
175 // Currently used in support of CMS only.
176 void preclean_discovered_reflist(DiscoveredList& refs_list,
177 BoolObjectClosure* is_alive,
178 OopClosure* keep_alive,
179 VoidClosure* complete_gc,
180 YieldClosure* yield);
181
182 void enqueue_discovered_reflists(oop* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
183 int next_id() {
184 int id = _next_id;
185 if (++_next_id == _num_q) {
186 _next_id = 0;
187 }
188 return id;
189 }
190 DiscoveredList* get_discovered_list(ReferenceType rt);
191 inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
192 oop* discovered_addr);
193 void verify_ok_to_handle_reflists() PRODUCT_RETURN;
194
195 void abandon_partial_discovered_list(DiscoveredList& refs_list);
196 void abandon_partial_discovered_list_arr(DiscoveredList refs_lists[]);
197
198 // Calculate the number of jni handles.
199 unsigned int count_jni_refs();
200
201 // Balances reference queues.
202 void balance_queues(DiscoveredList ref_lists[]);
203
204 // Update (advance) the soft ref master clock field.
205 void update_soft_ref_master_clock();
206
207 public:
208 // constructor
209 ReferenceProcessor():
210 _span((HeapWord*)NULL, (HeapWord*)NULL),
211 _discoveredSoftRefs(NULL), _discoveredWeakRefs(NULL),
212 _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
213 _discovering_refs(false),
214 _discovery_is_atomic(true),
215 _enqueuing_is_done(false),
216 _discovery_is_mt(false),
217 _is_alive_non_header(NULL),
218 _num_q(0),
219 _processing_is_mt(false),
220 _next_id(0)
221 {}
222
223 ReferenceProcessor(MemRegion span, bool atomic_discovery,
224 bool mt_discovery, int mt_degree = 1,
225 bool mt_processing = false);
226
227 // Allocates and initializes a reference processor.
228 static ReferenceProcessor* create_ref_processor(
229 MemRegion span,
230 bool atomic_discovery,
231 bool mt_discovery,
232 BoolObjectClosure* is_alive_non_header = NULL,
233 int parallel_gc_threads = 1,
234 bool mt_processing = false);
235
236 // RefDiscoveryPolicy values
237 enum {
238 ReferenceBasedDiscovery = 0,
239 ReferentBasedDiscovery = 1
240 };
241
242 static void init_statics();
243
244 public:
245 // get and set "is_alive_non_header" field
246 BoolObjectClosure* is_alive_non_header() {
247 return _is_alive_non_header;
248 }
249 void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
250 _is_alive_non_header = is_alive_non_header;
251 }
252
253 // get and set span
254 MemRegion span() { return _span; }
255 void set_span(MemRegion span) { _span = span; }
256
257 // start and stop weak ref discovery
258 void enable_discovery() { _discovering_refs = true; }
259 void disable_discovery() { _discovering_refs = false; }
260 bool discovery_enabled() { return _discovering_refs; }
261
262 // whether discovery is atomic wrt other collectors
263 bool discovery_is_atomic() const { return _discovery_is_atomic; }
264 void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
265
266 // whether discovery is done by multiple threads same-old-timeously
267 bool discovery_is_mt() const { return _discovery_is_mt; }
268 void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
269
270 // Whether we are in a phase when _processing_ is MT.
271 bool processing_is_mt() const { return _processing_is_mt; }
272 void set_mt_processing(bool mt) { _processing_is_mt = mt; }
273
274 // whether all enqueuing of weak references is complete
275 bool enqueuing_is_done() { return _enqueuing_is_done; }
276 void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
277
278 // iterate over oops
279 void weak_oops_do(OopClosure* f); // weak roots
280 static void oops_do(OopClosure* f); // strong root(s)
281
282 // Discover a Reference object, using appropriate discovery criteria
283 bool discover_reference(oop obj, ReferenceType rt);
284
285 // Process references found during GC (called by the garbage collector)
286 void process_discovered_references(ReferencePolicy* policy,
287 BoolObjectClosure* is_alive,
288 OopClosure* keep_alive,
289 VoidClosure* complete_gc,
290 AbstractRefProcTaskExecutor* task_executor);
291
292 public:
293 // Enqueue references at end of GC (called by the garbage collector)
294 bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
295
296 // debugging
297 void verify_no_references_recorded() PRODUCT_RETURN;
298 static void verify();
299
300 // clear the discovered lists (unlinking each entry).
301 void clear_discovered_references() PRODUCT_RETURN;
302 };
303
304 // A utility class to disable reference discovery in
305 // the scope which contains it, for given ReferenceProcessor.
306 class NoRefDiscovery: StackObj {
307 private:
308 ReferenceProcessor* _rp;
309 bool _was_discovering_refs;
310 public:
311 NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
312 if (_was_discovering_refs = _rp->discovery_enabled()) {
313 _rp->disable_discovery();
314 }
315 }
316
317 ~NoRefDiscovery() {
318 if (_was_discovering_refs) {
319 _rp->enable_discovery();
320 }
321 }
322 };
323
324
325 // A utility class to temporarily mutate the span of the
326 // given ReferenceProcessor in the scope that contains it.
327 class ReferenceProcessorSpanMutator: StackObj {
328 private:
329 ReferenceProcessor* _rp;
330 MemRegion _saved_span;
331
332 public:
333 ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
334 MemRegion span):
335 _rp(rp) {
336 _saved_span = _rp->span();
337 _rp->set_span(span);
338 }
339
340 ~ReferenceProcessorSpanMutator() {
341 _rp->set_span(_saved_span);
342 }
343 };
344
345 // A utility class to temporarily change the MT'ness of
346 // reference discovery for the given ReferenceProcessor
347 // in the scope that contains it.
348 class ReferenceProcessorMTMutator: StackObj {
349 private:
350 ReferenceProcessor* _rp;
351 bool _saved_mt;
352
353 public:
354 ReferenceProcessorMTMutator(ReferenceProcessor* rp,
355 bool mt):
356 _rp(rp) {
357 _saved_mt = _rp->discovery_is_mt();
358 _rp->set_mt_discovery(mt);
359 }
360
361 ~ReferenceProcessorMTMutator() {
362 _rp->set_mt_discovery(_saved_mt);
363 }
364 };
365
366
367 // A utility class to temporarily change the disposition
368 // of the "is_alive_non_header" closure field of the
369 // given ReferenceProcessor in the scope that contains it.
370 class ReferenceProcessorIsAliveMutator: StackObj {
371 private:
372 ReferenceProcessor* _rp;
373 BoolObjectClosure* _saved_cl;
374
375 public:
376 ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
377 BoolObjectClosure* cl):
378 _rp(rp) {
379 _saved_cl = _rp->is_alive_non_header();
380 _rp->set_is_alive_non_header(cl);
381 }
382
383 ~ReferenceProcessorIsAliveMutator() {
384 _rp->set_is_alive_non_header(_saved_cl);
385 }
386 };
387
388 // A utility class to temporarily change the disposition
389 // of the "discovery_is_atomic" field of the
390 // given ReferenceProcessor in the scope that contains it.
391 class ReferenceProcessorAtomicMutator: StackObj {
392 private:
393 ReferenceProcessor* _rp;
394 bool _saved_atomic_discovery;
395
396 public:
397 ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
398 bool atomic):
399 _rp(rp) {
400 _saved_atomic_discovery = _rp->discovery_is_atomic();
401 _rp->set_atomic_discovery(atomic);
402 }
403
404 ~ReferenceProcessorAtomicMutator() {
405 _rp->set_atomic_discovery(_saved_atomic_discovery);
406 }
407 };
408
409
410 // A utility class to temporarily change the MT processing
411 // disposition of the given ReferenceProcessor instance
412 // in the scope that contains it.
413 class ReferenceProcessorMTProcMutator: StackObj {
414 private:
415 ReferenceProcessor* _rp;
416 bool _saved_mt;
417
418 public:
419 ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
420 bool mt):
421 _rp(rp) {
422 _saved_mt = _rp->processing_is_mt();
423 _rp->set_mt_processing(mt);
424 }
425
426 ~ReferenceProcessorMTProcMutator() {
427 _rp->set_mt_processing(_saved_mt);
428 }
429 };
430
431
432 // This class is an interface used to implement task execution for the
433 // reference processing.
434 class AbstractRefProcTaskExecutor {
435 public:
436
437 // Abstract tasks to execute.
438 class ProcessTask;
439 class EnqueueTask;
440
441 // Executes a task using worker threads.
442 virtual void execute(ProcessTask& task) = 0;
443 virtual void execute(EnqueueTask& task) = 0;
444
445 // Switch to single threaded mode.
446 virtual void set_single_threaded_mode() { };
447 };
448
449 // Abstract reference processing task to execute.
450 class AbstractRefProcTaskExecutor::ProcessTask {
451 protected:
452 ProcessTask(ReferenceProcessor& ref_processor,
453 DiscoveredList refs_lists[],
454 bool marks_oops_alive)
455 : _ref_processor(ref_processor),
456 _refs_lists(refs_lists),
457 _marks_oops_alive(marks_oops_alive)
458 { }
459
460 public:
461 virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
462 OopClosure& keep_alive,
463 VoidClosure& complete_gc) = 0;
464
465 // Returns true if a task marks some oops as alive.
466 bool marks_oops_alive() const
467 { return _marks_oops_alive; }
468
469 protected:
470 ReferenceProcessor& _ref_processor;
471 DiscoveredList* _refs_lists;
472 const bool _marks_oops_alive;
473 };
474
475 // Abstract reference processing task to execute.
476 class AbstractRefProcTaskExecutor::EnqueueTask {
477 protected:
478 EnqueueTask(ReferenceProcessor& ref_processor,
479 DiscoveredList refs_lists[],
480 oop* pending_list_addr,
481 oop sentinel_ref,
482 int n_queues)
483 : _ref_processor(ref_processor),
484 _refs_lists(refs_lists),
485 _pending_list_addr(pending_list_addr),
486 _sentinel_ref(sentinel_ref),
487 _n_queues(n_queues)
488 { }
489
490 public:
491 virtual void work(unsigned int work_id) = 0;
492
493 protected:
494 ReferenceProcessor& _ref_processor;
495 DiscoveredList* _refs_lists;
496 oop* _pending_list_addr;
497 oop _sentinel_ref;
498 int _n_queues;
499 };